1. PUBLIC HEALTH STATEMENT

1.1 PUBLIC HEALTH STATEMENT FOR HYDROGEN SULFIDE

Overview
We define a public health statement and show how it can help you learn about hydrogen sulfide.

Introduction
A public health statement summarizes information about a hazardous substance. The information is taken from a toxicological profile developed by the Agency for Toxic Substances and Disease Registry’s (ATSDR’s) Division of Toxicology and Human Health Sciences (DTHHS). A toxicological profile is a thorough review of a hazardous substance.

This toxicological profile examines hydrogen sulfide and carbonyl sulfide. This section of the public health statement summarizes the DTHHS’s findings on hydrogen sulfide, describes the effects of exposure to it, and describes what you can do to limit that exposure.

Hydrogen sulfide at hazardous waste sites
The U.S. Environmental Protection Agency (U.S. EPA) identifies the most serious hazardous waste sites in the nation. U.S. EPA then includes these sites on the National Priorities List (NPL) and targets them for federal clean-up activities. U.S. EPA has found hydrogen sulfide in at least 35 of the 1,689 current or former NPL sites.

The total number of NPL sites evaluated for hydrogen sulfide is not known. However, the possibility remains that as more sites are evaluated, the number of sites at which hydrogen sulfide is found may increase. This information is important; these future sites may be sources of exposure, and exposure to hydrogen sulfide may be harmful.

A hydrogen sulfide release may be harmful
When a contaminant is released from a large area such as an industrial plant or from a container such as a drum or bottle, it enters the environment. However, such a release doesn’t always lead to exposure. You can only be exposed to a contaminant when you come in contact with it. That contact—and therefore that exposure—can occur when you breathe, eat, or drink the contaminant, or when it touches your skin.

Even if you’re exposed to hydrogen sulfide, you might not be harmed. Whether you are harmed will depend on such factors as the dose (how much), the duration (how long), and how you are exposed. Harm might also depend on whether you’ve been exposed to any other chemicals, as well as your age, sex, diet, family traits, lifestyle, and state of health.

DRAFT FOR PUBLIC COMMENT
Overview
This section describes hydrogen sulfide in detail and how you can be exposed to it.

What is hydrogen sulfide
Hydrogen sulfide (H₂S) is a flammable, colorless gas that smells like rotten eggs. People usually can smell hydrogen sulfide at low concentrations in air, ranging from 0.0005 to 0.3 parts per million (ppm) (0.0005–0.3 parts of hydrogen sulfide in 1 million parts of air). At high concentrations, a person might lose their ability to smell it. This is important because a person might falsely think that hydrogen sulfide is no longer present; this may increase their exposure risk to air levels that may cause serious health effects.

Hydrogen sulfide occurs both naturally and from human-made processes. It is in the gases from volcanoes, sulfur springs, undersea vents, swamps, and stagnant bodies of water and in crude petroleum and natural gas. Hydrogen sulfide also is associated with municipal sewers and sewage treatment plants, swine containment and manure-handling operations, and pulp and paper operations. Industrial sources of hydrogen sulfide include petroleum refineries, natural gas plants, petrochemical plants, coke oven plants, food processing plants, and tanneries. Bacteria found in your mouth and gastrointestinal tract produce hydrogen sulfide during the digestion of food containing vegetable or animal proteins.

How is hydrogen sulfide used
Hydrogen sulfide is used primarily in the production of sulfur and sulfuric acid. It can also be used to make other chemicals such as sodium sulfide and sodium hydrosulfide, which are used to make a variety of products including dyes, pesticides, and pharmaceuticals. Hydrogen sulfide is utilized in the purification of nickel and manganese as well as hydrochloric and sulfuric acids. It is used in metallurgy, the nuclear industry, and in laboratory experiments. It is also an agricultural disinfectant.
Where is hydrogen sulfide found

Hydrogen sulfide can be released into the air, water, and soil at places where it is produced or used.

<table>
<thead>
<tr>
<th>Possible Sources</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air: Most of the hydrogen sulfide released to air comes from natural sources such as swamps, bogs, and volcanoes.</td>
<td>Hydrogen sulfide remains in the atmosphere for approximately 1–42 days, depending on the season. It can change into sulfur dioxide and sulfates in the air.</td>
</tr>
<tr>
<td>Hydrogen sulfide can also be released from industrial sources such as petroleum refineries, natural gas plants, kraft paper mills, manure treatment facilities, waste water treatment facilities, and tanneries.</td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulfide air concentrations from natural sources range between 0.00011 and 0.00033 ppm. In urban areas, the air concentrations are generally less than 0.001 ppm.</td>
<td></td>
</tr>
<tr>
<td>Water: Hydrogen sulfide might be released to water in liquid waste of an industrial facility or as the result of a natural event. It can be naturally present in well water.</td>
<td>Hydrogen sulfide concentrations in surface water are usually very low because it readily evaporates from water. It can also be present in groundwater.</td>
</tr>
<tr>
<td>Soil: Hydrogen sulfide can enter soil through atmospheric deposition or from spills.</td>
<td>In soil, hydrogen sulfide is consumed by bacteria, which change it to sulfur.</td>
</tr>
</tbody>
</table>

How Hydrogen Sulfide Can Affect Your Health

Overview

This section looks at how hydrogen sulfide enters your body and potential hydrogen sulfide health effects found in human and animal studies.

How hydrogen sulfide enters your body

Hydrogen sulfide enters your body primarily through the air you breathe. Much smaller amounts can enter your body through the skin. Hydrogen sulfide is a gas, so you would not likely be exposed to it by ingestion. When you breathe air containing hydrogen sulfide or when hydrogen sulfide comes into contact with skin, it is absorbed into the blood stream and distributed throughout the body.
4 HYDROGEN SULFIDE AND CARBONYL SULFIDE

1. PUBLIC HEALTH STATEMENT

How hydrogen sulfide leaves your body

In the body, hydrogen sulfide is primarily converted to sulfate and is excreted in the urine. Hydrogen sulfide is rapidly removed from the body.

Hydrogen sulfide health effects

The health effects of hydrogen sulfide depend on several factors such as how much hydrogen sulfide you are exposed to and the length of that exposure. Studies in workers, communities living near industrial sources of hydrogen sulfide, and volunteers suggest that the respiratory tract and nervous system are the most sensitive targets of hydrogen sulfide toxicity. No health effects have been found in humans exposed to typical environmental concentrations of hydrogen sulfide (0.00011–0.00033 parts per million [ppm]).

Respiratory effects

Exposure to low concentrations of hydrogen sulfide may cause irritation to the eyes, nose, or throat. It may also cause difficulty in breathing for some asthmatics.

Respiratory distress or arrest has been found in people exposed to very high concentrations of hydrogen sulfide.

Nervous system effects

Exposure to low concentrations of hydrogen sulfide may cause headaches, poor memory, tiredness, and balance problems.

Brief exposures to high concentrations of hydrogen sulfide (greater than 500 ppm) can cause a loss of consciousness. In most cases, the person appears to regain consciousness without any other effects. However, in some individuals, there may be permanent or long-term effects such as headaches, poor attention span, poor memory, and poor motor function.

Hydrogen sulfide and cancer

Hydrogen sulfide has not been shown to cause cancer in humans, and its possible ability to cause cancer in animals has not been studied thoroughly.

DHHS and the International Agency for Research on Cancer (IARC) have not classified hydrogen sulfide as to its carcinogenicity.

EPA has determined that data for hydrogen sulfide are inadequate for carcinogenic assessment.

See Chapters 2 and 3 for more information on the health effects from exposure to hydrogen sulfide.
Children and Hydrogen Sulfide

Overview
This section discusses potential health effects of hydrogen sulfide exposure in humans from when they’re first conceived to 18 years of age, and how you might protect against such effects.

Exposure effects for children
There is very little information on possible health problems in children who have been exposed to hydrogen sulfide. Exposed children probably will experience effects similar to those experienced by exposed adults. Whether children are more sensitive to hydrogen sulfide exposure than adults is not known.

What about birth defects
It is not known whether exposure to hydrogen sulfide causes birth defects in humans. The results of studies in animals suggest that exposure to low concentrations of hydrogen sulfide during pregnancy does not cause birth defects.

How Can Families Reduce the Risk of Exposure to Hydrogen Sulfide?
If your doctor finds that you have been exposed to significant amounts of hydrogen sulfide, ask whether your children or unborn baby might also be exposed. Your doctor might need to ask your state health department to investigate.

Air
Hydrogen sulfide is part of the natural environment; the general population will have some exposure to hydrogen sulfide. Families can be exposed to more hydrogen sulfide than the general population if they live near natural or industrial sources of hydrogen sulfide, such as hot springs, manure holding tanks, or pulp and paper mills. However, their exposure levels are unlikely to approach those that sicken people exposed at work.

Reducing your exposure to hydrogen sulfide
Families can reduce their exposure to hydrogen sulfide by avoiding areas that are sources of hydrogen sulfide. For example, individuals of families that live on farms can avoid manure storage areas where high concentrations of hydrogen sulfide may be found.
1. PUBLIC HEALTH STATEMENT

Medical Tests to Determine Hydrogen Sulfide Exposure

Overview
We identify medical tests that can detect whether hydrogen sulfide is in your body.

| Hydrogen sulfide can be measured in blood and urine | Hydrogen sulfide and its breakdown products such as thiosulfate can be measured in blood and urine. However, the detection of hydrogen sulfide or its metabolites cannot predict the kind of health effects that might develop from that exposure. Because hydrogen sulfide and its metabolites leave the body fairly rapidly, the tests need to be conducted soon after exposure. For more information on the different substances formed by hydrogen sulfide breakdown and on tests to detect these substances in the body, see Chapters 3 and 7. |

Federal Government Recommendations to Protect Human Health

Overview
One way the federal government promotes public health is by regulating toxic substances or recommending ways to handle or to avoid toxic substances.

| The federal government regulates toxic substances | Regulations are enforceable by law. The U.S. EPA, the Occupational Safety and Health Administration (OSHA), and the Food and Drug Administration (FDA) are some federal agencies that have adopted toxic substances regulations. |

| Toxic substance recommendations | The Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for Occupational Safety and Health (NIOSH) have made recommendations about toxic substances. Unlike enforceable regulations, these recommendations are advisory only. |

| Not-to-exceed levels | Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect animals; levels are then adjusted to help protect humans. Sometimes these not-to-exceed levels differ among federal organizations. Different organizations use different exposure times (for example, an 8-hour workday or a 24-hour day), different animal studies, or emphasize some factors over others, depending on their mission. Recommendations and regulations are also updated periodically as more information becomes available. For the most current information, check with the federal agency or organization that issued the regulation or recommendation. |
Some regulations and recommendations for hydrogen sulfide exposure in workers include:

<table>
<thead>
<tr>
<th>Federal Organization</th>
<th>Regulation or Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Safety and Health Administration (OSHA)</td>
<td>OSHA set an acceptable ceiling limit of 20 ppm for hydrogen sulfide in workplace air; the ceiling limit is a 15-minute time-weighted average that cannot be exceeded at any time during the working day.</td>
</tr>
<tr>
<td>National Institute for Occupational Safety and Health (NIOSH)</td>
<td>NIOSH recommends a 10-minute ceiling level of 10 ppm for workers. NIOSH also determined that 100 ppm is immediately dangerous to life or health to workers.</td>
</tr>
</tbody>
</table>
1.2. PUBLIC HEALTH STATEMENT FOR CARBONYL SULFIDE

Overview
We define a public health statement and show how it can help you learn about carbonyl sulfide.

Introduction
A public health statement summarizes information about a hazardous substance. The information is taken from a toxicological profile developed by the Agency for Toxic Substances and Disease Registry’s (ATSDR’s) Division of Toxicology and Human Health Sciences (DTHHS). A toxicological profile is a thorough review of a hazardous substance.

This toxicological profile examines hydrogen sulfide and carbonyl sulfide. This section of the public health statement summarizes the DTHHS’s findings on carbonyl sulfide describes the effects of exposure to it, and describes what you can do to limit that exposure.

Carbonyl sulfide at hazardous waste sites
The U.S. Environmental Protection Agency (U.S. EPA) identifies the most serious hazardous waste sites in the nation. U.S. EPA then includes these sites on the National Priorities List (NPL) and targets them for federal clean-up activities. U.S. EPA has found carbonyl sulfide in at least 3 of the 1,689 current or former NPL sites.

The total number of NPL sites evaluated for carbonyl sulfide is not known. However, the possibility remains that as more sites are evaluated, the number of sites at which carbonyl sulfide is found may increase. This information is important; these future sites may be sources of exposure, and exposure to carbonyl sulfide may be harmful.

A carbonyl sulfide release may be harmful
When a contaminant is released from a large area such as an industrial plant or from a container such as a drum or bottle, it enters the environment. However, such a release doesn’t always lead to exposure. You can only be exposed to a contaminant when you come in contact with it. That contact—and therefore that exposure—can occur when you breathe, eat, or drink the contaminant, or when it touches your skin.

Even if you’re exposed to carbonyl sulfide, you might not be harmed. Whether you are harmed will depend on such factors as the dose (how much), the duration (how long), and how you are exposed. Harm might also depend on whether you’ve been exposed to any other chemicals, as well as your age, sex, diet, family traits, lifestyle, and state of health.
A Closer Look at Carbonyl Sulfide

Overview
This section describes carbonyl sulfide in detail and how you can be exposed to it.

What is carbonyl sulfide
Carbonyl sulfide (COS) is a colorless gas that smells like rotten eggs; it does not have an odor when it is free from impurities. Carbonyl sulfide can also be called carbon oxide sulfide and carbon oxysulfide.

At concentrations of 135 micrograms per cubic meter (µg/m³) (0.055 ppm), people may be able to smell carbonyl sulfide in air.

Carbonyl sulfide is present in both natural and human-made sources. It can be found in volcanic gases, crude petroleum oil, sulfurous waters, marshes, and soils. It is in the emissions from diesel engines, natural gas and refinery emissions, and tobacco smoke.

How is carbonyl sulfide used
Carbonyl sulfide does not have many commercial uses, as it is primarily used in small-scale chemical syntheses. It is an intermediate in the manufacture of certain herbicides. It may also be used in the agricultural industry as a grain fumigant.

Where is carbonyl sulfide found
Carbonyl sulfide can be released into the air, water, and soil at places where it is produced or used.

<table>
<thead>
<tr>
<th>Possible Sources</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air: Carbonyl sulfide is released to air from natural sources such as soils, wetlands, volcanoes, and oceans. It is also released during chemical processing, natural gas and oil recovery, combustion of coal, biomass, burning, and others. The average carbonyl sulfide level in outdoor air is 0.0018 ppm.</td>
<td>Carbonyl sulfide can remain in the atmosphere for 2–10 years.</td>
</tr>
<tr>
<td>Water: Carbonyl sulfide might enter water from atmospheric deposition.</td>
<td>Carbonyl sulfide reacts with water to form carbon dioxide and hydrogen sulfide. It is expected to rapidly volatilize to air.</td>
</tr>
<tr>
<td>Soil: Carbonyl sulfide might enter soil from atmospheric deposition.</td>
<td>Carbonyl sulfide does not bind to soil. It may move through the soil and enter groundwater.</td>
</tr>
</tbody>
</table>
How Carbonyl Sulfide Can Affect Your Health

Overview
This section looks at how carbonyl sulfide enters your body and potential carbonyl sulfide health effects found in human and animal studies.

<table>
<thead>
<tr>
<th>How carbonyl sulfide enters your body</th>
<th>We know that carbonyl sulfide can enter your body from the air because health effects have been observed in studies with animals. We do not know how much or how fast it can enter your body.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How carbonyl sulfide leaves your body</td>
<td>We do not know how carbonyl sulfide is broken down in the body or how it leaves the body.</td>
</tr>
<tr>
<td>Carbonyl sulfide health effects</td>
<td>We have very little information on the health effects of carbonyl sulfide. Studies in animals show that nervous system effects can occur after short- or long-term exposure. The health effects of carbonyl sulfide appear to depend on several factors such as how much you are exposed to and the length of that exposure.</td>
</tr>
<tr>
<td>Nervous system effects</td>
<td>Animal studies show that exposure to high levels of carbonyl sulfide in the air can damage the areas of the brain that control movement and process sound information.</td>
</tr>
<tr>
<td>Carbonyl sulfide and cancer</td>
<td>No human or animal studies have examined whether carbonyl sulfide exposure can cause cancer.</td>
</tr>
<tr>
<td></td>
<td>DHHS, the International Agency for Research on Cancer (IARC), and EPA have not classified carbonyl sulfide as to its carcinogenicity.</td>
</tr>
</tbody>
</table>

See Chapters 2 and 3 for more information on the health effects from exposure to carbonyl sulfide.

Children and Carbonyl Sulfide

Overview
This section discusses potential health effects of carbonyl sulfide exposure in humans from when they’re first conceived to 18 years of age and how you might protect against such effects.

| Exposure effects for children | There is no information on possible health problems in children who have been exposed to carbonyl sulfide. Exposed children probably will experience effects similar to those experienced by exposed adults. Whether children are more sensitive to carbonyl sulfide exposure than adults is not known. |
1. PUBLIC HEALTH STATEMENT

What about birth defects

It is not known if exposure to carbonyl sulfide causes birth defects in humans. No studies looked for birth defects in animals.

How Can Families Reduce the Risk of Exposure to Carbonyl Sulfide?

If your doctor finds that you have been exposed to significant amounts of carbonyl sulfide, ask whether your children or unborn baby might also be exposed. Your doctor might need to ask your state health department to investigate.

Air

Carbonyl sulfide is part of the natural environment; the general population will have some exposure to carbonyl sulfide. Families can be exposed to more carbonyl sulfide than the general population if they live near natural or industrial sources of carbonyl sulfide, such as wetlands, volcanos, or coal combustion. However, their exposure levels are unlikely to approach those that sicken people exposed at work.

Reducing your exposure to carbonyl sulfide

Families can reduce their exposure to carbonyl sulfide by avoiding areas that are sources of carbonyl sulfide.

Medical Tests to Determine Carbonyl Sulfide Exposure

Overview

How carbonyl sulfide is broken down in the body and how it is removed from the body is not known. Thus, no medical tests have been identified that can determine carbonyl sulfide exposure.

Federal Government Recommendations to Protect Human Health

Overview

One way the federal government promotes public health is by regulating toxic substances or recommending ways to handle or to avoid toxic substances.

The federal government regulates toxic substances

Regulations are enforceable by law. The U.S. EPA, the Occupational Safety and Health Administration (OSHA), and the Food and Drug Administration (FDA) are some federal agencies that have adopted toxic substances regulations.
1. PUBLIC HEALTH STATEMENT

Toxic substance recommendations

The Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for Occupational Safety and Health (NIOSH) have made recommendations about toxic substances. Unlike enforceable regulations, these recommendations are advisory only.

Not-to-exceed levels

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect animals; levels are then adjusted to help protect humans. Sometimes these not-to-exceed levels differ among federal organizations. Different organizations use different exposure times (an 8-hour workday or a 24-hour day), different animal studies, or emphasize some factors over others, depending on their mission.

Recommendations and regulations are also updated periodically as more information becomes available. For the most current information, check with the federal agency or organization that issued the regulation or recommendation.

Some regulations and recommendations for carbonyl sulfide exposure in workers include:

<table>
<thead>
<tr>
<th>Federal Organization</th>
<th>Regulation or Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Safety and Health Administration (OSHA)</td>
<td>OSHA has not established regulations for workers exposed to carbonyl sulfide.</td>
</tr>
<tr>
<td>National Institute for Occupational Safety and Health (NIOSH)</td>
<td>NIOSH has not established guidelines for workers exposed to carbonyl sulfide</td>
</tr>
</tbody>
</table>

Additional Information

Overview

Where to find more information about hydrogen sulfide and carbonyl sulfide:

Who to contact

If you have any more questions or concerns, please contact your community or state health or environmental quality department, or contact ATSDR at the address and phone number below.

Additional information from ATSDR

ATSDR can provide publically available information regarding medical specialists with expertise and experience recognizing, evaluating, treating, and managing patients exposed to hazardous substances.
1. PUBLIC HEALTH STATEMENT

Where to obtain toxicological profile copies

Toxicological profiles are also available online at www.atsdr.cdc.gov. For more information:

- Call the toll-free information and technical assistance number at 1-800-CDCINFO (1-800-232-4636) or
- Write to:

 Agency for Toxic Substances and Disease Registry
 Division of Toxicology and Human Health Sciences
 1600 Clifton Road NE
 Mailstop F-57
 Atlanta, GA 30333

For-profit organizations should request final toxicological profile copies from:

 National Technical Information Service (NTIS)
 5285 Port Royal Road
 Springfield, VA 22161
 Phone: 1-800-553-6847 or 1-703-605-6000
 Web site: http://www.ntis.gov/