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UPDATE STATEMENT 
 
A Toxicological Profile for atrazine, Draft for Public Comment was released in September, 2001.  This 
edition supersedes any previously released draft or final profile.   
 
Toxicological profiles are revised and republished as necessary, but no less than once every three years.  
For information regarding the update status of previously released profiles, contact ATSDR at: 
 

Agency for Toxic Substances and Disease Registry 
Division of Toxicology/Toxicology Information Branch 

1600 Clifton Road NE, 
Mailstop E-29 

Atlanta, Georgia 30333 
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 
 
Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 
  
 
Primary Chapters/Sections of Interest 
 
Chapter 1:  Public Health Statement:  The Public Health Statement can be a useful tool for educating 

patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

 
Chapter 2:  Relevance to Public Health:  The Relevance to Public Health Section evaluates, interprets, 

and assesses the significance of toxicity data to human health. 
 
Chapter 3:  Health Effects:  Specific health effects of a given hazardous compound are reported by type 

of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic). In addition, both human and animal studies are 
reported in this section. 

 NOTE:  Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects 
observed following exposure. 

 
Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 

issues: 
 Section 1.6 How Can (Chemical X) Affect Children? 
 Section 1.7 How Can Families Reduce the Risk of Exposure to (Chemical X)? 
 Section 3.7 Children’s Susceptibility 
 Section 6.6 Exposures of Children 
 
Other Sections of Interest: 
 Section 3.8  Biomarkers of Exposure and Effect 
 Section 3.11  Methods for Reducing Toxic Effects 
 
 
ATSDR Information Center  
 Phone:  1-888-42-ATSDR or (404) 498-0110   Fax:     (404) 498-0093 
 E-mail:  atsdric@cdc.gov     Internet:  http://www.atsdr.cdc.gov 
 
The following additional material can be ordered through the ATSDR Information Center: 
 
Case Studies in Environmental Medicine:  Taking an Exposure History—The importance of taking an 

exposure history and how to conduct one are described, and an example of a thorough exposure 
history is provided. Other case studies of interest include Reproductive and Developmental 
Hazards; Skin Lesions and Environmental Exposures; Cholinesterase-Inhibiting Pesticide 
Toxicity; and numerous chemical-specific case studies. 
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Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
incident.  Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III—
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

 
Fact Sheets (ToxFAQs) provide answers to frequently asked questions about toxic substances. 
 
 
Other Agencies and Organizations 
 
The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 

injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA 30341-
3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

 
The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 

diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 200 Independence Avenue, 
SW, Washington, DC 20201 • Phone: 800-356-4674 or  NIOSH Technical Information Branch, 
Robert A. Taft Laboratory, Mailstop C-19, 4676 Columbia Parkway, Cincinnati, OH 45226-1998 
• Phone: 800-35-NIOSH. 

 
  The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 

biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact: NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

 
 
Referrals 
 
The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 

in the United States to provide expertise in occupational and environmental issues.  Contact:  
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 •   Phone: 202-347-4976 • 
FAX: 202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

  
The American College of Occupational and Environmental Medicine (ACOEM) is an association of 

physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 55 West Seegers Road, Arlington Heights, IL 
60005 • Phone: 847-818-1800 • FAX: 847-818-9266.
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PEER REVIEW 
 
A peer review panel was assembled for atrazine.  The panel consisted of the following members:  
 
1. James E. Klaunig, Ph.D., Professor of Pharmacology and Toxicology, Director, Division of 

Toxicology, Indiana University School of Medicine, 135 Bennington Drive, Zionsville, Indiana 
46077; 

 
2. Kannan Krishnan, Ph.D., Associate Professor, Department of Occupational and Environmental 

Health, University of Montreal School of Medicine, 2375 Chemin de la Cote Ste-Catherine, 
Montreal, Quebec H3T 1A8; and 

 
3. Frederick Oehme, D.V.M, Ph.D., Professor of Toxicology, Pathobiology, Medicine, and 

Physiology, Director, Comparative Toxicology Laboratories, Department of Diagnostic 
Medicine/Pathobiology, Kansas State University, 1800 Dennison Avenue, Mosier Hall, Manhattan, 
Kansas 66506-5606. 

 
These experts collectively have knowledge of atrazine's physical and chemical properties, toxicokinetics, 
key health end points, mechanisms of action, human and animal exposure, and quantification of risk to 
humans.  All reviewers were selected in conformity with the conditions for peer review specified in 
Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as 
amended. 
 
Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.  A list of databases reviewed and 
a list of unpublished documents cited are also included in the administrative record. 
 
The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content.  The responsibility for the content of this profile lies with the ATSDR. 
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1.  PUBLIC HEALTH STATEMENT 
 
This public health statement tells you about atrazine and the effects of exposure. 

 

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in 

the nation.  These sites make up the National Priorities List (NPL) and are the sites targeted for 

long-term federal cleanup activities.  Atrazine has been found in at least 20 of the 1,636 current 

or former NPL sites.  However, the total number of NPL sites evaluated for this substance is not 

known.  As more sites are evaluated, the sites at which atrazine is found may increase.  This 

information is important because exposure to this substance may harm you and because these 

sites may be sources of exposure. 

 

When a substance is released from a large area, such as an industrial plant, or from a container, 

such as a drum or bottle, it enters the environment.  This release does not always lead to 

exposure.  You are exposed to a substance only when you come in contact with it.  You may be 

exposed by breathing, eating, or drinking the substance, or by skin contact. 

 

If you are exposed to atrazine, many factors determine whether you'll be harmed.  These factors 

include the dose (how much), the duration (how long), and how you come in contact with 

it/them.  You must also consider the other chemicals you're exposed to and your age, sex, diet, 

family traits, lifestyle, and state of health. 

 

1.1 WHAT IS ATRAZINE? 

 

Atrazine is the common name for an herbicide that is widely used to kill weeds.  It is used mostly 

on farms.  Pure atrazine—an odorless, white powder—is not very volatile, reactive, or 

flammable.  It will dissolve in water.  Atrazine is made in the laboratory and does not occur 

naturally.  

 

Atrazine is used on crops such as sugarcane, corn, pineapples, sorghum, and macadamia nuts, 

and on evergreen tree farms and for evergreen forest regrowth.  It has also been used to keep 
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weeds from growing on both highway and railroad rights-of-way.  Atrazine can be sprayed on 

croplands before crops start growing and after they have emerged from the soil.  Some of the 

trade names of atrazine are Aatrex®, Aatram®, Atratol®, and Gesaprim®.  The scientific name for 

atrazine is 6-chloro-N-ethyl-N'-(1-methylethyl)-triazine-2,4-diamine.  Atrazine is a Restricted 

Use Pesticide (RUP), which means that only certified herbicide users may purchase or use 

atrazine.  Certification for the use of atrazine is obtained through the appropriate state office 

where the herbicide user is licensed. 

 

Certified herbicide workers (see Section 1.7) may spread atrazine on crops or croplands as a 

powder, liquid, or in a granular form.  Atrazine is usually used in the spring and summer months.  

For it to be active, atrazine needs to dissolve in water and enter the plants through their roots.  It 

then acts in the shoots and leaves of the weed to stop photosynthesis.  Atrazine is taken up by all 

plants, but in plants not affected by atrazine, it is broken down before it can have an effect on 

photosynthesis.  The application of atrazine to crops as an herbicide accounts for almost all of 

the atrazine that enters the environment, but some may be released from manufacture, 

formulation, transport, and disposal. 

 

More complete information about the sources, properties, and uses of atrazine can be found in 

Chapters 4 and 5 of this profile. 

 

1.2 WHAT HAPPENS TO ATRAZINE WHEN IT ENTERS THE ENVIRONMENT? 
 

Atrazine is applied to agricultural fields or to crops to kill weeds.  It is also used near highways 

and railroads for the same purposes.  Some atrazine may enter the air after it is applied to the 

soil.  Some atrazine may also be washed from the soil by rainfall and enter surrounding areas, 

including streams, lakes, or other waterways.  Some atrazine may migrate from the upper soil 

surface to deeper soil layers and enter the groundwater. 

 

After atrazine is applied to soils, it will remain there for several days to several months; in rare 

situations, it may remain in soils for a few years.  However, in most cases, atrazine will be 

broken down in the soil over a period of one growing season.  In addition to being removed from 
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soil, atrazine is also taken up by the plants that grow there, and this uptake is the first step in 

killing weeds. 

 

Any atrazine that is washed from the soil into streams and other bodies of water will stay there 

for a long time, because breakdown of the chemical is slow in rivers and lakes.  It will also 

persist for a long time in groundwater.  This is one reason why atrazine is commonly found in 

the water collected from drinking water wells in some agricultural regions.  

 

If atrazine enters the air, it can be broken down by reactions with other reactive chemicals in the 

air.  However, sometimes atrazine is on particles such as dust.  When this happens, breakdown is 

not expected to occur.  Atrazine is removed from air mainly by rainfall.  When atrazine is on dust 

particles, the wind can blow it long distances from the nearest application area.  For example, 

atrazine has been found in rainwater more than 180 miles (300 kilometers) from the nearest 

application area.  

 

Atrazine does not tend to accumulate in living organisms such as algae, bacteria, clams, or fish, 

and, therefore, does not tend to build up in the food chain.  

 

More complete information about the environmental fate of atrazine can be found in Chapter 6 of 

this profile.  

 

1.3 HOW MIGHT I BE EXPOSED TO ATRAZINE? 
 

Most people are not exposed to atrazine on a regular basis.  People living near areas where 

atrazine was applied to crops may be exposed through contaminated drinking water.  Atrazine 

has been found at about 20 Superfund sites in the United States.  People living near those sites 

may be exposed to higher levels of atrazine.  If you are a factory worker who works with 

atrazine, you may be exposed to higher amounts of atrazine.  The government has estimated that 

approximately 1,000 people may be exposed to atrazine in this way.  
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Atrazine, one of the most widely used herbicides in the United States, is intentionally applied to 

crops, especially corn, sugarcane, pineapples, and sorghum.  Therefore, people who live near 

areas where these crops are grown, especially farm workers and herbicide applicators who apply 

atrazine, may be exposed to atrazine because it is used in agriculture.  You may be exposed to 

atrazine if you are nearby when crops are treated with atrazine, if you are involved in the 

application of atrazine to crops, or if you are near other places where it is applied.  Most of the 

time, atrazine is not found in high concentrations in the air, but may be found in higher 

concentrations in the air near disposal facilities or near areas where it is being applied to crops.  

You may also be exposed to atrazine by digging in dirt that has atrazine in it.  Your children may 

be exposed to atrazine by playing in dirt that contains atrazine.  You and your children may also 

be exposed to atrazine if you drink water from wells that are contaminated with the herbicide.  

While it is used on many crops, it has not been found in many food samples, and then only at 

very low levels.  Therefore, it is very unlikely that you would be exposed to atrazine by eating 

any foods. 

 

More information regarding exposure to atrazine can be found in Chapter 6.  

 

1.4 HOW CAN ATRAZINE ENTER AND LEAVE MY BODY? 
 

Scientists do not know how much or how quickly atrazine will be absorbed into your body if you 

breathe it in.  If you inhale atrazine-containing dust, some of the particles may deposit in your 

lungs.  Larger atrazine particles may deposit before reaching the lungs and be coughed up and 

swallowed.  If your skin comes in contact with atrazine-contaminated soil or water, a small 

amount of it may pass through your skin and into your bloodstream.  If you swallow food, water, 

or soil containing atrazine, most of it will pass through the lining of your stomach and intestines 

and enter your bloodstream. 

 

Once atrazine enters your bloodstream (is absorbed), it is distributed to many parts of your body.  

Animal studies indicate that atrazine is changed in your body into other substances called 

metabolites.  Some atrazine and its metabolites may enter some of your organs or fat, but 
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atrazine does not build up or remain in the body.  Most of the metabolites leave your body within 

24–48 hours, primarily in your urine, with a lesser amount in your feces. 

 

More information on how atrazine enters and leaves your body can be found in Chapter 3. 

 

1.5 HOW CAN ATRAZINE AFFECT MY HEALTH? 
 

To protect the public from the harmful effects of toxic chemicals and to find ways to treat people 

who have been harmed, scientists use many tests.   

 

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used, and 

released by the body; for some chemicals, animal testing may be necessary.  Animal testing may 

also be used to identify health effects such as cancer or birth defects.  Without laboratory 

animals, scientists would lose a basic method to get information needed to make wise decisions 

to protect public health.  Scientists have the responsibility to treat research animals with care and 

compassion.  Laws today protect the welfare of research animals, and scientists must comply 

with strict animal care guidelines. 

 
One of the primary ways that atrazine can affect your health is by altering the way that the 

reproductive system works.  Studies of couples living on farms that use atrazine for weed control 

found an increase in the risk of pre-term delivery.  These studies are difficult to interpret because 

most of the farmers were men who may have been exposed to several types of pesticides.  

Atrazine has been shown to cause changes in blood hormone levels in animals that affected the 

ability to reproduce.  Some of the specific effects observed in animals are not likely to occur in 

occur in humans because of biological differences between humans and these types of animals.  

However, atrazine may affect the reproductive system in humans by a different mechanism.  

Atrazine also caused liver, kidney, and heart damage in animals; it is possible that atrazine could 

cause these effects in humans, although this has not been examined.   

 

Not enough information is available to definitely state whether atrazine causes cancer in humans.  

Studies of human populations indicate that there may be a link between atrazine use and some 
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types of cancer, but the information was not specific enough to make a definitive connection 

between atrazine and cancer.  An increased risk of developing mammary tumors was observed in 

one strain of female rats.  Because of biological differences between rats and humans, it is not 

likely that humans would develop this type of cancer following atrazine exposure.  Other studies 

in animals did not find atrazine-related increases in cancer.  The International Agency for 

Research on Cancer (IARC) has determined that atraine is not classifiable as to its 

carcinogenicity to humans based on inadequate evidence in humans and sufficient evidence in 

experimental animals.   

 

More information on how atrazine can affect your health can be found in Chapter 3. 

 

1.6 HOW CAN ATRAZINE AFFECT CHILDREN? 
 

This section discusses potential health effects from exposures during the period from conception 

to maturity at 18 years of age in humans.  

 

Children are likely to be exposed to atrazine in the same way as adults, primarily through contact 

with dirt that contains atrazine or by drinking water from wells that are contaminated with the 

herbicide. 

 

Little information is available regarding the effects of atrazine in children.  Maternal exposure to 

atrazine in drinking water has been associated with low fetal weight and heart, urinary, and limb 

defects in humans.  Atrazine has been shown to slow down the development of fetuses in 

animals, and exposure to high levels of atrazine during pregnancy caused reduced survival of 

fetuses.  It is unclear whether or at what level of exposure this might occur in humans. 

 

It is not known whether atrazine or its metabolites can be transferred from a pregnant mother to a 

developing fetus through the placenta or from a nursing mother to her offspring through breast 

milk. 
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1.7 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO ATRAZINE? 
 

If your doctor finds that you have been exposed to significant amounts of atrazine, ask whether 

your children might also be exposed.  Your doctor might need to ask your state health 

department to investigate. 

 

Only certain people can use atrazine because it is a Restricted Use Pesticide (RUP), so most 

people cannot purchase it freely or use it.  Since most people cannot purchase it for private use, 

one way you can reduce your risk of exposure to atrazine is by avoiding areas where it is being 

used on crops or for control of weeds.  You can also reduce your risk of exposure by avoiding 

digging or working in soils where it has been applied.  If you live in an area where atrazine is 

used, you may wish to avoid being near the area when it is being applied.  If children play in or 

near areas where it atrazine has been applied too soon after it has been applied, they can be 

exposed to the herbicide.  You should encourage your children to not play in these areas.  

 

Atrazine has been found in water collected from many drinking water wells in the Midwestern 

United States.  Therefore, you may be able to reduce your risk of exposure to atrazine by 

ensuring that your water supply is free of atrazine, or contains no measurable levels of atrazine.  

Atrazine has also been found in streams, rivers, and lakes near fields where it has been applied.  

Higher amounts have been found in these waterways in the spring and summer months.  

Therefore, you may wish not to swim in, nor drink from, these bodies of water.  Children may be 

exposed to atrazine if they play in fields where atrazine has been applied or in streams receiving 

runoff from those fields.  They should be encouraged not to play in these fields or bodies of 

water.  Low amounts of atrazine have also been found in carpet and house dust in homes in the 

Midwest.  However, very few children living in these homes have had any atrazine in their 

bodies.  To prevent possible exposure of yourself or your children to atrazine, you may wish to 

vacuum floors and dust surfaces on a frequent basis, especially during the spring and summer 

months.  
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If you are a worker who applies atrazine to crops or for weed control, you can reduce your 

exposure to atrazine by using it according to instructions and wearing proper clothing and 

protective gear.  Be sure to follow all instructions and heed any warning statements. 

 

1.8 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN 
EXPOSED TO ATRAZINE? 
 

Specific and sensitive tests have been developed to detect atrazine in blood, fat, semen, and 

breast milk of exposed individuals.  Because atrazine is removed from the body relatively 

quickly, these tests are only useful in detecting recent exposures (within 24–48 hours) and are 

not useful for detecting past exposures to atrazine.  These tests currently cannot be used to 

estimate how much atrazine you have been exposed to or whether adverse health effects will 

occur.  These tests are not usually performed in a doctor's office because special equipment is 

required and samples must be sent to a laboratory for testing. 

 

More information on tests that detect atrazine and its metabolites can be found in Chapter 7. 

 

1.9 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO 
PROTECT HUMAN HEALTH? 
 

The federal government develops regulations and recommendations to protect public health.  

Regulations can be enforced by law.  Federal agencies that develop regulations for toxic 

substances include the Environmental Protection Agency (EPA), the Occupational Safety and 

Health Administration (OSHA), and the Food and Drug Administration (FDA).  

Recommendations provide valuable guidelines to protect public health but cannot be enforced by 

law.  Federal organizations that develop recommendations for toxic substances include the 

Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for 

Occupational Safety and Health (NIOSH). 
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Regulations and recommendations can be expressed in not-to-exceed levels in air, water, soil, or 

food that are usually based on levels that affect animals; then they are adjusted to help protect 

people.  Sometimes these not-to-exceed levels differ among federal organizations because of 

different exposure times (an 8-hour workday or a 24-hour day), the use of different animal 

studies, or other factors. 

 

Recommendations and regulations are also periodically updated as more information becomes 

available.  For the most current information, check with the federal agency or organization that 

provides it.  Some regulations and recommendations for atrazine include the following: 

 

Atrazine is currently under review for pesticide re-registration by EPA.  Therefore, EPA may be 

contacted for more information about atrazine.  OSHA has set a limit of 5 mg atrazine/m3 of 

workroom air for an 8-hour workday.  NIOSH recommends a standard for occupational exposure 

of 5 mg atrazine/m3 of workroom air during a 10-hour shift to protect workers from a concern 

that atrazine may cause cancer.  The EPA has set a maximum amount of atrazine allowable in 

drinking water of 3 µg/L.  In addition, atrazine is designated as a Restricted Use Pesticide, which 

means that only certified pesticide applicators can use atrazine.  For more information, please see 

Chapter 8. 

 

1.10 WHERE CAN I GET MORE INFORMATION? 
 

If you have any more questions or concerns, please contact your community or state health or 

environmental quality department, or contact ATSDR at the address and phone number below. 

 

ATSDR can also tell you the location of occupational and environmental health clinics.  These 

clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to 

hazardous substances. 

 

Toxicological profiles are also available on-line at www.atsdr.cdc.gov and on CD-ROM.  You 

may request a copy of the ATSDR ToxProfiles CD-ROM by calling the information and 
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technical assistance toll-free number at 1-888-42ATSDR (1-888-422-8737), by email at 

atsdric@cdc.gov, or by writing at:  

 

  Agency for Toxic Substances and Disease Registry 
  Division of Toxicology 
  1600 Clifton Road NE 
  Mailstop E-29 
  Atlanta, GA 30333 
  Fax: 1-404-498-0093 
 

 

For-profit organizations may request a copy of final profiles from the following: 

 

National Technical Information Service (NTIS) 
5285 Port Royal Road 
Springfield, VA  22161 
Phone: 1-800-553-6847 or 1-703-605-6000 
Web site: http://www.ntis.gov/ 
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2.  RELEVANCE TO PUBLIC HEALTH 
 

2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO ATRAZINE IN THE UNITED 
STATES 

 

Atrazine is a white, odorless powder (when pure) that is used as an herbicide to stop the growth of 

broadleaf and grassy weeds in crops such as corn, sugarcane, sorghum, pineapples, and macadamia nuts.  

It is not found naturally in the environment.  It is moderately soluble in water, but is more soluble in 

organic solvents such as acetone, chloroform, and ethyl acetate.  More than 37,000 tons of atrazine were 

used in agricultural and weed control settings in the United States in 1997. 

 

Atrazine is released to the environment during its production and use, with the vast majority being 

released as a result of its application to soils as an herbicide.  Atrazine that remains in the soil degrades 

with half-lives of a few weeks to several months.  Atrazine may migrate out of the soil in surface runoff 

to streams, rivers, or lakes, or it may migrate deeper into the soil and become associated with 

groundwater.  No significant degradation of atrazine has been observed in groundwater.  Half-lives of 

atrazine in surface waters are generally >200 days.  Relatively large amounts of atrazine may volatilize 

from the soils into the atmosphere.  In the atmosphere, no direct photolysis degradation of atrazine is 

expected to occur, but oxidation in the presence of hydroxyl radicals is expected, with an estimated half-

life of 14 hours.  Most of the atrazine found in the atmosphere is expected to be sorbed to particulates; it 

can be transported significant distances in the atmosphere, and has been detected >180 miles from the 

nearest application site. 

 

The general population may be exposed to atrazine found in water or air, but it is rarely found in foods.  

When the general population is exposed to atrazine, exposure levels are expected to be very low.  

Maximum seasonal and average atrazine concentrations of 61.6 and 18.9 ppb, respectively, were detected 

during a 1993–1998 monitoring program of community water systems in the United States.  Air 

concentrations of atrazine vary with application season; concentrations usually range from just above the 

detection limit of approximately 0.03 to 0.20–0.32 µg/m3 during the application period.  The 

concentrations of atrazine detected in foods were low (0.001–0.028 ppm) in the few samples where it was 

detected. 
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Populations residing near crops where atrazine is applied or hazardous waste disposal sites or 

manufacturing and processing plants may be exposed to higher than average levels of atrazine in ambient 

air or drinking water.  As mentioned above, atrazine is mobile in soils and has been detected in a high 

percentage of the drinking water wells near crops where atrazine has been used.  Atrazine has also been 

identified in at least 20 of the 1,636 hazardous waste sites that have been proposed for inclusion on the 

EPA National Priorities List (NPL).  However, the number of sites evaluated for atrazine is not known. 

 

2.2 SUMMARY OF HEALTH EFFECTS 

 

Atrazine is a widely used herbicide.  The general population, especially people living in the vicinity of 

farms, may be exposed to low levels in the air and drinking water.  Occupational exposure is a concern 

for farmers, as several routes of exposure are likely to occur.  The primary adverse health effects of 

atrazine exposure are reproductive/developmental effects following inhalation, oral, and dermal exposure.  

Data on the carcinogenicity of atrazine are inconclusive.  Data regarding the health effects of atrazine in 

humans are limited to ecological, case-control, and cohort mortality cancer studies and reproductive/ 

developmental toxicity studies.  The bulk of the available toxicity data is from oral exposure studies in 

animals. 

 

The reproductive system and the developing organism are primary targets of atrazine toxicity.  There was 

a possible association between atrazine use/exposure of male farmers and increased pre-term delivery, but 

not decreased fecundity.  The lack of information on exposure levels and the concomitant exposure to 

other pesticides makes these studies inadequate to assess the contribution of atrazine to these effects.  

Several animal studies have shown that atrazine exposure disrupts estrus cyclicity and alters plasma 

hormone levels; these effects appear to be mediated by changes in the gonadal-hypothalamic-pituitary 

axis.  Epidemiological studies, examining developmental end points, have found an association between 

Iowa communities exposed to atrazine in the drinking water and an increased risk of small for gestational 

age babies and other birth defects.  Farm couples living year-round on farms in Ontario, Canada did not 

have altered sex ratios, and the risk of small for gestational age deliveries was not increased in relation to 

pesticide exposure.  Developmental effects have been observed following pre-gestational, gestational, and 

lactational exposure of rat and rabbit dams or post-weaning exposure of rat pups to atrazine.  The 

observed effects included post-implantation losses, decreases in fetal body weight, incomplete 

ossification, neurodevelopmental effects, and impaired development of the reproductive system. 
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A few epidemiology studies suggest evidence of a possible association between atrazine exposure and 

increased cancer risk, but many others do not, and the data are insufficient to adequately assess atrazine’s 

carcinogenic potential.  The animal data associate atrazine with early onset of mammary tumors believed 

to be the result of atrazine-induced acceleration of reproductive senescence.  It is unlikely that the 

mechanism by which atrazine induces mammary tumors in female Sprague-Dawley rats is operational in 

humans. 

 

A limited number of animal studies have shown that atrazine exposure may affect other end points, 

including systemic effects, and damage to the heart, liver, and kidneys.  The primary effects are discussed 

in greater detail below.  The reader is referred to Section 3.2, Discussion of Health Effects by Route of 

Exposure, for additional information on the health effects resulting from exposure to atrazine. 

 

Reproductive Effects.    Results of a survey of farm couples in Ontario, Canada, conducted to assess 

reproductive effects of pesticides, indicated a weak to moderate association between atrazine use in the 

yard and an increase in preterm delivery.  Other results from this survey indicated that atrazine was not 

associated with any decrease in fecundity as a result of effects on spermatogenesis. 

 

Animal studies have shown that atrazine disrupts estrus cyclicity (i.e., irregular ovarian cycling and 

changes in the number and/or percentage of days in estrus and diestrus) and alters plasma hormone levels 

in rats and pigs.  These effects appear to be mediated by changes in the gonadal-hypothalamic-pituitary 

axis that are species-, and even strain-, specific.  In Sprague-Dawley rats, atrazine accelerates the normal 

process of reproductive senescence, which is initiated by a failure of the hypothalamus to release levels of 

gonadotropin releasing hormone (GnRH) that are adequate to stimulate the pituitary to release luteinizing 

hormone (LH).  Without sufficient LH, ovulation does not occur, estrogen levels remain high, and 

persistent estrus results.  In other strains of rats, atrazine causes elevated progesterone levels, which leads 

to pseudopregnancy and persistent diestrus.  In pigs, atrazine exposure decreased serum estradiol-17β (E2) 

concentrations resulting in a short-term delay in the onset of estrus. 

 

The mechanism of reproductive senescence in humans does not involve disruption of hormonal 

regulation, but is initiated by depletion of ova in the ovaries, which ultimately results in decreased plasma 

estrogen levels.  Therefore, disruption of the menstrual cycle or acceleration of reproductive senescence is 

not anticipated to occur in humans as a result of atrazine exposure.  However, it is not known whether 

atrazine will cause other perturbations in the hypothalamus-pituitary-gonad axis results in reproductive 

effects in humans. 
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Atrazine exposure significantly reduced serum and intratesticular levels of testosterone and ventral 

prostrate and seminal vesicle weights in juvenile male Sprague-Dawley rats.  Female Wistar and Sprague-

Dawley rats had delayed vaginal opening, and delayed uterine growth was observed in female Wistar rats. 

 

Developmental Effects.    Atrazine exposure has been associated with developmental effects in both 

humans and animals.  An association was found between Iowa communities exposed to an average of 

2.2 µg/L atrazine in the drinking water in 1984–1990 and an increased risk of intrauterine growth 

retardation and cardiac, urogenital, and limb reduction defects.  The results of a survey of farm couples 

living year-round on farms in Ontario, Canada indicate that the sex ratio was not altered and the risk of 

small for gestational age deliveries was not increased in relation to pesticide exposure (atrazine exposure 

level not available). 

 

Developmental effects in response to oral exposure to atrazine have been demonstrated in laboratory 

animals.  Studies have shown that gestational and peripubertal exposure to atrazine has an effect on 

reproductive development in rats and rabbits.  The effects of gestational exposure to atrazine in rats and 

rabbits include increased post-implantation losses, full-litter resorptions, decreased live fetuses/litters, 

increased prenatal loss, decreased litter size, and reduced pup weights, which could be attributed to severe 

maternal toxicity.  Atrazine exposure in rats is also associated with delayed vaginal opening, first estrus 

cycle, and uterine growth for female rats and decreased prostate weight, increased incidence and severity 

of inflammation of the lateral prostate, increased myeloperoxidase levels in the prostate, and increased 

total DNA in the prostate for male rats. 

 

Atrazine has also been shown to have an effect on the development of the nervous system in rats.  Mild 

neurobehavioral effects were observed in female offspring of Fischer rat dams exposed to atrazine pre-

mating, including increased spontaneous activity level, and male offspring had improved performance 

(decreased latency and increased avoidance) in avoidance conditioning trials. 

 

Other developmental effects include incomplete ossification of the skull, hyoid bone, teeth, forepaw 

metacarpals, and hindpaw distal phalanges in the offspring of exposed Sprague-Dawley rats, and 

nonossification of forepaw metacarpals and middle phalanges, hindpaw talus and middle phalanges, and 

patella in the offspring of exposed rabbits.  No developmental effects were noted in a two-generation 

study in which rats were exposed to atrazine in the diet. 
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Cancer.    The carcinogenic potential of atrazine has been investigated in a number of epidemiology 

studies, including cohort studies of workers at triazines manufacturing facilities, case-control studies of 

farmers using atrazine or triazines, and ecological studies of populations living in agricultural areas with 

high atrazine use and residents living in areas with atrazine-contaminated drinking water.  In most of 

these studies, it is likely that the individuals were exposed to atrazine via several exposure routes.  For 

example, in the studies of farmers, the likely exposure routes are inhalation during application of atrazine, 

dermal during handling and use of atrazine, and possible oral exposure due to contamination of 

groundwater.  Epidemiological data are available for a number of types of cancers; however, for most 

cancer types, only one study investigated the possible association.  The most widely studied cancer type is 

non-Hodgkin’s lymphoma.  In general, case-control studies of farmers using atrazine (in some studies, 

data are only available for triazine exposures) found small elevations in the risk of developing non-

Hodgkin’s lymphoma; typically, the odds ratios were ≤1.5 and the 95% confidence intervals included 

unity.  A small number of cases is a common limitation of these studies.  One study pooled the data from 

three other studies, representing farmers in four U.S. states, to increase the statistical power of the 

analyses.  This study found an odds ratio of 1.4 (95% confidence interval of 1.1–1.8), suggesting a weak 

association between atrazine exposure and increased risk of non-Hodgkin’s lymphoma.  To account for 

possible exposure to other pesticides that have been shown to induce non-Hodgkin’s lymphoma, the odds 

ratio was adjusted for exposure to 2,4-D and organophosphate insecticides.  This adjustment resulted in a 

small decrease in the odds ratio (1.2, 95% confidence interval of 0.9–1.7).  A cohort mortality study of 

workers at two triazines manufacturing facilities also found an increase in the risk of non-Hodgkin’s 

lymphoma (SMR=385; 95% confidence interval of 79–1,124).  Collectively, these studies provide 

suggestive evidence of a possible association between atrazine exposure and non-Hodgkin’s lymphoma, 

but a causal relationship cannot be established. 

 

Evidence on the possible association between atrazine exposure and increased risk of other cancer types is 

weak.  Studies of farmers or possible agricultural workers did not find significant increases in the risk of 

multiple myeloma, leukemia, soft tissue sarcoma/carcinoma, or Hodgkin’s disease.  Suggestive evidence 

between atrazine (or triazines) exposure and an increased risk of prostate cancer, breast cancer, and 

ovarian cancer have been reported.  Although these data provide a suspicion of carcinogenicity, the 

limited number of investigations and study limitations preclude drawing conclusions regarding these 

cancer types. 

 

The animal data suggest that the carcinogenicity of atrazine is species-, strain-, and sex-specific.  

Statistically significant earlier onset of mammary tumors or incidence of mammary tumors were observed 
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in female Sprague-Dawley rats, but not in female Fischer 344 rats or in female CD-1 mice.  An increase 

in mammary tumors was observed in male Fischer 344 rats; however, it is likely that the increased tumor 

incidence is due to increased lifespan of the atrazine-treated animals, as compared to the controls (aged 

Fischer 344 rats have a high rate of spontaneous mammary tumors).  The early onset of mammary tumors 

in female Sprague-Dawley rats is believed to be the result of atrazine-induced acceleration of 

reproductive senescence.  Both the failure to ovulate and the state of persistent estrus lead to constant 

elevated serum levels of endogenous estrogen, which could result in tumor formation in estrogen-

sensitive tissues.  Reproductive senescence in humans involves ovarian depletion and decreased serum 

estrogen levels instead of decreasing hypothalamic function and increased serum estrogen levels.  It is 

unlikely that the mechanism by which atrazine induces mammary tumors in female Sprague-Dawley rats 

is operational in humans. 

 

IARC has classified atrazine as “not classifiable as to its carcinogenicity to humans” (Group 3) based on 

inadequate evidence in humans and sufficient evidence in experimental animals. 

 

2.3 MINIMAL RISK LEVELS 

 

Inhalation MRLs 
 

There is limited information on the toxicity of inhaled atrazine.  Two human studies and no animal studies 

were identified.  The two ecological studies examined reproductive and developmental toxicity end points 

in farmers using atrazine (Curtis et al. 1999; Savitz et al. 1997).  In both studies, the atrazine exposure 

was poorly characterized; no monitoring data were provided; and exposure likely involved inhalation, 

oral, and dermal routes.  These studies are inadequate for MRL derivation. 

 

Oral MRLs 
 

 • An MRL of 0.01 mg/kg/day has been derived for acute-duration oral exposure (14 days or less) 
to atrazine. 

 

Human data on the acute toxicity to atrazine are limited to a report of an individual intentionally ingesting 

weed killer containing atrazine (Pommery et al. 1993).  Acute-duration animal studies have primarily 

focused on endocrine, reproduction, and developmental end points.  The endocrine effects primarily 

included increases in pituitary weight and alterations in levels of several reproductive hormones.  

Increases in pituitary weight were observed in rats receiving gavage doses of 120 mg/kg/day for 7 days 
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(Babic-Gomerac et al. 1989; Šimiƒ et al. 1994).  Increases in pituitary prolactin levels and decreases in 

serum prolactin and luteinzing hormone levels were observed in ovariectomized, estrogen supplemented 

female Long-Evans rats receiving gavage doses of 50 mg/kg/day and higher for 1–3 days (Copper et al. 

2000) and Sprague Dawley rats receiving 300 mg/kg/day via gavage for 1–3 days (Cooper et al. 2000).  

Decreases in serum luteinizing hormone levels were also observed in Holtzman rats receiving gavage 

doses of 100 mg/kg/day on gestational days 1–8 (Cummings et al. 2000b) and decreases in prolactin 

release in response to pup suckling was observed in rats receiving 25 mg/kg/day on postpartum days  

1–4 (Stoker et al. 1999).  Increases in serum estradiol levels were observed in Sprague-Dawley rats 

receiving gavage doses of 200 mg/kg/day on gestational days 1–8 (Cummings et al. 2000b) and decreases 

in serum and intratesticular testosterone levels were observed in juvenile (aged 46–48 days) male rats 

exposed to 50 mg/kg/day for 3 days (Friedmann 2002).  There are a limited number of other systemic 

effects that were reported for acute duration exposure.  The most commonly reported effects were 

decreases in body weight gain or weight loss at doses of 50 mg/kg/day and higher in rats (Cummings et 

al. 2000b; Santa Maria et al. 1987; Šimiƒ et al. 1994). 

 
The alterations in hormone levels resulted in a number of reproductive and developmental effects 

including altered estrus cyclicity at 120 mg/kg/day and higher in rats (Cooper et al. 2000; Šimiƒ et al. 

1994), decreased fertility in rats at 120 mg/kg/day (Šimiƒ et al. 1994), increased pre- and post-

implantation loss in rats administered 100 mg/kg/day and higher (Cummings et al. 2000b; Infurna et al. 

1988) and rabbits administered 75 mg/kg/day (Infurna et al. 1988), and delayed ossification in rat and 

rabbit offspring administered 70 or 75 mg/kg/day on gestational days 6–15 or 7–19, respectively.  

Additionally, maternal toxicity, as evidenced by decreased food consumption and body weight gain, was 

also observed in rabbits administered 5 mg/kg/day; at 700 and 75 mg/kg/day severe weight losses were 

observed in rats and rabbits, respectively (Infurna et al. 1988). 

 
The lowest LOAEL identified in the acute toxicity database is 5 mg/kg/day for maternal toxicity 

(decreased body weight gain and food consumption) in rabbits receiving gavage doses of atrazine on 

gestational days 7–19 (Infurna et al. 1988); this study also identified a NOAEL of 1 mg/kg/day for 

maternal toxicity.  Derivation of an acute-duration MRL using this critical effect level would be 

protective for the endocrine and reproductive effects that are observed at higher doses.  The lowest 

LOAEL values for an endocrine effect or reproductive effect are 25 mg/kg/day for decreases in prolactin 

release in response to pup suckling (Stoker et al. 1999) and 100 mg/kg/day for pre- and post-implantation 

losses in rats exposed on gestational days 1–8 (Cummings et al. 2000b), respectively; both studies 

identified NOAEL values of 12.5 and 50 mg/kg/day, respectively. 

 



ATRAZINE  18 
 

2.  RELEVANCE TO PUBLIC HEALTH 
 
 

 

An MRL of 0.01 mg/kg/day was derived using the NOAEL of 1 mg/kg/day, with a LOAEL of 

5 mg/kg/day, for maternal toxicity (decreased body weight gain and food consumption) in New Zealand 

White rabbits exposed to atrazine on gestational days 7B19 (Infurna et al. 1988).  The NOAEL of 

1 mg/kg/day was divided by an uncertainty factor of 100 (10 to account for animal to human 

extrapolation and 10 for human variability). 

 
• An MRL of 0.003 mg/kg/day has been derived for intermediate-duration oral exposure  

  (15–365 days) to atrazine. 
 

No studies have examined the intermediate-duration oral toxicity of atrazine in humans.  In animals, 

intermediate-duration oral exposure has resulted in reproductive, developmental, immunological, and a 

variety of systemic effects.  Atrazine disrupts the normal functioning of the endocrine system resulting in 

impaired reproduction and hormone levels.  A decrease in pituitary weights were observed in juvenile rats 

exposed to 12.5 mg/kg/day on postnatal days 22–41 (Laws et al. 2000).  Alterations in endocrine 

hormones included decreases in serum luteinizing hormone levels in rats at 75 mg/kg/day (Cooper et al. 

2000); increases in pituitary prolactin levels in rats at 75 mg/kg/day (Cooper et al. 2000); alterations in 

estradiol levels in rats at 6.9 mg/kg/day and higher (Cooper et al. 2000; Eldridge et al. 1994a; Wetzel et 

al. 1994) and pigs at 1 or 2 mg/kg/day (Gojmerac et al. 1996, 1999); and decreases in testosterone levels 

at 50 mg/kg/day and higher (Friedmann 2002; Trentacoste et al. 2001).  These hormone alterations 

resulted in a disruption of estrus cyclicity in pigs exposed to 1 or 2 mg/kg/day (Ćurić et al. 1999; 

Gojmerac et al. 1999) and rats exposed to 6.9 mg/kg/day and higher (Cooper et al. 1996b; Eldridge et al. 

1994a, 1994b; Wetzel et al. 1994).  Decreases in ovarian and uterine weights were also observed in rats at 

100 mg/kg/day (Eldrigde et al. 1994a) and ovarian lesion were observed in pigs at 2 mg/kg/day (Ćurić et 

al. 1999; Gojmerac et al. 1996).  Postnatal exposure to atrazine also results in impaired development of 

the reproductive system; delayed vaginal opening and delayed preputial separation were observed in rat 

offspring at 50 (Laws et al. 2000) and 12.5 mg/kg/day (Stoker et al. 2000), respectively. 

 
Several other effects have been observed in rats and pigs following intermediate-duration oral exposure to 

atrazine, including degeneration of myocardial fibers and mild degeneration and inflammation and mild 

chronic interstitial hepatitis in pigs at 2 mg/kg/day (Ćurić et al. et al. 1999), lymphopenia in rats at 

15.4 mg/kg/day (Vos and Krajnc 1983), lymphoid depletion in lymph nodes and spleen in pigs at 

2 mg/kg/day (Ćurić et al. 1999), and decreases in body weight gain in rats exposed to 2.7 mg/kg/day and 

higher (Cantemir et al. 1997; Cooper et al. 1996b, 2000; Desi 1983; Eldridge et al. 1994a; Laws et al. 

2000; Trentacoste et al. 2001; Wetzel et al. 1994). 
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These studies clearly identify endocrine disruption, as evidenced by altered hormone levels and disrupted 

estrus cyclicity, as the most sensitive target of atrazine toxicity; the lowest LOAEL for this effect was 

identified in pigs.  A 19-day exposure to 1 mg/kg/day atrazine in the diet resulted in a short-term delay in 

the onset of estrus (Gojmerac et al. 1999); a NOAEL was not identified.  The delay in estrus was 

accompanied by significant alterations in estradiol levels, which were measured for 5 consecutive days 

after exposure termination (beginning 2 days prior to anticipated estrus).  As presented in figure 2 of the 

paper (Gojmerac et al. 1999), the estradiol levels were steadily increasing on days 1 and 2, which is the 

pattern that would be anticipated if the animals were about to go into estrus. 

 
An intermediate-duration oral MRL of 0.003 mg/kg/day was derived using the LOAEL of 1 mg/kg/day 

for delayed estrus in pigs (Gojmerac et al. 1999).  This LOAEL was divided by an uncertainty factor of 

300 (10 to account for the use of a LOAEL, 10 for animal to human extrapolation, and 3 for human 

variability).  An uncertainty factor of 3 for human variability was used instead of 10 because the critical 

effect was identified in a sensitive population (young, developing female pigs). 

 

Two human studies involving chronic exposure to atrazine were identified (Munger et al. 1992b, 1997).  

Both studies examined potential developmental effects in residents exposed to elevated triazine levels in 

drinking water.  These studies have limited usefulness for risk assessment because atrazine concentrations 

were not measured and the community was exposed to a number of chemicals from the drinking water.  A 

number of animal studies have examined the chronic toxicity of atrazine.  As with acute- and 

intermediate-duration exposure, the endocrine/reproductive system is the primary target of toxicity.  An 

increased length of estrus was observed in rats exposed to 6.9 mg/kg/day atrazine in the diet for 

18 months (Wetzel et al. 1994); a NOAEL for this end point was not identified. 

 
In addition to the endocrine/reproduction effects, a number of systemic effects have been observed.  

Decreases in body weight gain were observed in rats exposed to 25 mg/kg/day and higher (EPA 1984f, 

1987d, 1987c; Pintér et al. 1990); cardiac effects consisting of increased thrombi in mice at 

247 mg/kg/day and EKG alterations, atrial dilatation, fluid-filled pericardium, enlarged heart, and atrophy 

of atrial myocardium in dogs at 34 mg/kg/day (EPA 1987f); alterations in hepatic and renal clinical 

chemistry parameters in rats at 52 mg/kg/day (EPA 1984f, 1987d); and hematological alterations in rats at 

71 mg/kg/day (EPA 1984f, 1987d), mice at 194 mg/kg/day (EPA 1987b), and dogs at 34 mg/kg/day (EPA 

1987f). 
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The lowest LOAEL identified in a chronic study was 6.8 mg/kg/day for increased estrus cycle length in 

rats (Wetzel et al. 1994).  This study was not selected as the basis for a chronic-duration oral MRL 

because the resultant MRL would be higher than the MRL for intermediate-duration exposure. 
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3.  HEALTH EFFECTS 
 

3.1 INTRODUCTION 

 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of atrazine.  It 

contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

 

3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE  

 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, 

developmental, genotoxic, and carcinogenic effects).  These data are discussed in terms of three exposure 

periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies.  

LOAELs have been classified into "less serious" or "serious" effects.  "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects.  The distinction between "less serious" effects and "serious" effects is 
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considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 

the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.   

 

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of atrazine are 

indicated in Table 3-1 and Figure 3-1.  

 

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

 

3.2.1 Inhalation Exposure  

3.2.1.1 Death 

 

No studies were located regarding death in humans and/or animals after inhalation exposure to atrazine. 

 

3.2.1.2 Systemic Effects 

 

No studies were located regarding systemic effects in humans or animals after inhalation exposure to 

atrazine. 
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3.2.1.3 Immunological and Lymphoreticular Effects 

 

Altered immunological parameters have been observed in male Fischer-344 (F344) rats receiving a single 

30 mg/kg intratracheal dose of atrazine (Hurbankova et al. 1996).  One week after exposure, statistically 

significant changes included increased number of aveolar macrophages; decreased percent of active 

phagocytes; increased lactate dehydrogenase in bronchoalveolar lavage and serum; decreased percent of 

monocytes in blood; increased lactate dehydrogenase in serum; and increased acid phosphate in serum.  

Three months after exposure, the percent of active phagocytes and acid phosphatase levels in serum were 

still statistically significantly altered. 

 

3.2.1.4 Neurological Effects 

 

No studies were located regarding neurological effects in humans and/or animals after inhalation 

exposure to atrazine. 

 

3.2.1.5 Reproductive Effects  

 

Results of a survey of farm couples in Ontario, Canada, to assess reproductive effects of pesticides 

indicated an association between atrazine use in the yard with an increase in preterm delivery (Arbuckle 

et al. 2001; Savitz et al. 1997).  Other results from this survey of Ontario farm couples indicated that 

atrazine was not associated with any decrease in fecundity as a result of effects on spermatogenesis 

(Curtis et al. 1999).  In these cohort studies, it is probable that the application of atrazine involved both 

dermal and inhalation exposure.  The men performed most of the farm activities that involved pesticide 

use; most of the women were indirectly exposed, possibly through contact with contaminated clothing or 

by consuming contaminated drinking water. 

 

A survey of 1,898 farm couples living year-round on farms in Ontario, Canada, assessed reproductive 

effects of pesticides by comparing the pregnancies in which the men used pesticides during the 3 months 

prior to conception, to the referent group, which consisted of pregnancies in which the men had no 

farming or chemical activity in the 3 months prior to conception (Savitz et al. 1997).  The use of atrazine 

as a yard herbicide, but not the use as a crop herbicide, was significantly associated with an increase in 

preterm delivery after adjusting for mother’s age, education, income, occupation, ethnicity, use of tobacco 
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and caffeine during pregnancy, primary language, and month of conception (OR=4.9, 95% CI=1.6–15; 

OR=2.4, 95% CI=0.8–7.0, respectively).  There was no significant association with crop herbicide 

activity and yard herbicide activity using atrazine with miscarriage (pregnancy loss before 20 weeks of 

gestation) (adjusted OR=1.5, 95% CI=0.9–2.4 and OR=1.2, 95% CI=0.6–2.3, respectively).  The risk of 

small for gestational age deliveries was not increased in relation to pesticide exposure and sex ratio was 

not altered.  Farm activities, pesticide use, and pregnancy outcome were self-reported, no specific 

exposure levels were available, and other pesticides were used during the period when atrazine was used; 

therefore, it was not possible to make a definite correlation between observed effects and atrazine 

exposure. 

 

A related study of Ontario farm couples analyzed the effect of pesticide exposure on the risk of 

spontaneous abortion (Arbuckle et al. 2001).  Exposures were considered separately for preconception 

(3 months before and up to 1 month of conception) and postconception (first trimester) and for early 

(<12 weeks) and late (12–19 weeks) spontaneous abortions.  Pesticides were divided into use classes, 

chemical family, and active ingredient categories, and were considered separately.  A total of 

2,110 women provided information on 3,936 pregnancies, including 395 spontaneous abortions.  The 

occurrence of spontaneous abortion was self-reported.  The women were asked to recall how many weeks 

pregnant they were at the time of the incidence as well as other information considered in the study, 

including demographic and lifestyle information, pesticides currently and historically used on the farm 

and around the home, medical history, and complete reproductive history.  The majority of pesticide 

application was done by the men; only 20% of the women reported direct handling of the pesticides.  

There was no significant increase in risk of early (<12 weeks) or late (12–19 weeks) spontaneous abortion 

(OR=1.3, 95% CI=0.8–2.0 and OR=1.1, 95% CI=0.7–1.9, respectively) in women who were exposed to 

atrazine prior to conception.  Post-conception exposures served as the referent in assessing the importance 

of the timing of exposure to the risk of spontaneous abortion.  Women age 35 and older who were 

exposed to triazines preconception had 3 times the risk of spontaneous abortion (OR=2.7, 95%  

CI=1.1–6.9) compared to women of the same age who were not exposed.  There was no observed 

increased risk of spontaneous abortion associated with postconception exposure to atrazine. 

 

Another study of 1,048 Ontario farm couples, reporting 2,012 pregnancies, was conducted during  

1991–1992 to assess the influence of pesticide exposure on time to pregnancy (Curtis et al. 1999).  

Pesticide exposure was defined as pesticide use on the farm during the month of trying to conceive or at 

any time during the prior 2 months (the time in which spermatogenesis may have been affected).  The 

study only included women who planned and became pregnant.  A number of confounders were 
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controlled for, including age when trying to conceive, ethnicity, smoking, caffeine consumption, alcohol 

use, diseases or drugs that may affect fertility, working at a hazardous job off the farm, recent full-term 

pregnancies, breastfeeding, method of contraception discontinued when beginning to attempt pregnancy, 

body mass index, and gestational age at pregnancy diagnosis.  Atrazine was not associated with any 

decrease in fecundity; the adjusted odds ratios were 1.06 (95% CI=0.64–1.74) and 0.97 (95%  

CI=0.79–1.17) for women directly exposed to atrazine and women without direct exposure (indirect male 

exposure), respectively. 

 

No studies were located regarding reproductive effects in animals after inhalation exposure to atrazine. 

 

3.2.1.6 Developmental Effects  

 

The results of a survey of 1,898 farm couples living year-round on farms in Ontario, Canada, designed to 

assess reproductive effects of pesticides, indicated that the sex ratio was not altered and the risk of small 

for gestational age deliveries was not increased in relation to pesticide exposure (atrazine exposure level 

not available) (Savitz et al. 1997).  It is probable that the pesticide application resulted in both dermal and 

inhalation exposure. 

 

No studies were located regarding developmental effects in animals after inhalation exposure to atrazine. 

 

3.2.1.7 Cancer  

 

A retrospective cohort study was conducted to investigate the mortality of workers from two triazine 

manufacturing plants located in Alabama (major products are agricultural chemicals including triazines) 

and Louisiana (major products are triazine herbicides) from 1960 to 1986 (Sathiakumar et al. 1996).  Vital 

status of the cohort was ascertained as of January 1, 1987 from records obtained from the two plants, the 

Social Security Administration, the Department of Motor Vehicles, and the National Death Index.  Based 

on job information of workers from both plants, including period of employment, job title, and work area, 

a subgroup of 4,917 male workers was identified as having definite/probable (n=2,683) or possible 

(n=2,234) triazine exposure.  Overall, there were 220 deaths observed compared to 253 expected 

according to U.S. mortality rates (standardized mortality ratio [SMR]=87; 95% CI=75–99).  Deaths from 

cancer were also similar to U.S. rates (SMR=106; 95% CI=76–142).  Of those with definite or probable 

triazine exposure, the SMR (385; 95% CI=79–1124) was elevated for non-Hodgkin’s lymphoma 
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(3 deaths observed versus 0.78 expected); however, two of the three observed deaths were males with 

<1 year of definite triazine-related work.  Limitations of this study include young age of cohort, short 

duration of follow-up (median of 16 years), and the lack of control for exposure to other pesticides. 

 

Several case-control studies were located regarding cancer incidence and exposure of humans to atrazine 

or to triazine herbicides in general.  Although the exposure route was not specified in these studies, it is 

probable that inhalation (e.g., application of atrazine), dermal (e.g., handling and use of atrazine), and 

perhaps even oral (e.g., due to groundwater contamination) exposure occurred.  Although limitations of 

these studies include lack of specific exposure data, recall error, small number of exposed cases and 

controls, and exposure to other chemicals, these studies nevertheless provide some suggestive evidence of 

an association between atrazine and some forms of cancer in humans. 

 

An ecological study that assessed the correlation of the amount of atrazine (in pounds) used in 

58 California counties to the incidence rates of each of several cancer types (non-Hodgkin’s lymphoma, 

leukemia, soft-tissue sarcoma, brain cancer, prostate cancer, and testicular cancer) found a correlation 

between atrazine use and some cancers in certain ethnic groups (Mills 1998).  The correlation coefficients 

for brain and testis cancers and leukemia in Hispanic males were r=0.54, r=0.41, and r=0.40, respectively; 

although the 95% CI was not reported, the study author noted that the confidence interval included zero.  

Hispanic females had positive correlations for non-Hodgkin’s lymphoma (r=0.12) and leukemia (r=0.27); 

the 95% confidence intervals included zero.  For prostate cancer in black males, the correlation 

coefficient was r=0.67 (95% CI=0.01–0.92).  Limitations of this study include that no individual exposure 

data were available, no latency period was allowed for between potential exposure and cancer diagnosis, 

and there was possible exposure to a number of other pesticides. 

 

Data from 173 adult (≥30 years of age) white men in Iowa with histologically diagnosed multiple 

myeloma during 1981–1984 and 650 age- and vital-status-matched white male controls were analyzed to 

determine the association between general farming activities and use on the farm of 24 animal 

insecticides, 34 crop insecticides, 38 herbicides (including atrazine), and 16 fungicides and the risk of 

multiple myeloma (Brown et al. 1993).  Cases were identified through the Iowa Health Registry.  

Information on pesticide use was obtained through questionnaires and interviews, and included the first 

and last year the pesticide was used, whether the subject personally handled, mixed, or applied the 

pesticide, and whether protective equipment was used.  Risks for multiple myeloma were not increased 

significantly for farmers who personally handled, mixed, or applied atrazine (number of cases=12; 

number of controls=74; OR=0.8, 95% CI=0.4–1.6). 
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Another case-control study of multiple myeloma and triazine use (atrazine exposure level not identified) 

in Iowa was conducted by Burnmeister (1990).  Cases were ascertained from the State Health Registry of 

Iowa for males with histologically confirmed multiple myeloma who were diagnosed in 1982–1984.  

Information was gathered through personal interviews with farmers (n=175) and male controls who were 

matched for age group, vital status, and year of death (for deceased cases).  A non-significant (p>0.05) 

increased OR of 1.29 (95% CI not reported) was found. 

 

Results from a population-based case-control study of 201 white men (≥21 years old) in 66 counties in 

eastern Nebraska who had histologically confirmed non-Hodgkin’s lymphoma indicated that there was an 

association between atrazine use and non-Hodgkin’s lymphoma (Weisenburger 1990).  Cases were 

identified through the University of Nebraska Lymphoma Study Group Registry and area hospitals and 

physicians.  Controls (n=725) were selected from the same 66 counties and were matched for age, sex, 

race, and vital status.  Based on data obtained from telephone interviews of cases and controls, it was 

determined that there was an elevated risk of non-Hodgkin’s lymphoma associated with atrazine use 

(OR=1.4, 95% CI=0.8–2.2).  The risk for non-Hodgkin’s lymphoma increased with duration of atrazine 

use (OR=0.9, 0.8, 2.0, and 2.0 for use 1–5, 6–15, 16–20, and 21+ years, respectively. 

 

A population-based case-control study was conducted in Iowa and Minnesota to determine the association 

between pesticide exposure (including atrazine) and leukemia (Brown et al. 1990).  Cases of 

histologically confirmed leukemia, diagnosed in 1981–1984, were identified through review of records 

from the Iowa State Health Registry and Minnesota hospitals and pathology labs.  Cases in four large 

Minnesota cities with little farming activity (Minneapolis, St. Paul, Duluth, and Rochester) were excluded 

from the study.  Interviews were conducted with 578 white male farmers with leukemia (aged ≥30 years) 

and 1,245 white male controls who were matched for age, vital status, and state of residence to obtain 

data on medical history, farming practices, and pesticide use.  The risk of leukemia for farmers who 

mixed, applied, or handled triazines (OR=1.1; 95%CI=0.8–1.5; number of cases=67; number of 

controls=172) or atrazine (OR=1.0; 95% CI=0.6–1.5; number of cases=38, number of controls=108) was 

not significantly increased. 

 

Cantor et al. (1992) conducted a similar population-based case-control study in Iowa and Minnesota to 

determine whether there was an association between non-Hodgkin’s lymphoma and exposure to 

pesticides, including atrazine.  Histologically confirmed non-Hodgkin’s lymphoma cases diagnosed 

during the period of 1980–1983 of white male farmers aged 30 or older were ascertained through the 
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Iowa State Health Registry and Minnesota hospitals and pathology labs.  Patients who resided in four 

large cities in Minnesota (Minneapolis, St. Paul, Duluth, and Rochester) at the time of diagnosis were 

excluded.  Data were obtained through interviews of 622 farmers with non-Hodgkin’s lymphoma and 

1,245 white male controls (same control group as in the Brown et al. 1990 study above) who were 

matched for age, vital status, and state of residence.  The interviews included questions on medical 

history, occupational and farming practices, and pesticide use.  There was no significant increase in the 

risk of non-Hodgkin’s lymphoma for farmers who mixed, applied, or handled triazines (OR=1.2; 95% 

CI=0.8–1.6; number of cases=64; number of controls=133) or atrazine (OR=1.2; 95% CI=0.9–1.8; 

number of cases=59; number of controls=108). 

 

Risks of soft tissue carcinoma, Hodgkin’s disease, and non-Hodgkin’s lymphoma associated with 

herbicide exposure were investigated by Hoar et al. (1986).  Although the study was designed to 

determine the association of phenoxyacetic acids with these types of cancers, exposure to triazines (but 

not specifically atrazine) was also considered.  White male residents of Kansas with histologically 

confirmed soft tissue carcinoma (n=133), Hodgkin’s disease (n=132), and non-Hodgkin’s lymphoma 

(n=170) were identified from the University of Kansas Data Service.  Cases were ≥21 years old and were 

diagnosed in 1976–1982.  Interviews gathering detailed information on farming practices, including 

frequency and duration of herbicide use, were conducted with cases or their next-of-kin as well as with 

948 white male controls matched for age and vital status.  In addition, pesticide suppliers for 110 cases 

were surveyed to corroborate self-reported pesticide use.  Following adjustment for age, no increased risk 

of soft tissue carcinoma (OR=0.9; 95% CI=0.5–1.6) or Hodgkin’s disease (OR=0.9; 95% CI=0.5–1.5) 

was associated with herbicide use.  An odds ratio of 2.5 (95% CI=1.2–5.4) was found for non-Hodgkin’s 

lymphoma and exposure to triazines and other herbicides (number of cases=14; number of controls=43).  

After adjusting for phenoxyacetic acids or uracils, the odds ratio was reduced to 2.2 (95% CI=0.4–9.1; 

number of cases=3; number of controls=11). 

 

The relationship between herbicide (neither triazine nor atrazine exposure was specified) use on farms in 

66 eastern Nebraska counties and non-Hodgkin’s lymphoma was investigated by Zahm et al. (1990).  

Telephone interviews were conducted with 201 white males (age ≥21 years) with histologically 

confirmed non-Hodgkin’s lymphoma (diagnosed in 1983–1986) and 831 white male controls matched for 

age and vital status.  Herbicide use was associated with an increased risk (OR=1.3; 95% CI=0.8–2.0) of 

non-Hodgkin’s lymphoma (attributed by the study authors mainly to the handling of phenoxyacetic 

acids). 
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Zahm et al. (1993a) performed a combined analysis of data gathered from three previous case-control 

studies of atrazine exposure and non-Hodgkin’s lymphoma:  one in eastern Nebraska (Zahm et al. 1990), 

one in Kansas (Hoar et al. 1986), and one in Iowa-Minnesota (Cantor et al. 1992) (see above for 

descriptions of each of these studies).  The age-adjusted ORs for farmers using atrazine were 1.4 (95% 

CI=0.8–2.5; 29 cases, 69 controls) for Nebraska, 1.2 (95% CI=0.8–1.8; 52 cases, 90 controls) for Iowa, 

1.4 (95% CI=0.9–2.2; 36 cases, 53 controls) for Minnesota, and 2.7 (95% CI=1.2–5.9; 13 cases, 

37 controls) for Kansas.  In all states combined, 130 cases and 249 controls reported atrazine farm use; 

the age- and state-adjusted odds ratio was 1.4 (95% CI=1.1–1.8); the age-adjusted only odds ratio was 

1.5 (95% CI=1.1–1.9).  The risk of diffuse type non-Hodgkin’s lymphoma was higher (age- and state-

adjusted OR=1.6; 95% CI=1.1–2.2) than follicular type non-Hodgkin’s lymphoma (age- and state-

adjusted OR=1.3; 95% CI=0.9–1.9).  Contrary to expectations, the risk of non-Hodgkin’s lymphoma in all 

states combined were greater among farmers who used atrazine but did not personally handle it in their 

practices (OR=1.6, 95% CI=1.0–2.4) than among those who did personally handle atrazine (OR=1.4, 95% 

CI=1.0–1.8).  Adjustment for use of 2,4-dichlorophenoxyacetic acid (2,4-D) and organophosphate 

insecticide resulted in a large decrease of the OR for farmers in Nebraska (OR=0.7; 95% CI=0.3–1.3), a 

slight decrease for farmers in Minnesota (OR=1.3; 95% CI=0.8–2.2) and Kansas (OR=1.9, 95%  

CI=0.8–4.5), and an increase in Iowa (OR=1.6; 95% CI=0.9–2.9); the age-, state-, and 2-4-D and 

organophosphate insecticide use-adjusted odds ratios for all states combined was 1.2 (95% CI=0.9–1.7).  

For farmers in Nebraska with long-term exposure to atrazine, the age-adjusted odds ratios were 

2.7 (5 cases, 8 controls) and 2.5 (7 cases, 11 controls) for 16–20 years and ≥21 years of use, respectively.  

However, adjustment for 2,4-D and organophosphate insecticide use decreased the odds ratios to 0.6 and 

0.8 for farmers with 16–20 and ≥21 years of atrazine use, respectively.  The only odds ratio that did not 

fall below unity was for farmers who used atrazine for more than 21 days/year; the age-adjusted odds 

ratio was 3.1 and the age- and 2,4-D and organophosphate use-adjusted odds ratio was 1.4; however, this 

frequency category only included one case and one control. 

 

A population-based case-control study was conducted to determine the association between atrazine 

exposure and the risk of non-Hodgkin’s lymphoma in women who lived or worked on farms in 

66 counties of eastern Nebraska (Zahm et al. 1993b).  Cases were identified from the University of 

Nebraska Lymphoma Study Group and area hospitals.  White women (age ≥21 years) with histologically 

confirmed cases of non-Hodgkin’s lymphoma (or their next-of-kin) and white female controls (matched 

for county of residence, race, vital status, and age) were interviewed to determine medical history, 

pesticide use, application method, use of protective equipment, and how often the pesticides were 

personally handled.  Interviews were completed for 134 of 206 cases and 707 of 824 controls.  The OR 
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for women living on a farm where atrazine was used was 1.4 (95% CI=0.6–3.0) with 11 cases and 

31 controls.  For women who reported having personally used atrazine, the OR was 2.2 (95%  

CI=0.1–31.5, one case and two controls).  Very few women examined in this study reported personally 

handling pesticides; indirect exposure (e.g., handling pesticide-contaminated clothing or through 

contaminated drinking water) to atrazine was more likely. 

 

The association between colon cancer and triazine use was explored by Hoar et al. (1985) in a case-

control study of Kansas farmers.  Information on pesticide exposure was gathered via interviews with 

57 histologically confirmed colon cancer cases (identified in 1976–1982) and 948 controls.  Only 2 cases 

and 43 controls had confirmed triazine exposure (atrazine exposure not specified).  An association 

between colon cancer and triazine exposure was not found in this study (OR=1.4; 95% CI=0.2–7.9). 

 

Exposure of Italian female farmers to the chemical class, triazines (atrazine exposure not specified), was 

associated with a significant increased risk for ovarian neoplasms in a case-control study conducted by 

Donna et al. (1989).  The women lived in an Italian province where triazine herbicides were used in 

farming practices.  Cases were women with epithelial ovarian cancer diagnosed during the period of 

1980–1985 identified from 18 area hospitals.  Interviews with 65 cases and 126 female age-matched 

controls provided data on herbicide use, farming activity, and reproductive factors.  Subjects were then 

classified by the authors as having definite, possible, or no exposure to herbicides.  The odds ratios, 

adjusted for age, number of live births, and use of oral contraceptives, were 2.7 (90% CI 1.0–6.9) for 

those ‘definitely’ exposed (7 cases and 7 controls) and 1.8 (90% CI 0.9–3.5) for those ‘possibly’ exposed 

(14 cases and 20 controls). 

 

Donna et al. (1984) conducted a hospital-based study of 60 women in Piedmont, Italy who were 

diagnosed between 1974 and 1980 with histologically confirmed primary mesothelial ovarian tumors.  

Personal interviews were conducted with cases and 127 controls diagnosed with other types of cancer to 

determine residence and occupational history as well as herbicide exposure (categorized as definite, 

probable, or no herbicide exposure).  Although no data were provided specifically for atrazine or 

triazines, there was an increased risk of ovarian cancer with herbicide use (OR=4.4, 95% CI=1.9–16) 

based on 8 cases and no controls with ‘definite’ herbicide exposure and 10 cases and 14 controls with 

‘probable’ herbicide exposure. 

 

The overall evidence from epidemiological studies indicates that there is a slightly increased risk of non-

Hodgkin’s lymphoma among farmers exposed to atrazine.  There is also suggestive evidence of weak 
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associations between triazine/atrazine exposure and the increased risk of prostate, breast, and ovarian 

cancers.  Significant increases in the risk of other forms of cancer (i.e., multiple myeloma, leukemia, soft 

tissue sarcoma/carcinoma, and Hodgkin’s disease) were not found after exposure to atrazine or triazines. 

 

No studies were located regarding cancer in animals after inhalation exposure to atrazine.  

 

3.2.2 Oral Exposure 

 

3.2.2.1 Death 

 

The available information on the lethality of atrazine in humans is limited to a case report of a man 

intentionally ingesting 500 mL weed killer containing 100 g of atrazine, 25 g of aminotriazole, 25 g of 

ethylene glycol, and 0.15 g of formaldehyde (Pommery et al. 1993); the approximate amount of atrazine 

ingested was 1,429 mg/kg.  The man exhibited coma, circulatory collapse, metabolic acidosis, and gastric 

bleeding, and died 3 days later.  The study authors stated that some of the symptoms displayed by the 

patient upon hospital admission (metabolic acidosis and large anion gap) indicated that ethylene glycol 

was an important toxicant.  Ethylene glycol was present in the blood (300 mg/L), and formic and oxalic 

acids were detected in the urine.  The study authors also speculated that aminotriazole and possibly 

formaldehyde, as well as atrazine, may have contributed to the symptoms and ultimate outcome of the 

case. 

 

Atrazine has a low acute toxicity in laboratory animals.  Exposure of pregnant Charles River rats to 

700 mg/kg/day atrazine in the commercial product, Aatrex, throughout gestation resulted in 78% 

mortality; the cause of death was not determined (Infurna et al. 1988).  Acute oral LD50 values for adult 

male and female rats of 1,471 and 1,212 mg/kg (Ugazio et al. 1991b) and 737 and 672 mg/kg (Gaines and 

Linder 1986), respectively, have been reported.  An LD50 of 2,310 mg/kg was reported for young 

(weanling) male rats (Gaines and Linder 1986), indicating a lower sensitivity to atrazine than adult rats.  

A significant increase in mortality was observed in female Sprague-Dawley rats exposed to 39 or 

71 mg/kg/day atrazine for up to 24 months (EPA 1986; Wetzel et al. 1994); mortality was not affected in 

similarly exposed female F344 rats (Wetzel et al. 1994).  Survival was statistically decreased in female 

mice receiving 247 or 483 mg/kg/day atrazine in the diet for ≥91 weeks; similar exposure of male mice 

did not affect mortality (EPA 1987b; Stevens et al. 1999). 
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Cattle that consumed an unknown quantity of spilled Aatrex (containing 76% atrazine) became ill and one 

became recumbent and died within 8 hours (Jowett et al. 1986).  Necropsy results revealed edematous 

lungs and a froth in the trachea.  Six other cattle died within 3 days after exhibiting anorexia, salivation, 

tenesmus, stiff gait, and weakness. 

 

3.2.2.2 Systemic Effects  

 

No studies were located regarding systemic effects in humans after oral exposure to atrazine.  The highest 

NOAEL values and all LOAEL values from each reliable study for the systemic effects of atrazine in 

each species and duration category are recorded in Table 3-1 and plotted in Figure 3-1.  These studies are 

discussed below. 

 

Respiratory Effects.    No animal studies were located that evaluated respiratory function.  Mice 

gavaged with a single dose of 875 mg/kg atrazine (Fournier et al. 1992), sheep that consumed hay sprayed 

with atrazine (approximately 47 mg atrazine/kg body weight/day) for 25 days (Johnson et al. 1972), and 

pigs treated with 2 mg/kg/day atrazine in the feed for 19 days (Ćurić et al. 1999) had no gross or 

histopathological lesions of the lungs.  Chronic exposure of male and female rats to up to 52 and 

71 mg/kg/day atrazine, respectively, in the diet also had no gross or histopathological lung lesions (EPA 

1984f, 1987d). 

 

Cardiovascular Effects.    Alterations in electrocardiograph measures and heart pathology were 

observed in dogs exposed to about 34 mg/kg/day in the diet for 52 weeks (EPA 1987f).  Observed 

electrocardiographic changes consisted of slight to moderate increases in heart rate (primarily in males), 

moderate decreases in P-II values in both sexes, moderate decreases in PR values, slight decreases in QT 

values, atrial premature complexes in one female, and atrial fibrillation in both sexes.  Gross postmortem 

examination revealed moderate to severe dilatation of right and/or left atria in the majority of animals, 

and some dogs had fluid-filled pericardium and enlarged heart.  Atrophy and myolysis of atrial 

myocardium and edema of the heart were also observed in these dogs.  No cardiac abnormalities were 

observed at 5 mg/kg/day.  These cardiac effects are supported by the finding of degeneration of a small 

number of myocardial fibers in pigs exposed to 2 mg/kg/day atrazine in the feed for 19 days (Ćurić et al.  
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Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

ACUTE EXPOSURE
Death

1
(Sherman) (GO)

1x Gaines and Linder 1986

technical grade
737 (adult LD50)M

2310 (weanling LD50)M

672 (adult LD50)F

Rat

2
(Sprague-
Dawley) (GW)

Gd 6-15
1x/d

Infurna et al. 1988

Aatrex
700 (78% pregnant females died)

Rat

3
(NS) (GW)

1x Ugazio et al. 1991b

Fogard 45% atrazine and purified
1471 (LD50)M

1212
b

(LD50)F

Rat

Systemic
4

60
(Fischer- 344)

Endocr

(GO)

7d
1x/d

Babic-Gojmerac et al. 1989

recrystallized
120 (increased pituitary weight;

impaired testosterone
metabolism in pituitary and
hypothalamus)

Rat

5
200

(Long-Evans)
Endocr

(GW)
1x Cooper et al. 2000

97.1% pure
300 (decreased serum LH and

prolactin)

Rat

300Bd Wt

6
300

(Sprague-
Dawley)

Endocr
(GW)
1x Cooper et al. 2000

97.1% pure

Rat

300Bd Wt
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

7
(Long-Evans)

Endocr

(GW)

3d
1x/d

Cooper et al. 2000

97.1% pure
50 (decreased serum LH and

prolactin; increased pituitary
prolactin)

Rat

300Bd Wt

8
200

(Sprague-
Dawley)

Endocr

(GW)

3d
1x/d

Cooper et al. 2000

97.1% pure
300 (decreased serum prolactin

levels)

Rat

300Bd Wt

9
300

(Long-Evans)
Endocr

(GW)
1x Cooper et al. 2000

97.1% pure

Rat

10
(Long-Evans)

Endocr

(GW)

3d
1x/d

Cooper et al. 2000

97.1% pure
300 (effects on neuroendocrine

regulation)

Rat

11
50

(Holtzman)
Endocr

(GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
100 (decreased serum progesterone

and LH)

Rat

Bd Wt 50 (43% decrease in body weight
gain)

12
(Sprague-
Dawley)

Endocr
(GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
200 (increased serum estradiol)

Rat

50Bd Wt 100 (69% decrease in body weight
gain)
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

13
50

(Long-Evans)
Endocr

(GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
100 (decreased serum LH)

Rat

Bd Wt 50 (57% decrease in body weight
gain)

14
100

(Fischer- 344)
Endocr

(GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
200 (decreased serum LH)

Rat

50Bd Wt 100 (74% decrease in body weight
gain)

15
(Sprague-
Dawley)

Endocr

(GO)

1x/d
pnd 46-48

Friedmann 2002
50 (reduced serum and

intratesticular testosterone
levels)

M
Rat

16
70

(Sprague-
Dawley)

Bd Wt

(GW)

Gd 6-15
1x/d

Infurna et al. 1988

Aatrex
700 (severe maternal body weight

loss)

Rat

17
(Wistar)

Endocr

(GW)

6 or 12d
1x/d

Kornilovskaya et al. 1996

95% pure
240 (decreased serum T3 and

histological changes in the
thyroid)

Rat

18
120

(Fischer- 344)
Bd Wt

(GO)

12d
every 48hr

Peruzovic et al. 1995

purified

Rat

19
(Wistar)

Renal

(G)

14d
1x/d

Santa Maria et al. 1986

analytical grade
100 (increased urinary sodium,

potassium, chloride, and protein
levels; increased serum LDH
and HBDH activities)

Rat
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

20
(Wistar)

Hepatic

(G)

7 or 14d
1x/d

Santa Maria et al. 1987

analytical grade
100 (increased serum lipids, AP,

and ALT)

Rat

Bd Wt 100 (25% decrease in body weight)

21
(Fischer- 344)

Endocr

(GO)

7d
1x/d

Simic et al. 1994

>99% pure
120 (increased pituitary weight)M

Rat

Bd Wt 120 (45% decreased body weight
gain)

F

22
12.5 F

(Wistar)
Endocr

(G)

ppd 1-4
2x/d

Stoker et al. 1999

98% pure
25 (decreased prolactin release in

response to pup suckling)
F

Rat

23
1
c

(New
Zealand)

Bd Wt
(GW)
Gd 7-19 Infurna et al. 1988

Aatrex
5 (slight decrease in maternal

body weight gain)
75 (severe maternal weight loss)

Rabbit

Neurological
24

(Fischer- 344)
(GO)

12d
every 48hr

Peruzovic et al. 1995

purified
120 (developmental neurobehavioral

changes)

Rat

25
(Wistar) (GW)

1x Podda et al. 1997

NS
100 (alteration of nerve stimulus

conduction)

Rat

Reproductive
26

150
(Long-Evans) (GW)

1 or 3d Cooper et al. 2000

97.1% pure
300 (altered estrus cyclicity)

Rat
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

27
50

(Holtzman) (GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
100 (increased percent

postimplantation loss, and
decreased serum progesterone
and serum LH)

Rat

28
200

(Sprague-
Dawley)

(GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure

Rat

29
200

(Long-Evans) (GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure

Rat

30
50

(Fischer- 344) (GW)
Gd 1-8 Cummings et al. 2000b

97.1% pure
100 (increased percent

preimplantation loss; decreased
uterine weights)

Rat

31
120

(Fischer- 344)
(GO)

12d
every 48hr

Peruzovic et al. 1995

purified

Rat

32
(Fischer- 344)

(GO)

7d
1x/d

Simic et al. 1994

>99% pure
120 (reduced fecundity)F

Rat

33
(Fischer- 344)

(GO)

7d
1x/d

Simic et al. 1994

>99% pure
120 (altered ovarian/estrus cyclicity)

Rat

Developmental
34

10
(Sprague-
Dawley) (GW)

Gd 6-15
1x/d

Infurna et al. 1988

Aatrex
70 (incomplete ossification of skull,

hyoid bone, teeth, forepaw
metacarpals, and hindpaw distal
phalanges)

700 (increased postimplantation
loss/litter)

Rat
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

35
(Fischer- 344)

(GO)

12d
every 48hr

Peruzovic et al. 1995

purified
120 (neurobehavioral changes)

Rat

36
12.5 M

(Wistar)
(G)

ppd 1-4, 6-9, or 11-14
2x/d

Stoker et al. 1999

98% pure
25 (increased inflammation of

lateral prostate,
myeloperoxidase levels, and
total DNA in prostate of male
offspring)

M
Rat

37
5

(New
Zealand)

(GW)
Gd 7-19 Infurna et al. 1988

Aatrex
75 (postimplantation losses,

decreased fetal body weight,
nonossification of forepaw
metacarpals and middle
phalanges, hindpaw talus and
middle phalanges, and patella)

Rabbit

INTERMEDIATE EXPOSURE
Systemic

38
50

(Fischer- 344)
Hepatic

(GW)

28d
1x/d

Aso et al. 2000

98.7% pure

Rat

50Renal

50Endocr

50Bd Wt



LOAEL

Less SeriousNOAEL
(mg/kg/day) (mg/kg/day)

Seriousa

(mg/kg/day)System

Exposure/
Duration/

Frequency
(Specific Route)

Species
(Strain)

Key to
figure

Reference

(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

39
5

(Sprague-
Dawley)

Hepatic

(GW)

28d
1x/d

Aso et al. 2000

98.7% pure
50 (increased relative liver weight)

Rat

50Renal

50Endocr

50Bd Wt

40
5

(Donryu)
Hepatic

(GW)

28d
1x/d

Aso et al. 2000

98.7% pure
50 (increased relative liver weight)

Rat

50Renal

50Endocr

50Bd Wt

41
(Wistar)

Bd Wt

(F)

6 or 12 mo
5 d/wk

Cantemir et al. 1997

96% pure
2.7 (30% decreased body weight

gain)

Rat

42
150

(Long-Evans)
Bd Wt

(GW)

21d
1x/d

Cooper et al. 1996b

>97.1% pure
300 (about 10% decrease in body

weight gain)

Rat

43
300

(Sprague-
Dawley)

Bd Wt

(GW)

21d
1x/d

Cooper et al. 1996b

>97.1% pure

Rat
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Chemical Form

44
(Long-Evans)

Endocr

(GW)

21d
1x/d

Cooper et al. 2000

97.1% pure
75 (decreased serum LH;

increased pituitary prolactin)

Rat

150Bd Wt 300 (decreased body weight gain)

45
(Sprague-
Dawley)

Endocr

(GW)

21d
1x/d

Cooper et al. 2000

97.1% pure
75 (increased pituitary prolactin)

Rat

150Bd Wt 300 (decreased body weight gain)

46
75

CFY
Hemato

(F)
3mo Desi 1983

technical purity

Rat

75Hepatic

38Renal 75 (increased kidney weight)

Bd Wt 38 (decreased body weight gain)

47
(Sprague-
Dawley)

Endocr

(GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
100 (increased adrenal weights;

plasma estradiol levels
decreased by 61%)

Rat

Bd Wt 100 (body weight decreased by
16%)

48
(Fischer- 344)

Endocr

(GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
100 (increased adrenal weights)

Rat

100Bd Wt
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49
(Sprague-
Dawley)

Endocr

(GO)

1x/d
pnd 22-48

Friedmann 2002
50 (reduced serum and

intratesticular testosterone
levels)

M
Rat

50
100

(Wistar)
Hepatic

(GW)
20d (ppd 22-41) Laws et al. 2000

97.1% pure
200 (decreased absolute and

increased relative liver weights)

Rat

100Renal 200 (decreased absolute and
relative kidney weights)

Endocr 12.5 (decreased absolute and
relative pituitary weight)

100Bd Wt 200 (16% decrease in body weight
gain)

51
50 M

(Sprague-
Dawley)

Endocr

(G)

1 x/d
pnd 22-27

Trentacoste et al. 2001
100 (reduced serum and interstitial

fluid testosterone
concentrations)

M
Rat

Bd Wt 100 (9% decrease in weight gain)M

52
45.2

(Fischer- 344)
Endocr

(F)
1, 3, or 9 mo Wetzel et al. 1994

97% pure

Rat

Bd Wt 22.6 (body weight gain decreased by
11%)

53
(Sprague-
Dawley)

Endocr
(F)
1, 3, or 9 mo Wetzel et al. 1994

97% pure
6.9 (increased plasma estradiol

levels)

Rat

Bd Wt 39.2 (body weight gain decreased by
15%)
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54
2

(Landrace)
Resp

(F)
19d Curic et al. 1999

>99% pure

Pig

Cardio 2 (degeneration of a small
number of myocardial fibers)

Hepatic 2 (mild degeneration and
inflammation and mild chronic
interstitial hepatitis)

Renal 2 (subacute glomerulitis;
degeneration and desquamation
of proximal tubules)

2Endocr

55
landrace

Hepatic
(F)
19d Gojmerac et al. 1995

99% pure
2 (350% increase in serum

gamma-glutamyltransferase;
mild liver histological changes)

Pig

Immuno/ Lymphoret
56

(Wistar) (F)
3wk Vos and Krajnc 1983

97% pure
15.4 (lymphopenia)M

Rat

57
(Landrace) (F)

19d Curic et al. 1999

>99% pure
2 (lymphoid depletion in lymph

nodes and spleen)

Pig

Neurological
58

75
CFY (F)

3mo Desi 1983

technical purity

Rat

Reproductive
59

50
(Sprague-
Dawley) (GW)

28d
1x/d

Aso et al. 2000

98.7% pure

Rat
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60
50

(Fischer- 344)
(GW)

28d
1x/d

Aso et al. 2000

98.7% pure

Rat

61
50

(Donryu)
(GW)

28d
1x/d

Aso et al. 2000

98.7% pure

Rat

62
75

(Long-Evans)
(GW)

21d
1x/d

Cooper et al. 1996b

>97.1% pure
150 (disrupted estrus cycle; altered

serum estradiol and
progesterone levels)

Rat

63
75

(Sprague-
Dawley) (GW)

21d
1x/d

Cooper et al. 1996b

>97.1% pure
150 (altered estrus cyclicity;

elevated serum progesterone;
pseudopregnancy)

Rat

64
(Sprague-
Dawley) (GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
100 (decreased ovarian weights;

decreased plasma estradiol
levels)

Rat

65
(Fischer- 344)

(GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
100 (decreased ovarian and uterine

weights)

Rat

66
(Fischer- 344)

(GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
300 (altered estrus cyclicity)

Rat

67
(Sprague-
Dawley) (GW)

14-23d
1x/d

Eldridge et al. 1994a

>96% pure
100 (altered estrus cyclicity)

Rat
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Chemical Form

68
5

(Sprague-
Dawley) (GW)

45d
1x/d

Eldridge et al. 1999a

97.1% pure
40 (abnormal estrus cycle)

Rat

69
4.6

(Sprague-
Dawley) (F)

26w
1x/d

Eldridge et al. 1999a

97.1% pure
33 (abnormal estrus cycle)

Rat

70
26.7

(Charles
River)

(F)
2 gen EPA 1987e

technical--% NS

Rat

71
(Sprague-
Dawley)

(F)
1, 3, or 9 mo Wetzel et al. 1994

97% pure
6.9 (increased length of estrus)

Rat

72
(Landrace) (F)

19d Curic et al. 1999

>99% pure
2 (disruption of estrus cyclicity;

ovarian cysts)

Pig

73
landrace (F)

19d Gojmerac et al. 1996

99% pure
2 (disrupted estrogen and

progesterone levels; disruption
of estrus cyclicity; ovarian
histopathology)

Pig

74
Swedish
Landrace x
Large

(F)
19d Gojmerac et al. 1999

NS
1
d

(short-term delay in estrus
onset)

Pig
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(continued)Table 3-1  Levels of Significant Exposure to Atrazine  -  Oral

Chemical Form

Developmental
75

(Wistar)

(G)

1 x/d
22 d
pnd 21-43

Ashby et al. 2002
100 (reduced uterine weights;

delayed vaginal opening)
F

Rat

76
30.9

Charles
River)

(F)
2 gen EPA 1987e

technical--% NS

Rat

77
25

(Wistar) (GW)
20d (ppd 22-41) Laws et al. 2000

97.1% pure
50 (delayed vaginal opening)

Rat

78
(Wistar)

(GW)

31d
1x/d

Stoker et al. 2000

97.1% pure
12.5 (delayed preputial separation)

Rat

CHRONIC EXPOSURE
Death

79
(Sprague-
Dawley)

(F)
12, 15, 18, or 24 mo Wetzel et al. 1994

97% pure
31.9 (15% increase in mortality)

Rat

80
(CD-1)

(F)

daily
91wks

EPA 1987b

technical
482.7 (decreased survival)F

Mouse

81
(Beagle) (F)

52wk EPA 1987f

technical
33.8 (death in 1/6 dogs)F

Dog
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Systemic
82

52
(CD)

Resp
(F)
12mo EPA 1984f, 1987d

technical--% NS

Rat

52Cardio

52Gastro

34.6 FHemato 70.6 (decreased RBC, hemoglobin,
hematocrit; increased platelet,
leukocyte, mean corpuscular
hemoglobin)

F

52Musc/skel

25.5 MHepatic 52 (decreased liver weight, total
triglyceride, globulin;   increased
albumin/globulin ratio)

M

25.5 MRenal 52 (decreased kidney weight,
specific gravity; increased urine
volume, pelvic calculi)

M

25.5 MEndocr 70.6 (increased adrenal gland
weight; enlarged pituitaries)

F

52 MDermal

52 MOcular

3.5 MBd Wt 25 (decreased body weight)

25.5 MMetab 52 (decreased serum glucose,
calcium)

83
2.4

(Charles
River)

Bd Wt
(F)
2 gen EPA 1987e

technical--% NS
26.7 (10-15% decrease in body

weight gain)

Rat
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84
(Fischer- 344)

Bd Wt
(F)
126wk Pinter et al. 1990

98.9% pure
58 (10% decrease in body weight

gain)
M

Rat

85
45.2

(Fischer- 344)
Endocr

(F)
12, 15, 18, or 24 mo Wetzel et al. 1994

97% pure

Rat

86
39.2

(Sprague-
Dawley)

Endocr
(F)
12, 15, 18, or 24 mo Wetzel et al. 1994

97% pure

Rat

87
(CD-1)

Cardio

(F)

daily
91wks

EPA 1987b

technical
385.7 (increased incidence of cardiac

thrombi)
M

246.9
b

(increased incidence of cardiac
thrombi)

F

Mouse

Hemato 194
b

(reductions in mean erythroid
parameters)

M

482.7 (reductions in mean erythroid
parameters)

F

Renal 482.7 (slight decrease in mean
absolute kidney weight)

F

385.7
b
M

482.7 F

Ocular
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88
33.8

(Beagle)
Resp

(F)
52wk EPA 1987f

technical

Dog

4.97Cardio 33.65 (electrocardiographic changes;
atrial dilatation; fluid-filled
pericardium; enlarged heart;
atrophy of atrial myocardium;
edema)

33.8Gastro

4.97Hemato 33.65 (decreased RBC, hemoglobin,
and hematocrit; increased
platelet counts)

33.8Musc/skel

4.97Hepatic 33.65 (increased relative liver weight;
increased liver to brain weight)

M

33.8Renal

33.8Endocr

33.8Dermal

33.8Ocular

4.97Bd Wt 33.65 (body weight decreased by 19%)M
Reproductive

89
45.2

(Fischer- 344) (F)
12, 15, 18, or 24 mo Wetzel et al. 1994

97% pure

Rat
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90
(Sprague-
Dawley)

(F)
12, 15, 18, or 24 mo Wetzel et al. 1994

97% pure
5.6 (increased length of estrus after

18 months)

Rat

Cancer
91

(Fischer- 344) (F)
126wk Pinter et al. 1990

98.9% pure
58
b

(CEL: increased number of rats
with malignant tumors)

M

65 (CEL: increased incidence of
uterine adenocarcinoma and
leukemia/lymphoma; increased
number of rats with malignant
tumors)

F

Rat

92
(Sprague-
Dawley)

(F)

a The number corresponds to entries in Figure 3-1.

b Differences in levels of health effects and cancer effects between males and females are not indicated in Figure 3-1.  Where such differences exist, only the levels of effect for the
most sensitive gender are presented.

c Used to derive an acute-duration minimal risk level (MRL) of 0.01 mg/kg/day; based on a NOAEL of 1 mg/kg/day for decreased body weight gain in pregnant rabbits exposed to
atrazine on gestational days 7-19 (Infurna et al. 1988), and divided by an uncertainty factor of 100 (10 for extrapolation from animals to humans and 10 for human variability).

d Used to derive an intermediate-duration minimal risk level (MRL) of 0.003 mg/kg/day; based on a LOAEL of 1 mg/kg/day for delayed estrus onset (Gojmerac et al. 1999), and
divided by an uncertainty factor of 300 (10 for the use of a LOAEL, 10 for extrapolation from animals to humans, and 3 for human variability).

ALT = alanine aminotransferase; AP = alkaline phosphatase; Bd Wt = body weight; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); DNA = deoxyribonucleic acid;
Endocr - endocrine; (F) = feed; F = female; (G) = gavage; gastro = gastrointestinal; gd = gestation day; gen = generation; (GO) = gavage in oil; (GW) = gavage in water; HBDH =
hydroxybutyrate dehydrogenase; Hemato = hematological; hr = hour(s);  LD50 = lethal dose, 50% kill; LDH = lactate dehydrogenase; LH = luteinizing hormone; LOAEL =
lowest-observed-adverse-effect level; M = male; Metab = metabolic; mg /kg/day = milligram per kilogram per day; mo = month(s); Musc/skel = musculoskeletal; NOAEL =
no-observed-adverse-effect level; ppd = post-parturition day; RBC = red blood cell(s); Resp = respiratory; wk = week(s); x = times

24 mo Wetzel et al. 1994

97% pure
31.9 (CEL: increased incidence of

mammary and pituitary tumors
at 1 year)

Rat
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1999); no clinical manifestations were apparent.  Female and male mice exposed to atrazine in the diet at 

≥247 and 386 mg/kg/day, respectively, had an increased incidence of cardiac thrombi (EPA 1987b).  In 

contrast, no histopathological alterations were observed in male and female rats exposed to up to 52 and 

71 mg/kg/day atrazine, respectively, in the diet for 12–24 months (EPA 1984f, 1986, 1987d) or in sheep 

consuming hay sprayed with atrazine (approximately 47 mg atrazine/kg body weight/day) for 27 days 

(Johnson et al. 1972). 

 

Gastrointestinal Effects.    No histological alterations were observed in the gastrointestinal tracts of 

rats exposed to 52–71 mg/kg/day for 12–24 months (EPA 1984f, 1986, 1987d) or in sheep exposed to 

approximately 47 mg atrazine/kg body weight/day for 25 days (Johnson et al. 1972). 

 

Hematological Effects.    Although some animal studies have reported hematological effects, the 

results have been inconsistent across studies.  Decreases in erythrocyte, hemoglobin, and hematocrit 

levels and increases in mean platelet levels were observed in female rats exposed to 71 mg/kg/day 

atrazine in the diet for 12–24 months (EPA 1984f, 1986, 1987d).  No effects were observed in female rats 

exposed to 35 mg/kg/day or in male rats exposed to doses up to 52 mg/kg/day.  Decreases in erythrocyte 

and hemoglobin levels and increases in platelet counts were also seen in dogs exposed to about 

34 mg/kg/day atrazine for 52 weeks (EPA 1987f); however, the study authors considered these changes to 

be secondary to decreased body weight.  Reductions in mean erythroid parameters were noted in mice 

administered atrazine in the diet at >194 mg/kg/day (males) or 483 mg/kg/day (females); these alterations, 

however, did not correlate with any other hematological changes, and the authors suggest that they were 

secondarily related to decreased body weight and/or food and water consumption (EPA 1987b).  No 

alterations in erythrocyte or platelet parameters were observed in rats exposed to 75 mg/kg/day atrazine in 

the diet for 3 months (Dési 1983), rats exposed to 9.8–43.1 mg/kg/day atrazine in the diet for 6 months 

(Suschetet et al. 1974), or sheep exposed to approximately 47 mg/kg/day atrazine in the diet for 25 days 

(Johnson et al. 1972). 

 

A decrease in total white blood cell counts was observed in male and female rats exposed to 43 and 

10 mg/kg/day atrazine, respectively, in the diet for 6 months; white blood cell levels were increased in 

female rats exposed to 71 mg/kg/day atrazine in the diet for 12 months (EPA 1984f, 1987d).  No 

alterations in white blood cell levels were observed in male rats exposed to 52 mg/kg/day for 12 months 

(EPA 1984f, 1987d) or in sheep consuming hay sprayed with atrazine for 25 days (Johnson et al. 1972). 
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Musculoskeletal Effects.    No histopathological changes were noted in skeletal muscle of male or 

female rats exposed to up to 52 or 71 mg/kg/day atrazine, respectively, in the diet for 12 months (EPA 

1984f, 1986, 1987d) or dogs exposed to up to 34 mg/kg/day atrazine in the diet for 52 weeks (EPA 

1987f). 

 

Hepatic Effects.    The available data suggest that the liver is a target of atrazine toxicity with apparent 

species differences in sensitivity and, therefore, in the extent of damage.  Of the tested animal species, the 

pig appears to be the most sensitive species.  Intermediate-duration exposure of pigs to 2 mg/kg/day 

resulted in a 350% increase in serum γ-glutamyltransferase activity and mild histopathological changes, 

including chronic interstitial inflammation, lymphocyte and eosinophil infiltration, and narrowing and 

irregular forms of bile canaliculi (Gojmerac et al. 1995).  Ćurić et al. (1999) found similar histo-

pathological changes in the livers of pigs exposed to 2 mg/kg/day for 19 days. 

 

Alterations in clinical chemistry parameters and liver weight have been observed in rats, although strain 

differences have been observed.  In Wistar rats receiving gavage doses of atrazine in gum arabic for up to 

14 days (Santa Maria et al. 1987), dose-related increases in serum total lipids, alkaline phosphatase 

activity, and alanine aminotransferase activity were observed at 100 mg/kg/day.  Decreases in serum 

glucose levels and subcellular changes including proliferation and degeneration of the smooth 

endoplasmic reticulum, lipid accumulation, mitochondrial malformation, and alteration of bile canaliculi 

were observed at 200 mg/kg/day.  Significantly decreased relative liver weight was observed at 

400 mg/kg/day; the decreased relative liver weight may be reflective of the decreased body weight also 

observed in these animals.  Significant decreases in serum glucose, calcium, total triglyceride, and 

globulin (males only) levels, and an increase in albumin/globulin ratios (males only) were observed in 

male and female CD rats exposed to 52 or 71 mg/kg/day, respectively, in the diet for 12–24 months (EPA 

1984f, 1986, 1987d).  Significantly decreased liver weight and liver/brain weight ratio were also observed 

in males at 12 months); no hepatic effects were observed at 26 and 35 mg/kg/day for males and females, 

respectively (EPA 1984f, 1986, 1987d).  Liver effects (increased relative liver weights) have also been 

observed in Sprague-Dawley and Donryu rats receiving gavage dose of 50 mg/kg/day, but not 

5 mg/kg/day, for 28 days (Aso et al. 2000); no histological alterations were observed.  No liver effects 

were observed in similarly exposed F344 rats (Aso et al. 2000).  An increase in relative liver weight was 

also observed in male dogs exposed to 34 mg/kg/day atrazine in the diet for 52 weeks; no alterations in 

clinical chemistry parameters were observed.  This study identified a NOAEL of 5 mg/kg/day.  No liver 

effects were observed in mice receiving a single dose of up to 875 mg/kg atrazine (as the commercial 



ATRAZINE  57 
 

3.   HEALTH EFFECTS 
 
 

 

product Aatrex) (Fournier et al. 1992) or sheep exposed to 47 mg/kg/day atrazine in the diet for 25 days 

(Johnson et al. 1972). 

 

Renal Effects.    Kidney effects have been observed in rats and pigs, but not in mice, sheep, or dogs.  In 

male Wistar rats administered atrazine via gavage at 100 mg/kg/day or higher for 14 days, increases in 

urinary sodium, potassium, chloride, and protein levels, and serum lactate dehydrogenase and 

γ-hydroxybutyrate dehydrogenase activities (considered by the study authors to be of renal, not hepatic, 

origin) were observed (Santa Maria et al. 1986); this study did not identify a NOAEL.  Exposure of male 

rats to 52 mg/kg/day atrazine in the diet for 12 months resulted in decreased kidney weight and kidney to 

brain weight ratios, decreased specific gravity and increased volume of urine, and increased incidence of 

pelvic calculi in the kidney; females exposed to 71 mg/kg/day had only increased relative kidney weight 

(EPA 1984f, 1986, 1987d).  In this study, no renal effects were observed at 26 (males) or 35 (females) 

mg/kg/day.  No significant alterations in kidney weight, gross pathology, or histopathology were 

observed in female Sprague-Dawley, F344, and Donryu rats gavaged with up to 50 mg/kg/day for 28 days 

(Aso et al. 2000).  The rat data suggest that males may be more sensitive to the renal toxicity of atrazine 

than females. 

 

Subacute glomerulitis and degeneration and desquamation of the proximal tubules were observed in 

female pigs receiving 2 mg/kg/day atrazine in the diet for 19 days (Ćurić et al. 1999).  Female mice 

administered atrazine in the diet at 483 mg/kg/day for ≥91 weeks had a slight, but statistically significant, 

decrease in mean absolute kidney weight; however, the authors indicate that this did not correlate with 

any significant gross or microscopic pathology (EPA 1987b).  No renal effects were observed in mice 

administered single gavage doses of up to 875 mg/kg/day atrazine (kidney weight and gross pathology 

examined) (Fournier et al. 1992), in sheep receiving gavage doses of 50 mg/kg/day for 28 days (gross and 

histopathology examined) (Johnson et al. 1972), or in dogs administered up to 71 mg/kg/day atrazine in 

the diet for 52 weeks (gross and histopathology examined) (EPA 1987f). 

 

Endocrine Effects.    Several mild to moderate endocrine effects have been observed in laboratory 

animals following atrazine administration, the majority of which are related to reproductive effects (see 

Section 3.2.2.5).  The endocrine effects consisted of alterations in gland weight, histological damage in 

some endocrine glands, and alterations in hormone levels.  A number of studies have found pituitary 

effects.  Increased pituitary weight, hyperemia and hypertrophy, and impaired testosterone metabolism 

were observed in male Fischer rats administered 12 mg/kg/day atrazine by gavage for 7 days (Babic-

Gojmerac et al. 1989).  The levels of three testosterone metabolites (5α-androstane-3α,17β-diol, 



ATRAZINE  58 
 

3.   HEALTH EFFECTS 
 
 

 

5α-dihydrotestosterone, and androstene-3,17-dione) were decreased in the anterior pituitary, suggesting 

impaired metabolism of testosterone.  No effects on the pituitary gland were observed at 6 mg/kg/day 

(Babic-Gomerac et al. 1989).  Atrazine exposures of 50 mg/kg/day administered by gavage for 3 days 

significantly reduced serum (p<0.008) and intratesticular (p<0.005) levels of testosterone in juvenile male 

Sprague-Dawley rats.  Given the same dose for 27 days, serum and testicular levels of testosterone were 

also significantly reduced (p<0.0002 and p<0.0003, respectively) (Friedmann 2002).  Peripubertal 

Sprague-Dawley rats administered atrazine by gavage from postnatal day 22 to 47 at doses of 100 and 

200 mg/kg/day had significantly reduced (p<0.05) serum and interstitial fluid testosterone concentrations 

(Trentacoste et al. 2001).  A decrease in body weight gain was also observed in these rats.  To assess 

whether the alterations in testosterone were directly related to atrazine or were secondary to the decreased 

food intake.  Vehicle-gavaged rats were fed amounts of feed equivalent to that consumed by the atrazine-

exposed rats.  Decreases in serum testosterone concentration, androgen-dependent organ weights, and 

serum luteinizing hormone levels were found in the food-restricted controls. 

 

Increased pituitary weights were observed in male rats gavaged with 120 mg/kg/day for 7 days, and then 

were observed for 14 days (Šimić et al. 1994).  Female CD rats exposed to 71 mg/kg/day atrazine in the 

diet for 12 months had an increased incidence of enlarged pituitaries (EPA 1984f, 1987d).  No pituitary 

effects were observed in the male rats.  No histological alterations were observed in the pituitary of dogs 

exposed to 34 mg/kg/day atrazine in the diet for 52 weeks (EPA 1987f). 

 

Possibly related to the effects on the pituitary are alterations in a number of pituitary-related and 

controlled hormones.  Ovariectomized Long-Evans rats implanted with estrogen-filled silastic capsules 

(which standardizes the estrogen levels and eliminates the ovary’s influence on the pituitary) and 

administered 50 mg/kg/day atrazine or higher for 3 days had increased levels of pituitary prolactin and 

decreased serum prolactin levels (Cooper et al. 2000).  The decrease in serum prolactin levels was also 

observed in similarly treated Long-Evan rats administered a single dose of 300 mg/kg/day (Cooper et al. 

2000).  In parallel studies, Sprague-Dawley rats treated in an identical manner and administered 

300 mg/kg/day for 3 days had no increases in pituitary prolactin levels, but did have decreased serum 

prolactin levels (Cooper et al. 2000); a single dose of 300 mg/kg/day did not result in alterations in 

prolactin levels.  Long-Evans and Sprague-Dawley rats treated similarly with 75–300 mg/kg/day for 

21 days had increased pituitary prolactin, and the Long-Evans rats also had decreased serum luteinizing 

hormone and prolactin (Cooper et al. 2000).  A significant increase in serum prolactin levels was 

observed in Sprague-Dawley rats exposed to 39 mg/kg/day atrazine in the diet for 9 months, but no 

alterations were observed after 12, 18, or 24 months of exposure (Wetzel et al. 1994).  No alterations in 
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serum prolactin levels were observed in female F344 similarly exposed to up to 45 mg/kg/day for 

24 months (Wetzel et al. 1994).  Wistar rat dams that received 25 mg/kg/day atrazine on lactation days  

1–4 had decreased prolactin release in response to pup suckling (Stoker et al. 1999). 

 

In the studies of ovariectomized rats supplemented with estrogen (via an implanted silastic capsule), 

decreases in serum luteinizing hormone levels were observed at 300 mg/kg/day in Long Evans rats 

receiving a single dose (Cooper et al. 2000), 50 mg/kg/day in Long Evans rats receiving daily doses for 

3 days (Cooper et al. 2000), 75 mg/kg/day in Long Evans rats receiving 21 doses of atrazine (Cooper et 

al. 2000), and 150 mg/kg/day in Sprague-Dawley rats exposed to atrazine for 21 days (Cooper et al. 

2000).  In ovariectomized Long Evans rats supplemented with estrogen and gonadotropin releasing 

hormone, a 3-day exposure to atrazine resulted in higher blood luteinizing hormone levels than in 

atrazine-exposed rats not receiving gonadotropin releasing hormone (Cooper et al. 2000), suggesting that 

atrazine disrupts neuroendocrine regulation. 

 

The alterations in pituitary hormones result in changes in peripheral gland hormone levels.  As discussed 

in the Reproductive Effects section, significant increases and decreases in plasma estradiol and 

progesterone levels have been observed in rats following acute, intermediate, or chronic duration 

exposure to atrazine (Cooper et al. 1996b; Cummings et al. 2000b; Eldridge et al. 1994a; Wetzel et al. 

1994). 

 

Several studies have examined the adrenal glands following oral exposure to atrazine, and most studies 

did not find adverse effects.  No alterations in adrenal weight and/or histopathology were observed in 

mice receiving a single gavage dose of 875 mg/kg/day (Fournier et al. 1992), Sprague-Dawley, F344, and 

Donryu rats administered 50 mg/kg/day for 28 days (Aso et al. 2000), F0, F1, and F2 albino rats exposed 

to up to 31 mg/kg/day atrazine in the diet (EPA 1987e), sheep exposed to up to 47 mg/kg/day atrazine for 

25 days in the diet (Johnson et al. 1972), pigs that received 2 mg/kg/day in the diet for 19 days (Ćurić et 

al. 1999), or dogs exposed to 34 mg/kg/day atrazine in the diet for 52 weeks (EPA 1987f).  Increases in 

adrenal weights were observed in female Sprague-Dawley and F344 rats administered by gavage 

100 mg/kg/day atrazine (Eldridge et al. 1994a) and in female rats, but not males, exposed to 71 mg/kg/day 

atrazine in the diet for 12 months (EPA 1984f, 1987d). 

 

The thyroid may also be a target of atrazine toxicity.  It is not known whether the thyroid changes are 

direct results of atrazine toxicity or indirect results via atrazine effects on the regulation of pituitary 

hormones.  A significant increase in relative thyroid weight was reported in Wistar rats dosed with 
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139 mg/kg/day atrazine by gavage for 3 weeks (Vos et al. 1983); because a decrease in body weight gain 

was also observed at this dosage, it is difficult to determine whether the increased thyroid weight was due 

to a direct effect of atrazine or was reflective of the decreased body weight.  A decrease in serum 

triiodothyronine levels were observed in rats receiving gavage doses of 240 mg/kg/day atrazine for  

6–12 days (Kornilovskaya et al. 1996).  Histological damage to thyrocytes (decreased diameter, decreased 

cell height, increased), increased thyroid follicle size, and desquamation of the epithelium of the follicular 

cavity were also observed in these rats.  No histological effects on the thyroid were reported in rats 

exposed to 71 mg/kg/day atrazine in the diet for 12 months (EPA 1984f, 1987d) and no alterations in 

thyroid stimulating hormone levels were observed in Long-Evans and Sprague-Dawley rats receiving 

gavage doses of atrazine for 1, 3, or 21 days (Cooper et al. 2000).  No histopathological changes were 

seen in the thyroid and no clinical signs were observed in female cross-bred pigs administered 

2 mg/kg/day atrazine in the feed for 19 days (Ćurić et al. 1999).  There was no alteration in thyroid 

stimulating hormone levels observed in Wistar rats administered atrazine by gavage for 19 days (postnatal 

days 22–41) with doses of 0, 50, 100, or 200 mg/kg/day (Laws et al. 2000). 

 

Dermal Effects.    Information on the dermal toxicity of atrazine is limited to two studies that found no 

gross or histological abnormalities in the skin of male and female rats administered up to 52.0 and 

71 mg/kg/day technical atrazine, respectively, in the diet for 12–24 months (EPA 1984f, 1986, 1987d) or 

in dogs that received up to about 34 mg/kg/day technical atrazine in the feed for 52 weeks (EPA 1987f). 

 

Ocular Effects.    No treatment-related ocular effects were noted in male and female rats administered 

up to 52 and 71 mg/kg/day technical atrazine, respectively, in the diet for 12–24 months (EPA 1984f, 

1986, 1987d), in male and female mice that received up to 386 and 483 mg/kg/day technical atrazine, 

respectively, in the diet for ≥91 weeks (EPA 1987b), or in dogs that received up to about 34 mg/kg/day 

technical atrazine in the feed for 52 weeks (EPA 1987f). 

 

Body Weight Effects.    Many rat studies involving acute, intermediate, or chronic exposure to 

atrazine in the diet or by gavage showed mild to severe weight loss (Cantemir et al. 1997; Cooper et al. 

2000; Cummings et al. 2000b; Eldridge et al. 1994a, 1999a; EPA 1984f, 1986, 1987d; Infurna et al. 1988; 

Peruzović et al. 1995; Pintér et al. 1990; Santa Maria et al. 1987; Šimić et al. 1994; Stevens et al. 1999; 

Suschetet et al. 1974; Tennant et al. 1994b; Wetzel et al. 1994).  Some of these studies noted 

corresponding reductions in food intake (Infurna et al. 1988; Suschetet et al. 1974), and recovery 

following cessation of atrazine administration was noted in one study (Peruzović et al. 1995).  One study 

in mice showed no weight loss after a single dose of up to 875 mg/kg (Fournier et al. 1992).  Mice 
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exposed to atrazine in the diet for ≥91 weeks had reduced mean body weight and percent body weight 

gain at ≥38 mg/kg/day (males) and ≥48 mg/kg/day (females) (EPA 1987b; Stevens et al. 1999).  Mean 

food and water consumption was also decreased in male and female mice at ≥194 and ≥247 mg/kg/day, 

respectively (EPA 1987b).  Rabbits exposed to 75 mg/kg/day atrazine by gavage experienced severe food 

intake reduction and weight loss (Infurna et al. 1988).  A 1-year diet study in dogs showed that terminal 

body weights were 19 and 14% less than controls in males and females, respectively, exposed to 

34 mg/kg/day atrazine and body weight gain was reduced by 17 and 14%, respectively (EPA 1987f).  

Food intake was also decreased in these dogs by a similar amount as body weight decreased (EPA 1987f). 

 

Metabolic Effects.    No studies were located regarding metabolic effects in humans or animals 

following oral exposure to atrazine. 

 

3.2.2.3 Immunological and Lymphoreticular Effects  

 

No studies were located regarding immunological and lymphoreticular effects in humans after oral 

exposure to atrazine. 

 

Líšková et al. (2000) performed a variety of tests to assess the immunotoxicity of atrazine in Balb/c and 

C57B1/10 mice.  In the plaque-forming cell assay, which tests humoral immunity by determining the 

integrity of three immune cells, macrophages, T cells, and B cells, administration of 100 mg/kg/day 

atrazine in corn oil by gavage for 10 days resulted in a 16 and 25% decrease in the number of IgM 

plaque-forming cells per million splenic cells as compared to saline and oil controls, respectively.  Other 

immunological effects observed in this group of mice included a decrease in spleen cellularity and a 

decrease in relative thymus weight.  No significant alterations were observed in politeal lymph node 

activation in the graft versus host and host versus graft reactions, which were used to assess the potential 

of atrazine to induce autoimmune disease, or the delayed-type hypersensitivity reaction.  No 

immunological effects were observed at 20 mg/kg/day. 

 

Female Wistar rats treated with 15 mg/kg/day atrazine for 3 weeks had decreased lymphocyte counts 

(Vos et al. 1983).  Exposure to 139 mg/kg/day also produced increased thyroid and mesenteric lymph 

node weights and decreased thymus weights (Vos et al. 1983); no increases in histological abnormalities 

were seen.  Lymphoid depletion in the lymphoid follicles of prescapular and mesenteric lymph nodes, 

accompanied by infiltration of eosinophilic granulocytes, was seen in female cross-bred pigs administered 
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2 mg/kg/day atrazine in the feed for 19 days (Ćurić et al. 1999).  Lymphoid depletion was also seen in the 

lymph nodes of the white pulp of the spleen. 

 

3.2.2.4 Neurological Effects 

 

No studies were located regarding neurological effects in humans after oral exposure to atrazine.  

 

Sixty and 90 minutes after a single oral dose of 100 mg/kg atrazine was administered to Wistar rats, the 

spontaneous cerebellar activity (spontaneous firing rate of Purkinje cells) was reduced to 50 and 80%, 

respectively, of control values (Podda et al. 1997).  The evoked spike activity of Purkinje cells following 

stimulation of the radial nerve was almost completely abolished in atrazine-treated rats, and the amplitude 

of the cerebellar potentials of N2 (expression of the mossy fibers input) and CF (expression of the 

climbing fibers input) were reduced by 58 and 75%, respectively, 30 minutes after atrazine administration 

(Podda et al. 1997).  Six days of oral exposure to Ceazine herbicide (used to deliver 220 mg/kg/day 

atrazine) resulted in decreased brain monoamine oxidase activity in Wistar rats (Bainova et al. 1979).  All 

cerebellar activities recovered fully in 1.5–2 hours.  Rats treated with up to 75 mg/kg/day atrazine in the 

diet for 3 months showed no differences from controls in running time to the goal (food) or number of 

errors in behavioral maze studies (Dési 1983). 

 

3.2.2.5 Reproductive Effects  

 

No studies were located regarding reproductive effects in humans after oral exposure to atrazine. 

 

Much of the research on the reproductive toxicity of atrazine has focused on the disruption of the 

endocrine system and its effect on estrus cyclicity.  Peruzović et al. (1995) monitored estrus cyclicity in 

F344 rats before, during, and after atrazine exposure, which consisted of gavage administration of 

120 mg/kg atrazine (purified by recrystallization) every 48 hours for a total of 6 doses.  Atrazine exposure 

did not affect duration or frequency distribution of the individual phases of estrus.  In contrast, F344 rats 

exposed to 120 mg/kg/day for 7 consecutive days showed a significant decrease in the percent of females 

with regular ovarian cycling, an increase in the average length of diestrus (10.5 days compared to 2 days 

in controls), and an increase in the average number of days between treatment cessation and the first 

proestrus (6.2 days compared to 2.2 days in controls) (Šimić et al. 1994).  Gavage dosing of 

300 mg/kg/day for 3 days resulted in pseudopregnancy (defined as maintaining diestrus for ≥12 days and 
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having elevated serum progesterone levels) in Long Evans rats; this dose also blocked the appearance of 

subsequent proestrus and ovulation (Cooper et al. 2000).  No effect on estrus cyclicity was observed at 

150 mg/kg/day.  The acute data suggest that both dose and duration of exposure may be important in the 

atrazine-induced disruption of the estrus cycle in rats. 

 

The intermediate-duration studies that examined atrazine-induced alterations in the estrus cycle support 

the findings of the acute-duration studies that the threshold of toxicity appears to be dose- and duration-

related; the rat data also suggest strain differences.  No statistically significant alterations in estrus cycle 

were observed in Sprague-Dawley, F344, or Donryu rats administered via gavage 50 mg/kg/day atrazine 

for 28 days (Aso et al. 2000).  This study has low statistical power because of the small number of 

animals tested (6/group/strain).  Persistent estrus was observed in one of the six F344 rats exposed to 

50 mg/kg/day, one of six Donryu rats exposed to 5 mg/kg/day, and one of six Donryu rats exposed to 

50 mg/kg/day.  At a similar exposure duration (21 days), alterations in the estrus cycle were observed in 

Long-Evans and Sprague-Dawley rats administered 150 or 300 mg/kg/day atrazine via gavage (Cooper et 

al. 1996b).  The alterations consisted of a significant increase in the percentage of days in vaginal diestrus 

and a significant decrease in the percentage of days in vaginal estrus (not seen in Sprague-Dawley rats 

dosed with 150 mg/kg/day).  A study by Eldridge et al. (1994a) also investigated possible strain 

differences among rats exposed to atrazine for <30 days.  Altered estrus cyclicity was observed at 

100 mg/kg/day (lowest dose tested) in Sprague-Dawley rats and 300 mg/kg/day in F344 rats administered 

atrazine by gavage for 14–21 days.  A long-term exposure study by Wetzel et al. (1994) identified a no 

effect level of 45 mg/kg/day in F344 rats following intermediate- or chronic-duration exposure.  A no-

effect level for estrus cycle alterations was not identified for Sprague-Dawley rats.  Studies with Sprague-

Dawley rats showed that as the rats aged, the effect of atrazine on the estrus cycle changed (Eldridge et al. 

1999a).  During the first couple of weeks of exposure to 33 mg/kg/day atrazine in the diet, an increase in 

diestrus was observed with no effect on the number of days in estrus.  After 13–14 weeks of exposure, 

there was a shift in the atrazine-affected estrus cycle; the number of days in diestrus decreased and the 

number of days in estrus increased.  This is supported by the findings of the Wetzel et al. (1994) study 

that significant increases in the percentage of time in estrus was seen in Sprague-Dawley rats exposed to 

7 mg/kg/day atrazine in the diet for 1, 9, and 18 months, but not after 24 months of exposure. 

 

The alterations in estrus cycle length most likely resulted from alterations in reproductive hormones.  

However, consistent alterations in reproductive hormone levels have not been observed across studies.  In 

general, increases in plasma estradiol levels were associated with increases in percentage of days in estrus 

and increases in plasma progesterone levels were associated with increases in percentage of days in 
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diestrus.  A significant increase in plasma estradiol levels was observed in Sprague-Dawley rats exposed 

to 150 mg/kg/day atrazine via gavage for 14–23 days (Eldridge et al. 1994a).  However, a decrease in 

plasma estradiol and an increase in plasma progesterone levels were observed at 300 mg/kg/day.  The 

study authors suggested that this may reflect a diminished ability of rats in the 300 mg/kg/day group to 

develop mature ovarian follicles.  An increase in estradiol levels was also observed in Sprague-Dawley 

rats exposed to 7 mg/kg/day atrazine for 3 months, but not after 1, 9, 12, 15, 18, or 24 months (Wetzel et 

al. 1994).  In the similarly exposed F344 rats, no alterations in estradiol levels were found, and 

progesterone levels were not significantly altered in either strain.  In the Cooper et al. (1996b) study, 

significant increases in plasma progesterone levels were observed in Long Evans and Sprague-Dawley 

rats administered 150 mg/kg/day for 21 days.  Other associated effects that have been observed include 

decreased ovarian and/or uterine weight in rats (Eldridge et al. 1994a), and absence of corpora lutea and 

well-developed ovarian follicles in Long Evans rats that went into diestrus immediately after exposure 

initiation (Cooper et al. 1996b).  Atrazine did not affect ovulation or number of ova in rats that did cycle 

(Cooper et al. 1996b, 2000). 

 

Several studies have been conducted by a single group of investigators who examined the effects of 

atrazine ingestion in pigs (Ćurić et al. 1999; Gojmerac et al. 1996, 1999).  Pigs with observed normal 

estrus cycles were given 0 or 2 mg/kg body weight/day atrazine in the feed for 19 days of the estrus cycle 

(Gojmerac et al. 1996).  The last day of treatment corresponded to day (-3) of the beginning of the next 

expected estrus cycle.  Blood samples drawn thrice daily (at 3-hour intervals beginning at approximately 

9:00 a.m.) during the first 5 days after treatment cessation showed that serum estradiol and progesterone 

levels were significantly altered.  Estradiol levels at day (-2) of estrus were normally high and increased 

slightly to day (-1), then declined precipitously to day 0 and remained low during estrus.  Progesterone 

levels during this time were normally very low from day (-2) to day 0, then gradually increased through 

day 2.  In atrazine-treated pigs, estradiol levels were approximately 45% of normal at estrus day (-2) and 

remained at that level through expected estrus day 2.  Progesterone levels were severely elevated 

(approximately 16 times normal) at estrus day (-2) and increased 3-fold to estrus day 2.  These changes in 

hormone levels were accompanied by a short-term delay in estrus onset.  Histological examination of the 

ovaries showed multiple ovarian follicular cysts in various stages of development or regression, persisting 

corpus luteum, and cystic degeneration of secondary follicles in all treated pigs.  Ćurić et al. (1999) 

exposed pigs to atrazine in a similar manner to the above study and examined the thoracic and abdominal 

contents grossly and microscopically 9 days after treatment cessation.  Again, multiple ovarian follicular 

cysts in various stages of development or regression, persisting corpus luteum, and cystic degeneration of 
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secondary follicles were seen, as well as a small number of atretic follicles and normal primary and 

secondary follicles.  The uterus was in diestrus (uterine rest) instead of in estrus. 

 

In a similar study, groups of nine female Swedish Landrace/Large Yorkshire cross pigs (6–7-month-old 

gilts) were administered 0 or 1 mg/kg/day atrazine in the feed for 19 days beginning with the onset of 

estrus (day 0) (Gojmerac et al. 1999).  Blood samples were drawn 3 times daily at 3-hour intervals on the 

5 days immediately following the final day of atrazine administration (this corresponded to the expected 

day of the next estrus [day 0] and 2 days before [days -1 and -2] and 2 days [days 1 and 2] after the 

expected estrus).  Serum 17β-estradiol (E2) concentrations in the blood samples were determined, and 

histopathological examination of the uterus was performed.  E2 concentrations were statistically 

significantly different (p<0.001) from controls on all 5 days measured.  In controls, E2 concentrations 

were high on days -2 and -1, then dropped on day 0 (beginning of estrus) and remained low on days 1 and 

2.  In treated animals, E2 concentrations were lower than controls on days -2 and -1, and higher than 

controls on days 0 through 2.  Treated pigs failed to exhibit overt signs of estrus onset and uterine 

histopathology indicated a state of uterine rest (diestrus) at the end of the observation period.  A slight, 

but steady increase of E2 hormone level was seen in the treated animals on day 24 of the estrus cycle 

(day 2).  The study authors suggested that the balance of the E2 hormone level was being gradually 

restored, which is the pattern that would be anticipated if the animals were about to go into estrus.  

Similar results were seen after administration of 0 or 2 mg/kg/day atrazine (Gojmerac et al. 1996).  An 

intermediate-duration oral MRL of 0.003 mg/kg/day was calculated based on the LOAEL of 1 mg/kg/day 

in the Gojmerac et al. (1999) study. 

 

Two studies examined the effect of atrazine on fertility.  A decrease in the number of sperm positive 

females was seen when atrazine-exposed male and female F344 rats were mated (Šimić et al. 1994).  No 

effect was seen when exposed males were mated with unexposed females and only a slight effect (82% 

sperm positive versus 100% in controls) was seen when exposed females were mated with unexposed 

males.  No significant alterations in fertility were observed in a 2-generation rat study in which male and 

female Charles River albino rats were fed 27 mg/kg/day atrazine for at least 10 weeks prior to mating 

(EPA 1987e). 

 

The highest NOAEL and all reliable LOAEL values for reproductive effects are recorded in Table 3-1 and 

plotted in Figure 3-1. 
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3.2.2.6 Developmental Effects 

 

A study was conducted to assess the relationship between herbicides in the drinking water supply and 

intrauterine growth retardation (IUGR) (Munger et al. 1997).  A survey of 856 municipal drinking water 

supplies in Iowa found that, in 1986–1987, the Rathbun water system contained persistently elevated 

levels of triazine herbicides, including atrazine; the mean level of atrazine was 2.2 µg/L compared to 

0.6 µg/L in other Iowa surface water supplies.  Alachlor, cyanazine, metolachlor, and 2,4-D were more 

frequently detected in the Rathburn water supply.  A comparison of rates of low birth weight, prematurity, 

and IUGR in live singleton births by women in 13 communities served by the affected water system to 

rates in other communities of similar size in the same Iowa counties during the period of 1984–1990 

showed that there was a greater risk of IUGR (relative risk=1.8; 95% CI=1.2–2.6) for the Rathbun-served 

communities.  Multiple linear regression analyses showed that levels of atrazine (regression coefficient of 

1.8, R2=0.19) as well as metolachlor (regression coefficient of 8.2, R2=0.16), cyanizine (regression 

coefficient of 2.05, R2=0.15), and chloroform (regression coefficient of 0.17, R2=0.12) were significant 

predictors of community IUGR rates in the exposed populations.  Several potential confounders were 

controlled for in the regression analysis, including maternal smoking, mothers who received poor prenatal 

care, and socioeconomic variables (e.g., median income, women in the workforce, and women with a 

high school or greater education); however, the confounding factors were measured on an ecological, 

rather than an individual, level.  Atrazine had the best fit (R2) in the regression model, but effects of other 

herbicides, which are intercorrelated, could not be ruled out.  The study authors determined that there was 

no strong causal relationship between any single water contaminant and the risk of IUGR due, in part, to 

the limited ability to control for confounding factors related to source of drinking water and risk of IUGR. 

 

The rate of birth defects was also evaluated in the Rathbun-served Iowa communities compared to other 

Iowa communities of similar size (Munger et al. 1992b).  Birth defects were identified from the Iowa 

Birth Defects Registry for babies born in 1983–1989.  There were excesses of cardiac defects (relative 

risk [RR]=3.38, 95% CI=2.07–5.48), limb reduction defects (RR=3.24, 95% CI=1.35–7.35), urogenital 

defects (RR=2.96, 95% CI=1.67–5.19), and all birth defects combined (RR=2.51, 95% CI=1.85–3.41) in 

the Rathbun communities.  No significant excess of other birth defects was reported for the Rathbun 

communities, including cleft palate, hypertrophic pyloric stenosis, congenital dislocation of the hip, or 

foot deformities. 
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Developmental effects have been observed following pregestational, gestational, and lactational exposure 

of rat dams to atrazine.  The observed effects included postimplantation losses, decreases in fetal body 

weight, incomplete ossification, neurodevelopmental effects, and impaired development of the 

reproductive system.  In the offspring of Sprague-Dawley rats administered 70 mg/kg/day atrazine by 

gavage on gestational days 6–15, incomplete ossification of the skull, hyoid bone, teeth, forepaw 

metacarpals, and hindpaw distal phalanges were observed (Infurna et al. 1988).  In a parallel study, 

pregnant rabbits administered 75 mg/kg/day atrazine on gestational days 7–19 had increased 

resorptions/litter and postimplantation losses/litter and decreased live fetuses/litter (Infurna et al. 1988).  

Decreased fetal body weights and nonossification of forepaw metacarpals and middle phalanges, hindpaw 

talus and middle phalanges, and patella were observed in the rabbit offspring.  Severe maternal toxicity 

was also observed in the rabbits exposed to 75 mg/kg/day.  No developmental effects were observed at 

5 mg/kg/day.  Holtzman rats exposed to 100 mg/kg/day, but not 50 mg/kg/day, atrazine on gestational 

days 1–8 also had increased postimplantation losses, as well as decreased serum luteinizing hormone and 

progesterone (Cummings et al. 2000b).  Postimplantation losses were not seen at the same dose levels in 

Sprague-Dawley, Long-Evans, or F344 rats, although serum luteinizing hormone was decreased at  

100–200 mg/kg/day (Cummings et al. 2000b).  Some differences were noted between groups of rats 

exposed to atrazine during the afternoon (prior to the diurnal prolactin surge) and those exposed in the 

early morning (prior to the nocturnal prolactin surge).  Narotsky et al. (2001) evaluated atrazine-induced 

full-litter resorption susceptibility in rats for different periods of gestation (during and after the luteinizing 

hormone-dependent period).  Sprague-Dawley, F344, and Long Evans rats were administered 0, 25, 50, 

100, 200, or 300 mg/kg/day atrazine by gavage on gestation days 6 through 10.  The rats were allowed to 

deliver, and the number of implantation sites was recorded.  F344 rats administered atrazine exhibited 

dose-related incidences of full-litter resorption (63, 80, and 100% at 100, 200, and 300 mg/kg/day, 

respectively).  F344 rats exposed to 200 mg/kg atrazine that maintained their litters had increased prenatal 

loss, decreased litter size, and reduced pup weights (Narotsky et al. 2001). 

 

No developmental effects were noted in a 2-generation study in which Charles River albino rats were 

exposed to 31 mg/kg/day atrazine in the diet (EPA 1987e).  No alterations in the number of pups per litter 

or weaning weight of pups were observed in the offspring of four rats (strain not specified) exposed to up 

to 113 mg/kg/day atrazine in the diet on gestational days 1–21 (Peters and Cook 1973). 

 

Studies by Peruzović et al. (1995) and Stoker et al. (1999, 2000) examined the effect of pregestational or 

lactational exposure to atrazine on the development of the nervous and reproductive systems.  In the 

Peruzović et al. (1995) study, female Fischer rats were administered via gavage 0 or 120 mg/kg purified 
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atrazine every 48 hours for 12 days.  Four weeks after the cessation of treatment, rats were mated with 

untreated males and allowed to carry to term and deliver pups.  Litter size, pup weight, and pup survival 

were not statistically different between control and treated groups.  At 70 days of age, the offspring were 

tested for spontaneous activity by recording ambulatory activity in 4 time blocks of 15-minutes each.  

Avoidance response was tested at 72 days of age and extinction response was tested at 73 days of age.  

Mild neurobehavioral effects were observed and differences were noted between male and female 

offspring.  Female offspring of atrazine-treated dams had a statistically significant (p<0.05) higher 

spontaneous activity level than the female offspring of control dams during the first 15 minute block; no 

differences were seen between groups of male offspring.  In the avoidance conditioning trials, male 

offspring of treated dams had statistically significant (p<0.05) shorter latency times and increased number 

of avoidances, compared to control offspring.  Conversely, female offspring of atrazine-treated dams had 

longer latency times and decreased number of avoidances, compared to controls, but without statistical 

significance.  No statistical differences between treated and control groups were seen in the extinction 

tests (Peruzović et al. 1995). 

 

Adult male offspring of Wistar rat dams administered up to 50 mg/kg/day atrazine on lactational days  

1–4 had increased incidence and severity of inflammation of the lateral prostate, increased 

myeloperoxidase levels in the prostate, and increased total DNA in the prostate (Stoker et al. 1999).  

These effects are hypothesized to be indirect effects mediated by a lack of prolactin release in the dam in 

response to pup suckling; this hypothesis was supported in this study by the elimination of increased 

prostate inflammation in the offspring in response to co-administration of prolactin with atrazine to the 

dams.  The level of myeloperoxidase, a lysosomal enzyme found primarily in neutrophils and 

macrophages, was used as an indication of the severity of inflammation.  Histological examination also 

found increases in the incidence of focal luminal polymorphonuclear inflammation and focal interstitial 

mononuclear inflammation in lateral prostates at 120 days of age in the 25 and 50 mg/kg groups.  

Offspring of rat dams receiving atrazine on lactational days 6–9 had only statistically insignificant 

increases in prostate inflammation, and offspring of dams receiving atrazine on lactational days  

11–14 had no increase in prostate inflammation (Stoker et al. 1999). 

 

Male rats exposed to 50 mg/kg/day atrazine or higher on postnatal days 23–53 had decreased ventral 

prostate weights and delayed preputial separation, which is a marker of male puberty in the rat (Stoker et 

al. 2000).  Dose-related increases in serum estrone and estradiol concentrations and serum 

triiodothyronine were only significant in rats exposed to 200 mg/kg/day.  No histopathological changes 
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were seen in the thyroid and only mild hypospermia was seen in some high-dose rats, which may be a 

result of delayed puberty. 

 

Studies by Laws et al. (2000) and Ashby et al. (2002) investigated the effect of peripubertal exposure to 

atrazine on the reproductive development of female rats.  Female Wistar rats exposed to 50, but not 

25, mg/kg/day atrazine from 20 to 41 days of age had delayed vaginal opening, which is a marker of 

female puberty in the rat (Laws et al. 2000).  The age of the first 4–5-day estrus cycle after vaginal 

opening was also delayed; estrus cycles were normal within 3–4 weeks after cessation of atrazine 

exposure (Laws et al. 2000). 

 

Ashby et al. (2002) administered atrazine to female Wistar and Sprague-Dawley rats at doses of 10, 20, 

30, and 100 mg/kg/day on postnatal days 21–46.  Delayed uterine growth was observed in female Wistar 

rats exposed to 100 mg/kg/day of atrazine at postnatal days 30 and 33, but was normal by postnatal 

day 43.  Uterine weights in Sprague-Dawley rats were unaffected by day 46 (Ashby et al. 2002).  Vaginal 

opening was significantly delayed in Sprague-Dawley rats exposed to atrazine at 30 and 100 mg/kg/day 

and in Wistar rats at 100 mg/kg/day by postnatal day 46 (Ashby et al. 2002). 

 

3.2.2.7 Cancer  

 

An ecological study in Ontario, Canada, that examined the association of atrazine in the drinking water 

supply with cancer incidence rates found a positive association between atrazine levels and stomach 

cancer (p=0.046 and p=0.242 for males and females, respectively) (Van Leeuwen et al. 1999).  For men, 

this corresponded to an observed increase of 0.6 cases of stomach cancer per 100,000 person-years at risk 

for each 100 ng/L increase in atrazine levels in drinking water.  For women, for each 50 ng/L increase in 

atrazine levels in drinking water, there was an observed increase of 1.0 stomach cancer cases per 

100,000 person-years at risk.  Statistically significant (p≤0.04) negative associations were noted between 

atrazine levels and colon cancer in males and females; it was not ascertained what may have caused this 

result.  There were no statistically significant associations between atrazine exposure and ovarian cancer 

or non-Hodgkin’s lymphoma in females.  In males, there was a negative association between atrazine 

exposure and non-Hodgkin’s lymphoma, but the association was not statistically significant (p=0.075).  

Data were collected and analyzed for ecodistricts; no individual data were used or provided.  The average 

atrazine contamination level was 162.74 ng/L (range of 50–649 ng/L) and potential confounding 
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variables, including alcohol consumption, smoking, education level, income, and occupational exposures, 

were considered. 

 

An association between exposure to triazines and breast cancer incidence rates in women was found in an 

ecological study conducted in 120 Kentucky counties (Kettles et al. 1997).  Two-year age-adjusted breast 

cancer rates for 1991–1992 and 1993–1994 were calculated from state registry data.  Although atrazine 

levels were unavailable, it is likely that much of the triazine exposure was due to atrazine since it is the 

most widely used herbicide in Kentucky.  Triazine exposure data were generated using estimated 

exposures based on water contamination (the mean triazine level in groundwater was 0.11±0.19 µg/L), 

county corn crop production (in acres), and county pesticide use.  Based on these data, the Kentucky 

counties were classified as having low, medium, or high exposure levels.  Confounding variables, 

including age, race, income, and education level, were controlled for.  Breast cancer risk based on  

1993–1994 breast cancer rates was significantly increased in women in counties having medium 

(OR=1.14; 95% CI=1.08–1.19) and high (OR=1.2; 95% CI=1.13–1.28) triazine exposure levels. 

 

Another ecological study was conducted in Kentucky (120 counties) to examine the association between 

atrazine in the drinking water and incidence of breast and ovarian cancers (Hopenhayn-Rich et al. 2002) 

in 1993–1997.  Data were obtained from state records on ovarian and breast cancer age-adjusted 

incidence rates, amount of atrazine in drinking water (mean concentration in all 120 counties ranged from 

0.21 to 1.39 µg/L), pounds of atrazine sold, and acres of corn planted.  No significant association was 

found between atrazine exposure and the incidence of breast or ovarian cancer in Kentucky women.  The 

race- and education-adjusted rate ratios for women with the highest atrazine exposure were 0.96 (95% 

CI=0.92–1.01) and 0.85 (95% CI=0.73–0.98), respectively.  Similar results were found when acres of 

corn planted and atrazine sales by geographic location were used as surrogates for atrazine exposure. 

 

A number of animal studies have examined the carcinogenic potential of atrazine in animals.  In 

F344/LATI rats administered atrazine via the diet, significant increases in the number of rats with 

malignant tumors and total benign mammary gland tumors were observed in male rats exposed to 

65 mg/kg/day (Pintér et al. 1990).  However, no significant increase was seen in any specific tumor type.  

It is likely that the mammary tumors were an effect of increased survival of treated rats rather than dietary 

atrazine administration.  Thakur et al. (1998) noted that six of eight high-dose mammary tumors appeared 

after the last control died at week 111 and that the increase in mammary tumors in treated male rats was 

not significant when adjusted for survival.  Female rats receiving a dietary level of 65 mg/kg/day had 

statistically significant increased incidences of leukemia/lymphoma (22/51 versus 12/44 in controls) and 
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uterine adenocarcinoma (13/45 versus 6/45 in controls).  The overall proportion of benign and malignant 

uterine tumors in treated females was similar to controls (16/45, 19/52, and 17/45 for 0, 32, and 

65 mg/kg/day, respectively).  In addition, it was pointed out that the female leukemia/lymphoma data 

should not have been combined because these two cancer types are of different origins in Fischer rats; 

when the tumor types were separated, there was no longer a significant trend in treated rats (Thakur et al. 

1998).  Another study of Fischer rats found no significant increases in the incidences of mammary or 

pituitary tumors after two years of dietary exposure to doses as high as 45 mg/kg/day (Wetzel et al. 1994). 

 

In contrast, several studies have found increases in tumor incidences in female Sprague-Dawley rats.  

Three of these studies were submitted to EPA as confidential business information and are not publicly 

available; reviews of these studies were published by Stevens et al. (1994, 1999).  As reported by Stevens 

et al. (1994, 1999), two of these studies found significant increases in the incidence of mammary 

fibroadenomas in female Sprague-Dawley rats exposed to 71–80 mg/kg/day via the diet for 106 weeks or 

a lifetime; no significant alterations were found at 35 mg/kg/day and lower.  The third study, a two-

generation study, did not find significant alterations in the incidence of mammary tumors in F2 females 

after 2 years of exposure to ≤40 mg/kg/day in the diet.  Additionally, one study found an increase in 

mammary adenocarcinomas following 106 weeks of dietary exposure to ≥5 mg/kg/day.  An increase in 

interstitial cell tumors were observed in the testes of Sprague-Dawley rats following lifetime exposure to 

52 mg/kg/day in the diet; this was attributed to increased survival in this group.  Wetzel et al. (1994) 

found similar results in female Sprague-Dawley rats.  In this study, statistically significant increases in 

earlier onset of mammary and pituitary tumors were observed in animals killed or dying during the first 

54 weeks of exposure to 39 mg/kg/day; these effects were not noted in rats exposed to 7 mg/kg/day 

(Stevens et al. 1999; Wetzel et al. 1994).  No significant alterations in the incidence of mammary or 

pituitary tumors were found between weeks 55 and 105.  There were no significant increases in 

malignancies in any treatment group for the entire study period (0–105 weeks), likely due to age-related 

increases in tumors in the controls.  Mammary and pituitary tumors appeared earlier in rats treated with 

atrazine, apparently due to the mechanism of reproductive senescence in Sprague-Dawley rats (see 

Sections 3.5.2 and 3.5.3). 

 

Another unpublished study discussed by Stevens et al. (1999) compared the carcinogenicity of atrazine in 

ovariectomized and intact female Sprague-Dawley rats exposed to atrazine in the diet for 2 years.  

Significantly increased mortality was noted in intact rats at 32 mg/kg/day, but mortality was not 

significantly affected in ovariectomized rats at the same exposure level.  Intact rats had increased 
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incidences of mammary carcinomas at 4 and 32 mg/kg/day (but not at 2 or 6 mg/kg/day) and mammary 

fibroadenomas at ≥4 mg/kg/day.  No mammary tumors were found in any treated ovariectomized rats. 

 

Two unpublished studies of male and female CD-1 mice reviewed by Stevens et al. (1999), did not find 

significant increases in the incidence of neoplastic changes in males exposed to 386 mg/kg/day or females 

exposed to 483 mg/kg/day in the diet for ≥91 weeks.  Similarly, no significant alterations in tumor 

incidences were observed in mice administered by 22 mg/kg/day atrazine by gavage in a 0.5% gelatin 

vehicle from 7 days old until 4 weeks old and then in the diet with no vehicle for 18 months (Innes et al. 

1969). 

 

The available oral carcinogenicity data in animals suggest that high doses atrazine in the diet result in an 

increased incidence and earlier onset of mammary tumors in female Sprague-Dawley rats as compared to 

age-matched controls; however, these effects are not found in similarly exposed female Fischer 344 rats 

or CD-1 mice. 

 

CEL values from each reliable study in each species and duration category are recorded in Table 3-1 and 

plotted in Figure 3-1. 

 

3.2.3 Dermal Exposure  

3.2.3.1 Death  

 

No studies regarding death in humans following dermal exposure to atrazine were located. 

 

The acute (14-day) dermal LD50 in rats has been reported to be >2,500 mg/kg/day (Gaines and Linder 

1986). 

 

3.2.3.2 Systemic Effects  

 

No studies were located regarding respiratory, cardiovascular, gastrointestinal, hematological, 

musculoskeletal, hepatic, renal, endocrine, ocular, and body weight effects in humans and/or animals after 

dermal exposure to atrazine. 
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Dermal Effects.    A 40-year-old white male farmer developed blisters on his hands and forearms one 

afternoon after having applied atrazine to crops in the morning using a spray rig and cleaning the plugged 

nozzles several times with his hands (Schlicher and Beat 1972).  By 14 hours later, both hands and 

forearms had painful erythematous eruptions with blistering and swelling.  The diagnosis was acute 

contact dermatitis, and treatment resulted in complete recovery.  The farmer had also applied a second 

herbicide (Bladex=2-[4-chloro-6-ethylamino-s-triazin-2-ylamino]-2-methylpropionitrile) in the same 

afternoon; therefore, the exact cause of the dermatitis was not discernable. 

 

3.2.3.3 Immunological and Lymphoreticular Effects  

 

No studies were located regarding immunological and lymphoreticular effects in humans and/or animals 

after dermal exposure to atrazine. 

 

3.2.3.4 Neurological Effects  

 

No studies were located regarding neurological effects in humans and/or animals after dermal exposure to 

atrazine. 

 

3.2.3.5 Reproductive Effects  

 

Results of a survey of farm couples in Ontario, Canada, to assess reproductive effects of pesticides 

indicated weak to moderate associations between atrazine use on crops and in the yard with an increase in 

preterm delivery and with miscarriage (Arbuckle et al. 2001; Savitz et al. 1997).  Other results from this 

survey of Ontario farm couples indicated that atrazine was not associated with any decrease in fecundity 

as a result of effects on spermatogenesis (Curtis et al. 1999).  In these cohort studies, it is probable that 

the application of atrazine involved both inhalation and dermal exposure; most of the women were 

indirectly exposed, possibly through contact with contaminated clothes or contaminated drinking water 

(for additional study details, see Section 3.2.1.5 Inhalation Reproductive Effects). 

 

No studies were located regarding reproductive effects in animals after dermal exposure to atrazine. 
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3.2.3.6 Developmental Effects  

 

The results of a survey of 1,898 farm couples living year-round on farms in Ontario, Canada, designed to 

assess reproductive effects of pesticides, indicated that the sex ratio was not altered and the risk of small 

for gestational age deliveries was not increased in relation to pesticide exposure (atrazine exposure level 

not available) (Savitz et al. 1997).  It is probable that the pesticide application resulted in both dermal and 

inhalation exposure. 

 

No studies were located regarding developmental effects in animals after dermal exposure to atrazine.  

 

3.2.3.7 Cancer  

 

Several studies were located regarding cancer incidence and exposure of humans to atrazine.  Although 

the exposure route was not specified in these studies, it is probable that dermal (e.g., handling and use of 

atrazine), inhalation (e.g., application of atrazine), and perhaps even oral (e.g., due to groundwater 

contamination) exposure occurred.  These population-based case-control studies found some suggestive 

evidence of positive associations between atrazine use and brain, testes, and prostate cancers (Mills 

1998), leukemia (Mills 1998), and non-Hodgkin’s lymphoma (Mills 1998; Weisenburger 1990; Zahm et 

al. 1993b).  Limitations of these studies included small sample sizes, lack of specific exposure data, and 

exposure to chemicals other than atrazine.  Further details on these studies can be found in 

Section 3.2.1.7. 

 

No studies were located regarding cancer in animals after dermal exposure to atrazine. 

 

3.2.4 Other Routes of Exposure 

 

Hematological Effects.    Mice injected intraperitoneally with a single dose of 58.65 mg/kg atrazine 

showed changes in some hematological parameters (Mencoboni et al. 1992).  Transient, but precipitous, 

decreases were seen in peripheral blood reticulocytes, bone marrow morphologically recognizable 

precursors, granulocyte-macrophage committed progenitors, and pluripotent stem cells.  Peripheral blood 

leukocytes were not altered. 
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Hepatic Effects.    Fischer rats injected intraperitoneally with atrazine showed dose- and time-

dependent changes in liver enzymes (Islam et al. 2002).  Induction of P-glycoprotien (a pre-neoplastic and 

neoplastic marker in the liver) began at doses of 50 mg/kg atrazine and reached maximum induction at 

300 mg/kg atrazine.  P-Glycoprotein induction was also determined to be time-dependent as induction 

increased from day 1 to day 5 of exposure to 300 mg/kg atrazine.  Glutathione-S-transferase (also a 

neoplastic marker) was induced at the low dose of 10 mg/kg atrazine (Islam et al. 2002). 

 

Neurological Effects.    Sprague-Dawley rats injected intraperitoneally with 0, 85, or 170 mg/kg 

atrazine twice a week for 30 days showed some transient neurological effects (Castano et al. 1982).  No 

alterations were seen electron microscopically in the cervical or thoracic ganglia, spinal cord, or sciatic 

nerve of rats killed immediately after the end of the treatment period.  However, morpho-quantitative 

analysis revealed decreased areas for myelinated and unmyelinated axons in the 170 mg/kg group; 

statistical significance was reached only for unmyelinated axons.  Recovery was seen after 30 days of 

nontreatment.  Morpho-quantitative analysis involved computer analysis of electron micrographs of the 

sciatic nerve for cross-sectional area of myelinated and unmyelinated fibers and for thickness of myelin 

sheaths. 

 

Reproductive Effects.    Intraperitoneal exposure to atrazine has been shown to effect sperm 

parameters including testicular sperm count, epididymal sperm numbers, and sperm mobility.  In adult 

male Fischer rats administered 0, 60, or 120 mg/kg/day atrazine intraperitoneally twice a week for a 

period of 60 days, relative weights of the pituitary and ventral prostate were significantly decreased in 

both treatment groups (Kniewald et al. 2000).  Testicular sperm numbers were increased in both treatment 

groups, and a dose-related decrease in epididymal sperm number was seen; testicular sperm numbers in 

controls decreased during the study, indicating normal sperm migration to the epididymis.  Epididymal 

sperm motility was also decreased in both treatment groups by about 50% (motility in controls was about 

50% and in treated groups was 21–25%).  The activity of alpha-glucosidase in the epididymis was 

decreased in both treatment groups.  Histological examination revealed decreased spermatogenesis and 

cell disorganization.  Electron microscopy showed interstitial cells with acidophilic, differently 

vacuolated cytoplasm and smooth nuclei with visible nucleoli, lower cell density, and a decrease in the 

unit number of cells; collagen fibers were reduced and dispersed in the interstitial space; Leydig cells 

were small and misshapen with cytoplasms filled with lysosomes and vacuoles and the nucleus was 

invaginated; the morphology of the rough and smooth endoplasmic reticulum in Leydig cells was altered; 

and degenerative changes were seen in Sertoli cells.  Male Fischer rats intraperitoneally exposed to 

atrazine 2 times/week for 60 days at doses of 3, 7.5, 15, 30, 60, and 120 mg/kg/day showed a significant 
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decrease in testicular sperm counts when exposed to 3 mg/kg/day.  There was also a significant decrease 

in epididymal sperm number and sperm mobility at doses of 3 and 15 mg/kg/day, respectively (Simic et 

al. 2001).  Increases of pituitary and prostrate weights were observed. 

 

Developmental Effects.    Peters and Cook (1973) conducted a set of studies examining the 

subcutaneous administration of high doses of atrazine to pregnant rats to determine the effects on live 

pups/litter and resorption sites.  In rat dams exposed on gestational days 3, 6, and 9, postimplantation 

losses were increased at 800 mg/kg/treatment day, but not at 200 mg/kg/treatment day.  In dams exposed 

for only 1 day (gestational day 3, 6, or 9), no dose-related increases in postimplantation losses were 

observed (Peters and Cook 1973).  Although pups/litter were decreased in the 1,000 mg/kg group exposed 

on gestational day 6, there was no effect in the 2,000 mg/kg group exposed similarly. 

 

Cancer.    Thirty male Swiss albino mice were administered atrazine intraperitoneally once every 3 days 

for 13 injections for a total dose of 0.26 mg/kg body weight (Donna et al. 1986).  Two additional groups 

of 30 mice (one group followed the same treatment schedule with intraperitoneal injections of saline and 

one group received no treatment) served as controls.  A statistically significant (p<0.001) increase in 

lymphomas (affecting mesenteric, lumbar, periaortic, and mediastinal lymph nodes) was reported in the 

atrazine-treated mice; six animals died of lymphomas during the study period. 

 

3.3  GENOTOXICITY 

 

Numerous in vivo and in vitro studies have assessed the genotoxic potential of atrazine, and the results of 

these studies are presented in Tables 3-2 and 3-3, respectively. 

 

Several studies have examined the in vivo genotoxicity of atrazine in rats, mice, and Drosophila; no in 

vivo human genotoxicity studies were located.  A weak positive result for dominant lethal effects in 

mouse spermatids was seen following a single oral dose of 1,500 mg/kg (Adler 1980).  No significant 

increase in mutagen levels were seen in the urine of rats treated with 50 mg/kg atrazine for 5 weeks using 

a modified Ames assay (George et al. 1995).  An increased occurrence of DNA strand breaks were 

observed in the stomach, liver, and kidneys, but not in the lungs, of rats that received a single dose of 

875 mg/kg or 15 daily doses of 350 mg/kg atrazine (Pino et al. 1988).  A significant increase of DNA 

damage in leukocytes, as measured by tail moment, was observed in mice that received a single dose of 

250 or 500 mg/kg atrazine (Tennant et al. 2001).  An increased occurrence of micronucleus formation was 
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Table 3-2.  Genotoxicity of Atrazine In Vivo 
 

Species (test system) End point Results Reference 

Mammalian cells: 

 Rat stomach, liver, kidney 
Rat lung 
Mouse bone marrow, female 
Mouse bone marrow, male 
Mouse bone marrow 
Mouse bone marrow, female 
Mouse leukocytes, female 

DNA strand breaks 
DNA strand breaks 
Micronucleus formation 
Micronucleus formation 
Chromosomal aberrations 
Micronucleus formation 
DNA damage 

+ 
– 
+ 
– 
– 
– 
+ 

Pino et al. 1988 
Pino et al. 1988 
Gebel et al. 1997 
Gebel et al. 1997 
Meisner et al. 1992 
Kligerman et al. 2000b 
Tennant et al. 2001 

Nonmammalian cells: 

 Drosophila melanogaster 
D. melanogaster 
D. melanogaster 
D. melanogaster 

Somatic mutation 
Somatic mutation 
Dominant lethal mutation 
Aneuploidy 

+ 
+ 
+ 
+ 

Torres et al. 1992 
Tripathy et al. 1993 
Murnik and Nash 1977 
Murnik and Nash 1977 

 
– = negative result; + = positive result; DNA = deoxyribonucleic acid 
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Table 3-3.  Genotoxicity of Atrazine In Vitro 
 

Species (test system) End point 
With 
activation

Without 
activation Reference 

Prokaryotic organisms: 
 Salmonella typhimurium Forward mutation – – Adler 1980 
 S. typhimurium Reverse mutation –  –  Kappas 1988 
 S. typhimurium 
S. typhimurium 

Reverse mutation 
Reverse mutation 

+ 
– 

No data 
No data 

Means et al. 1988 
Bartsch et al. 1980; Sumner 
et al. 1984 

 S. typhimurium Reverse mutation –  –  Adler 1980; Lusby et al. 
1979; Morichetti et al. 1992; 
Ruiz and Marzin 1997; 
Zeiger et al. 1988 

 S. typhimurium Reverse mutation No data –  
 

Andersen et al. 1972; Butler 
and Hoagland 1989; Seiler 
1973 

 Esherichia coli PQ37 SOS repair –  –  Ruiz and Marzin 1997 
 E. coli Forward mutation –  –  Adler 1980 
 Bacteriophage T4 Forward mutation No data –  Andersen et al. 1972 
 Bacteriophage Reverse mutation No data –  Andersen et al. 1972 
Eukaryotic organisms: 
 Saccharomyces 
cerevisiae 

Mitotic recombination No data –  Emnova et al. 1987 

 S. cerevisiae Gene conversion +  –  Plewa and Gentile 1976 
 S. cerevisiae Gene conversion –  –  Adler 1980 
 S. cerevisiae Gene conversion, 

stationary phase 
+  –  Morichetti et al. 1992 

 S. cerevisiae Gene conversion, 
logarithmic phase 

+  –  Morichetti et al. 1992 

 S. cerevisiae Reverse mutation, 
stationary phase 

No data –  Morichetti et al. 1992 

 S. cerevisiae  Reverse mutation, 
logarithmic phase 

No data +  Morichetti et al. 1992 

 S. cerevisiae  Forward mutation No data +  Emnova et al. 1987 
 Aspergillus nidulans Gene conversion No data – de Bertoldi et al. 1980 
 A. nidulans Mitotic recombination +  – Adler 1980 
 A. nidulans Mitotic recombination –  – Kappas 1988 
 A. nidulans Forward mutation +  – Benigni et al. 1979 
 A. nidulans 
Neurospora crassa 

Aneuploidy 
Aneuploidy 

+ 
No data 

– 
+ 

Benigni et al. 1979 
Griffiths 1979 

 Schizosaccharomyces 
pombe 

Reverse mutation +  –  Mathias et al. 1989 

 Tradescantia paludosa Micronucleus formation +  –  Mohammed and Ma 1999 
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Table 3-3.  Genotoxicity of Atrazine In Vitro 
 

Species (test system) End point 
With 
activation

Without 
activation Reference 

Mammalian cells: 
 Human lymphocytes 
Human lymphocytes 
Human lymphocytes 

DNA damage 
DNA damage 
DNA damage 

– 
– 
– 

+  
– 
– 

Ribas et al. 1995 
Ribas et al. 1998 
Ribas et al. 1998 

 Human lymphocytes Sister chromatid 
exchange 

–  –  Dunkelberg et al. 1994 

 Human lymphocytes Sister chromatid 
exchange 

No data + Lioi et al.  1998 

 Human lymphocytes Chromosomal 
aberrations 

No data + Lioi et al.  1998 

 Human lymphocytes Chromosomal 
aberrations 

No data +  Meisner et al. 1992, 1993 

 Human lymphocytes 
 

Chromosomal 
aberrations 

No data – Kligerman et al. 2000a 

 Human lymphocytes DNA repair No data – Surralles et al. 1995 
 Chinese hamster cells Chromosomal 

aberrations 
No data – Ishidate 1998 

 
– = negative result; + = positive result; DNA = deoxyribonucleic acid 
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observed in the bone marrow of female NMRI mice receiving a single dose of 1,400 mg/kg/day atrazine, 

but not in bone marrow cells from male mice dosed with 1,750 mg/kg (Gebel et al. 1997), or female mice 

dosed with up to 500 mg/kg atrazine (Kligerman et al. 2000b).  No chromosome damage was seen in the 

bone marrow of mice administered 20 ppm atrazine in the drinking water for 90 days (Meisner et al. 

1992; Roloff et al. 1992), but increased chromosome breakage was observed in cultured splenocytes from 

the treated mice (Roloff et al. 1992).  Tests for somatic mutation (Torres et al. 1992; Tripathy et al. 1993), 

dominant lethal mutations (Murnick and Nash 1977) and aneuploidy (Murnick and Nash 1977) in 

Drosophila melanogaster have been positive.  Atrazine was not clastogenic in the newt micronucleus test 

(L’Haridon et al. 1993), but DNA damage was seen in Rana catesbeiana tadpoles exposed to 4 µg/mL 

atrazine (Clements et al. 1997). 

 

A number of in vitro studies have examined the genotoxicity of atrazine in bacterial, yeast, and human 

lymphocyte assays.  In general, atrazine did not increase the formation of forward mutations (Adler 1980) 

or reverse mutations (Adler 1980; Andersen et al. 1972; Bartsch et al. 1980; Butler and Hoagland 1989; 

Kappas 1988; Lusby et al. 1979; Morichetti et al. 1992; Ruiz and Marzin 1997; Seiler 1973; Sumner et al. 

1984; Zeiger et al. 1988) in Salmonella typhimurium with or without metabolic activation; Means et al. 

(1988) reported an increase in reverse mutations with metabolic activation.  Studies in Escherichia coli 

have been negative for SOS repair (Ruiz and Marzin 1997) and forward mutations (Adler 1980); the 

occurrences of forward or reverse mutations were also not increased in bacteriophages (Andersen et al. 

1972).  In contrast to the results found in prokaryotic organisms, most assays in eukaryotic organisms 

showed evidence of genotoxicity.  Increases in the occurrence of gene conversion (Morichetti et al. 1992; 

Plewa and Gentile 1976), reverse mutations (Morichetti et al. 1992), and forward mutations (Emnova et 

al. 1987) were observed in Saccharomyces cerevisiae.  In Aspergillus nidulans, increases in the 

occurrence of mitotic recombination (Adler 1980), forward mutation (Benigni et al. 1979), and 

aneuploidy (Benigni et al. 1979) were observed; however, Kappas (1988) did not observe the occurrence 

of mitotic recombination in A. nidulans.  Gene conversion was also not observed in A. nidulans (de 

Bertoldi et al. 1980).  An increase in the occurrence of aneuploidy was seen in Neurospora crassa 

Griffiths 1979).  Reverse mutations in Schizosaccharomyces pombe (Mathias et al. 1989) and 

micronucleus formation in Tradescantia paludosa (Mohammed and Ma 1999) have also been reported. 

 

In mammalian cells, several studies showed no increase in the occurrence of chromosomal aberrations 

observed in Chinese hamster cells (Adler 1980; Ishidate 1988), while others did observe DNA damage 

(Biradar and Rayburn 1995a, 1995b; Taets et al. 1998).  There have also been conflicting results in 

studies concerning the genotoxicity of atrazine to human lymphocytes.  In human lymphocytes, an 
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increase in DNA damage was observed (Ribas et al. 1995); a later study by this group (Ribas et al. 1998) 

did not confirm this finding.  Meisner et al. (1992, 1993) and Lioi et al. (1998) observed increased 

chromosomal aberrations in human lymphocytes, while Kligerman et al. (2000a) and Ghiazza et al. 

(1984) did not observe any significant increases in the occurrence of chromosomal aberrations.  The 

occurrences of sister chromatid exchange in human lymphocyte cells were not found to be altered in 

several studies (Dunkelberg et al. 1994; Kligerman et al. 2000a; Ribas et al. 1998); in contrast, Lioi et al. 

(1998) did observe increased sister chromatid exchange.  An excision repair assay in human lymphocytes 

without activation, did not result in DNA damage (Surralles et al. 1995). 

 

3.4 TOXICOKINETICS 

3.4.1 Absorption 

3.4.1.1 Inhalation Exposure 

 

No studies were located that measured absorption or monitored metabolites in excreta of humans or 

animals exposed to atrazine only via the respiratory route.  The only available inhalation toxicity studies 

involved exposure to very large atrazine particles (30–70 µm) (Catenacci et al. 1990, 1993), which made 

it unlikely that any significant amount of atrazine reached the lungs. 

 

3.4.1.2 Oral Exposure  

 

Absorption of atrazine in humans following oral exposure was indicated in a single case report of a 

38-year-old man who died of progressive organ failure and shock 3 days after ingesting 500 mL of a 

weedkiller that contained 100 g atrazine, 25 g of aminotriazole, 25 g of ethylene glycol, and 0.15 g of 

formaldehyde (Pommery et al. 1993).  At autopsy, atrazine was detected in the kidney, small intestine, 

lung, liver, pancreas, muscle, heart, and plasma. 

 

In rats gavaged with a single dose of 30 mg/kg [14C]-atrazine in aqueous solution, radioactivity levels in 

plasma peaked 8–10 hours postdosing (Timchalk et al. 1990).  The absorption of radioactivity (Ka) was 

described as a first-order process and was used to calculate an absorption half-life of 2.6 hours.  

Approximately 66% of the administered radioactivity was excreted in the urine over a 72-hour monitoring 

period.  About half of this amount appeared in the urine within the first 12 hours after dosing, and an 
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additional 20% was detected within the next 12 hours.  Over the 72-hour monitoring period, about 18% of 

the administered radioactivity was detected in the feces, suggesting that total absorption amounted to 82% 

of the administered does (100% minus 18% in the feces).  In a similar study, Meli et al. (1992) 

administered a singe dose of 50 mg/kg of atrazine in dimethylsulfoxide (DMSO) and recovered 

approximately 37% of the administered dose in the urine over a 96-hour period.  Most of the dose was 

absorbed within the first 24 hours.  The reason for the apparent discrepancy in the amounts absorbed (as 

determined only by urinary excretion) between the two studies is unknown, but it is possible that the 

different vehicles may have played a role. 

 

3.4.1.3 Dermal Exposure  

 

Data regarding dermal exposure to atrazine in humans indicate that limited absorption occurs.  Buchholz 

et al. (1999) applied dermal patches containing ring-radiolabeled atrazine mixed with the commercial 

atrazine product Aatrex to the forearms of 10 healthy male subjects for 24 hours.  Unabsorbed radio-

activity and the radioactivity excreted in urine and feces were measured for the 7-day period including 

and following the application.  Quantitative data presented for three subjects indicate that 91–94% of the 

applied dose was not absorbed.  Only 0.3–5.1% of the applied dose was absorbed as monitored by the 

radioactivity recovered in the urine and feces.  An in vitro study using human skin samples exposed to 

[14C]-atrazine found that approximately 16.4% was absorbed in a 24-hour period, and that most of the 

absorbed atrazine (12% of the applied dose) remained in the skin (Ademola et al. 1993).  Less than 5% 

progressed through the skin and into receptor fluid.  Dermal absorption of atrazine in humans has also 

been indicated by occupational studies that found atrazine and its metabolites in the urine of workers 

exposed primarily via dermal contact (Catanacci et al. 1990, 1993). 

 

A single study in rats compared the dermal absorption of [14C]-atrazine in young and adult rats (Hall et al. 

1988) by measuring the fractional skin penetration (radioactivity in the body, skin, and excreta divided by 

the total radioactivity recovered in the body, skin, excreta, and unabsorbed atrazine on the application 

blister).  The fractional skin penetration values indicated slightly higher absorption in young rats  

(3.2–9.6%) than in adult rats (2.8–7.7%), and decreased percent absorption with increasing atrazine dose.  

It is unclear what caused the difference in absorption between young and adult rats; skin thickness was 

almost identical in the two groups and, therefore, was not a factor.  No data are available on the transport 

mechanism of atrazine in skin.  Dermal absorption may be limited by saturation of the transport 

mechanism or by physical/chemical restrictions and interactions; this hypothesis is supported by an in 
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vitro study showing a percentage decrease in metabolite formation with increasing atrazine dose to human 

skin samples (Ademola et al. 1993). 

 

3.4.2 Distribution 

3.4.2.1 Inhalation Exposure 

 

No studies were located regarding distribution of atrazine after inhalation exposure in humans or animals. 

 

3.4.2.2 Oral Exposure 

 

Data on distribution of atrazine in humans after oral exposure were limited to a single case report of a 

38-year-old man who died of progressive organ failure and shock 3 days after ingesting 500 mL of a 

weedkiller that contained 100 g atrazine, 25 g of aminotriazole, 25 g of ethylene glycol, and 0.15 g of 

formaldehyde (Pommery et al. 1993).  At autopsy, atrazine was detected in the kidney, small intestine, 

lung, liver, pancreas, muscle, heart, and plasma.  The highest concentration was found in the kidney and 

the lowest concentration was found in the heart. 

 

In male Fischer rats that received a single dose of 30 mg/kg [14C]-atrazine by gavage, plasma levels of 

radioactivity peaked at 8–10 hours postdosing and the rate of clearance was apparently first-order with a 

half-life of 10.8–11.2 hours (Timchalk et al. 1990).  Radioactivity was also determined for the whole skin 

and for the rest of the carcass and found to be 1.5 and 4%, respectively, of the administered dose. 

 

In rats administered about 1.5 or 17.7 mg/kg [14C]-atrazine by gavage, the majority of the radioactivity 

was recovered in the urine (65.5%) and feces (20.3%) over the course of 8 days (Bakke et al. 1972).  The 

whole carcass contained 15.8% of the radioactivity 3 days after exposure, and radioactivity was detected 

in liver, brain, heart, lung, kidney, digestive tract, omental fat, and skeletal muscle on days 2, 4, and 8.  

Fate and skeletal muscle had the lowest amount of radioactivity, whereas the liver and kidney had the 

highest amounts.  In all of the organs monitored, the levels of radioactivity decreased over time. 
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3.4.2.3 Dermal Exposure  

 

No studies were located regarding distribution of atrazine after dermal exposure in humans or animals. 

 

3.4.3 Metabolism  

 

Atrazine is extensively and rapidly metabolized as indicated by plasma levels of atrazine and the relative 

amounts of metabolites and parent compound in the urine within 8–24 hours after exposure.  Plasma 

levels of 14C from radiolabeled atrazine have been shown to peak at 8–10 hours postexposure in rats, and 

the elimination half-life has been calculated to be 10.8–11.2 hours (Timchalk et al. 1990).  In urine, 

unchanged atrazine has been detected, but comprised <2% of all atrazine-related compounds after dermal 

exposure in humans (Buchholz et al. 1999; Catenacci et al. 1993) or oral exposure in rats (Meli et al. 

1992).  In humans, 50% of all urinary atrazine metabolites were excreted within 8 hours and 100% within 

24 hours (Catenacci et al. 1993).  In rats, approximately 57% of the radioactivity from administered 

[14C]-atrazine was excreted in the urine within 24 hours (Timchalk et al. 1990), and urinary atrazine 

metabolites decreased to 1/30 or less of the 24-hour level by 48 hours postexposure (Meli et al. 1992). 

 

Atrazine is primarily metabolized in humans via dealkylation, probably followed by glutathione 

conjugation and conversion to mercapturic acids.  In humans exposed to [14C]-atrazine dermally (via a 

patch on the forearm) for 24 hours, atrazine mercapturate was positively identified and a variety of other 

metabolites (deethylatrazine, didealkylatrazine and didealkylatrazine mercapturate, deethylatrazine 

mercapturate, and deisopropylatrazine) were tentatively identified in the urine (Buchholz et al. 1999).  

Metabolites found in the urine of male workers in an atrazine production plant were didealkylated 

atrazine (80%), deisopropylatrazine (10%), deethylatrazine (8%), and unmodified atrazine (1–2%) 

(Catenacci et al. 1993).  Atrazine has also been shown to be metabolized to the mono- and di-dealkylated 

derivatives in human skin samples in vitro (Ademola et al. 1993).  These human data are supported by in 

vivo animal data showing the same mono- and di-dealkylated and mercapturic acid atrazine metabolites in 

rat urine (Bakke et al. 1972; Meli et al. 1992; Timchalk et al. 1990) and tissues (Gojmerac and Kniewald 

1989) and in chicken excreta (Foster and Khan 1976).  The presence of mercapturic acid metabolites in 

human and rat urine indicates that phase II metabolism of atrazine probably proceeds via glutathione 

conjugation and conversion to mercapturic acids in the kidneys before excretion. 
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In vitro studies using microsomal preparations from liver and other tissues of humans and animals have 

indicated that dealkylation of atrazine is mediated by cytochrome P-450 enzymes (CYPs) (Adams et al. 

1990; Ademola et al. 1993; Croce et al. 1996; Hanioka et al. 1998a, 1999; Lang et al. 1996, 1997; Meli et 

al. 1992; Venkatesh et al. 1992).  Ademola et al. (1993) observed a lack of atrazine metabolism in human 

skin microsomal preparations in the absence of NADPH and a 70% reduction in the rate of metabolite 

formation when the CYP inhibitor, SKF 525-A, was added to the mixture.  A similar requirement of 

NADPH for atrazine metabolism was noted in liver microsomal preparations of all species tested.  Adams 

et al. (1990) determined that NADH, and therefore cytochrome b5, were not necessary and did not 

contribute to atrazine metabolism in microsomal preparations.  Lang et al. (1997) performed a series of 

experiments to determine the CYP(s) responsible for atrazine metabolism in human liver microsomes.  

Inclusion of seven inhibitors of specific CYPs in separate microsomal incubations showed that only 

α-naphthoflavone and furafylline, two CYP1A2 inhibitors, inhibited the production of dealkylation 

products.  Additionally, when cDNA-expressed CYPs (1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 

and 3A4) were used in incubations similar to microsomal preparations, CYP1A2, and to a lesser extent 

2C19 and 1A1, produced deisopropyl- and deethylatrazine (Lang et al. 1997).  These data implicate 

CYP1A2 as the primary enzyme involved in phase I metabolism of atrazine in humans.  Studies in rat 

liver microsomes suggested that CYP2B1 and 2C11 were the primary isozymes involved in the 

metabolism of atrazine in the rat (Hanioka et al. 1998a).  However, further studies, also in rat liver 

microsomes, by the same group of investigators concluded that CYP1A1/2 is the main isozyme involved 

in the dealkylation of atrazine, and that CYP2B1/2 may be involved in hydroxylation of the isopropyl 

group (Hanioka et al. 1999). 

 

Adams et al. (1990) examined the phase II portion of atrazine metabolism in vitro by incubating Sprague-

Dawley and Fischer rat hepatic supernatant fractions (S-10) with [14C]-atrazine and glutathione in a 

reaction mixture for 2 hours at 37 EC.  Analysis of the products showed that phase I reactions proceeded 

more rapidly, with only 4% of the labeled metabolites recovered in the phase II portion.  It was also noted 

that, in this in vitro system, most of the conjugated products were parent compound and not dealkylated 

metabolites.  Phase II metabolism of atrazine was further demonstrated in another in vitro study that 

examined the activity of glutathione S-transferase (GST), the enzyme responsible for glutathione 

conjugation of atrazine, in cytosolic supernatants from Sprague-Dawley rats and Swiss-derived CD-1, 

C57BL/6, DBA/2, and Swiss-Webster mice (Egaas et al. 1995).  Atrazine conjugates were detected in rats 

and in all strains of mice tested.  These data support phase II metabolism of atrazine through glutathione 

conjugation and mercapturic acid formation. 
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While there are many similarities between and within species in phase I and phase II metabolism of 

atrazine, differences have also been noted.  The products of phase I metabolism of atrazine have been 

shown to be qualitatively the same, but the rates of formation of the products and the ratio of the products 

was frequently different between species.  Lang et al. (1996) found that the rate of formation of primary 

dealkylation products in human microsomes was up to 20-fold less than in rat microsomes, and the ratio 

of products was also different between humans, rats, and pigs.  Hanioka et al. (1999) and Adams et al. 

(1990) found up to a 10-fold difference in rate of primary metabolite formation between rats, mice, guinea 

pigs, rabbits, pigs, sheep, goats, and chickens.  There is also evidence of inter- and intra-species 

differences in phase II metabolism of atrazine.  GST activity in rat liver cytosolic supernatants was much 

lower toward atrazine than in mice liver supernatants (about 6–37% of mouse activity) (Egaas et al. 

1995).  GST activity in female mouse supernatants was approximately 12–32% of that in males of the 

same strain, and remained constant between adolescence and sexual maturity (Egaas et al. 1995).  In male 

mice, GST activity was much higher in the livers of sexually mature mice in all mouse strains tested 

except the C57BL/6, and was twice the level seen in adolescent mice of the CD-1 and Swiss-Webster 

strains. 

 

3.4.4 Elimination and Excretion  

 

Specific data on elimination and excretion of atrazine by any route were limited.  However, the primary 

route of excretion appears to be in urine, as indicated by the detection of urinary atrazine and its 

metabolites in a number of species exposed via oral and dermal routes (Bakke et al. 1972; Buchholz et al. 

1999; Catenacci et al. 1990, 1993; Meli et al. 1992; Timchalk et al. 1990).  Fecal excretion was a minor 

route (Buchholz et al. 1999; Timchalk et al. 1990).  No data were located regarding enterohepatic 

circulation and biliary secretion or excretion of atrazine in breast milk. 

 

3.4.4.1 Inhalation Exposure  

 

No studies were located regarding the elimination and excretion of atrazine following inhalation exposure 

in humans or animals. 
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3.4.4.2 Oral Exposure  

 

No studies were located regarding the elimination and excretion of atrazine following oral exposure in 

humans. 

 

Male F344 rats administered 30 mg/kg of [14C]-atrazine by gavage eliminated 93% of the administered 

radioactivity within 72 hours (Timchalk et al. 1990).  The primary route of excretion was in urine (67%); 

36 and 21% of the administered radioactivity was eliminated in the 0–12- and 12–24-hour postexposure 

intervals, respectively.  Fecal excretion accounted for 18% of the administered radioactivity.  The 

elimination of atrazine from plasma followed first-order kinetics and the elimination half-life was 

calculated to be 10.8 hours (Timchalk et al. 1990).  In rats that received a single dose of 50 mg/kg 

atrazine by gavage, atrazine and its metabolites were present in urine 24 hours postexposure and at 

48 hours at a fraction of the 24-hour level (Meli et al. 1992). 

 

3.4.4.3 Dermal Exposure  

 

Doses of 0.167 mg (6.45 µCi) or 1.98 mg (24.7 µCi) of [14C]-atrazine were applied to 25 cm2 of the 

forearm of healthy males for 24 hours (Buchholz et al. 1999).  Urinary excretion varied widely, 

accounting for 72, 30, and 3.5% of radioactivity absorbed by one low-dose and two high-dose individuals, 

respectively.  Fecal excretion also varied, accounting for 11.5, 4.2, and 0%, respectively, of the absorbed 

radioactivity. 

 

Urine was collected from six male workers at an atrazine production plant for 24 hours during and after 

an 8-hour workshift and analyzed for atrazine and atrazine metabolites (Catenacci et al. 1993).  Fifty 

percent of the atrazine-related compound detected in the urine during the 24-hour period was excreted in 

the first 8 hours.  A related study that measured only atrazine found that urinary levels were highest 

during and immediately after workshifts; levels 12 hours after the end of the workshift were one-tenth of 

the levels during the workshift (Catenacci et al. 1990). 
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3.4.4.4 Other Routes of Exposure  

 

Lu et al. (1997b) examined the atrazine levels in the saliva of rats continuously infused with atrazine 

through a cannula in the femoral vein.  Salivary rates were stimulated and controlled with intravenous 

injections of pilocarpine.  Salivary and plasma levels of atrazine were simultaneously monitored over 

200–300 minutes.  Salivary atrazine levels remained relatively constant over a range of salivary flow 

rates, and the salivary/plasma concentration ratio remained fairly constant with changing salivary flow 

rates and plasma atrazine concentrations.  The salivary atrazine concentration was found to be highly 

correlated with the plasma atrazine concentration. 

 

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models  

 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points.   

 

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen et al. 

1987; Andersen and Krishnan 1994).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors.   

 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 
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toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters.  The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.   

 

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems.  If the uptake and disposition of the chemical substance(s) is 

adequately described, however, this simplification is desirable because data are often unavailable for 

many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty.  The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994).  

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species.  

Figure 3-2 shows a conceptualized representation of a PBPK model. 

 

No PBPK models for atrazine were identified in the literature. 

 

3.5 MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

 

Absorption.    No studies were located regarding the mechanism of absorption of atrazine in humans or 

animals by any route. 

 

Atrazine is only slightly soluble in water, but has a fairly high solubility in n-octanol, with an 

octanol/water partition coefficient of 322 (Balke and Price 1988).  Examination of the interaction of 

atrazine with 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC), a model for biological membranes, 
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Figure 3-2.  Conceptual Representation of a Physiologically Based 
Pharmacokinetic (PBPK) Model for a Hypothetical Chemical Substance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: adapted from Krishnan et al. 1994 
 
Note: This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by 
inhalation, or by ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 
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showed that atrazine does not perturb the hydrophobic core of the lipid bilayer, but localizes superficially 

near the glycerol backbone (Tanfani et al. 1990).  This does not seem to support passive diffusion through 

the gastrointestinal tract or skin. 

 

Distribution.    No studies were located regarding the mechanism of distribution of atrazine in humans 

or animals by any route. 

 

Once absorbed, atrazine is transported throughout the body in the plasma (Timchalk et al. 1990).  

Atrazine has been detected in the kidney, small intestine, lung, liver, pancreas, muscle, heart, and plasma 

of a man who ingested weedkiller that contained atrazine (Pommery et al. 1993). 

 

Metabolism.    Atrazine is metabolized to its mono-dealkylated derivatives and to didealkylated atrazine 

in humans (Ademola et al. 1993; Buchholz et al. 1999; Catenacci et al. 1993) and animals (Bakke et al. 

1972; Gojmerac and Kniewald 1989; Meli et al. 1992; Timchalk et al. 1990).  In vitro studies using 

microsomal preparations from liver and other tissues of humans and animals have indicated that 

dealkylation of atrazine is mediated by cytochrome P-450 enzymes and requires NADPH (Adams et al. 

1990; Ademola et al. 1993; Croce et al. 1996; Hanioka et al. 1998a, 1999; Lang et al. 1996, 1997; Meli et 

al. 1992; Venkatesh et al. 1992).  Additional in vitro studies have indicated that CYP1A2, 2C19, and 1A1 

may be the primary metabolic enzymes for atrazine in humans (Lang et al. 1997), while CYP2B1 and 

2C11 may be the primary CYPs responsible for atrazine metabolism in rats (Hanioka et al. 1998a).  

Further studies concluded that CYP1A1/2 is the main isozyme involved in the alkylation of atrazine and 

that CYP2B1/2 may be involved in hydroxylation of the isopropyl group (Hanioka et al. 1999). 

 

Atrazine also reportedly undergoes phase II metabolism, involving glutathione conjugation and 

conversion to mercapturic acid derivatives (Adams et al. 1990; Egaas et al. 1995). 

 

Excretion.    Atrazine is excreted as dealkylated and mercapturic acid derivatives primarily in the urine 

(Bakke et al. 1972; Buchholz et al. 1999; Catenacci et al. 1990, 1993; Meli et al. 1992; Timchalk et al. 

1990), with feces being a minor route of excretion (Buchholz et al. 1999; Timchalk et al. 1990). 
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3.5.2 Mechanisms of Toxicity  

 

The primary target of atrazine in some animal species is the female reproductive system  Altered estrus 

cyclicity has been observed in Sprague-Dawley, Long-Evans, and Donryu rats following exposure to 

$5 mg/kg/day atrazine for intermediate or chronic durations (Aso et al. 2000; Cooper et al. 1996b; 

Eldridge et al. 1994a, 1999a; Wetzel et al. 1994) or to a single dose of 300 mg/kg/day (Cooper et al. 

2000) and in pigs exposed to 1 mg/kg/day for 19 days (Gojmerac et al. 1999).  These effects do not 

appear to be the result of intrinsic estrogenic activity of atrazine.  Aso et al. (2000) found no increases in 

BrdU-positive (dividing) cells in the uterus of Sprague-Dawley, Long-Evans, or Donryu rats following 

28 days of oral exposure to up to 50 mg/kg/day atrazine.  Sprague-Dawley rats that received up to 

300 mg/kg/day orally for 3 days had no increases in uterine weight, cytosolic progesterone receptor 

binding, or peroxidase activity; positive controls that received 17β-estradiol had increases in all three 

parameters (Connor et al. 1996).  Tennant et al. (1994b) also found no increase in uterine weight in 

Sprague-Dawley rats exposed to 300 mg/kg/day for 3 days, supporting a lack of estrogenic activity.  A 

recent set of experiments has indicated that atrazine may disrupt endocrine function, and the estrus cycle, 

primarily through its action on the central nervous system (Cooper et al. 2000) in a manner very similar to 

the known mechanism of reproductive senescence in some strains of rats.  In certain strains of rats, 

including Sprague-Dawley and Long-Evans, reproductive senescence begins by 1 year of age, and results 

from inadequate stimulation of the pituitary by the hypothalamus to release LH; low serum levels of LH 

leads to anovulation, persistent high plasma levels of estrogen, and persistent estrus.  Atrazine apparently 

accelerates the process of reproductive senescence in these strains of rats. 

 

Atrazine has been shown to induce mammary tumor formation in female Sprague-Dawley rats, but not 

male Sprague-Dawley or male or female F344 rats (Stevens et al. 1994, 1999; Wetzel et al. 1994).  This 

effect is also thought to be the result of acceleration of reproductive senescence, as described above.  Both 

the failure to ovulate and the state of persistent estrus lead to constant elevated serum levels of 

endogenous estrogen, which may result in tumor formation in estrogen-sensitive tissues.  Therefore, the 

mechanism of disruption of normal reproductive cyclicity and mammary carcinogenicity in these strains 

of rat likely does not involve direct interaction of atrazine with estrogen or the estrogen receptor.  It also 

is probably not an adequate model for human reproductive toxicity or carcinogenicity because 

reproductive senescence in women involves ovarian depletion and decreased serum estrogen levels 

instead of decreasing hypothalamic function and increased serum estrogen levels (Carr 1992). 
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As previously stated, atrazine has been shown to alter serum luteinizing hormone (LH) and prolactin 

levels in Sprague-Dawley rats by altering the hypothalamic control of these hormones (Cooper et al. 

2000).  LH and prolactin are released from the pituitary in response to gonadotropin-releasing hormone 

(GnRH) from the hypothalamus, which is regulated by the interactions of various ligands with the 

gamma-aminobutyric acid receptor (GABAA receptor).  Cooper et al. (1999) proposed that atrazine 

decreases the hypothalamic secretion of norepinephrine, which in turn decreases the release of GnRH.  

An alternate mechanism was proposed by Shafer et al. (1999) who examined the effect of atrazine and 

other triazine herbicides on GABAA receptors in cortical tissue from rat brain and found that atrazine can 

interfere with the binding of some ligands, but not others, to the GABAA receptor in a noncompetitive 

manner.  The mono- and didealkylated atrazine metabolites had no effect on GABAA receptor binding.  

These preliminary data support the hypothesis that the hormonal effects of atrazine in Sprague-Dawley 

rats may be mediated through the GABAA receptor in the central nervous system.  Although the effects of 

atrazine interaction with GABAA receptors on reproductive senescence may be peculiar to a few strains of 

rats, atrazine interaction with GABAA receptors may occur in other rat strains and in other species, 

including humans, with effects not yet realized.  No data are currently available regarding this mechanism 

in humans. 

 

Sanderson et al. (1999, 2000, 2001) has demonstrated that atrazine and its two primary metabolites, 

deethyl- and deisopropylatrazine, are capable of inducing aromatase (CYP19) activity, with a 

corresponding increase in aromatase ribonucleic acid (RNA), in the human adrenocortical carcinoma cell 

lines, JEG-3, H195R, and H295R.  Aromatase is the rate-limiting enzyme in the conversion of androgens 

to estrogens, and its induction could play a role in estrogen-mediated pathologies.  Atrazine has also been 

shown to alter the ratio of metabolites of estradiol in the estrogen receptor-positive (ER+) human breast 

cell line, MCF-7, although the results are conflicting (Bradlow et al. 1995; McDougal and Safe 1998; 

Sanderson et al. 2001).  Estradiol metabolism proceeds via hydroxylation at one of two mutually 

exclusive carbons, C-2 or C-16α.  The C-2 product, 2-OHE1, is much less potent than estradiol (and may 

even be anti-estrogenic) and is nongenotoxic.  The C-16α product, 16α-OHE1, is a fully potent estrogen 

that is genotoxic, tumorigenic, and causes increased cell proliferation by covalently binding to estrogen 

receptors and interacting with deoxyribonucleic acid (DNA).  McDougal and Safe (1998) reported a slight 

decrease, compared to controls, in the ratio of 16α-OHE1/2-OHE1 in MCF-7 cells incubated with atrazine, 

while Bradlow et al. (1995) reported that the ratio of 16α-OHE1/2-OHE1 in MCF-7 cells incubated with 

atrazine was approximately 12 times that of untreated control cells, and was several times that of cells 

treated with DMBA, a known carcinogen.  Atrazine caused both a decrease in the amount of 2-OHE1 and 

an increase in the amount of 16α-OHE1.  This study suggests that atrazine could play a role in cancer 



ATRAZINE  94 
 

3.   HEALTH EFFECTS 
 
 

 

development in estrogen-responsive tissues, since studies have shown that an elevated 16α-OHE1/2-OHE1 

ratio is associated with breast and other cancers in animals (Bradlow et al. 1995; Telang et al. 1992).  In 

similar experiments using the ER– cell lines, MDA-MB-231 and MCF-10, no inhibitory or stimulatory 

changes in estrogen metabolism were seen (Bradlow et al. 1997).  This suggests that ER status of cells 

plays a role in the ability of atrazine to cause changes that might result in cancer of estrogen-responsive 

tissues.  It has been speculated that two response elements in the DNA of these cells, one requiring the 

xenobiotic (atrazine) and one requiring an ER-ligand complex, must be activated in order to initiate an 

increase in expression of the cytochrome P-450 enzyme responsible for 16α-hydroxylation of estrogen 

(Bradlow et al. 1997). 

 

Atrazine may also interfere with male hormone regulation and activity.  Testosterone conversion to its 

primary metabolite, 5α-dihydroxytestosterone (5α-DHT), was significantly decreased in rat prostate tissue 

exposed to 0.465–1.392 µmol atrazine for 3 hours (Kniewald et al. 1995).  Additionally, the number of 

receptor binding sites for 5α-DHT was reduced in prostate homogenates from rats that had received 60 or 

120 mg/kg/day atrazine orally for 7 days (Kniewald et al. 1995; Šimić et al. 1994).  These effects are 

reversible upon cessation of atrazine exposure, although recovery in prepubescent rats was slower than in 

adult rats.  Leydig cell testosterone production was directly inhibited by in vitro exposure to atrazine in 

isolated rat cells (Friedmann 2002).  A detailed mechanism for these effects has not been elucidated. 

 

3.5.3 Animal-to-Human Extrapolations  

 

The most sensitive target of atrazine toxicity in animals is the reproductive system.  A number of studies 

have shown a delay in the onset of estrus in pigs exposed to 1–2 mg/kg/day (Gojmerac et al. 1996, 1999) 

and altered estrus cyclicity and plasma hormone levels in rats exposed to 7–300 mg/kg/day; some rat 

strains, especially Sprague-Dawley and Long-Evans, appear to be more sensitive to these effects (Cooper 

et al. 1996b, 2000; Eldridge et al. 1994a, 1999a; Šimić et al. 1994; Wetzel et al. 1994).  These effects are 

not likely to be mediated by estrogenic activity of atrazine since it has been shown that atrazine does not 

bind to estrogen receptors in vitro or induce uterine decidualization in rats (Aso et al. 2000; Connor et al. 

1996; Tennant et al. 1994b).  There is some evidence that the estrus cycle effects are the disruption of the 

gonadal-hypothalamic-pituitary axis, which results in lower GnRH release from the hypothalamus and, 

ultimately, lack of ovulation increased plasma estradiol levels, and persistent estrus (Cooper et al. 2000).  

Strains that normally experience reproductive senescence via the same mechanism are more likely to 

experience estrus disruption in response to atrazine.  However, reproductive senescence in humans is 
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characterized by ovarian depletion and decreased estrogen levels, making it unlikely that effects similar to 

the estrus effects seen in rats would occur in humans.  Therefore, the rat does not appear to be an 

appropriate model for this end point.  Shafer et al. (1999) has demonstrated (in vitro) that atrazine can 

inhibit the binding of some, but not all, ligands to the GABA receptor.  The GABA receptor-ligand 

complex acts on GABAA chloride channels in the hypothalamus, stimulating the release of GnRH.  

Inhibition of ligand binding to GABA receptors could contribute to the disruption of the estrus cycle in 

rats, although this has not been demonstrated in vivo.  The GABA receptor has many isomeric forms with 

diverse pharmacology.  It is possible that atrazine could interact with the GABA receptor(s) in other 

species, including humans, with different effects. 

 

3.6 TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS  

 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors.  However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Colborn and Clement (1992), was also used in 1996 when Congress mandated the 

Environmental Protection Agency (EPA) to develop a screening program for “...certain substances 

[which] may have an effect produced by a naturally occurring estrogen, or other such endocrine 

effect[s]...”.  To meet this mandate, EPA convened a panel called the Endocrine Disruptors Screening and 

Testing Advisory Committee (EDSTAC), which in 1998 completed its deliberations and made 

recommendations to EPA concerning endocrine disruptors.  In 1999, the National Academy of Sciences 

released a report that referred to these same types of chemicals as hormonally active agents.  The 

terminology endocrine modulators has also been used to convey the fact that effects caused by such 

chemicals may not necessarily be adverse.  Many scientists agree that chemicals with the ability to disrupt 

or modulate the endocrine system are a potential threat to the health of humans, aquatic animals, and 

wildlife.  However, others think that endocrine-active chemicals do not pose a significant health risk, 

particularly in view of the fact that hormone mimics exist in the natural environment.  Examples of 

natural hormone mimics are the isoflavinoid phytoestrogens (Adlercreutz 1995; Livingston 1978; Mayr et 

al. 1992).  These chemicals are derived from plants and are similar in structure and action to endogenous 

estrogen.  Although the public health significance and descriptive terminology of substances capable of 

affecting the endocrine system remains controversial, scientists agree that these chemicals may affect the 

synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body responsible 



ATRAZINE  96 
 

3.   HEALTH EFFECTS 
 
 

 

for maintaining homeostasis, reproduction, development, and/or behavior (EPA 1997).  Stated differently, 

such compounds may cause toxicities that are mediated through the neuroendocrine axis.  As a result, 

these chemicals may play a role in altering, for example, metabolic, sexual, immune, and neurobehavioral 

function.  Such chemicals are also thought to be involved in inducing breast, testicular, and prostate 

cancers, as well as endometriosis (Berger 1994; Giwercman et al. 1993; Hoel et al. 1992). 

 

There is considerable evidence that atrazine interferes with the normal function of the endocrine system.  

Increases in pituitary gland weight and enlarged pituitaries have been observed in male and female rats 

exposed to 12 mg/kg/day atrazine and higher for acute, intermediate, and chronic durations (Babic-

Gojmerac et al. 1989; EPA 1984f, 1987d; Šimić et al. 1994).  Significant decreases in pituitary hormones 

have also been observed.  Decreases in prolactin and luteinizing hormone levels have been observed in 

rats exposed for 1, 3, or 21 days (Cooper et al. 2000) or 9 months (Wetzel et al. 1994). 

 

In the reproductive system, these alterations in pituitary hormone levels sometimes result in significant 

alterations in blood estradiol and progesterone levels (Cooper et al. 1996b; Eldridge et al. 1994a; Wetzel 

et al. 1994).  Whether these hormone levels are increased or decreased appears to be strain specific in rats, 

as well as age-related.  The alterations in estradiol and progesterone levels can affect estrus cyclicity.  

Disruption of the percentage of days in estrus or diestrus has been observed in Long Evans and Sprague-

Dawley rats (Cooper et al. 1996b, 2000; Eldridge et al. 1994a; Wetzel et al. 1994).  Acute and chronic 

atrazine exposure to peripubertal male rats was associated with decreased serum and intratesticular 

testosterone levels and lutenizing hormone concentrations (Friedmann 2002; Trentacoste et al. 2001).  

Leydig cell testosterone production was directly inhibited by in vitro exposure to atrazine in isolated rat 

cells (Friedmann 2002). 

 

The toxicity of atrazine to the pituitary has also resulted in developmental effects.  When rat dams were 

exposed to atrazine during lactational days 1–4, atrazine suppressed the prolactin surge, which is usually 

induced by pup suckling.  The resultant decreased prolactin levels in breast milk resulted in prostate 

inflammation in the adult offspring (Stoker et al. 1999). 

 

3.7 CHILDREN’S SUSCEPTIBILITY  

 
This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 
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effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6 Exposures of Children. 

 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 

susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life and a 

particular structure or function will be most sensitive to disruption during its critical period(s).  Damage 

may not be evident until a later stage of development.  There are often differences in pharmacokinetics 

and metabolism between children and adults.  For example, absorption may be different in neonates 

because of the immaturity of their gastrointestinal tract and their larger skin surface area in proportion to 

body weight (Morselli et al. 1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants 

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example, 

infants have a larger proportion of their bodies as extracellular water and their brains and livers are 

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 

1966; Widdowson and Dickerson 1964).  The infant also has an immature blood-brain barrier (Adinolfi 

1985; Johanson 1980) and probably an immature blood-testis barrier (Setchell and Waites 1975).  Many 

xenobiotic metabolizing enzymes have distinctive developmental patterns.  At various stages of growth 

and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 
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Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

 

There is no direct information on the toxicity of atrazine in children and no information on effects in 

adults who were exposed as children.  A single cohort study of farm couples in Canada indicated that 

atrazine exposure may be associated with increased preterm delivery and miscarriage (Arbuckle et al. 

2001; Savitz et al. 1997), and an ecological study indicated that atrazine levels in drinking water were 

positively associated with decreased intrauterine growth rates and increased birth defects in the respective 

communities (Munger et al. 1992b, 1997). 

 

Animal data indicate that the primary target of atrazine is the reproductive system and that atrazine can 

affect adult animals, which may result in effects in the offspring.  Male rats exposed to 25, but not 

12.5, mg/kg/day atrazine via lactation on postpartum days 1–4 had inflammation of the lateral prostate at 

120 days of age (Stoker et al. 1999).  This effect was thought to be the result of a lack of prolactin release 

in the dam in response to pup suckling, which was verified by monitoring plasma prolactin levels during 

and after pup suckling.  Also, co-administration of ovine prolactin with atrazine to the dam eliminated the 

increase in prostate inflammation in offspring.  Prolactin plays an important role in the postnatal 

development of the tuberoinfundibular dopaminergic (TIDA) system, which, in the adult rat, has an 

inhibitory effect on prolactin release from the pituitary (Shyr et al. 1986).  A lack of prolactin during 

development results in a lack of prolactin release control and hyperprolactinemia in the adult rats, which 

leads to lateral prostate inflammation (Tangbanluekal and Robinette 1993). 

 

Peruzović et al. (1995) found subtle neurobehavioral effects (increased spontaneous activity in females 

and increased performance in avoidance conditioning trials in males) in offspring of rat dams exposed to 

120 mg/kg atrazine 6 times during a 12-day period that ended 4 weeks before the rats were bred.  The 

mechanism for this effect is unknown, but since atrazine is not thought to persist in tissues, it may be 

mediated through changes in the dam that later affect the offspring.  These data indicate that the 

developing organism may be susceptible to the effects of atrazine and/or its metabolites. 

 

There are no studies that indicate that metabolism of atrazine differs between children and adults or 

between young and adult animals.  The primary pathway by which atrazine is metabolized is dealkylation 
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to yield the mono- and/or didealkylated atrazine derivatives.  In vitro studies with human liver 

microsomes and recombinant cytochrome P-450 (CYP) isozymes indicate that multiple CYP isozymes 

are probably involved in the dealkylation of atrazine in humans (Lang et al. 1997).  This study indicates 

that CYP1A2, CYP2C19, and CYP1A1 may be the major CYP enzymes for atrazine, but that other 

forms, including CYP2A6, CYP2C9, and CYP2B6, are likely to be major contributors, especially in 

individuals with low levels of CYP2C19 or CYP1A2.  While CYP2C19 and CYP1A2 are not present in 

appreciable levels in human fetal liver, their activities increase to adult levels by 4–6 months of age 

(Leeder and Kearns 1997; Ratenasavanh et al. 1991; Sonnier and Cresteil 1998).  These data indicate that 

infants, at or shortly after birth, are capable of metabolizing atrazine to its dealkylated metabolites. 

 

An association was found between Iowa communities exposed to an average of 2.2 µg/L atrazine in the 

drinking water in 1984–1990 and an increased risk of intrauterine growth retardation and cardiac, 

urogenital, and limb reduction defects (Munger et al. 1992b, 1997).   

 

No data were located regarding the passage of atrazine or its metabolites across the placenta or its 

excretion in breast milk. 

 

3.8 BIOMARKERS OF EXPOSURE AND EFFECT  

 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples.  They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

 

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of biomarkers 

as tools of exposure in the general population is very limited.  A biomarker of exposure is a xenobiotic 

substance or its metabolite(s) or the product of an interaction between a xenobiotic agent and some target 

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989).  The 

preferred biomarkers of exposure are generally the substance itself or substance-specific metabolites in 

readily obtainable body fluid(s), or excreta.  However, several factors can confound the use and 

interpretation of biomarkers of exposure.  The body burden of a substance may be the result of exposures 

from more than one source.  The substance being measured may be a metabolite of another xenobiotic 

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic 

compounds).  Depending on the properties of the substance (e.g., biologic half-life) and environmental 
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conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the 

body by the time samples can be taken.  It may be difficult to identify individuals exposed to hazardous 

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as 

copper, zinc, and selenium).  Biomarkers of exposure to atrazine are discussed in Section 3.8.1. 

 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989).  This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific.  They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by atrazine are discussed in Section 3.8.2. 

 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response.  If biomarkers of susceptibility exist, they are 

discussed in Section 3.10 “Populations That Are Unusually Susceptible”. 

 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Atrazine 

 

Atrazine is primarily excreted in the urine as dealkylated metabolites and mercapturic acid derivatives 

(Bakke et al. 1972; Buchholz et al. 1999; Catenacci et al. 1993; Gojmerac and Kniewald 1989; Meli et al. 

1992; Timchalk et al. 1990), which can be detected in urine at levels as low as 1 µg/L (Ikonen et al. 

1988).  Atrazine derivatives, especially the mercapturic acid derivatives, are useful biomarkers of 

exposure (Jaeger et al. 1998; Lucas et al. 1993); however, atrazine is eliminated from the body in  

24–48 hours (Catenacci et al. 1990; Meli et al. 1992; Timchalk et al. 1990) and thus, the tests must be 

performed soon after the exposure.  Atrazine and its metabolites can also be detected in blood and tissues 

at levels as low as 14.25 ng/g (Pommery et al. 1993).  The detection of atrazine in urine or tissues may be 

a specific biomarker for atrazine exposure, but <2% of atrazine is excreted in the urine unchanged 

(Buchholz et al. 1999; Catenacci et al. 1993).  The detection of atrazine metabolites is not specific for 

atrazine exposure, but may also be a biomarker of exposure to other triazine herbicides such as cyprazine, 
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simazine, or propazine (Bradway and Moseman 1982; Hanioka et al. 1999; Larsen and Bakke 1975).  

Analysis for dealkylated metabolites should be performed soon after sample collection because they can 

degrade over time and during freezing and thawing (Bradway and Moseman 1982); mercapturic acid 

derivatives may provide a more reliable biomarker (Jaeger et al. 1998; Lucas et al. 1993).  There is no 

quantitative relationship between exposure levels and levels of atrazine or metabolites found in the body 

(Lucas et al. 1993).  Some of the analytical methods used to detect atrazine in biological samples are 

provided in Table 7-1. 

 

A pair of studies by Lu et al. (1997a, 1998) measured the levels of atrazine in saliva in rats under different 

blood concentrations of atrazine (regulated by intravenous infusion) and different salivary flow rates 

(controlled by administration of pilocarpine) and found that salivary atrazine levels reflected the levels of 

free atrazine in the plasma.  No attempt was made to measure atrazine metabolites.  Salivary levels of 

atrazine may be a convenient way to determine exposure, but have not been shown to be quantitatively 

related to oral or dermal exposure levels. 

 

3.8.2 Biomarkers Used to Characterize Effects Caused by Atrazine  

 

The primary target organs of atrazine are the female reproductive system and the liver.  The reproductive 

effects in animals included altered estrus cyclicity or anestrus (Cooper et al. 1996b, 2000; Ćurić et al. 

1999; Eldridge et al. 1994a, 1999a; Gojmerac et al. 1996, 1999; Šimić et al. 1994; Wetzel et al. 1994), 

altered serum and/or pituitary hormone levels (Cooper et al. 1996b; Eldridge et al. 1994a; Gojmerac et al. 

1996, 1999), reduced fecundity (Šimić et al. 1994), increased litter resorption (Narotsky et al. 2001), 

decreased ovarian and uterine weights (Ashby et al. 2002; Eldridge et al. 1994a), and ovarian 

histopathology (Ćurić et al. 1999; Gojmerac et al. 1996).  The hepatic effects seen following atrazine 

exposure were increased serum lipids and liver enzymes (Gojmerac et al. 1995; Islam et al.  2002; 

Morichetti et al. 1992; Radovcic et al. 1978; Santa Maria et al. 1987; Wurth et al. 1982), liver histo-

pathology (Ćurić et al. 1999; Gojmerac et al. 1995), changes in liver weight (Aso et al. 2000; EPA 1984f, 

1987d, 1987f), and changes in trigycerides and globulin levels (EPA 1984f, 1987d).  While all of these 

effects may be useful biomarkers to indicate possible atrazine exposure, none are specific for atrazine.  

Additionally, it is unclear which, if any, of the above reproductive effects may be caused by atrazine 

exposure in humans. 
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3.9 INTERACTIONS WITH OTHER CHEMICALS  

 

No data were located regarding interactions of atrazine with other chemicals in humans.  Ugazio et al. 

(1991a, 1991b, 1993) examined the effects of atrazine on hexabarbital-induced sleep time (HB-ST) in 

rats.  Atrazine exposure consistently reduced HB-ST, especially in males, indicating an induction of 

microsomal enzymes (Ugazio et al. 1991a).  In offspring of treated animals, which received atrazine via 

lactation and then directly following weaning, HB-ST was also shortened, most notably at weaning 

(21 days of age).  Induction of enzymes was verified by determination of liver microsomal protein 

concentrations and metabolic enzyme activities in male rats; all were elevated significantly at weaning 

only, and elevated without statistical significance thereafter (Ugazio et al. 1991a).  A single dose of 

atrazine to Wistar rats also reduced HB-ST and elevated some metabolic enzymes, and atrazine co-

administered with carbon tetrachloride (CCl4) attenuated the effects of CCl4 (Ugazio et al. 1993).  

Therefore, atrazine may alter the effects of other chemicals via the induction of metabolic enzymes in the 

liver. 

 

3.10   POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE  

 

A susceptible population will exhibit a different or enhanced response to atrazine than will most persons 

exposed to the same level of atrazine in the environment.  Reasons may include genetic makeup, age, 

health and nutritional status, and exposure to other toxic substances (e.g., cigarette smoke).  These 

parameters result in reduced detoxification or excretion of atrazine, or compromised function of organs 

affected by atrazine.  Populations who are at greater risk due to their unusually high exposure to atrazine 

are discussed in Section 6.7, Populations With Potentially High Exposures. 

 

Atrazine has been shown to cause liver effects in animals; therefore, people with liver damage or disease 

may be at greater risk from exposure to atrazine.  No further information was located that identified any 

human population that is unusually susceptible to the toxicity of atrazine.  See Section 3.7 for a discussion 

on children’s susceptibility. 

 

3.11   METHODS FOR REDUCING TOXIC EFFECTS  

 
This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to atrazine.  However, because some of the treatments discussed may be experimental and 
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unproven, this section should not be used as a guide for treatment of exposures to atrazine.  When specific 

exposures have occurred, poison control centers and medical toxicologists should be consulted for 

medical advice.  The following texts provide specific information about treatment following exposures to 

atrazine:   

 
Ellenhorn MJ, Schonwald S, Ordog G, et al., eds.  1997.  Medical toxicology:  Diagnosis and treatment of 
human poisoning.  2nd ed.  Baltimore:  Williams & Wilkins. 
 
Haddad LM, Shannon MW, Winchester JF, eds.  1998.  Clinical management of poisoning and drug 
overdose.  3rd ed.  Philadelphia, PA:  W.B. Sanders Company. 
 

3.11.1 Reducing Peak Absorption Following Exposure  

 

Data regarding the reduction of atrazine absorption in humans after inhalation exposure were not located.  

Oral absorption of atrazine can be reduced with gastric lavage, activated charcoal, sodium sulfate, and 

cathartics (Ellenhorn et al. 1997; Haddad et al. 1998).  Since many commercial formulations of 

organochlorine insecticides contain organic solvents, emesis is not usually recommended due to the 

hazard of solvent aspiration (Ellenhorn et al. 1997).  In addition, oils should usually not be used as 

cathartics since they may enhance the absorption of atrazine (Haddad et al. 1998). 

 

Dermal absorption of atrazine can be reduced by removing contaminated clothing and thoroughly 

washing the exposed skin with a mild soap (Ellenhorn et al. 1997; Haddad et al. 1998).  Oils should not 

be used as a cleansing agent since they may facilitate dermal absorption (Haddad et al. 1998). 

 

3.11.2 Reducing Body Burden  

 

No experimental data regarding methods for reducing the atrazine body burden were located.  Since 

animal studies indicate that atrazine is rapidly metabolized and cleared from the body, methods for 

reducing body burden are not expected to be especially effective in reducing human exposures. 

 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects  

 

No reports of methods that would interfere with the mechanism of atrazine toxicity were identified. 
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3.12   ADEQUACY OF THE DATABASE  

 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of atrazine is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of atrazine. 

 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

 

3.12.1 Existing Information on Health Effects of Atrazine  

 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

atrazine are summarized in Figure 3-3.  The purpose of this figure is to illustrate the existing information 

concerning the health effects of atrazine.  Each dot in the figure indicates that one or more studies provide 

information associated with that particular effect.  The dot does not necessarily imply anything about the 

quality of the study or studies, nor should missing information in this figure be interpreted as a “data 

need”.  A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data 

Needs Related to Toxicological Profiles (Agency for Toxic Substances and Disease Registry 1989), is 

substance-specific information necessary to conduct comprehensive public health assessments.  

Generally, ATSDR defines a data gap more broadly as any substance-specific information missing from 

the scientific literature. 

 

There are limited data on the toxicity of atrazine in humans.  The available ecological studies examined 

the potential of atrazine to induce reproductive and developmental effects and cancer.  Two case reports 

discuss the lethality of atrazine and its toxic effect to the skin. 
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Figure 3-3.  Existing Information on Health Effects of Atrazine 
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The database for health effects of atrazine in laboratory animals is limited to oral studies, as can be seen 

in Figure 3-3.  These studies have examined lethality, systemic, reproductive, and developmental toxicity, 

and carcinogenicity.  Although some studies have examined the immunotoxicity and neurotoxicity of 

atrazine, these potential effects have not been thoroughly investigated.  Genotoxicity data on atrazine are 

available from both in vitro and in vivo studies. 

 

3.12.2 Identification of Data Needs  

 

Acute-Duration Exposure.    The only human data on the acute toxicity of atrazine are two case 

reports, which describe the lethality (Pommery et al. 1993) and the dermal toxicity (Schlicher and Beat 

1972).  Because each report only described one individual, interpretation of the study is limited.  Studies 

in laboratory animals are limited to oral exposure.  Acute-duration oral studies in animals primarily 

focused on the endocrine and reproductive toxicity of the compound.  These studies reported alterations in 

pituitary weight or size (Babic-Gojmerac et al. 1989; Šimić et al. 1994), thyroid gland histology and 

thyroid hormone levels (Kornilovskaya et al. 1996), pituitary hormone levels (Cooper et al. 2000), and 

effects on the estrus cycle (Cooper et al. 2000; Šimić et al. 1994).  An MRL of 0.01 mg/kg/day has been 

derived for acute-duration oral exposure to atrazine based on a NOAEL of 1 mg/kg/day for decreased 

body weight gain in pregnant rabbits exposed to atrazine on gestational days 7–19 (Infurna et al. 1988).  

The developmental toxicity of atrazine has also been investigated in several studies that found profound 

maternal toxicity in rats and rabbits (Infurna et al. 1988), less severe skeletal effects (incomplete 

ossification) (Infurna et al. 1988), prostatitis in male offsprings (Stoker et al. 1999), and 

neurodevelopmental effects (Peruzović et al. 1995).  With the exception of endocrine and body weight 

effects, most of the acute-duration studies did not examine for systemic effects.  A study by Santa Maria 

et al. (1987) did report renal and hepatic effects.  Additional oral studies are needed to establish dose-

response relationships for effects on the endocrine system, which appears to be the most sensitive target 

of toxicity.  Inhalation and dermal exposure studies are needed to identify the critical effect for these 

routes and establish dose-response relationships. 

 

Intermediate-Duration Exposure.    No human studies involving intermediate-duration exposure to 

atrazine were located.  Additionally, no animal inhalation or dermal exposure studies were identified.  As 

with acute toxicity, the intermediate-duration studies primarily focused on the ability of atrazine to disrupt 

the endocrine system and alter the estrus cycle.  A number of studies have examined hormone levels and 
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the estrus cycle in several strains of rats exposed to atrazine (Aso et al. 2000; Cooper et al. 2000; Eldridge 

et al. 1994a; Wetzel et al. 1994).  These studies also reported decreases in body weight gain.  Studies in 

pigs (Ćurić et al. 1999; Gojmerac et al. 1995, 1996, 1999) have examined reproductive and systemic end 

points and reported very low LOAEL values.  An intermediate-duration oral MRL of 0.003 mg/kg/day 

has been derived based on a LOAEL from a 19-day study in which pigs that were administered 

1 mg/kg/day atrazine in the diet had a delayed onset of estrus (Gojmerac et al. 1999).  None of the other 

available studies examined a wide range of potential systemic effects.  Additional oral studies that 

examine the potential systemic toxicity of atrazine are needed.  Inhalation and dermal exposure studies 

are also needed to identify critical effects and establish dose-response relationships. 

 

Chronic-Duration Exposure and Cancer.    Human studies designed to assess the reproductive 

toxicity (Arbuckle et al. 2001; Curtis et al. 1999; Savitz et al. 1997) following dermal and inhalation 

exposure and developmental toxicity following oral exposure (Munger et al. 1992b, 1997) have been 

identified.  Several studies have investigated the chronic toxicity of atrazine following oral exposure of 

laboratory animals.  Studies in rats (EPA 1984f, 1987d) and dogs (EPA 1987f) have reported decreased 

erythrocyte parameters, liver effects, functional impairment of the kidney (rats only), cardiac effects (dogs 

only), endocrine effects (enlarged pituitary and increased adrenal gland weight; rats only), and decreased 

body weight gain.  The reproductive toxicity of atrazine has also been investigated in rats (Narotsky et al. 

2001; Trentacoste et al. 2001; Wetzel et al. 1994).  Several mild to moderate endocrine effects have been 

observed in laboratory animals following atrazine administration, the majority of which are related to 

reproductive effects.  The endocrine effects consisted of alterations in gland weight (Babic-Gojmerac et 

al. 1989; Eldridge et al. 1994a; EPA 1984f, 1987d; Šimić et al. 1994; Vos et al. 1983), histological 

damage in some endocrine glands (Kornilovskaya et al. 1996), and alterations in hormone levels (Babic-

Gojmerac et al. 1989; Cooper et al. 2000; Cummings et al. 2000b; Eldridge et al. 1994a; Friedmann 2002; 

Kornilovskaya et al. 1996; Stoker et al. 1999; Trentacoste et al. 2001; Wetzel et al. 1994).  The existing 

database on the chronic-duration oral toxicity of atrazine was considered inadequate for MRL derivation.  

Additional studies that further define the dose-response relationships for the most sensitive end points, 

particularly reproductive toxicity, would be useful.  Inhalation and dermal exposure studies are needed to 

identify critical effects and establish dose-response relationships. 

 

A study of residents consuming drinking water contaminated with atrazine found a significant association 

between atrazine levels and increased risk of stomach cancer and decreased risk of colon cancer (Van 

Leeuwen et al. 1999).  Several ecological and population-based case-control studies of pesticide use by 

farmers by both inhalation and dermal exposures have shown possible associations between atrazine 
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exposure and brain, testis, and prostate cancers (Mills 1998), leukemia (Mills 1998), and increased 

incidence of non-Hodgkin’s lymphoma (Weisenburger 1990; Zahm 1993b).  No significant increases 

were found, however, in the incidence of multiple myeloma (Brown et al. 1993), non-Hodgkin’s 

lymphoma (Cantor et al. 1992), or leukemia (Brown et al. 1990) in male farmers exposed to atrazine.  No 

association was found between oral atrazine exposure and the incidence of breast or ovarian cancer in 

Kentucky women (Hopenhayn-Rich et al. 2002).  Although limitations of these studies include lack of 

specific exposure data, recall error, and exposure to chemicals other than atrazine, some of these studies 

nevertheless provide suggestive evidence of an association between atrazine and some forms of cancer in 

humans.   

 

Available carcinogenicity data in animals suggest that high doses atrazine in the diet resulted in an 

increased incidence and earlier onset of mammary tumors in female Sprague-Dawley rats as compared to 

age-matched controls (Stevens et al. 1994, 1999; Wetzel et al. 1994); these effects were not found in 

similarly exposed F344 rats (Pintér et al. 1990; Wetzel et al. 1994) or CD-1 mice (Innes et al. 1969; 

Stevens et al. 1999).  Additional carcinogenicity studies by the inhalation, oral, and dermal routes would 

be useful for better assess the carcinogenic potential of atrazine and determining whether the carcinogenic 

effects observed in female Sprague-Dawley rats are relevant to humans. 

 

Genotoxicity.    The available genotoxicity data indicate that atrazine may have genotoxic potential.  In 

vivo genotoxicity studies have found increases in DNA strand breaks (Pino et al. 1988), micronucleus 

formation (Gebel et al. 1997; Kligerman et al. 2000b), an increase of DNA damage in leukocytes, as 

measured by tail moment (Tennant et al. 2001) in mice, somatic mutations (Torres et al. 1992; Tripathy et 

al. 1993), dominant lethal mutations (Murnick and Nash 1977), and aneuploidy (Murnick and Nash 1977) 

in Drosophila melanogaster.  In in vitro assays using human lymphocytes, atrazine induced DNA damage 

(Ribas et al. 1995) and chromosomal aberrations (Meisner et al. 1992, 1993).  In general, genotoxic 

potential was not detected in assays using S. typhimurium (Adler 1980; Andersen et al. 1972; Bartsch et 

al. 1980; Butler and Hoagland 1989; Kappas 1988; Lusby et al. 1979; Morichetti et al. 1992; Ruiz and 

Marzin 1997; Seiler 1973; Sumner et al. 1984; Zeiger et al. 1988), E. coli (Adler 1980; Ruiz and Marzin 

1997), or bacteriophages (Andersen et al. 1972).  In contrast, studies for gene mutations (Emnova et al. 

1987; Mathias et al. 1989; Morichetti et al. 1992; Plewa and Gentile 1976), mitotic recombination (Adler 

1980), anaeuploidy (Benigni et al. 1979), and micronucleus formation (Mohammed and Ma 1999) in 

yeast have been positive.  There have been conflicting results in studies concerning the genotoxicity of 

atrazine to human lymphocytes.  In human lymphocytes, an increase in DNA damage was observed 

(Ribas et al. 1995); a later study by this group (Ribas et al. 1998) did not confirm this finding.  Meisner et 
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al. (1992, 1993) and Lioi et al. (1998) observed increased chromosomal aberrations in human 

lymphocytes, while Kligerman et al. (2000a) and Ghiazza et al. (1984) did not observe any significant 

increases in the occurrence of chromosomal aberrations.  The occurrences of sister chromatid exchange in 

human lymphocyte cells were not found to be altered in several studies (Dunkelberg et al. 1994; 

Kligerman et al. 2000a; Ribas et al. 1998); in contrast, Lioi et al. (1998) did observe increased sister 

chromatid exchange.  The small number of in vivo genotoxicity studies and the apparent conflict between 

prokaryotic and eukaryotic genotoxicity assay suggest that additional information is needed to assess the 

genotoxicity of atrazine. 

 

Reproductive Toxicity.    The reproductive toxicity of atrazine has been examined in humans exposed 

via inhalation and dermal exposure and in orally exposed animals.  In studies of couples living on farms 

using atrazine, a significant association between herbicide activity and increase in preterm deliveries was 

seen (Savitz et al. 1997).  Savitz et al. (1997) found no association with atrazine use and the risk of 

miscarriage; however, Arbuckle et al. (2001) did find a moderate increase in risk of spontaneous abortion, 

during the first 20 weeks of conception, in women who were exposed to atrazine 3 months prior and up to 

1 month of conception.  No association was found between atrazine use and decreased fecundity (Curtis 

et al. 1999).  Oral exposure studies in rats and pigs have demonstrated that atrazine is a reproductive 

toxicant.  In pigs, a decrease in serum estrogen levels, increase in serum progesterone levels, multiple 

ovarian follicular cysts, persisting corpus luteum, cystic degeneration of secondary follicles, and a short-

term delay in estrus onset were observed (Ćurić et al. 1999; Gojmerac et al. 1996, 1999).  The 

intermediate-duration oral MRL for atrazine was based on the LOAEL for delayed onset of estrus 

identified in the Gojmerac et al. (1999) pig study.  In rats, alterations in estrus cycle (Aso et al. 2000; 

Cooper et al. 1996b; Eldridge et al. 1994a; Šimić et al. 1994; Wetzel et al. 1994), impaired fertility when 

exposed females were mated with exposed or unexposed males (Šimić et al. 1994), litter resorption 

(Narotsky et al. 2001), delayed vaginal opening, and decreased uterine and ovarian weights (Ashby et al. 

2002; Eldridge et al. 1994a), and decreased serum estradiol levels (Cooper et al. 2000; Eldridge et al. 

1994a) were observed.  Many of the rat studies tested several rat strains and found significant strain 

differences.  For example, an increase in the number of days in estrus was found in Sprague-Dawley rats, 

but in F344 rats, there was a decrease in the percentage of number of days in estrus and an increase in the 

percentage of days in diestrus (Aso et al. 2000).  F344 rats were found to be more susceptible than 

Sprague-Dawley and Long Evans rats to atrazine-induced pregnancy loss (Narotsky et al. 2001). 

 

The rat studies found substantial strain differences and it is not known which rat strain, if any, would be 

an appropriate model for human reproductive toxicity.  Additional studies are needed to address the 
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apparent strain difference.  Reproductive toxicity studies in other species would also address the issue of a 

model for human reproductive toxicity.  The studies by Šimić et al. (1994), in which treated males were 

mated with untreated females, and the rat 2-generation (EPA 1987e) study are the only available studies 

that attempted to assess male reproductive toxicity.  Šimić et al. (1994) observed a decrease in the number 

of sperm positive females when atrazine-exposed male and female rats were mated; no effect was seen 

when exposed males were mated with unexposed females and only a slight effect (82% sperm positive 

versus 100% in controls) was seen when exposed females were mated with unexposed males.  EPA 

(1987e) found no significant alterations in fertility in a 2-generation rat study in which male and female 

Charles River albino rats were fed 27 mg/kg/day atrazine for at least 10 weeks prior to mating.  

Additional studies are needed to assess whether the testes is also a sensitive target of atrazine toxicity. 

 

Developmental Toxicity.    There are limited data on the developmental toxicity of atrazine in 

humans.  The results of a survey of 1,898 farm couples living year-round on farms in Ontario, Canada, 

designed to assess reproductive effects of pesticides, indicated that the sex ratio was not altered and the 

risk of small for gestational age deliveries was not increased in relation to pesticide exposure (atrazine 

exposure level not available) (Savitz et al. 1997).  It is probable that the pesticide application resulted in 

both dermal and inhalation exposure.  Significant increases in the risk of intrauterine growth retardation 

and other birth defects were found in a community drinking water contaminated with atrazine (Munger et 

al. 1992b, 1997).  As with most ecological studies, these studies cannot establish a strong causal 

relationship between developmental effects and atrazine exposure.  Developmental toxicity studies in 

animals are limited to the oral route.  In studies of rats (Crl:COBS CD [SD] BR, Sprague-Dawley, F344, 

and Long Evans) and rabbits (New Zealand White) exposed to atrazine during gestation, an increase in 

resorptions and postimplantation loss was observed in rats, and increases in resorptions, and 

postimplantation losses, and decreases in live fetuses and fetal body weight were observed in rabbits 

(Infurna et al. 1988; Narotsky et al. 2001).  However, these fetal effects were accompanied by severe 

maternal body weight loss and general toxicity.  Thus, it is not known if the effects were due to direct 

toxicity of atrazine to the fetuses or due to atrazine-induced maternal toxicity.  For the rats, less severe 

fetal effects (decreased fetal body weight, incomplete ossification) were observed at the next lowest dose 

tested and were not associated with severe maternal toxicity.  The Infurna et al. (1988) study suggests that 

the rabbit may be more sensitive that the rat to the toxicity of atrazine, identifying a serious LOAEL at 

almost the same dose level as a less serious LOAEL in the rat study.  Studies investigating the effect of 

peripubertal exposure to atrazine on the reproductive development of female rats found an association 

with atrazine exposure and delayed vaginal opening and altered estrus cycles (Ashby et al. 2002; Laws et 

al. 2000) and delayed uterine growth (Ashby et al. 2002).  Additional developmental toxicity studies are 



ATRAZINE  111 
 

3.   HEALTH EFFECTS 
 
 

 

needed to assess the apparent species differences in developmental toxicity.  Rat studies also 

demonstrated that pregestational exposure to atrazine can result in neurodevelopmental effects in the 

offspring (Peruzović et al. 1995) and lactational exposure can result in inflammation of the lateral prostate 

in adult male offspring (Stoker et al. 1999).  Additional studies, particularly studies that examine the 

offspring as they mature, are needed to further elucidate these effects. 

 

Immunotoxicity.    No human studies examining the immunotoxicity of atrazine were located.  Oral 

exposure studies in mice, rats, and pigs suggest that the immune system may be a target of atrazine 

toxicity.  Decreases in thymus weight (Líšková et al. 2000; Vos et al. 1983) and increases in thyroid and 

mesenteric lymph node weights (Vos et al. 1983) were observed in mice (Líšková et al. 2000) and rats 

(Vos et al. 1983); lymphoid depletion in the lymphoid follicles of the prescapular and mesenteric lymph 

nodes were observed in pigs (Ćurić et al. 1999).  The study by Líšková et al. (2000) also included some 

tests of immune function.  Significant alterations in humoral immunity were observed, but no changes in 

cell-mediated immunity or autoimmunity were found.  Additional studies are needed to assess the 

immunotoxicity of atrazine; a study performing an immunological battery of tests would provide valuable 

information on the potential of atrazine to impair immune function. 

 

Neurotoxicity.    No human data on the neurotoxic potential of atrazine were located.  The available 

data come from two acute-duration oral studies in rats (Bainova et al. 1979; Podda et al. 1997) and an 

intermediate-duration study in rats (Dési 1983).  The acute-duration studies found alterations in cerebellar 

activity in rats exposed to a moderate dose of atrazine.  The intermediate-duration study, tested a slightly 

lower dose, did not find any differences in a behavioral maze test.  These data support the finding of 

neurodevelopmental effects in the offspring following pregestational exposure (Peruzović et al. 1995).  A 

neurotoxicity battery is recommended to provide additional information on the neurotoxicity of orally-

administered atrazine.  Neurotoxicity should also be tested by the inhalation and dermal routes of 

exposure. 

 

Epidemiological and Human Dosimetry Studies.    Limited human cohort and ecological studies 

have been performed and generally involved exposure to more than one pesticide at poorly-characterized 

levels during the period of time examined.  The primary end points examined included reproductive 

(Arbuckle et al. 2001; Curtis et al. 1999; Savitz et al. 1997), developmental (Munger et al. 1992b, 1997), 

and cancer (Brown et al. 1990, 1993; Cantor et al. 1992; Hopenhayn-Rich et al. 2002; Mills 1998; Van 

Leeuwen et al. 1999; Weisenburger 1990; Zahm et al. 1993a, 1993b). 
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Studies of people occupationally exposed to only atrazine (no other pesticides) would be valuable in 

assessing the effects of atrazine on human health.  Since one of the most significant effects in animals is 

disruption of estrus cyclicity, epidemiology studies of reproductive parameters in humans exposed to 

atrazine would be particularly relevant.  Such studies would be most valuable if dosimetry methods could 

be developed to provide reliable exposure data to accompany health effects data.  This would assist in 

establishing cause/effect relationships and in developing methods to monitor individuals living near 

hazardous waste sites.  Such studies are especially necessary because the majority of animal studies 

currently available utilize rats, which are not a relevant model for humans for reproductive effects 

involving disruption of hormonal control of cyclicity and reproductive senescence.  Several studies are 

available that used pigs, with similar results to the rat studies (disruption of estrus cyclicity and/or 

anestrus); the relevance of pigs as a model for humans for atrazine’s effects on hormonal control has not 

been determined.  Studies examining the mechanism of action of atrazine in pigs on estrus cyclicity 

would be helpful in determining the relevance of pigs as a reproductive model for humans. 

 

Biomarkers of Exposure and Effect.     
 

Exposure.  Atrazine is primarily excreted in the urine as dealkylated metabolites and mercapturic acid 

derivatives (Bakke et al. 1972; Buchholz et al. 1999; Catenacci et al. 1993; Gojmerac and Kniewald 1989; 

Meli et al. 1992; Timchalk et al. 1990), which can be detected in urine at levels as low as 1 µg/L (Ikonen 

et al. 1988).  Atrazine and its metabolites can also be detected in blood and tissues at levels as low as 

14.25 ng/g (Pommery et al. 1993).  The detection of atrazine in urine or tissues may be a specific 

biomarker for atrazine exposure, but <2% of atrazine is excreted in the urine unchanged (Buchholz et al. 

1999; Catenacci et al. 1993).  The detection of atrazine metabolites is not necessarily specific for atrazine 

exposure, but may indicate exposure to other triazine herbicides such as cyprazine, simazine, or propazine 

(Bradway and Moseman 1982; Hanioka et al. 1999; Larsen and Bakke 1975).  There is no quantitative 

relationship between exposure levels and levels of atrazine or metabolites found in the body or in urine 

(Lucas et al. 1993).  Additional studies are needed to establish a relationship between exposure level and 

urinary concentration of atrazine metabolites. 

 

Effect.  The primary target organs of atrazine are the female reproductive system and the liver.  The 

reproductive effects in animals included altered estrus cyclicity or anestrus (Cooper et al. 1996b, 2000;  

Ćurić et al. 1999; Eldridge et al. 1994a, 1999a; Gojmerac et al. 1996, 1999; Šimić et al. 1994; Wetzel et 

al. 1994), altered serum and/or pituitary hormone levels (Cooper et al. 1996b; Eldridge et al. 1994a; 

Gojmerac et al. 1996, 1999), reduced fecundity (Šimić et al. 1994), ), increased litter resorption (Narotsky 

et al. 2001), decreased ovarian and uterine weights (Ashby et al. 2002; Eldridge et al. 1994a), and ovarian 
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histopathology (Ćurić et al. 1999; Gojmerac et al. 1996).  The hepatic effects seen following atrazine 

exposure were increased serum lipids and liver enzymes (Gojmerac et al. 1995; Morichetti et al. 1992; 

Radovcic et al. 1978; Santa Maria et al. 1987; Wurth et al. 1982), liver histopathology (Ćurić et al. 1999; 

Gojmerac et al. 1995), changes in liver weight (Aso et al. 2000; EPA 1984f, 1987d, 1987f), and changes 

in trigycerides and globulin levels (EPA 1984f, 1987d).  While all of these effects may be useful 

biomarkers to indicate possible atrazine exposure, none are specific for atrazine.  Additionally, it is 

unclear which, if any, of the above reproductive effects may occur in humans following atrazine 

exposure.  Development of additional, more sensitive biomarkers that are specific for atrazine effects 

would be useful in monitoring populations at high risk.  This may need to be done in tandem with the 

determination of the interaction of atrazine, if any, with the hypothalamus in humans and the elucidation 

of the mechanism of that interaction. 

 

Absorption, Distribution, Metabolism, and Excretion.    The absorption, distribution, 

metabolism, and excretion of atrazine has been investigated in humans and animals.  The only available 

inhalation toxicity studies in humans involved occupational exposure to very large atrazine particles  

(30–70 µm) (Catenacci et al. 1990, 1993), which made it unlikely that any significant amount of atrazine 

reached the lungs.  Evidence of absorption following oral exposure was provided by a single case report 

of a man who ingested a weedkiller containing atrazine and other chemicals; atrazine was detected in the 

plasma and several organs at autopsy (Pommery et al. 1993).  Absorption of atrazine following dermal 

exposure has been evidenced by the presence of atrazine and its metabolites in urine of people exposed to 

radiolabelled Aatrex (a commercial product containing atrazine) via a forearm patch (Buchholz et al. 

1999), and in urine of workers exposed primarily via dermal contact (Catenacci et al. 1990, 1993).  An in 

vitro study using human skin samples also indicated that limited absorption (16.4% in 24 hours) occurs 

through the skin (Ademola et al. 1993).  Further evidence of absorption following oral (Meli et al. 1992; 

Timchalk et al. 1990) and dermal (Hall et al. 1988) exposure to atrazine has been provided by animal 

studies showing the presence of atrazine and its metabolites in the plasma, urine, and/or feces.  

Absorption following gavage administration has been described as a first-order process with an 

absorption half-life of 2.6 hours (Timchalk et al. 1990), with 37–57% of the administered dose recovered 

in the urine and 14% in the feces (Meli et al. 1992; Timchalk et al. 1990).  Animal studies to determine 

the absorption efficiency of inhaled atrazine would be useful for determining the risk to occupationally 

exposed individuals. 

 

Data on distribution of atrazine in humans after oral exposure was limited to a single case report of a 

38-year-old man who died of progressive organ failure and shock 3 days after ingesting 500 mL of a 
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weedkiller that contained 100 g atrazine, 25 g of aminotriazole, 25 g of ethylene glycol, and 0.15 g of 

formaldehyde (Pommery et al. 1993).  At autopsy, atrazine was detected in the kidney, small intestine, 

lung, liver, pancreas, muscle, heart, and plasma.  Radioactivity was detected in the plasma, whole skin, 

and carcass of rats gavaged with 30 mg/kg [C14]-atrazine (Timchalk et al. 1990), and in the liver, brain, 

heart, lung, kidney, digestive tract, omental fat, and skeletal muscle of rats gavaged with up to 17.7 mg/kg 

[C14]-atrazine (Bakke et al. 1972).  Animal studies to determine the distribution following inhalation and 

dermal exposure to atrazine would be useful for evaluating the exposure and risk of occupationally 

exposed individuals. 

 

Atrazine is extensively and rapidly metabolized as indicated by plasma levels of atrazine and the relative 

amounts of metabolites and parent compound in the urine within 8–24 hours after exposure.  Plasma 

levels of 14C from radiolabeled atrazine have been shown to peak at 8–10 hours postexposure in rats, and 

the rate of clearance half-life has been calculated to be 10.8–11.2 hours (Timchalk et al. 1990).  In urine, 

unchanged atrazine has been detected, but comprised <2% of all atrazine-related compounds after dermal 

exposure in humans (Buchholz et al. 1999; Catenacci et al. 1993) or oral exposure in rats (Meli et al. 

1992).  In humans, 50% of all urinary atrazine metabolites were excreted within 8 hours and 100% within 

24 hours (Catenacci et al. 1993).  In rats, approximately 57% of the radioactivity from administered 

[14C]-atrazine was excreted in the urine within 24 hours (Timchalk et al. 1990), and urinary atrazine 

metabolites decreased to 1/30 or less of the 24-hour level by 48 hours postexposure (Meli et al. 1992). 

 

Atrazine is primarily metabolized in humans via dealkylation, probably followed by glutathione 

conjugation and conversion to mercapturic acids.  This is apparently true regardless of route of exposure 

(Buchholz et a. 1999; Catenacci et al. 1993; Meli et al. 1992; Timchalk et al. 1990).  In vitro studies using 

microsomal preparations from liver and other tissues of humans and animals have indicated that 

dealkylation of atrazine is mediated by cytochrome P-450 enzymes (CYPs) (Adams et al. 1990; Ademola 

et al. 1993; Croce et al. 1996; Hanioka et al. 1998a, 1999; Lang et al. 1996, 1997; Meli et al. 1992; 

Venkatesh et al. 1992).  In humans, the primary CYP responsible for phase I metabolism is probably 

CYP1A2 (Lang et al. 1997), and in rats, CYPs 2B1 and 2C11 have been implicated as the primary 

metabolic enzymes (Hanioka et al. 1998a).  Available data indicate that phase II metabolism of atrazine 

proceeds through glutathione conjugation and mercapturic acid formation (Adams et al. 1990; Egaas et al. 

1995).  Additional studies examining the enzymes responsible for phase I and phase II metabolism and 

the ratio of products would be useful. 
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Specific data on elimination and excretion of atrazine by any route were limited.  However, the primary 

route of excretion appears to be in urine, as indicated by the detection of urinary atrazine and its 

metabolites in a number of species exposed via oral and dermal routes (Bakke et al. 1972; Buchholz et al. 

1999; Catenacci et al. 1990, 1993; Meli et al. 1992; Timchalk et al. 1990).  Fecal excretion was a minor 

route (Buchholz et al. 1999; Timchalk et al. 1990).  No data were located regarding enterohepatic 

circulation and biliary secretion or excretion of atrazine in breast milk.  Studies to determine whether 

enterohepatic circulation occurs and the extent to which it occurs, and studies examining the release of 

atrazine and its metabolites in breast milk would be helpful in better defining exposure.  

 

Comparative Toxicokinetics.    Available data indicate that atrazine is readily absorbed through the 

intestinal tract (Meli et al. 1992; Pommery et al. 1993; Timchalk et al. 1990) and that limited absorption 

occurs through the skin (Ademola et al. 1993; Buchholz et al. 1999; Catenacci et al. 1990, 1993; Hall et 

al. 1988) in humans and animals.  Studies examining absorption following inhalation exposure in humans 

(occupational exposure) and animals would be useful. 

 

Atrazine was detected in the kidney, small intestine, lung, liver, pancreas, muscle, heart, and plasma of a 

man who ingested weedkiller containing atrazine (Pommery et al. 1993).  Radioactivity was detected in 

the liver, brain, heart, lung, kidney, digestive tract, omental fat, and skeletal muscle of rats gavaged with 

[C14]-atrazine (Bakke et al. 1972).  Additional studies to determine the relative distribution of atrazine and 

its metabolites in internal organs after inhalation, oral, and dermal exposure to atrazine would be useful.  

Studies to determine if atrazine crosses the placenta in pregnant animals would also be useful. 

 

While atrazine metabolites have been shown to be qualitatively similar across species, quantitative 

differences and differences in rate of formation and ratio of products have been observed (Adams et al. 

1990; Hanioka et al. 1999; Lang et al. 1996).  Inter- and intra-species and age and sex differences in 

glutathione S-transferase (GST) activity have also been seen (Egaas et al. 1995).  Additional studies 

examining potential sex- and age-related differences between and within species would be useful. 

 

Only 0.3–4.4% of an applied dose of [C14]-atrazine was recovered in urine and 0.0–0.7% in feces of 

people exposed dermally via an arm patch (Buchholz et al. 1999).  No studies were located regarding 

excretion in humans after oral exposure to atrazine.  In rats exposed orally to [C14]-atrazine, 57% of the 

administered radioactivity was excreted in the urine and only 14% in the feces (Timchalk et al. 1990).  

Additional studies on routes of elimination of atrazine following exposures of animals by the inhalation, 

oral, and dermal routes would be useful. 



ATRAZINE  116 
 

3.   HEALTH EFFECTS 
 
 

 

 

Methods for Reducing Toxic Effects.    Oral absorption of atrazine can be reduced with gastric 

lavage, activated charcoal, sodium sulfate, and cathartics (Ellenhorn and Barceloux 1988; Haddad and 

Winchester 1990); however, animal studies indicate that gastrointestinal absorption of atrazine is fairly 

rapid (absorption half-life of 2.6 hours) (Timchalk et al. 1990) and thus, these measures would need to be 

employed soon after exposure.  Dermal absorption of atrazine can be reduced by removing contaminated 

clothing and thoroughly washing the exposed skin with a mild soap (Ellenhorn and Barceloux 1988; 

Haddad and Winchester 1990).  Additional data regarding interference with gastrointestinal absorption 

would be useful. 

 

Since animal studies indicate that atrazine is rapidly metabolized and cleared from the body, methods for 

reducing body burden are not expected to be especially effective in reducing human exposures. 

 

The primary effect of atrazine in rats is disruption of estrus cyclicity, which is mediated through an 

alteration of the gonadal-hypothalamic-pituitary axis.  Differences in reproductive physiology between 

rats and humans make it unlikely that this mechanism would occur in humans.  However, similar effects 

are seen in pigs and the mechanism has not been elucidated.  Additionally, it is not known whether 

atrazine or its metabolites are responsible for these effects.  Studies in pigs and other animals (except rats) 

to elucidate the mechanism for the reproductive effects of atrazine may be useful for developing methods 

that can interfere with these effects.  

 

Children’s Susceptibility.    A single cohort study of farm couples in Canada indicated that atrazine 

exposure may be associated with increased preterm delivery and miscarriage (Arbuckle et al. 2001; Savitz 

et al. 1997), and an ecological study indicated that atrazine levels in drinking water were positively 

associated with decreased intrauterine growth rates and increased birth defects in the respective 

communities (Munger et al. 1992b, 1997).  Additional epidemiological studies examining these 

associations may be useful. 

 

Developmental effects have been observed following pregestational, gestational, and lactational exposure 

of rat dams to atrazine.  The observed effects included postimplantation losses (Infurna et al. 1988), 

decreases in fetal body weight (Infurna et al. 1988), incomplete ossification (Infurna et al. 1988), 

neurodevelopmental effects (Peruzović et al. 1995), and impaired development of the reproductive system 

(Stoker et al. 1999).  A neurodevelopmental toxicity study is needed to verify and further characterize the 

Peruzović et al. (1995) results. 
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There are no studies that indicate that metabolism of atrazine differs between children and adults.  The 

primary pathway by which atrazine is metabolized is dealkylation to yield the mono- and/or didealkylated 

atrazine derivatives.  A study by Lang et al. (1997) indicated that CYP1A2, CYP2C19, and CYP1A1 may 

be the major CYP enzymes for atrazine, but that other forms, including CYP2A6, CYP2C9, and 

CYP2B6, are likely to be major contributors, especially in individuals with low levels of CYP2C19 or 

CYP1A2.  While CYP2C19 and CYP1A2 are not present in appreciable levels in human fetal liver, their 

activities increase to adult levels by 4–6 months of age (Leeder and Kearns 1997; Ratenasavanh et al. 

1991; Sonnier and Cresteil 1998).  GST activity, involved in phase II metabolism of atrazine, generally 

reaches adult levels by 6–18 months of age (Leeder and Kearns 1997).  Studies examining the metabolic 

differences between children and adults may be useful.  Studies to determine if atrazine or its metabolites 

cross the placenta of animals and enter the developing fetus and if they are present in breast milk would 

also be very useful. 

 

Child health data needs relating to exposure are discussed in Section 6.8.1 Identification of Data Needs:  

Exposures of Children. 

 

3.12.3 Ongoing Studies  

 

Ongoing studies of atrazine are outlined in Table 3-4 (CRIS 2002; FEDRIP 2002). 

 

The group, triazines and their degradation products, is listed on the EPA’s Contaminant Candidate List 

(CCL) (EPA 2002b).  The CCL is a published list of contaminants that are known or are anticipated to 

occur in public drinking water systems and may require regulation under the Safe Drinking Water Act 

(SDWA).  The CCL contains priority contaminants for EPA’s drinking water program activities, 

including drinking water research, monitoring, guidance development, and regulation determination.  A 

specific area of research for triazines and their degradation products is focused on their mechanism of 

carcinogenicity (EPA 2002b). 
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Table 3-4.  Ongoing Studies on the Health Effects of Atrazinea 
 

Investigator Affiliation Research description 
Filipov NM 

 
CSREES, USDA Assessment of dopaminergic neurotoxicity of 

several agricultural pesticides in adolescent, 
adult, and aged mice 

Lasley BL University of California; Davis, 
California 

Methods development for quantification of 
estrogen receptor- and aryl hydrocarbon 
receptor-binding xenobiotics that may cause 
adverse effects on human reproductive health 

Lemley AT; 
Snedeker SM 

CSREES, USDA Determination of the adverse effects to human 
and environmental health of agrochemicals 
detected in homes of pesticide applicators and 
farmers in rural central New York 

Perry MJ School of Public Health, Harvard 
University; Boston, 
Massachusetts  

The effects of atrazine on reproductive hormone 
production (including follicle stimulating 
hormone, luteinizing hormone, and 
testosterone) among pesticide applicators 

Rayburn AL CSREES, USDA Low level agrichemical exposure and 
chromosomal aberrations in tree frog tadpole 
cells 

Tchounwou PB Jackson State University, Jackson 
Mississippi 

Toxicokinetics, histopathology, and in vivo 
genotoxicity in rats and fish 

 
aSource: CRIS 2002; FEDRIP 2002 
 
CSREES = Cooperative State Research, Education, and Extension Service; USDA = U.S. Department of 
Agriculture 
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4.  CHEMICAL AND PHYSICAL INFORMATION 
 

4.1  CHEMICAL IDENTITY 

 

Information regarding the chemical identity of atrazine is located in Table 4-1. 

 

Atrazine is produced commercially in the United States as a technical-grade chemical with a purity of  

92–97% (IARC 1999) to 99.9% (EPA 1983) active ingredient.  Impurities in the former formulation 

included dichlorotriazines, hydroxytriazines, and tris(alkyl)aminotriazines. 

 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

 

Information regarding the physical and chemical properties of atrazine is located in Table 4-2. 
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Table 4-1.  Chemical Identity of Atrazine 
 

Characteristic Information Reference 
Chemical name: Atrazine EPA 1983; Howard 1991 
Synonyms: 6-Chloro-n-ethyl-n'-(1-methylethyl)-triazine-

2,4-diamine; 2-Chloro-4-ethylamino-6-iso-
propylamine-s-triazine; 2-Chloro-4-(ethyl-
amino)-6-(isopropylamino)-s-triazine; 2-
Chloro-4-(ethylamino)-6-(isopropylamino)-
triazine; Chloro-4-(propylamino)-6-ethyl-
amino-s-triazine; Chloro-3-ethylamino-5-iso-
propylamino-2,4,6-triazine; Butyl-n-(acetyl)-
aminopropionic acid 

 

Registered trade names: Aatrex®, Aatram®, Atratol®, Gesaprim® EPA 1983; Syngenta 2000 
Chemical structure: 
 
 
 
 
 

  
 
 
 
 

Identification numbers:   
 CAS registry 1912-24-9 HSDB 2002 
 NIOSH RTECS  XY5600000 HSDB 2002 
 DOT/UN/NA/IMO UN 2763 HSDB 2002 
  UN 2997 HSDB 2002 
  UN 2764 HSDB 2002 
  UN 2998 HSDB 2002 
  IMO 6.1 HSDB 2002 
  IMO 3.2 HSDB 2002 
 HSDB 413 HSDB 2002 
 Experimental code number G-30027 (Ciba-Geigy) Farm Chem Handbook 2001
 
CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 
America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NIOSH = National Institute for Occupational Safety and Health; 
RTECS = Registry of Toxic Effects of Chemical Substances 
 

N

N

N
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Table 4-2.  Physical and Chemical Properties of Atrazine 
 

Property Information Reference 

Molecular weight 215.69 HSDB 2002 

Color White colorless HSDB 2002 

Physical state Colorless powder 
Colorless crystals 

IARC 1999 
Verschueren 2001 

Melting point 173–175 °C HSDB 2002 

Density 1.23 g/cm3 (22 °C) HSDB 2002 

Odor Odorless NIOSH 1994 

Solubility: 

 at 22 °C Soluble in water (34.7 mg/L) Ward and Weber 1968 

 at 25 °C Soluble in ethylacetate (24 g/L), 
acetone (31 g/L), dichloro-
methane (28 g/L), ethanol 
(15 g/L), toluene (4 g/L), 
n-hexane (0.11 g/L), and 
n-octanol (8.7 g/L) 

Tomlin 1997 
 

 at 27 °C Soluble in n-pentane (360 mg/L), 
diethyl ether (12,000 mg/L), 
methanol (18,000 mg/L), ethyl 
acetate (28,000 mg/L), 
chloroform (52,000 mg/L), and 
dimethyl sulfoxide 
(183,000 mg/L)  

Humburg 1989 

Partition coefficients: 

Log Kow  2.60 
2.71 

Hansch et al. 1995 
Brown and Flagg 1981 

 
 
 
 Log Koc 1.96 

1.97 
2.98 
3.38 
2.18 
2.53 
2.33 

Dousset et al. 1994 
Green et al. 1993 
Koskinen and Rochette 1996 
Koskinen and Rochette 1996 
Meakins et al. 1995 
Meakins et al. 1995 
Weber 1991 

Vapor pressure at 25 °C 2.89x10-7 mmHg Tomlin 1997 

Henry's Law constant at 25 °C 2.96x10-9 atm-m3/mol Riederer 1990 

pKa 1.68 Bailey et al. 1968 

Hydrolysis rate constant at 25 °C 2.735x10-11 cm3/molecule-second 
(estimated) 

Meylan and Howard 1993 

Autoignition temperature No data  

Flashpoint Not applicable EPA 1983 

Flammability limits Not applicable EPA 1983 



ATRAZINE  122 
 

4.  CHEMICAL AND PHYSICAL INFORMATION 
 
 

 

Table 4-2.  Physical and Chemical Properties of Atrazine 
 

Property Information Reference 

Conversion factorsa mg/m3=8.82xppm HSDB 2002; IARC 1999 

Explosive limits  Not applicable EPA 1983 
 
aIn air, atrazine is both present in the gas phase and associated with particulates (HSDB 2002).  Conversion 
factors are only applicable for those compounds that exist entirely in the vapor phase.  Therefore, while this 
conversion factor has been reported in the literature, its use is not recommended, as it will not provide an accurate 
reflection of ambient air atrazine concentrations. 
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5.1 PRODUCTION 

 

Atrazine is produced by a continuous process where isopropylamine is reacted with cyanuric acid under 

basic conditions, forming 2,4-dichloro-6-isopropylamino-s-triazine, which is then reacted with 

monoethylamine and dilute caustic to form atrazine.  The approach allows for continuous product 

recovery, solvent recycling, and waste removal (IARC 1999; UDC 1977).  The triazine herbicides were 

first synthesized in 1955 (Kroschwitz and Howe-Grant 1995) and atrazine was first registered for use by 

the Ciba-Geigy Corporation in 1958 (Ribaudo and Bouzaher 1994).  It has been used over the last 

40 years as an effective broad-leaf herbicide in corn, sorghum, and sugar cane, and has also been used for 

other crops and for nonspecific treatment of weeds along railway right of ways and highways.  Some of 

the latter uses have been curtailed to lessen atrazine release into surface waters.  

 

Atrazine is designated as a restricted use pesticide (RUP), and is not available to the general public.  

RUPs are, by law, for retail sale to, and for use by, only certified applicators or persons under their direct 

supervision, and only for those purposes covered by the applicator's certification.  Atrazine received this 

classification on January 23, 1990 (Fishel 2000).  Current trade names for atrazine include Aatrex®, 

Atranex, Atred, Gesaprim®, Primatol, and Vectal (Trochimowicz et al. 2001).  Atrazine is available in 

different formulations, including suspension concentrates, wettable powders, flowable liquids, and water-

dispersible granules (HSDB 2002). 

 

There are 24 facilities that manufacture or process atrazine (Table 5-1).  The amounts manufactured or 

processed range from 1,000 to 9,999 pounds in Georgia to very large formulation activities  

(1,000,000–9,999,999 pounds) in Alabama, Mississippi, and Missouri.  Facilities in Arkansas and Iowa 

also process atrazine in large amounts (up to 9,999,999 pounds), but Louisiana houses facilities that 

process the greatest amounts of atrazine (up to 49,999,999 pounds), with activities including production, 

processing, manufacturing, reaction, sale and distribution, and other ancillary uses.  

 

Table 5-2 shows the six companies that are registered to produce products containing atrazine.  Most of 

these companies produce a technical-grade atrazine, with a purity ranging from 95.2 to 97%, although 

higher purity atrazine can be produced (>99%) (EPA 1983).  The technical-grade compound may contain 
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Table 5-1.  Facilities that Produce, Process, or Use Atrazine 
 

Statea 

Number 
of 
facilities 

Minimum 
amount on site 
in poundsb 

Maximum 
amount on site 
in poundsb Activities and usesc 

AL 1 1,000,000 9,999,999 6 
AR 2 10,000 9,999,999 2, 3, 7, 12 
FL 4 10,000 999,999 7, 8, 12 
GA 1 1,000 9,999 7 
IA 3 100,000 9,999,999 1, 3, 7, 9 
IL 2 10,000 999,999 7, 12 
LA 1 10,000,000 49,999,999 1, 3, 4, 7, 9, 12, 13, 14 
MI 1 100,000 999,999 7 
MO 2 1,000,000 999,999,999 2, 4, 7, 9 
MS 1 1,000,000 9,999,999 2, 3, 4, 7, 9 
NE 3 1,000 9,999,999 1, 4, 7, 9, 12 
OH 3 100 999,999 7, 12 
 
Source: TRI01 2003 
 
aPost office state abbreviations used 
bAmounts on site reported by facilities in each state 
cActivities/Uses: 
1.  Produce 
2.  Import 
3.  Onsite use/processing 
4.  Sale/Distribution 
5.  Byproduct 

6.  Impurity 
7.  Reactant 
8.  Formulation Component 
9.  Article Component 
10.  Repackaging 

11.  Chemical Processing Aid 
12.  Manufacturing Aid  
13.  Ancillary/Other Uses 
14.  Process Impurity 
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Table 5-2.  Registered Atrazine Manufacturing-use Productsa 
 

Formulation EPA registration number Registrant 
97% T 100-529 Novartis Crop Protection, Inc. (formerly Ciba-Geigy 

Corp.) 

97% T 19713-7 Drexel Chemical Company 

92.15% Tb 19713-375 Drexel Chemical Company 

97% Tb 34704-784 Platte Chemical Company, Inc. 

97% T 35915-63c Oxon Italia S.P.A. 

97.2% T 11603-32 Agan Chem Mfg. Ltd. 

95.2% T 67604-1 Sanachem (PTY) Ltd. 
 
aAdapted from EPA 2001a 
bRepackaged from an EPA-registered product. 
cTransferred May 23, 1988 from Ida, Inc. (EPA Reg No. 54115-63), which was transferred October 13, 1987 from 
Axon Corporation.  
 
T = technical 
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three classes of impurities, namely dichlorotriazines, hydroxytriazines, and tris(alkyl)aminotriazines.  

These impurities have not been quantified in the available literature. 

 

5.2 IMPORT/EXPORT 

 

Data on import and export of atrazine are limited.  The most recent import and export data available are 

for the year 1972 (HSDB 2002); a negligible amount was imported, and exports were reported as 

9.08x106 kg (19,000,000 pounds).  Bason and Colborn (1998) did not provide any 1990 export 

information for atrazine. 

 

5.3 USE  

 

Atrazine is the most heavily used pre- and postemergence herbicide in the United States (Trochimowicz 

et al. 2001).  It is used for the control of grasses and broad-leafed weeds, and is primarily used on corn, 

sorghum, sugarcane, macadamia nuts, and conifer tree crops; over 65% of the corn crop acreage in the 

United States is treated with atrazine (USDA 1993).  Atrazine has been used in this capacity as a broad 

leaf herbicide for the last 35 years (IARC 1999).  It should be used at the appropriate application rates, 

which have been reduced to 1.4–2.0 pounds per acre (Johnson et al. 1996).  The EPA has estimated that 

31–35 million kg of active ingredient atrazine were used on agricultural crops in the years 1987, 1993, 

and 1995 (IARC 1999).  

 

More specific information is available from a National Center for Food and Agricultural Policy document 

that reported trends in pesticide use between 1992 and 1997 (NCFAP 2000).  Atrazine use showed a 

slight (3%) increase in use from 1992 to 1997.  In 1992, 73,315,295 pounds (33 million kg) were used, 

and in 1997, 74,560,407 pounds (34 million kg) were used (NCFAP 2000).  Corn and sugarcane crops 

received significant increases in atrazine treatment in 1997 as compared to 1992; sugarcane crops 

received 503,000 more pounds and corn crops received 2,037,000 more pounds.  Sorghum crops, in 

contrast, were treated with 1,065,000 pounds less in 1997 as compared to 1992.  This, however, was 

likely related to much less sorghum being planted in 1997 as compared to 1992 (NCFAP 2000).  It should 

be noted, however, that in some areas, corn growers decided to replace atrazine pre- and posttreatments 

with other products.  This decision was a result of restrictions placed on the use of atrazine, such that the 

application rate restrictions reduced effectiveness on certain weeds (NCFAP 2000). 
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There are seven EPA registered manufacturing-use products, as shown in Table 5-2. 

 

Atrazine usage rates have been relatively constant since monitoring began, but are beginning to decrease.  

In 1993, 4,955,300 pounds (2,247,093 kg) of atrazine were used on 45,333,000 acres 

(18,346,014 hectares) of corn in the United States (Ribaudo and Bouzaher 1994); the maximum reported 

usage was in 1976, when 9,034,000 pounds (4,097,796 kg) of atrazine were used in all agricultural 

applications.  Of that, 8,379,000 pounds (3,800,689 kg) were applied to corn.  Also in 1976, the largest 

number of acres was treated with atrazine, with 61,750,000 total acres (24,989,883 hectares) being 

treated.  More than 92% of the total acreage treated with atrazine (56,863,000 acres; 23,012,141 hectares) 

were corn crops (Ribaudo and Bouzaher 1994).  Atrazine is a restricted use pesticide and is only available 

to applicators who meet appropriate requirements of the state and federal government. 

 

5.4 DISPOSAL  

 

Atrazine and waste containing atrazine are considered toxicity class III—slightly toxic by the EPA 

(Extoxnet 1996).  It does not require any special hazardous waste disposal procedures, according to EPA 

Resource Conservation and Recovery Act listings, either by specific listing or due to reactivity, 

ignitability, corrosivity, or toxicity, as it is not considered a hazardous waste.  However, atrazine is 

included in the Priority Group 1 of pesticide tolerances that will be examined first under the Food Quality 

Protection Act (FQPA) tolerance reassessment (62 FR 42020) (FEDRIP 1998). 

 

Disposal may be achieved by different means.  Atrazine is completely degraded by wet oxidation (HSDB 

2002), and 99% of atrazine is decomposed when burned in a polyethylene bag.  Increasing combustion 

temperatures by use of a hydrocarbon fuel would appear to be suitable for small quantities of waste, but 

larger quantities would require the use of a caustic wet scrubber to remove nitrogen oxides and 

hydrochloric acid from the resulting combustion gases.  The recommended method of atrazine disposal is 

to react atrazine wettable powders with sufficient 10% (weight/volume) aqueous sodium hydroxide to 

ensure a pH of >14.  The solution may be heated to increase the rate of hydrolysis.  When completely 

hydrolysed, the resulting solution should be diluted with excess water and washed into the sewer (HSDB 

2002).  
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6.1 OVERVIEW 

 

Atrazine has been identified in at least 20 of the 1,636 hazardous waste sites that have been proposed for 

inclusion on the EPA National Priorities List (NPL) (HazDat 2003).  However, the number of sites 

evaluated for atrazine is not known.  The frequency for these sites within the United States can be seen in 

Figure 6-1.  Of these sites, all 20 are located within the United States and none are located in the 

Commonwealth of Puerto Rico (not shown).  Significant amounts of atrazine are also released during 

manufacture, formulation, transport, storage, and disposal (see Section 6.2 below).  

 

Atrazine is an extensively-used, broad leaf herbicide, and virtually the entire production volume is 

released to the environment as a result of agricultural and other weed-control practices.  In its 

recommended applications, atrazine is used as a preemergence and postemergence herbicide for corn, 

sorghum, sugarcane, macadamia nuts, and other crops, as well as in conifer reforestation, and as a 

nonspecific herbicide for the treatment of fallow soil and highway right-of-ways.  Therefore, most 

environmental atrazine releases will occur as a result of its intended usage.  There are no known natural 

sources of atrazine.  

 

While atrazine is a widely-used herbicide, it is not available to the general public, as it is classified as a 

restricted-use pesticide (RUP).  RUPs are, by law, only for retail sale to and use by certified applicators or 

persons under their direct supervision, and only for those purposes covered by the applicator's 

certification.  Atrazine received this classification on January 23, 1990 (Fishel 2000).  

 

The normal agricultural use of atrazine will result in some loss or transport from the soil into the 

atmosphere, where it may later undergo deposition back to soils or into bodies of water.  Some 

atmospheric release of atrazine will also occur as a result of its formulation, manufacture, and disposal.  It 

may also enter air by loss of applied herbicide before it reaches the soil, and by particle distribution of 

dusts that contain atrazine.  Volatilization of atrazine following application to fields has been measured to 

be up to 14% of the applied amount.  Once in the air, atrazine will exist in both the particulate and vapor 

phases due to its vapor pressure.  These forms will influence how atrazine is transported or later deposited 

on to terrestrial or aquatic environments.
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Figure 6-1.  Frequency of NPL Sites with Atrazine Contamination 
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Derived from HazDat  2003
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Atrazine’s concentration in air will vary with application season; measured concentrations have ranged 

from just above the detection limit (~0.03 ng/m3) to more typical concentrations of 0.20–0.32 µg/m3.  As 

a result of atrazine’s vapor and particulate phase distribution, and climate patterns during and following 

application, it can be transported in the atmosphere significant distances from its application area; it has 

been detected as far as 100–300 km (62–186 miles) from the closest application area.  While in the 

atmosphere, it has not been observed to undergo direct photolytic degradation.  However, vapor-phase 

atrazine can be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals.  

Particulate-phase atrazine will be removed from the atmosphere by wet and dry deposition; atrazine is 

commonly found in rainwater in the seasons following agricultural applications.  

 

Atrazine may also be transported from where it is applied to soils by runoff into surface water and 

percolation into groundwater.  Atrazine tends to persist in surface and groundwater, with a moderate 

tendency to bind to sediments.  Slow or no biodegradation occurs in surface water or groundwater 

environments, respectively.  When it is degraded in aquatic systems, hydroxyatrazine, deethylatrazine, 

and deisopropylatrazine are the major products formed by chemical and biological processes.  Depending 

on the availability of sunlight, oxygen, microorganisms, and plants, the half-life of atrazine in water tends 

to be longer than 6 months; in some cases, no degradation of atrazine has been observed in aquatic 

systems.  This lack of degradability is one reason that atrazine is commonly observed in surface waters 

and well-water drinking water supplies.  This long residence time in surface waters indicates that it may 

have the opportunity to enter the food chain.  Atrazine has a slight to moderate tendency to bioconcentrate 

in microorganisms, algae, aquatic invertebrates, worms, snails, or fish.  It is only slightly toxic or 

nontoxic to fish and other aquatic invertebrates, and has been shown to have short-term effects on fish 

behavior. 

 

Atrazine is not very persistent to moderately persistent in surface soils, with reported half-lives commonly 

ranging from 14 to 109 days.  However, it has been observed to persist in some soils for up to 4 years, and 

there are instances where no biodegradation has been observed in some subsurface soils or in aquifer 

materials.  It can be detected in soils where it has been applied as a pesticide, as well as in soils that have 

been impacted by runoff or by atmospheric deposition.  In soils, it may undergo abiotic hydrolysis to 

hydroxyatrazine, but this occurs very slowly unless dissolved organic matter is present or the soils are 

extremely acidic.  It is generally biodegraded by soil microorganisms to hydroxyatrazine, deethylatrazine, 

or deisopropylatrazine, with subsequent metabolism to cyanuric acid.  This may be followed by relatively 

complete degradation to CO2 (mineralization) within 20 weeks.  Anaerobic biodegradation occurs very 
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slowly, with half-lives of over 200 days.  This half-life may include some abiotic degradation since 

hydroxyatrazine was the only observed degradation product.  Atrazine, however, has been reported to 

degrade more quickly in anaerobic soil under strongly reducing conditions. 

 

Even though atrazine is a widely used pesticide for corn, sugarcane, macadamia nuts, sorghum, and other 

crops, very few atrazine residues have been found in food analyses conducted by the FDA and the USDA 

from 1987 to the present.  Atrazine concentration was very low (0.001–0.028 µg/g) in the few samples 

where it was detected.  In contrast, atrazine has been detected in many drinking water well samples, 

especially in the areas where it is used on corn crops.  These data suggest that most members of the 

general population have little or no exposure to atrazine from foods.  People who use products that 

contain atrazine, however, such as those involved in farming, or during its manufacture, or in other uses 

where atrazine has been approved, are more likely to be exposed to atrazine.  It has been estimated that 

approximately 1,000 industrial workers are exposed to atrazine per year (NIOSH 1989).  People who live 

in regions where atrazine is used may be exposed to atrazine in drinking water that is obtained from wells.  

In studies of drinking water wells in midwestern states, atrazine was found in up to 41% of the municipal 

wells tested (Kolpin et al. 1997a).  In Maine, it was detected in 31% of the drinking water wells (Bushway 

et al. 1992).  Nationwide, the EPA estimated that atrazine was present in 1,570 community water source 

(CWS) wells and in 70,800 rural domestic wells (EPA 1990a). 

 

6.2 RELEASES TO THE ENVIRONMENT 

 

All atrazine is commercially produced for the control of broad-leaf and other weeds, in formulations 

designed for preemergence or postemergence of crops, or for weed control in nonspecific applications, 

such as the treatment of fallow land or highway right-of-ways.  Therefore, all manufactured atrazine is 

expected to be released to the environment, primarily soils, during these activities.  Release data 

generated for the Toxics Release Inventory (TRI) (e.g., Table 6-1) also details release, but should be used 

with caution because only certain types of facilities are required to report, and data from these reports do 

not represent an exhaustive list of all commercial releases.  It should be noted that for atrazine, since it is 

one of the most widely-used agricultural herbicides in the United States, the TRI data represent only a 

small fraction of the environmental release.
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or 
Use Atrazine 

 
Reported amounts released in pounds per yeara 

Stateb 

Number 
of 
facilities Airc Water 

Under-
ground 
injection  Land 

Total on-site 
released 

Total off-
site 
releasee  

Total on 
and off-site 
release 

AL 1 672 11 0 0 683 0 683 

AR 2 500 5 0 0 505 250 755 

FL 4 250 No data 0 510,160 510,410 187,372 697,782 

GA 1 0 No data 0 0 0 0 0 

IA 3 3,428 0 0 0 3,428 12,933 16,361 

IL 2 521 No data 0 0 521 500 1,021 

LA 1 18,816 668 535 0 20,019 13,628 33,647 

MI 1 10 0 0 0 10 0 10 

MO 2 158 0 0 0 158 0 158 

MS 1 500 250 0 0 750 0 750 

NE 4 7 0 0 0 7 38 45 

OH 2 10 0 0 0 10 755 765 

Total 24 24,872 934 535 510,160 536,501 215,476 751,977 

 
Source:  TRI01 2003 
 
aData in TRI are maximum amounts released by each facility. 
bPost office state abbreviations are used. 
cThe sum of fugitive and stack releases are included in releases to air by a given facility. 
dThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
eTotal amount of chemical transferred off-site, including to publicly owned treatment works (POTW). 
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Table 6-1 shows the 2001 TRI releases of atrazine from manufacturing or processing facilities to different 

environmental compartments.  Most of the atrazine released to the environment from these facilities was 

released to soils.  Of the 24 facilities producing or processing atrazine, 15 facilities reported that a total of 

24,872 pounds (11,282 kg) were released to the air, four facilities reported releasing 934 pounds (423 kg) 

to surface water, one facility reported release of 535 pounds (243 kg) by underground injection, and three 

facilities reported release of 510,160 pounds (231,405 kg) to land (TRI01 2003).  The releases to land 

represented 95% of the total releases of atrazine (TRI01 2003).  All three sites reporting releases to land 

are located in Florida.  Two of those sites were owned by one company, and the combined amount 

released to land from those two sites was over half (51%; 260,160 pounds; 118,007 kg) of the total 

atrazine released to land.  These high releases in Florida were a result of Standard Industrial Code 

activities related to sugar cane and sugar beet processing, and activities related to disposal and refuse 

systems (# 4953). 

 

Release of atrazine from these facilities has changed from year to year since the TRI listing for atrazine 

began in 1995 (TRI01 2003).  Reported air releases have ranged from a low of 20,946 pounds (9,501 kg) 

released in 1999 to a high of 35,119 pounds (15,930 kg) released in 1997.  Surface water releases have 

ranged from a low of 934 pounds (423 kg) released in 2001 to a high of 2,756 pounds (1,250 kg) released 

in 1998.  Land releases have fluctuated more, with the lowest amount (388,928 pounds; 176,417 kg) 

being released in 1997 and the highest amount (637,036 pounds; 288,958 kg) being released in the year 

that reporting began (1995).  It should be emphasized, however, that TRI does not report agriculture-

related releases, and that atrazine is one of the most widely used herbicides in the United States.  For 

example, in 1981, for the state of New York alone, an estimated 2,495,800 pounds (1,132,087 kg) of 

atrazine were applied to soils for herbicidal use (Walker and Porter 1990).   

 

The TRI data should be used with caution because only certain types of facilities are required to report.  

This is not an exhaustive list. 

 

In addition to releases related to agricultural or other weed treatment usage, atrazine has been identified in 

several environmental compartments including surface water, groundwater, soil and sediment collected at 

20 of the 1,636 current or former NPL hazardous waste sites (HazDat 2003).  
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6.2.1 Air  

 

Atrazine has been detected in the atmosphere, both nearby and distant from areas where it has been 

applied as a pesticide.  In addition to detecting atrazine in the atmosphere in the vicinity of and distant 

from where it is used in agricultural or other broad-leaf weed control activities, atrazine has also been 

detected in the air near 14 of 22 manufacturing or processing facilities that report atrazine releases (TRI01 

2003).  The total amount of atrazine released to the atmosphere by these sites was 33,807 pounds 

(15,335 kg).  In contrast to detecting atrazine in the atmosphere in relation to TRI-reported manufacture, 

processing, or agricultural practices, atrazine was not identified in air samples near the 20 sites collected 

from the 1,636 NPL hazardous waste sites where it was detected in some environmental media (HazDat 

2003). 

 

When atrazine was measured in the air near its agricultural or other applications, in some cases, it was 

only been found in the atmosphere during the first month following the application of the herbicide to 

crops (Elling et al. 1987).  In other cases, it was found at 4 months (Chevreuil et al. 1996) to 8 months 

afterwards (Wu 1981).  The manner in which atrazine is applied to the fields may influence its entry (i.e., 

volatilization) to the atmosphere.  Cumulative volatilization of atrazine from conventionally- tilled fields 

was equal to 14% of the amount applied, but only 9% of the total applied amount was volatilized from no-

till fields (Weinhold and Gish 1994).  Glotfelty et al. (1989) measured the volatilization of atrazine and 

other pesticides from moist and dry soils, and found that 2.4% of the applied atrazine had volatilized after 

21 days.  The total mass of atrazine that was volatilized to the atmosphere can be calculated using these 

percentages and the quantities used on croplands.  The highest reported amount of atrazine used on 

croplands was 90,340,000 pounds in 1976 in the United States (Section 5.3; Ribaudo and Bouzaher 

1994).  If one assumes that 2.4% of this volatilized, then the amount of atrazine was distributed to the 

atmosphere was 2,168,160 pounds.  If one assumes that 14% was volatilized, then 12,647,600 pounds was 

distributed to the atmosphere.  The lowest amount of atrazine reported was in 1964, where 

10,837,000 pounds of atrazine was used on all crops (Ribaudo and Bouzaher 1994).  In this case, 2.4% 

volatilization would represent 260,088 pounds being distributed to the atmosphere; 14% volatilization 

would represent 1,517,180 pounds being distributed.  For comparison, in 1997, 74,560,407 pounds of 

atrazine was applied to crops in the United States (NCFAP 2000).  If one assumes that 2.4% of this 

volatilized, then this represents 1,789,450 pounds of atrazine being distributed to the atmosphere.  If one 

assumes that 14% was volatilized, then this represents 10,438,457 pounds.  In all cases, the amounts 

distributed to the atmosphere represent significantly more than the amounts distributed to the atmosphere 

as a result of manufacture or disposal.  
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6.2.2 Water  

 

According to the TRI, 1,034 pounds (469 kg) of atrazine were released to water from four facilities that 

manufacture or process atrazine (TRI01 2003).  Atrazine has been identified in groundwater and surface 

water at 12 and 9 of the 1,636 NPL hazardous waste sites, respectively, where it was detected in some 

environmental media (HazDat 2003).  Atrazine may also be found in surface and groundwater as a result 

of its formulation, manufacture, use and disposal.  In addition, atrazine has been found in surface water 

and groundwater, as well as in drinking water wells, as a result of its application to crop fields as a 

preemergence herbicide.  It has been detected in groundwater more frequently than any other pesticide 

(Dorfler et al. 1997; Koskinen and Clay 1997). 

 

As a result of surface runoff from agricultural application and deposition by precipitation, atrazine is 

commonly found in streams, rivers, and lakes (Gaynor et al. 1995), salt marshes and their sediments 

(Meakins et al. 1995), and the ocean (Bester and Huhnerfuss 1993).  It is found in higher concentrations 

in waters near high usage areas, such as the corn-belt in the upper midwest in the United States (Thurman 

et al. 1991). 

 

6.2.3 Soil  

 

Atrazine is widely used as a preemergence herbicide, and has been broadly applied to agricultural soils.  It 

is commonly found in agricultural soils following application for several weeks to a few years.  Atrazine 

may also be found in soils as a result of its formulation, manufacture, and disposal.  According to the TRI, 

501,732 pounds (227,582 kg) of atrazine were released to soil from four facilities that manufacture or 

process atrazine (TRI01 2003).  Atrazine has been identified in soil and sediments in 7 and 6 of the 

1,636 NPL hazardous waste sites, respectively, where it was detected in some environmental media 

(HazDat 2003).  According to Ribaudo and Bousahar (1994) 49,553,000 pounds (22,477,093 kg) of 

atrazine were used on 45,333,000 acres (18,346,014 hectares) of corn in the United States in 1993; the 

maximum reported usage was in 1976, when 90,340,000 pounds (40,839,154 kg) of atrazine were used in 

all agricultural applications. 
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6.3 ENVIRONMENTAL FATE  

 

This section refers to the transport and partitioning of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine, 

the major component in technical-grade atrazine and the primary component of most atrazine-containing 

herbicides.  Please see Section 4.1, Chemical Identity, for a discussion of the few impurities documented 

in technical-grade atrazine.  It is reported to only contain three classes of impurities, dichlorotriazines, 

hydroxytriazines, and tris(alkyl)aminotriazines.  Little information is available on the fate of these 

impurities (HSDB 2001). 

 

6.3.1 Transport and Partitioning  

 

Atrazine has been detected in the atmosphere, both nearby and distant from areas where it has been 

applied as a pesticide.  Based on its vapor pressure, atrazine will exist in both the particulate and vapor 

phases in the atmosphere, but should tend to exist more in the particulate phase than in the vapor phase.  

However, atrazine has been shown to volatilize from agricultural soils in the United States (Glotfelty et al. 

1989; Weinhold and Gish 1994), and has been found in the vapor phase in the atmosphere (Chevreuil et 

al. 1996), in association with fog (Glotfelty et al. 1987) and rainwater (Bester and Huhnerfuss 1993; 

Trevisan et al. 1993; Wu 1981).  In some monitoring studies, atrazine was found in the atmosphere only 

during the first month following the application of the herbicide to crops (Elling et al. 1987); in other 

cases, it was found 4 months (Chevreuil et al. 1996) to 8 months after application (Wu 1981). 

 

The manner in which atrazine is applied to the fields may influence its volatilization to the atmosphere.  

Cumulative volatilization of atrazine from conventionally tilled fields was equal to 14% of the amount 

applied, but only 9% of the total applied was volatilized from no-till fields (Weinhold and Gish 1994).  

Air concentrations of atrazine vary with application season; concentrations usually range from just above 

the detection limit of ~0.03 ng/m3 to more typical concentrations of 0.20–0.32 µg/m3 (Trochimowicz et al. 

2001). 

 

Atrazine can be detected significant distances (100–300 km; 62–186 miles) away from the closest 

application area (Thurman and Cromwell 2000; Thurman et al. 1995) as a result of atmospheric transport.  

Atrazine is removed from the atmosphere by both precipitation and dry deposition, but precipitation is 

thought to be the primary mechanism for atrazine removal (Thurman and Cromwell 2000).  In a study 

conducted in Germany, it was detected in 22–29% of precipitation samples collected over a 2-year period 
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(Siebers et al. 1994), with average concentrations ranging from 0.044 to 0.105 µg/L.  In a study conducted 

on rainfall in the state of Iowa, 39% of 325 rainwater samples contained atrazine at concentrations 

ranging from 0.1 to 40 µg/L (Koskinen and Clay 1997).  The average and median amounts detected were 

0.91 and 0.34 µg/L, respectively.  Atrazine concentrations ranged from <5 to 380 ng/L (median=50 ng/L) 

in rainfall collected from a rural site near Paris, France.  In an urban collection area in Paris, the range 

was <5–400 ng/L (median also 50 ng/L) (Cheveuil et al. 1996).  In a study of airborne dust samples from 

South Dakota, 50% of the collected samples contained atrazine or other triazine herbicides; 

concentrations of the total triazine herbicides in these dust samples ranged from 0.29 to 0.76 µg/g. 

 

Atrazine can leach through the soil column and contaminate groundwater.  When atrazine is deposited 

into aquatic matrices, some is expected to remain in the water column and some is expected to partition 

into the sediments.  Atrazine has a measured log octanol/water partition coefficient (log Kow) of  

2.6–2.71 (Brown and Flagg 1981; Hansch et al. 1995) and has a solubility in water of 34.7 mg/L (Ward 

and Weber 1968).  Atrazine has been shown to be relatively mobile in soils (Redondo et al. 1997; 

Southwick et al. 1995).  In a silt loam soil, atrazine migrated almost as quickly at the conservative 

bromide tracer (Starr and Glotfelty 1990).  Due to its high mobility, atrazine is commonly found in 

groundwater and as a contaminant of drinking water wells.  In a study of groundwater sites in Iowa, 

atrazine was found in up to 41% of the 106 municipal wells tested in midwestern states (Kolpin et al. 

1997a). 

 

Experimentally-measured adsorption coefficients (log Koc) for atrazine have been determined and range 

from 1.96 to 3.38.  However, studies have not demonstrated a relationship between the measured log Koc 

and organic matter content (Dousset et al. 1994; Koskinen and Rochette 1996; Weber 1991).  This 

suggests that the adsorption of atrazine to soil is influenced by processes other than interactions with soil 

organic matter, such as interactions with clays or coatings on quartz minerals.  Koskinen and Rochette 

(1996) observed this type of disparity between the Koc of atrazine and soil moisture variations, and 

suggested that different types of interactions occur under different moisture regimes.  Changes in the test 

conditions allowed for different interactions to occur between the atrazine and the clay minerals and soil 

organic matter.  Wetting and drying cycles also enhanced the sequestration of atrazine in soil samples 

compared to those in which atrazine was exposed to continuous moisture (Kottler et al. 2001). 

 

Following application to crop soils, most atrazine is found at the highest concentrations in the upper 

layers of soil, as a result of sorption (Koskinen and Clay 1997).  Atrazine’s rate of transport is dependent 

on many soil factors including the soil type, the amount of water that is applied to the soil, the presence of 
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crop residues, and the types of any fertilizers used.  Soil pH may also affect the transport of atrazine.  

Atrazine sorption to soils increased with pH decreasing from 7.5 to 5.6 in a study of 10 Danish aquifer 

materials (Madsen et al. 2000).  However, its mobility through soils, especially through macropores, has 

been demonstrated.  In comparison to two other triazine herbicides (simazine and ametryn), atrazine was 

shown to be the most mobile in subtropical soils (Wang et al. 1996).  Furthermore, the active ingredient 

of the applied herbicide moves more rapidly through soils than its breakdown products (Tasli et al. 1996).  

Its transport has been shown to occur along roots or through earthworm burrows (Koskinen and Clay 

1997).  In soils where mobile colloids are present, atrazine may be adsorbed and carried through 

preferential flow-paths in the soil and finally into groundwater (Sprague et al. 2000). 

 

Atrazine transport varies from soil to soil, and laboratory experiments have suggested both significant and 

restricted movement of atrazine.  In a study that examined of the effects of soil type, especially of sandy 

soils, on mobility, atrazine’s mobility was higher in soils with higher hydraulic conductivities and less 

sorptive capacity (Wietersen et al. 1993).  In contrast, in a soil column study, only small amounts of 

atrazine (~3%) were reported to leach in a sand or silt loam soil to a depth of 60–100 cm; most remained 

in the upper 15 cm of the soil (Koskinen and Clay 1997). 

 

6.3.2 Transformation and Degradation  

 

Atrazine is degraded slowly in most environments, whether by biological or chemical (e.g., photolysis) 

processes.  Klint et al. (1993) observed no biodegradation of atrazine in groundwater or in groundwater 

combined with aquifer sediment systems, over a period of 539 days under anaerobic conditions.  

Anearobic degradation, however, was shown to occur under strongly reducing conditions by Seybold et 

al. (2001).  Abiotic degradation of atrazine occurs by hydrolysis to hyrdroxyatrazine (2-hydroxy-4-ethyl-

amino-6-isopropylamino-s-triazine), but this process is also very slow.  Widmer et al. (1993) observed 

almost no hydrolysis of atrazine in typical groundwater over 19 weeks.  No direct photolytic degradation 

has been detected in natural systems (Curran et al. 1992; Pelizzetti et al. 1990), but it is expected to 

undergo oxidation in the atmosphere in the presence of hydroxyl radicals, with an estimated half-life of 

14 hours.  

 

When atrazine is biodegraded, it is primarily biodegraded by dealkylation, where some organisms remove 

the ethyl moiety, forming deethylatrazine (2-chloro-4-amino-6-isopropylamino-s-triazine).  Other 

microorganisms are effective at removing the isopropyl group, forming 2-chloro-4-ethylamino-6-amino-s-
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triazine.  Still others are capable of degrading atrazine through the formation of hydroxyatrazine.  All of 

these transformations may lead to the complete degradation of atrazine, but this is not always observed.  It 

is somewhat persistent in natural environments, as biodegradation slowly occurs in soils (Mandelbaum et 

al. 1993), sediments (Seybold et al. 1999), and surface waters (Feakin et al. 1994).  In some cases, rather 

that being biodegraded, atrazine residues become incorporated into unextractable residues (Seybold et al. 

1999), which are considered to be less bioavailable than the free parent or metabolite compounds.  

Seybold et al. (1999) showed that 2 years after exposure to atrazine, <2% of extractable atrazine or its 

metabolites remained in two different soil-based sediments. 

 

6.3.2.1 Air  

 

Atrazine has not been observed to undergo direct photolytic degradation in the atmosphere (Pelizzetti et 

al. 1990).  It is, however, expected to undergo degradation in the atmosphere in the presence of hydroxyl 

radicals in the atmosphere.  The half-life of atrazine is estimated to be 14 hours for a hydroxyl radical 

concentration of 5.0x105 OH-/cm3.  It should be stated however, that this rate of photodegradation is 

expected for vapor-phase atrazine only; particulate-phase atrazine would not be expected to undergo 

photodegradation at this rate.  This difference in atmospheric photodegradation rates is important since 

atrazine can be transported significant distances in the atmosphere.  If atrazine existed primarily in the 

vapor phase in the atmosphere, a half-life of 14 hours would be expected to remove most of it from the 

atmosphere prior to deposition. 

 

6.3.2.2 Water  

 

Atrazine degradation in surface waters is slow, and its biodegradation in surface waters has not been 

demonstrably observed.  It has been shown to have long residence times in the water column of lakes and 

streams, with half-lives >200 days.  Photolysis of atrazine has not been demonstrated in water, unless 

substantial amounts of dissolved organic matter of acidic conditions are present (Curran et al. 1992; 

Penuela and Barcelo 2000).  Atrazine degradation in surface waters appears to be primarily due to abiotic 

hydrolysis (Feakin et al. 1994), and losses from small streams were also best explained by an abiotic 

mechanism (Kolpin and Kalkhoff 1993).  Biodegradation of atrazine has not been shown to occur in 

natural waters under aerobic conditions.  Furthermore, no significant atrazine degradation has been 

observed under anaerobic conditions.  Adrian and Suflita (1994) observed no anaerobic degradation of 

atrazine in aquifer slurries.  No degradation of atrazine was observed in an alluvial gravel aquifer over a 
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distance of 90 m and a period of 49 hours.  Atrazine concentrations were significantly reduced in batch 

tests over a period of 194 days; however, analysis suggests that the degradation is from chemical 

reduction and not biodegradation (Pang and Close 1999).  Atrazine was degraded in the aqueous phase 

above anaerobic soil with a half-life of 86 days, under strongly reducing conditions (Seybold et al. 2001).  

Biodegradation has been shown only to occur when pure cultures of atrazine degraders are isolated from 

water or soil samples and grown in the laboratory; the activities of these organisms in the laboratory, 

however, have little or no relevance to natural aquatic biodegradation processes.  Therefore, it appears 

that biodegradative losses of atrazine in aquatic systems are negligible. 

 

6.3.2.3 Sediment and Soil  

 

In a review of the fate of factors that affect atrazine persistence in soils of the United States, Kosikinen 

and Clay (1997) found that its removal half-life in soils ranged from 14 to 109 days, with a median half-

life of 39 days.  They acquired these half-lives from 15 field persistence studies of atrazine.  It should be 

noted that in these determinations, disappearance of atrazine includes all mechanisms of removal 

including biodegradation, photolysis, volatilization, percolation into groundwater, and irreversible 

binding to soils.  Most disappearance patterns were biphasic, with relatively faster disappearance 

occurring over the first few months following application, with slower disappearance kinetics occurring 

over the subsequent time period.  Factors that were shown to affect the length of the half-life included soil 

type and the concentration of applied atrazine.  Tillage practices had a slight influence on degradation, but 

this was not significant (Koskinen and Clay 1997).  

 

Atrazine biodegradation in soils is relatively slow, with half-lives ranging from 4 to 57 weeks (Best and 

Weber 1974; Mandelbaum et al. 1993).  It is somewhat persistent in natural environments, but 

biodegradation slowly occurs in soils (Mandelbaum et al. 1993) and sediments (Seybold et al. 1999).  

Atrazine disappearance has been demonstrated in soils, but its microbial mineralization is not commonly 

observed in soils.  In a study of surface soils, Sinclair and Lee (1992) noted that even with long-term 

(12 years) exposure of soils to atrazine on treated roadsides, the indigenous microbes did not acclimate to 

atrazine, as atrazine was not biodegraded in soils collected from these sites.  After 161 days, 80% of the 

added atrazine had disappeared from the surface soils, but there were no differences between the sterile 

and nonsterile soil treatments.  Furthermore, atrazine was completely stable in all of the subsurface 

samples studied.  Kruger et al. (1997) observed similar trends.  No complete biodegradation 

(mineralization) of atrazine was observed in either saturated or unsaturated soils, at different depths over a 
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period of 120 days.  Moderate amounts (5.8–66%) of the atrazine remained in the soils, depending on the 

amount of water saturation or depth of the soil.  However, these amounts were no different from the 

amounts measured in sterile control soils, strongly suggesting that abiotic mechanisms were responsible 

for the degradation or loss of atrazine.  Although no complete biodegradation was observed, degradation 

products were observed, including deethylatrazine and deisopropylatrazine.  Half-lives calculated from 

the disappearance of atrazine ranged from 36 to 204 days in either the sterile or nonsterile soil.  

 

Rodriguez and Harkin (1997) found slight, but insignificant degradation of atrazine in two different 

subsoils slurries over a period of over 270 days.  Half-lives for atrazine were calculated to be 5.2 and 

1.4 years in the different slurries.  In a soil microcosm study, Dousset et al. (1997) observed no 

mineralization of atrazine in three different soils.  Half-lives for the parent compound were calculated to 

be 66–105 days.  In another study of the fate of atrazine in agricultural soils, atrazine had a half-life of 

25–40 days in three nonsterile soils.  In the control (sterilized) soils, atrazine had similar half-lives of  

37–134 days (Qiao et al. 1996).  Atrazine biodegradation was also measured in forest and grassland soils 

(Entry and Emmingham 1996).  The authors found that after 30 days of incubation, atrazine was not 

degraded in the organic layer of grassland soils, and that only 1.2% degradation was observed in a 

mineral soil.  More degradation was observed in the forest soils, with maximum amounts of 

mineralization (4.3%) observed in soil collected from a coniferous forest.   

 

While little atrazine mineralization has been documented in soils, some studies have noted the formation 

of chlorinated derivatives of atrazine (Koskinen and Clay 1997; Kruger et al. 1997).  Rodriquez and 

Harkin (1997) noted the formation of significant amounts of deethylatrazine (17.6%) and smaller amounts 

of deisopropylatrazine (2.7%) after 270 days in soils.  Dousset et al. (1997) noted the formation of 

s-triazine derivatives following atrazine application, and 33–43% of these became incorporated into 

nonextractable soil residues.  

 

Only a few studies have noted significant biodegradation of atrazine in soils.  In a laboratory study, 

atrazine degradation in some soils was found to be concentration-dependent, with almost complete 

biodegradation of atrazine occurring within 20 weeks in a clay loam soil, at concentrations ranging from 

5 to 5,000 mg/kg (Gan et al. 1996).  By contrast, in a sandy loam soil, biodegradation was faster for the 

lower concentrations of atrazine in comparison to higher concentrations.  At the highest concentration 

studied (5,000 mg/kg), however, no atrazine mineralization was observed in this soil.  The authors did not 

supply a mechanistic explanation for the observed differences.  Another study showed considerable and 

rapid atrazine mineralization in soil collected from the surface and subsurface of an agricultural site in 
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Ohio (Radosevich et al. 1996).  In this study, relatively complete mineralization was observed within 

50 days in soils collected from an area that has been historically exposed to atrazine.  Atrazine 

mineralization half-lives in selected soils ranged from 3.4 to 43 days for surface soils, and from 17 to 

43 days for subsurface samples.  Mineralization was more rapid in soils collected near the surface as 

compared to those collected at depths >5 meters.  The authors noted that some samples collected from 

this area (9 of 14) showed no mineralization of atrazine.  The spatial variability in observed atrazine 

degradation led the authors to conclude that atrazine persistence in some soils was due to a lack of 

atrazine degraders in the soil, and not due to lack of appropriate nutrients or to unfavorable sorptive 

conditions (Radosevich et al. 1996).  Ames and Hoyle (1999) argue that comparisons of bulk sediment 

parameters are useless for predicting biodegradation potential without knowledge of the distribution of 

atrazine-degrading microorganisms.  In a study of atrazine biodegradation in 44 soil samples from a 3 ha 

contaminated agricultural chemical dealership, only samples from the southeastern corner showed 

biodegradation of atrazine.  In most of these samples, atrazine was biodegraded to concentrations below 

detectable levels in 40 and 80 days, which was not predicted by sediment parameters. 

 

Microorganisms (or groups of microorganisms) have been found that can degrade atrazine (Mandelbaum 

et al. 1993; Radosevich et al. 1995, 1996; Struthers et al. 1998; Wenk et al. 1998); the first isolation of a 

bacterium that could completely degrade atrazine, however, was not reported until 1995 (Radosevich et 

al. 1995).  These strains have shown the capacity to degrade atrazine when added to soils contaminated 

with the pesticide, and have been developed for bioremediation applications in both soils and sediments.  

Crawford et al. (1998) showed that an atrazine-degrading bacterium could degrade atrazine under 

denitrifying conditions, and suggested that atrazine degradation occurred in indigenous lake sediments.  

However, no significant degradation occurred (approximately 0.5%) under these conditions.  Therefore, 

while some bacterial strains can degrade atrazine in remediation applications, their activities should not 

be considered relevant to the environmental persistence of atrazine in soil.  Atrazine has not been 

observed to undergo photolytic degradation in soils (Curran et al. 1992), nor abiotic hydrolysis in neutral 

pH groundwater when dissolved organic matter is present (Widmer et al. 1993).  Atrazine was degraded 

in anaerobic soil with a half-life of 38 days under strongly reducing conditions (Seybold et al. 2001). 

 

6.3.2.4 Other Media 

 

The accumulation, persistence, and effects of atrazine have been measured in several other environmental 

media.  These include oceans (Bester and Huhnerfuss 1993) and waste water treatment systems 
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(Nsabimana et al. 1996), as well as in animals (i.e., fish, tadpoles, invertebrates; see below) that inhabit 

freshwater environments.  

 

In the ocean, atrazine has been measured at concentrations ranging from 1 to 100 ng/L (Bester and 

Huhnerfuss 1993), indicating that atrazine can be transported to the ocean, and that degradation during 

transport and residence there may not be rapid.  In waste water treatment systems, atrazine has been 

shown to have little overall effect on treatment processes, but did tend to decrease microbial biomass.  

 

6.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT  

6.4.1 Air 

 

Atrazine has been observed in most air samples where it has been sought.  In some cases, it has been 

detected only in rainwater.  In a study conducted in Italy of the atmospheric fate of 12 different pesticides, 

atrazine was one of the most frequently detected herbicides in rainwater.  In this experiment, atrazine was 

observed in 10 samples out of 146 collected (Trevisan et al. 1993).  In the 10 rainwater samples that 

contained atrazine, its concentrations ranged from 0.15 to 1.99 µg/L, with a median concentration of 

0.88 µg/L.  These amounts fluctuated with the season, such that the highest concentrations were found 

around the month of June, following the earlier spring-time application of the herbicide to crops (Trevisan 

et al. 1993).  These seasonal-based observations were similar to those of Bester and Huhnerfuss (1993) 

who noted higher atrazine concentration in rainwater during the months following application of the 

herbicide.  In France, air concentrations of atrazine fluctuated depending on application season; 

concentrations usually ranged from just above the detection limit of ~0.03 ng/m3 to more typical 

concentrations of 0.20–0.32 µg/m3 in regions in and around Paris, France (Trochimowicz et al. 2001).  In 

a study of airborne dust samples from South Dakota, 50% of the collected samples contained atrazine or 

other triazine herbicides; concentrations of the total triazine herbicides in these dust samples ranged from 

0.29 to 0.76 µg/g (Muller et al. 1997). 

 

Atrazine was detected in 70–96% of weekly rainwater samples taken from urban and agricultural sites in 

Mississippi, Missouri, and Iowa (Majewski et al. 2000).  Positive weekly air samples ranged from 30 to 

75% at urban sites and from 50 to 83% at agricultural sites (Foreman et al. 2000).  Atrazine was detected 

in 76% of rainwater samples and 35% of air samples at a background site in Eagle Harbor, Michigan, 

indicating the potential for atrazine to undergo long-range transport.  The concentration of atrazine in 

precipitation over Lake Michigan was found to be 0.10–0.40 µg/L during a study involving over 
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600 atmospheric samples (gas, particulate, and precipitation) from July 1994 to September 1995.  Annual 

loading into Lake Michigan was found to be 1.04x103 kg/year (Miller et al. 2000).  Another study 

reported that the average atrazine concentrations monitored in the five Great Lakes from 1991 to 1995 are 

well below the U.S. Safe Drinking Water Act Minimum Contaminant Level of 3 µg/L and the Canadian 

Aquatic Life Criteria of 2 µg/L (Tierney et al. 1999). 

 

The difference between atrazine concentrations in urban and rural air was emphasized in a study that 

compared rainwater and air samples from the urban area of Jackson, Mississippi with samples from the 

agricultural region of Rolling Forks, Mississippi (Coupe et al. 2000).  Atrazine was detected in 69% of 

rainwater samples from Jackson with a median concentration of 0.006 µg/L compared to 75% of 

rainwater samples from Rolling Forks with a median concentration of 0.02 µg/L.  Atrazine was detected 

in 29% of particulate samples from Jackson with a median concentration below the detection limit 

compared to 67% of particulate samples from Rolling Forks with a median concentration of 0.058 ng/L.  

Atrazine was detected in 42% of gas samples from Rolling Forks with a median concentration below the 

detection limit.  Atrazine was not detected in gas samples taken from Jackson. 

 

6.4.2 Water  

 

In a study of atrazine distribution to several bodies of water in the northern midwestern United States, 

atrazine was consistently detected in samples collected before crop planting, shortly thereafter, and at 

harvest time.  Atrazine concentrations, however, fluctuated considerably.  It was detected in 91% of 

surface water (river and stream) samples that were collected before crops were planted, and in 98% of 

water samples collected after the crops were planted.  Following the growth season (at harvest), it was 

detected in 76% of the collected water samples.  In a similar set of monitoring studies in Canada, atrazine 

was detected in 80% of the agricultural watershed streams that were sampled.  In this study, 

concentrations were measured in streams in 11 different agricultural watersheds (Frank et al. 1982).  The 

highest concentration that was detected was 33 µg/L, with the average concentrations ranging from 1.1 to 

1.6 µg/L.  Mississippi River samples collected at Baton Rouge, Louisiana from 1991 to 1997 contained 

atrazine with a median concentration of ~0.45 µg/L (Clark et al. 1999).  The flux of atrazine in the 

Mississippi River at Baton Rouge, Louisiana from January 1996 through September 1997 was 963 metric 

tons.  All 129 samples taken from 75 Midwestern streams and rivers in 1998 contained atrazine (Battaglin 

et al. 2000).  The median and maximum concentrations were 3.97 and 224 µg/L, respectively.  Atrazine 

was detected at 14 out of 25 groundwater sites in the same region.  Median and maximum concentrations 
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were 0.010 and 0.410 µg/L, respectively.  The USGS analyzed 2,485 sites from 20 of the nation’s major 

hydrologic basins for pesticides from 1992 to 1996 during the USGS National Water Quality Assessment 

Program (Kolpin et al. 2000).  Atrazine was found in 30% of the samples with a maximum concentration 

of 4.20 µg/L.  Atrazine was detected with a concentration of 5.06 µg/L in samples from flood waters of 

the Nishnabotna River in Southwest Iowa (USGS 2000).  This flood took place in June 1998, shortly after 

chemical application associated with planting of crops. 

 

Concentrations of atrazine in surface waters that are impacted by agricultural use tend to fluctuate with 

the season, with the highest atrazine concentrations being observed in the weeks and months following 

application of the herbicide (Albanis et al. 1998; Battaglin and Goolsby 1999).  Since atrazine is a 

preemergence herbicide, these detections would occur prior to planting and shortly thereafter.  For 

example, atrazine was detected in 91% of 55 surface water (river and stream) samples that were collected 

before crops were planted, and in 98% of 132 water samples collected within 2 weeks of crop planting.  

Following the growth season (at harvest), it was detected in only 76% of 145 of the water samples 

collected (Thurman et al. 1991).  These observations show that atrazine was consistently detected in these 

water samples early in the growth season, but it should be noted that the concentrations of atrazine 

fluctuated considerably.  The samples collected after the crops were planted contained an order of 

magnitude higher concentrations (median concentration .4 µg/L) than either the preplanting or harvest 

samples, which had median concentrations of approximately 0.4 µg/L.  In a similar set of monitoring 

studies in Canada, atrazine was detected in 80% of the agricultural watershed streams that were sampled.  

In this study, concentrations were measured in streams in 11 different agricultural watersheds (Frank et al. 

1982).  The highest concentration that was detected was 33 µg/L, with the average concentrations ranging 

from 1.1 to 1.6 µg/L.  

 

To address the amounts of atrazine that reach streams as a result of agricultural runoff, studies have been 

conducted to investigate the concentrations of atrazine in surface runoff following application (Gaynor et 

al. 1995).  Atrazine concentrations in surface runoff were greatest following application of the herbicide 

to the fields, and it was found that the concentrations varied according to the agricultural practice used.  

The highest maximum amount of atrazine observed in surface runoff, 700 µg/L, occurred when the fields 

were managed by a no-till cultivation practice; lower maximum surface runoff concentrations were 

observed (400 µg/L) when conventional tillage was used.  It should be noted that in the receiving streams, 

atrazine concentrations were about 10-fold lower than surface runoff concentrations.  This difference was 

a result of sorptive and other losses that occurred prior to the surface runoff reaching the surface bodies of 

water (Gaynor et al. 1995), not simply dilution into the larger amount of receiving waters.  It should be 
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noted that the amounts of atrazine lost by volatilization from no-tillage fields vs. conventional tillage 

fields contrast with runoff observations.  Following application of atrazine to conventional tillage fields, 

up to 14% was volatilized.  Less atrazine volatilization (9%) was observed following application to no-

tillage fields (Wienhold and Gish 1994).  Leaching after a heavy rainfall was reported to hinder the 

volatilization of atrazine in freshly tilled soil (Rice et al. 2002).  Atrazine loss due to volatile fluxes was 

7.5% after 20 days, with 59% of the loss occurring within 4 days of treatment. 

 

Based on a 5-year National Survey of Pesticides in Drinking Water Wells (NPS), the EPA estimated that 

atrazine was present in 1,570 CWS wells nationwide (EPA 1990a).  Due to the statistical nature of the 

estimation calculation used, the estimates range from a low of 420 to a high of 2,701 CWS wells.  The 

EPA also estimated that there are 70,800 rural domestic wells contaminated with atrazine (estimates range 

from a low of 13,300 to a high of 214,000) (EPA 1990a).  The estimates assume only that the 

concentration of atrazine would be above the limits of detection (0.12 µg/L) used in the survey.  However, 

the maximum atrazine concentration detected in a CWS well was 0.92 µg/L; the maximum concentration 

detected in a rural domestic well was 7.0 µg/L (EPA 1990a).  A more recent report found maximum 

seasonal and annual average concentrations of atrazine plus chlorinated metabolites to be 61.6 ppb and 

18.9 ppb, respectively, during a 1993–1998 monitoring program of 13 CWS in the United States that use 

surface water (EPA 2002a).  Atrazine is generally found at higher concentrations in CWS that use surface 

water sources compared to those that use groundwater sources. 

 

In a study in Maine, atrazine was detected in 18 out of 58 (31%) drinking water wells.  Most wells 

contained <0.6 µg/L atrazine, but two contained atrazine at concentrations >3 µg/L (Bushway et al. 1992).  

In a study of groundwater underneath irrigated farmland in central Nebraska used primarily for growing 

corn, atrazine was detected in all of the 14 wells tested (Spalding et al. 1980).  Concentrations in these 

wells ranged from 0.06 to 3.12 µg/L, with an average concentration of 0.75 µg/L (Spalding et al. 1980).  

In a study of groundwater sites in Iowa, atrazine was found in 41% of the 106 municipal wells tested in 

1995 (Kolpin et al. 1997a), in 4.4% of 686 rural wells examined during 1988–1989, and in 12% of 

355 groundwater monitoring wells during 1982–1987.  In a broader study of groundwater quality in Iowa, 

209 (19.5%) of 1,485 wells tested contained atrazine at concentrations above 0.1 µg/L (Kolpin et al. 

1997b).  The amounts of atrazine found in wells in Iowa remained relatively constant from 1982 to 1985, 

reflecting the constant usage of atrazine in Iowa agriculture (Kolpin et al. 1997b).  In contrast, a survey of 

103 randomly-chosen farmstead wells in Kansas found that only 4 were contaminated by atrazine 

(Steichen et al. 1988).  The concentrations detected were higher, and changed with season.  The highest 

detected atrazine concentration was 7.4 µg/L during the winter.  When these wells were sampled again 
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during May or June, an even higher maximum concentration of atrazine, 40 µg/L, was detected.  It was 

proposed that the higher levels observed in the spring months reflected usage patterns that had occurred 

prior to sampling.  It should be noted that this study had a relatively high detection limit for atrazine of 

1.2 µg/L (Steichen et al. 1988). 

 

Atrazine is also commonly found in other bodies of water such as man-made canals (Miles and Pfeuffer 

1997), estuaries (Wu 1981), and lakes (Muller et al. 1997).  Triazine herbicides, including atrazine, were 

the most commonly-detected pesticides in a 5-year monitoring study of 27 water sampling stations in 

canals found in southern Florida.  In these canals, atrazine represented 37% of all pesticide detections, 

and was present in the water at concentrations up to 18 µg/L (Miles and Pfeuffer 1997).  As in other 

studies (e.g., surface runoff monitoring studies), atrazine was detected primarily in the months around 

application in the spring.  Similar observations of atrazine concentration fluctuations were noted for the 

Rhode River estuary in Maryland.  Wu (1981) measured atrazine concentrations in this estuary for over 

2 years.  However, atrazine was present in the estuary waters all year, and ranged in concentration from 

0.006 to 0.19 µg/L.  In a longer-term (5-year) study of atrazine in three Swiss lakes, Muller et al. (1997) 

found that the amount of atrazine was very dependent upon the amount of rainfall that occurred during the 

application period, and transport to the lake was dominated by rainfall, not surface runoff.  This was 

suggested by the observation that while the three lakes had very different cachement areas and hydraulic 

properties, atrazine deposition was relatively uniform in each lake receiving similar amounts of rainfall.  

It was estimated that total inputs into the lakes reflected 0.5% of the soil-applied atrazine in a dry 

application period to up to 2% of the soil-applied atrazine during a wet (rainy) application period (Muller 

et al. 1997). 

 

6.4.3 Sediment and Soil  

 

Atrazine residues vary in soils, depending on usage and exposure to climatic patterns that may lead to 

atrazine deposition.  In soils, atrazine has been found at high concentrations resulting from applications.  

Atrazine is moderately persistent in surface soils.  Its concentrations in soils have been shown to slowly 

decline over a periods of 12 months in surface soils, from 0.83 µg/g 6 days following application of 

1.1 kg/ha, to 0.5 µg/g 2 months following application, to 0.08 µg/g 12 months following application 

(Frank and Sirons 1985).  Similar trends of disappearance were observed when it was applied at 

concentrations of 2.2 or 3.3 kg/ha (Frank and Sirons 1985); in all cases, concentrations had dropped by 

approximately 90% over a period of 1 year.  Regardless of the application rate, atrazine had a half-life of 
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approximately 3.3 months in the soils (Frank and Sirons 1985).  The initial atrazine concentration in 

sandy loam samples taken from a plot sewn with maize was 0.670 mg/kg (Konda and Pasztor 2001).  This 

concentration decreased to 0.376 mg/kg (56.2%) after 14 days and 0.242 mg/kg (36.1%) after 28 days.  

Only 1.37% of the initial concentration of atrazine was detected after 140 days.  Atrazine levels were also 

monitored in agricultural soil plots in Minnesota, which showed slightly different trends.  Levels of 

atrazine in the surface layers (0–10 cm depth) of a sandy loam soil dissipated (disappeared or leached) 

over the 13-month study (Gan et al. 1996).  In one test in this study, a high concentration of atrazine, 

representing a spill event (6.3 g/kg), was applied to the soil and its concentrations monitored over 

13 months.  At the end of the monitoring period, only 0.13 g/kg remained in this soil layer.  When normal 

application concentrations (7.2 mg/kg) were applied to the same soil, however, dissipation was slower, 

and after 13 months, concentrations had only been reduced to 2.3 mg/kg.  Similar trends were observed in 

a clay loam soil, but dissipation was somewhat faster and more uniform in the clay loam soil as compared 

to the sandy loam soil (Gan et al. 1996).  A complimentary study examined atrazine dissipation in three 

agricultural soils from Germany.  In all soils, atrazine levels decreased in a relatively linear fashion from 

approximately 5.5 to 1 mg/kg over 110 days.  There was very little difference in the rates of atrazine 

dissipation between soils that were autoclaved and those that were not, especially for acidic soils.  In 

alkaline soils, atrazine dissipation was somewhat faster in the natural soils, showing that microbial 

metabolism had an influence on atrazine fate.  Therefore, concentrations of applied atrazine are not static 

in soils, but will tend to decline over time.  It appears that for neutral to acidic soils, these dissipation 

processes can be primarily abiotic.  

 

6.4.4 Other Environmental Media 

 

Atrazine has been detected in oceans, at concentrations ranging from 1 to 100 ng/L and in estuaries at 

concentrations of 200 ng/L (Bester and Huhnerfuss 1993).  Concentrations were generally higher closer to 

shore, and the monitoring study demonstrated that the Elbe River estuary, located in Germany, is highly 

contaminated with atrazine. 

 

In fish, atrazine had a bioconcentration factor (BCF) of <10 in Leuciscus idus (golden orfe), after a 3-day 

exposure.  In Cyprinus carpio (common carp), the measured BCF was 3–4 in some tissues (liver, kidney, 

and intestine) but only 1 for blood, muscle, and gills (Gluth et al. 1985).  This suggests that atrazine does 

not bioaccumulate to a high degree in fish (Gluth et al. 1985).  It has not been shown to bioaccumulate 

nor to be toxic to Daphia magna, at 10 µg/L (Baun and Nyholm 1996).  BCF values measured for 
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D. magna in natural water were low, ranging from 2.4 to 3.0 (Akkanen et al. 2001).  No toxic effects of 

atrazine were observed in D. magna, fathead minnows (Pimephales promelas), or tadpoles (Rana pipiens) 

in wetland mesocosms, at atrazine concentrations up to of 25 µg/L (for daphnia and tadpoles) or 75 µg/L 

(minnows) (Detenback et al. 1996). 

 

6.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

 

According to the United States National Occupational Exposure Survey performed between 1981 and 

1983 (NIOSH 1989), approximately 1,000 chemical industry workers, 123 of which were female, were 

potentially exposed to atrazine.  Occupational exposure may occur through dermal exposure or inhalation 

exposure during the manufacture, formulation, and application of atrazine.  

 

A study in Maryland examined pesticide metabolite concentrations in 80 randomly selected individuals 

from five counties.  Exposure was evaluated by analysis of urine samples, and for atrazine, the presence 

of atrazine mercapturate (the primary excretory metabolite of atrazine) was evaluated.  This metabolite 

was detected in only one sample out of the 348 total samples collected.  In a similar study, 0.19% of 

529 adults from the National Human Exposure Assessment Survey tested positive for atrazine 

mercapturate in urine samples (Needham et al. 2000). 

 

FDA's Total Diet Study (TDS) has provided data on dietary intake of food contaminants for almost 

40 years (FDA 2000b).  It was initiated in 1961 as a program to monitor radioactive contamination in 

foods following atmospheric nuclear testing.  Since then, it has been enlarged in scope to also monitor 

pesticides, industrial chemicals, toxic and nutritional elements, and vitamin residues in food.  The 

analyses have been performed on foods that have been prepared for consumption, making the final results 

most relevant for a realistic estimate of dietary intake. 

 

Even though atrazine is a widely used pesticide for corn and sugarcane, no atrazine residues were found 

in 16,648 samples of foods tested between 1991 and 1992 (IARC 1999) where a reporting limit of 

50 µg/kg was used.  Atrazine was found in residues of an unspecified number of foods in FDA analyses in 

only two of the years from 1993 to 1999 (FDA 1993, 1994, 1995b, 1996, 1997, 1998, 1999).  In these 

analyses, atrazine was found in an unspecified number of foods in 1997 and 1999, but not in 1993, 1994, 

1995b, 1996, or 1998.  A recent FDA Total Diet Study (FDA 2000a) reported atrazine only in a roasted 

chicken sample at a concentration of 1 µg/kg.  Similarly, the 1998 USDA Pesticide Data Program 
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reported that atrazine was not found in any of 6,643 fruit or vegetable samples, 585 milk samples, or 

298 samples of corn syrup (USDA 1998).  Limits of detection in these cases ranged from 0.01 µg/g or 

0.01–0.33 µg/mL.  In 1999, the same report noted that out of 6,419 fruit and vegetable measurements, 

atrazine was only detected once in a frozen spinach sample at a concentration of 0.028 µg/g.  However, it 

was not detected in 156 analyses of corn syrup, where the limit of detection was 0.002 µg/mL (USDA 

1999).  These data suggest that most members of the general population have little or no exposure to 

atrazine from foods.  In a study conducted in Germany, no atrazine was detected in several foods above 

allowable limits, when analyzed by a dipstick immunoassay approach (Wittmann et al. 1996).  In these 

assays, allowable atrazine concentration limits were 10 mg/kg for mushrooms, spices, coffee, and tea; 

1 mg/kg for sweet corn; 0.5 mg/kg for corn; and 100 µg/kg for other foods (Wittmann et al. 1996).  In all 

samples analyzed, concentrations were below the detection limit of 0.3 µg/L, except for black aromatized 

tea, which had an atrazine concentration of 0.9 µg/L.  

 

Drinking water analysis of agroecosystems in Ontario, Canada, for the years 1987–1991 showed atrazine 

concentrations ranging from 0.05 to 0.65 µg/L, with an average water concentration of 0.162 µg/L and a 

median concentration of 0.126 µg/L (Van Leeuwen et al. 1999). 

 

6.6 EXPOSURES OF CHILDREN  

 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in 3.7 Children’s Susceptibility. 

 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age: from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths, 

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

 

Even though children are exposed to a wide variety of chemicals, including atrazine, there is a lack of 

information from which to estimate their exposure (Quackenboss et al. 2000) to pesticides.  It is expected, 
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however, that since children, due to their behavior and lifestyle, will be exposed to atrazine as a result of 

food preparation and their types of activities.  Babies that are fed formula may be exposed to atrazine in 

drinking water due to their formula being reconstituted with drinking water collected from contaminated 

wells, as well as in their normal drinking water consumption.  In addition, children may be exposed to 

atrazine from home and outside play activities.  These would be as a result of playing on indoor floors 

that may have atrazine-containing dusts, or in yards or play areas outside that may contain atrazine.  

 

A multipathway exposure assessment evaluated exposure of pesticides to children 3–12 years of age in 

the Minnesota Children’s Pesticide Exposure Study (MNCPES), which was a project designed to acquire 

exposure information for children for a variety of pesticides, including atrazine (Quackenboss et al. 

2000).  This assessment sought to address multipath exposures from air, water, food, soil, and residential 

surfaces in the homes of the children.  The study was designed to assess a wide range of households, so 

that different types of living conditions (rural vs. suburban households) could be compared and evaluated.  

A summary of the design strategy and implementation success (Quackenboss et al. 2000) reported that all 

samples had been collected and have been chemically analyzed, and the data were undergoing initial 

statistical analyses.  Initial results from that study (Lioy et al. 2000) have shown that most atrazine is 

transported into the home by an unquantified and unidentified transport mechanism, thought to be 

tracking of soil into the home on shoes and feet (Lioy et al. 2000).  Analysis of the home environment 

showed that it was present in 62 of 102 surface samples of the homes, in 61 of 102 carpet samples, and in 

12 of 100 children hand rinse samples, but only in 2 of 89 of the urine samples collected from the children 

in the study.  Ranges of atrazine in the homes ranged from 0.04 to 6.5 µg/mL of the samples collected 

from the surfaces (expressed in terms of uniform amounts of solution used to extract the sampling 

material).  The relatively common occurrence of atrazine (in more than half of the environmental 

samples) show that children may be exposed to atrazine.  Initial analysis of the urine samples, however, 

showed rare occurrence within potentially exposed children, as only 2 of 89 children had detectable levels 

of atrazine in the urine with concentrations ranging from 0.6 to 22 µg/g creatine (Lioy et al. 2000).  

 

However, recent reports have suggested that more data are needed.  According to a Federal Insecticide 

Fungicide and Rodenticide Act (FIFRA) report on the hazard and dose-response assessment of atrazine 

(Dorsey and Portier 2000), there are not enough data on the risk of atrazine to children, because exposure 

data are not available. 
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6.7 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES  

 

Populations with potentially high exposures include pesticide, manufacturing, and railway workers.  Data, 

however, exist mainly for pesticide workers (IARC 1999).  Denovan et al. (2000) studied the levels of 

atrazine exposure in herbicide appliers by monitoring concentrations in saliva.  Fifteen male pesticide 

appliers were invited to take part in the analysis through NIOSH screening procedures.  Saliva 

concentrations of atrazine were significantly higher on the days that the herbicide was applied, in 

comparison to the days when it was not applied.  Salivary concentrations were shown to peak in the 

afternoon (between 4 and 6 pm) of the day that the atrazine was sprayed, but concentrations decreased by 

bedtime, and were further reduced by the next morning.  Based on observed deviations between subjects, 

saliva concentrations of >10 µg/L were determined to be a plausible predictor of an atrazine exposure.  

While concentrations of atrazine were higher in the samples collected at the end of the work day, atrazine 

concentrations in the saliva the morning following application were not statistically different from 

concentrations on nonspray days, but were approximately twice that of the preseason atrazine saliva 

concentrations.  The median preseason concentration of 0.9 µg/L saliva may represent normal background 

exposure concentrations, since these samples were collected 1 month before the spraying season, or they 

could represent elimination of fat-stored atrazine.  Alternatively, they could indicate low-level exposure 

to atrazine during work near atrazine-contaminated surfaces at the workplace (Denovan et al. 2000).  

 

Other studies conducted on Italian herbicide workers (Catenacci et al. 1990) and on Finnish railway 

workers (Ikonen et al. 1988) demonstrated that urinary atrazine concentrations correlated with atrazine 

concentrations in the air during the work shift, and that the highest amounts of atrazine or atrazine 

metabolites in the urine were excreted either during or immediately following the exposure.  A second 

study of Italian herbicide workers, however, showed no correlation between ambient air concentrations 

and urinary excretion concentrations (Catenacci et al. 1993).  Differences were determined to be related to 

the differential dermal exposure of some workers to atrazine.  Worker exposure was estimated to range 

from 4x10-6 mg/kg/hour for an enclosed cab ground applicator applying atrazine to sorghum, up to a high 

of 1.6x10-3 mg/kg/hour for mixer/loader applicators working on open cab applicators on Florida sugar 

cane (IARC 1999; Lunchick and Selman 1998). 

 

As noted in Section 6.4.2, based on a 5-year NPS, the EPA estimated that atrazine was present in 

1,570 CWS wells nationwide (EPA 1990a).  Due to the statistical nature of the estimation calculation 

used, the estimates range from a low of 420 to a high of 2,701 CWS wells.  The EPA also estimated that 

there are 70,800 rural domestic wells contaminated with atrazine (estimates range from a low of 13,300 to 
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a high of 214,000) (EPA 1990a).  The estimates assume only that the concentration of atrazine would be 

above the limits of detection (0.12 µg/L) used in the survey.  However, the maximum atrazine 

concentration detected in a CWS well was 0.92 µg/L; the maximum concentration detected in a rural 

domestic well was 7.0 µg/L (EPA 1990a).  A more recent report found maximum seasonal and annual 

average concentrations of atrazine plus chlorinated metabolites to be 61.6 and 18.9 ppb, respectively, 

during a 1993–1998 monitoring program of 13 CWS in the United States that use surface water (EPA 

2002b).  It is noted that atrazine is generally found at higher concentrations in CWS that use surface water 

sources compared to those that use groundwater sources. 

 

6.8 ADEQUACY OF THE DATABASE  

 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of atrazine is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of atrazine. 

 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

 

6.8.1 Identification of Data Needs  

 
Physical and Chemical Properties.    The physical and chemical properties of atrazine are 

sufficiently well defined to allow assessments of the environmental fate of atrazine to be made (Bailey et 

al. 1968; Brown and Flagg 1981; Dousset et al. 1994; Green et al. 1993; Hansch et al. 1995; HSDB 2002; 

Humburg 1999; IARC 1999; Koskinen and Rochette 1996; Meakins et al. 1995; Reiderer 1990; Tomlin 

1997; Verschueren 2001; Ward and Weber 1968; Weber 1991), and no additional information is needed.  
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Production, Import/Export, Use, Release, and Disposal.    Information is needed that provides 

more recent estimates or actual values for quantities of atrazine that are produced, imported, and exported, 

as well as more data on the amounts used in agriculture and other weed-control applications.  

 

Environmental Fate.    The fate of atrazine has been well-studied and reviewed in the current 

literature.  Due to its widespread usage, it is one of the best studied pesticides (IARC 1999; Koskinen and 

Clay 1997); however, biodegradation has rarely been documented in soils or in groundwater, suggesting 

that indigenous microorganisms that degrade atrazine are lacking.  Since atrazine is observed to undergo 

degradation in some soils, more environmental fate studies are needed to determine the factors and 

mechanisms that permit degradation in these soils compared to soils where it is not observed.  In addition, 

to better understand how atrazine interacts with the soil environment, more research is needed to 

determine the nature of the sorptive interaction(s) between atrazine and the particulate and chemical 

environment of different soils.  This will provide either an explanation of the relatively wide range of 

observed Koc values, or it may provide a better estimate of its true Koc.  

 

Bioavailability from Environmental Media.    No additional information on the bioavailability of 

atrazine from environmental media is warranted at this time.  

 

Food Chain Bioaccumulation.    Little food chain accumulation of atrazine has been observed, as it 

does not tend to bioaccumulated; thus, no additional data are needed. 

 

Exposure Levels in Environmental Media.    No additional information on exposure levels of 

atrazine in environmental media is warranted at this time. 

 

Exposure Levels in Humans.    Due to the widespread usage of atrazine, but lack of toxicological 

effects, more data are needed to verify whether exposures to atrazine can lead to toxicological effects.  

Most exposure level evaluations have occurred in applicators; more data are needed for farmers.  

 

Exposures of Children.    There is current research evaluating pesticide exposures to children in 

Minnesota.  However, more data are needed, as is indicated in the FIFRA report on the hazard and dose-

response assessment of atrazine (Dorsey and Portier 2000).  This research should yield valuable 

information regarding childhood atrazine exposures in the near future.  
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Child health data needs relating to susceptibility are discussed in Section 3.12.2 Identification of Data 

Needs: Children’s Susceptibility. 

 

Exposure Registries.    No exposure registries for atrazine were located.  This substance is not 

currently one of the compounds for which a subregistry has been established in the National Exposure 

Registry.  The substance will be considered in the future when the chemical selection is made for 

subregistries to be established.  The information that is amassed in the National Exposure Registry 

facilitates the epidemiological research needed to assess adverse health outcomes that may be related to 

exposure to this substance.  

 

6.8.2 Ongoing Studies  

 

The Federal Research in Progress (FEDRIP 2002) database and the Current Research Information System 

(CRIS 2002) provide additional information obtainable from ongoing studies that may fill in some of the 

data needs identified in Section 6.8.1.  These studies are summarized in Table 6-2.  The successful 

completion of these projects will contribute to better understanding of environmental fate of atrazine, a 

better set of approaches to study the fate of atrazine in environmental matrices, and a better set of 

agricultural practices that could reduce the levels of atrazine exposure to humans. 

 

Research planned by the EPA will involve monitoring of triazines and their degradation products 

(including atrazine) in drinking water as prescribed by the Safe Drinking Water Act (SDWA) for 

chemicals on the Contaminant Candidate List (CCL).  EPA will use these data to determine if further 

regulation is required for these chemicals according to the SDWA.  
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Table 6-2.  Ongoing Studies on the Potential for Human Exposure to Atrazine 
 

Investigator Affiliation Research description Sponsor 

Bleam W University of 
Wisconsin,  
Madison, Wisconsin 

Analysis of hydrogen bonding of atrazine by 
NMR approaches.  Goal is to better describe 
interactions of atrazine with soil organic matter. 

National Center 
for Research 
Resources 

Camper ND, 
Riley MB 

Clemson University, 
Clemson, South 
Carolina 

Evaluation of SPE approaches for improving 
extraction of and stabilization of pesticides from 
water samples.  Sampling and approaches were 
tested, and stability of environmental samples 
was shown to be better when shipped in SPE 
matrices as compare to shipment of water 
samples.  Should lead to better accuracy of 
determinations of pesticides in aquatic matrices. 

Hatch award  

Currie RS CSREES, Kansas Evaluation of registered and experimental 
herbicides in replicated experiments for weed 
control and crop tolerance.  Weed control tactics 
will be developed that integrate cultural, 
mechanical, and chemical weed control 
methods.  Biological, physiological, and 
ecological characteristics of some major weed 
species and the interactive affects in crops will 
be studied. 

Hatch 

Grichar WJ Texas A&M 
University, College 
Station, Texas 

Develop cultural practices that increase soil 
stability, reduce wind and water erosion.  Found 
that some combinations of atrazine with other 
pesticides (pendimethalin) resulted in stunted 
grain sorghum growth.  

Hatch 

Griffin JL Lousiana State 
University, Baton 
Rouge, Louisiana 

Determine efficacy of pre- and post-emergence 
herbicides on common weeds in southern 
Louisiana crops.  Found that weeds common in 
sugar cane crops were not resistant to atrazine, 
but that the atrazine was not commonly applied 
at the correct time for control of this weed.  

Hatch 

Huang H-M Jackson State 
University, Jackson, 
Mississippi 

Examination of the relative and combined roles 
of photolysis and microbial degradation on the 
fate of atrazine in surface waters, as well as to 
assess mutagenicity or toxicity of reaction 
products.  

National 
Institute of 
General Medical 
Sciences  

Johnston CT CSREES, Indiana Development of improved models to predict 
pesticide fate and transport in soils based on soil 
sorption data. 

Hatch 

Leidy RB North Carolina State 
University, Raleigh, 
North Carolina 

Development of SPE approaches for collection 
and stabilization of pesticides from water 
samples.  Research will try to demonstrate that 
the SPE disks improve stability of sample during 
transport (over shipment of water samples), and 
will result in less error between test labs.  

Hatch 

Leidy RB North Carolina State 
University, Raleigh, 
North Carolina 

Validate methods for analyses conducted with 
3M Empore disc membranes for pesticides 
including atrazine.  

Hatch 
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Table 6-2.  Ongoing Studies on the Potential for Human Exposure to Atrazine 
 

Investigator Affiliation Research description Sponsor 

Montvaldo R 
et al. 

University of Puerto 
Rico, Mayaguez, 
Puerto Rico 

Evaluation of SPE approaches for sampling 
water for pesticides.  Testing of sample showed 
excellent recoveries of test pesticides.  Will lead 
to better analysis of pesticides in field samples 
by minimizing transportation and storage losses.  

Hatch 

Mueller TC University of 
Tennessee, 
Knoxville, Tennessee 

Evaluation of SPE approaches for stabilization of 
pesticides in water.  Research demonstrated that 
the SPE approaches improved pesticide stability 
during transport. 

Hatch 

Nkedi-Kizza P SAES, Florida Examination of the influence of physical, 
chemical, and mineralogical soil properties that 
influence the fate and transport of organic 
pesticides in the environment. 

State 

Pignatello JJ, 
Xing B 

CSREES, 
Connecticut 

Investigation of the causes of “non-ideal” 
sorption and development of experiments to 
further test a previous hypothesis that soil 
organic matter behaves like a glassy polymer in 
regard to its sorptive properties. 

Cooperative 
agreement 

Radosevich M 
et al. 

CSREES, Delaware Investigation of the link between the diversity, 
frequency, and expression of genes encoding 
the atrazine degradative pathway and observed 
aerobic and anaerobic degradation rates in 
environments with and without a prior history of 
atrazine application. 

NRI 

Senseman SA Texas A&M 
University, College 
Station, Texas 

Investigation of the environmental fate of 
herbicides in water, soil, and plants by evaluation 
of runoff, sorption, and degradation of herbicides 
in different environmental compartments.  
Examined SPE extraction, along with 
supercritical fluid extraction from samples.  

Hatch 

Sims GK, 
Wax LM 

Agricultural Research 
Service, Illinois 

Identification of mechanisms of herbicide 
persistence associated with carryover damage 
and offsite movement.  Study of the susceptibility 
of weed seeds to microorganisms during seed 
decay, the role of microbial inhibition in 
biodegradation of herbicides with anti-microbial 
properties.  Exploration of practical approaches 
to enhance degradation of xenobiotics used in 
agricultural production. 

USDA 

Spalding RF CSREES, Nebraska Examination of the impact of management 
alternatives on groundwater and surface water 
quality and development of in situ aquifer 
methods to remediate groundwater nitrate 
concentrations. 

Hatch 

Yoder RE et al. University of 
Tennessee, 
Knoxville, Tennessee 

Investigation of agricultural production systems 
that minimize off-site movement of pesticides.  
Monitored surface flow, developed better surface 
maps, and analyzed these to better predict 
surface solute transport.  Monitored atrazine 
surface and soil transport. 

Hatch 
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Table 6-2.  Ongoing Studies on the Potential for Human Exposure to Atrazine 
 

Investigator Affiliation Research description Sponsor 

Zhu KY CSREES, Kansas Elucidation of chemical and biochemical 
mechanisms and pathways of pesticide residue 
degradation including characterization of 
degradation products.  Characterization and 
quantification of exposure and effects of 
pesticides and their degradation products on 
target and nontarget organisms. 

Hatch 

 
aSource: CRIS 2002; FEDRIP 2002 
 
CSREES = Cooperative State Research, Education, and Extension Service; NMR = Nuclear Magnetic Resonance; 
NRI = National Research Institute; SPE = solid phase extraction; USDA = U.S. Department of Agriculture 
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The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring atrazine, its metabolites, and other biomarkers of exposure and effect to 

atrazine.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is to 

identify well-established methods that are used as the standard methods of analysis.  Many of the 

analytical methods used for environmental samples are the methods approved by federal agencies and 

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other 

methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA).  

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

 

7.1 BIOLOGICAL MATERIALS 

 

Atrazine can be detected in mammalian biological samples, as well as in foodstuffs related to human 

consumption.  It has been detected in human saliva (Denovan et al. 2000), skin (Lioy et al. 2000; 

Lorberau and Pride 2000), plasma and organ tissues (Pommery et al. 1993), liver samples (Lang et al. 

1996), and urine (Ikonen et al. 1988; MacIntosh et al. 1999) using gas chromatography (GC), high 

performance liquid chromatography (HPLC) (Buchholz et al. 1999), and enzyme-linked immunosorbent 

assay (ELISA) methods (Trochimowicz et al. 2001).  A summary of various methods is supplied in 

Table 7-1. 

 

Human tissue or other samples suspected of containing atrazine are usually extracted from the tissue or 

fluid sample prior to analysis.  For urine analysis, urine samples can be extracted with diethyl ether.  This 

solvent is recovered and combined with ethyl acetate.  The ethyl acetate fraction is evaporated to a 

smaller volume and analyzed by GC (Ikonen et al. 1988).  For liver tissue microsomes, the material is 

extracted with a solvent, such as dichloromethane (Lang et al. 1996), which is then evaporated.  The 

residue containing the atrazine or its metabolites is dissolved in acetonitrile and analyzed by HPLC.  For 

saliva samples, the material is simply centrifuged and then is used directly for ELISA analysis (Denovan 

et al. 2000).
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Table 7-1.  Analytical Methods for Determining Atrazine in Biological Samples 
 

Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detection 
limit 

Percent 
recovery Reference 

Urine  The sample is first amended with 
saturating amounts of sodium chloride, 
then extracted with two volumes of 
diethyl ether; ether layer recovered 
and extracted with ethyl acetate (this 
was reduced to 1/5 its volume by 
evaporation) 

GC 1 µg/L Not 
reported 

Ikonen et al. 
1988 

Plasma, organ 
tissues 

Blood collected in heparinized tubes, 
centrifuged; plasma stored at -20 °C; 
atrazine was extracted from plasma 
with dichloromethane, evaporated to 
dryness under N2, washed with acid 
and base, then dissolved in mobile 
phase (40% water; 60% methanol) 

HPLC 14.25 ng/g 58–61% Pommery et 
al. 1993 

Saliva Saliva collected on a cotton sampler 
(Salivette); the sampler is centrifuged, 
and cotton material removed, leaving 
the filtrate; sample used directly 

ELISA 0.22 µg/L Not 
reported 

Denovan et 
al. 2000 

Liver 
microsomes 

The sample is extracted with 
dichloromethane, and then 
evaporated; the residues are dissolved 
in acetonitrile/aqueous KOH (5 mM) 

HPLC-UV 2–5 pmol 96–103% Lang et al. 
1996 

Food EPA-approved method 4670 for 
drinking water that has been used for 
food; sample is minced or liquified, 
then filted and brought to neutral pH; 
then followed by proprietary ELISA 
method 

ELISA 0.1 µg/L Not 
reported 

SDI 1999 

Eggs Supercritical fluid (carbon dioxide) 
extraction of eggs, followed by hexane 
and benzene in acetone elution, 
followed by GC-NPD analysis  

HPLC 100 µg/kg 90.4% Pensabene 
et al. 2000 

Hand (dermal) 
contamination 

Hand washed in 150 mL of 
isopropanol in a polyethylene bag for 
30 seconds.  Solution transferred to a 
glass jar; 10 mL removed from jar, 
derivatized in diazomethane 
derivitizing agent, silicic acid is added, 
followed by sample filtration and 
analysis by GC-ECD 

GC-ECD 0.01 µg/mL 87.1–103% NIOSH 
1998b 

 
ECD = electron capture detection; ELISA = enzyme-linked immunosorbent assay; EPA = Environmental Protection 
Agency; GC = gas chromatography; HPLC = high performance liquid chromatography; UV = ultraviolet 
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7.2 ENVIRONMENTAL SAMPLES 

 

Atrazine can be determined in environmental samples using chromatographic, spectroscopic, and 

immunogenic methods.  Standard EPA methods include Infrared spectroscopy, GC separation with flame 

ionization detection, and HPLC with detection at 254 nm (ultraviolet [UV]) (Stafford et al. 1992).  

Different GC methods have been used for atrazine detection and quantification and include GC coupled 

with a flame ionization detector (FID) (IARC 1999), GC coupled with an electron capture detector (ECD) 

(Albanis et al. 1998; Lopez-Avila et al. 1992; Trevisan et al. 1993; Walker and Porter 1990), GC coupled 

with a nitrogen-phosphorus detector (NPD) (Albanis et al. 1998; Amistadi et al. 1997; Ferrari et al. 1998; 

Mojasevic et al. 1996; Novak and Watts 1996; Sabik and Jeannot 1998; Trevisan et al. 1993), or GC 

coupled with a mass spectrometer (MS) detector (Albanis et al. 1998; Benfenati et al. 1990; de Almeida 

Azevedo et al. 2000; Hernandez et al. 2000; McLaughlin and Johnson 1997; Sabik and Jeannot 1998).  

Some GC methods have been refined into standard EPA methods for analysis of atrazine in drinking 

water and waste water.  For GC-MS detection of atrazine, EPA methods 508.1 and 525.2 can be used.  

For detection of atrazine by GC-ECD, EPA methods 505 and 551.1 can be used, and for detection by GC-

NPD, EPA methods 507 and 8141A can be used (IARC 1999).  

 

HPLC methods generally use reverse-phase columns such as C-8, C-18, or octadecylsilane (ODS)- 

columns, and the sample constituents are resolved in different solvent systems.  These have included 

acetonitrile/water gradients (Dankwardt et al. 1995), methanol/ammonium acetate gradient (Marcé et al. 

1995), ammonium acetate/water gradients (Abián et al. 1993), or water/methanol gradients (Hogenboom 

et al. 1997).  Detection of atrazine is done using a UV detector (Dankwardt et al. 1995), a diode array 

(Marcé et al. 1995) or MS (Abián et al. 1993; de Almeida Azevedo et al. 2000; Marcé et al. 1995) 

detection.  Immunogenic methods are usually based on ELISA using sheep-based antibodies to atrazine 

(Amistadi et al. 1997; Dankwardt et al. 1995; Turiel et al. 1999).  Other immunogenic methods have been 

developed in which the antibody is bound to a “dipstick”, and this is used to evaluate concentrations of 

atrazine in water or liquid food samples (Wittmann et al. 1996), while other sampling approaches have 

used immuno-affinity systems to concentrate atrazine prior to analysis by GC (Dallüge et al. 1999). 

 

Aqueous samples suspected of containing atrazine may be concentrated and/or partly purified using solid 

phase extraction (SPE) or other approaches.  Different matrices can be used for these SPE extractions, 

including XAD-2 resin-based columns (Baun and Nyholm 1996), or C8 or C18 extraction columns 



ATRAZINE  164 
 

7.  ANALYTICAL METHODS 
 
 

 

(commercially available as “Sep Pak”, “Bakerbond-SPE”, “Bondpac”, “Carbopak”, or others) (Albanis et 

al. 1998; Ferrari et al. 1998; Gaynor et al. 1995; McLaughlin and Johnson 1997; Mojasevic et al. 1996; 

Novak and Watts 1996), or combined solid phase columns.  In the latter case, one combined solid phase 

columns consisted of 66.6% C-18 silica-bonded phase and 33.3% phenyl silica-bonded phase (Benfenati 

et al. 1990).  Subsequent analysis of atrazine-containing samples by GC-MS analysis permitted a 

detection limit of atrazine of 0.002 µg/g (2 parts per trillion).  The use of XAD-2 resins (Baun and 

Nyholm 1996) has been applied to bioassay of atrazine and the SEP-PAK preconcentration has been used 

prior to GC analysis (Mojasevic et al. 1996; Novak and Watts 1996).  The other methods that can be used 

to improve extraction of the atrazine include microwave assisted extractions (Bouaid et al. 2000) and 

supercritical fluid extraction of atrazine from foodstuffs (Pensabene et al. 2000).  A summary of methods 

of analysis of atrazine in environmental samples is supplied in Table 7-2. 

 

7.3 ADEQUACY OF THE DATABASE 

 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of atrazine is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of atrazine.  

 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

 

7.3.1  Identification of Data Needs 

 

Methods for Determining Biomarkers of Exposure and Effect.    Atrazine can be detected in a 

number of human tissues including urine (MacIntosh et al. 1999), plasma (Trochimowicz et al. 2001), 

skin (Lioy et al. 2000), and saliva (Denovan et al. 2000).  Detection limits are not uniformly 

characterized, but for urine, are likely to be 1 µg/L (McIntosh et al. 1999).  There are needs for better and 
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Table 7-2.  Analytical Methods for Determining Atrazine in Environmental 
Samples 

 
Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detecton limit 

Percent 
recovery Reference 

Water Cleanup through immuno-
affinity filter, desorbed by 
glycine buffer, dried, then 
dissolved in ethyl acetate 

GC-NPD 1.5 ng/L (NPD) 88–96% Dalluge et 
al. 1999 

Water Solid phase microextraction of 
samples prepared for method 
validation; samples desorbed 
from SPE material directly in 
the injection port of the GC by 
exposure for 5 minute at 
240 °C 

GC-NPD 7.4 ng/L Not reported Ferrari et al. 
1998 

Subsurface 
waters 

SPE of water samples 
containing atrazine; analysis 
conducted by GC-NPD, 
GC-ECD, or GC-MS; 
2-L volumes of water were 
filtered onto the SPE matrix; 
samples eluted using 
dichloromethane, then 
volumes reduced under a 
stream of nitrogen 

GC-NPD 
GC-ECD 
GC-MS 

2 ng/L 85–110% for 
spiked 
surrogates 

Albanis et 
al. 1998. 

Surface 
waters 

1–20 L of river water extracted 
by liquid-liquid technique 
(dichloromethane-water) or by 
SPE; dichloromethane 
(pesticide containing fraction) 
was collected and evaporated 
to dryness and sample 
dissolved in ethyl acetate; 
SPE with carbon black 
(Carbopack B; 500–666 µm) 
was used as the SPE; 
samples eluted by ethyl 
acetate  

GC-NPD 
HPLC 

0.4 ng/L GC 
0.6 ng/L (HPLC)

67–100%  Sabik and 
Jeannot 
1998 

Sediments, 
aquatic plants 

Material ground in a Wiley-
mill, extracted in ethyl acetate, 
then sonicated material 
treated again, and extracts 
combined, then concentrated 
under a stream of nitrogen; 
dried material was dissolved in 
hexane 

GC-ECD Not reported 90% Bennett 
et al. 2000 
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Table 7-2.  Analytical Methods for Determining Atrazine in Environmental 
Samples 

 
Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detecton limit 

Percent 
recovery Reference 

Water and soil Leachates of water and soil 
used to compare GC to ELISA 
approaches to atrazine 
detection; SPE used to 
concentrate samples prior to 
GC analysis; the RaPID assay 
ELISA kit was used (Strategic 
Diagnostics, Newark, 
Delaware) 

GC-NPD 
ELISA 

Water:   
  100 ng/L GC 
  50 ng/L ELISA
Soil: 
  1.0 µg/kg GC 
  200 ng/kg 
ELISA 

Not reported Amistadi et 
al. 1997 

Water and soil Solid Phase Microextraction of 
pesticides from water sample; 
samples extracted from soil 
using microwave assisted 
extraction into methanol  

GC-MS Water:  40 ng/L 
Soil:  <3 µg/kg 

Soil: >80% Hernandez 
et al. 2000 

Soil EPA method 8081A tested on 
soil extracts using SPE 
extraction followed by hexane 
elution and GC analysis; 
discusses linearity of response 
and reproducibility  

GC-ECD Not reported Not reported  Lopez-Avila 
et al. 1992 

Water and soil EPA approved method 4670 
for drinking water; water 
sample is filtered and brought 
to neutral pH, followed by 
proprietary ELISA method 

ELISA 0.1 µg/L Not reported SDI 1999 

Household 
dust 

Sample collected by two 
different types of samplers 
that mimic uptake of a 
chemical by a person’s hand 
that is placed on dusty 
surfaces; samples washed 
from sampler by sonication in 
hexane, followed by GC 

GC-ECD 0.21 ng/cm2 EL 
4.0 ng/cm2 
LWW 

Not reported Lioy et al. 
2000 

Water AOAC method for analysis of 
pesticides in water, including 
dealkylated atrazine; sample 
is extracted in dichloro-
methane, dried over 
anhydrous sodium sulfate, 
brought up in methanol and 
concentrated  

HPLC-UV 5.0 µg/L 89.6% AOAC 1993
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Table 7-2.  Analytical Methods for Determining Atrazine in Environmental 
Samples 

 
Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detecton limit 

Percent 
recovery Reference 

Air NIOSH method 5602, air 
samples are collected in a 
filter/sorbent tube at a flow 
rate of 0.2–1 L/minute, for a 
total volume of 12–480 L; 
following collection, sample is 
derivitized with diazomethane-
derivitizing agent, silicic acid is 
added, then the sample is 
filtered, and analyzed by 
GC-ECD 

GC-ECD 0.2 µg/sample Not specifically 
reported (all 
analytes tested 
ranged from 
69 to 150%) 

NIOSH 
1998a 

Hand 
contamination 

Hand washed in 150 mL of 
isopropanol in a polyethylene 
bag for 30 seconds; solution 
transferred to a glass jar; 
10 mL removed from jar, 
derivatized in diazomethane 
derivitizing agent, silicic acid is 
added, followed by sample 
filtration and analysis by 
GC-ECD 

GC-ECD 0.01 µg/mL 87.1–103% NIOSH 
1998b 

 
AOAC = Association of Official Analytical Chemists; ECD = electron capture detection; ELISA = enzyme-linked 
immunosorbent assay; EPA = Environmental Protection Agency; GC = gas chromatography; HPLC = high 
performance liquid chromatography; MS = mass spectrometry; NIOSH = National Institute for Occupational Safety 
Chromatography; NPD = nitrogen-phosphorus detector; SPE = solid phase extraction; UV = ultraviolet 
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more uniform extraction methods for background levels of atrazine in the general population.  Based on 

the analysis of atrazine in the saliva of pesticide applicators, levels in saliva appear to be at background 

levels at approximately 0.9 µg/L when sampled from the workers 1 month prior to the spraying season 

(Denovan et al. 2000).  However, it was not known whether these reflected levels of background atrazine 

concentrations or metabolism of fat-stored atrazine in this population of pesticide workers.  Therefore, 

more measures of salivary atrazine levels from the general population, or other potentially-exposed 

populations would be warranted to acquire a better understanding of atrazine background levels and 

background exposure levels.  Other methods that attain a lower detection limit from other biological 

samples (e.g., urine analysis, blood analysis) may provide more sensitivity.  

 

No data were located concerning methods of biological markers of atrazine effects.  Atrazine has little 

toxicological effect, and does not produce uniform cancer-related effects (see Chapter 3) in laboratory 

animals.  Therefore, at this time, it is not expected that accurate biomarkers would be found for atrazine. 

 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media.    Methods for detection of atrazine in water, soil, sediments, food, household dust, subsurface 

samples, and air are based on GC, ELISA, and HPLC.  The media considered to be of most concern for 

human exposure are food, water, and soil.  As shown in Table 7-2, the most sensitive methodologies 

appear to be the ELISA based approaches and the GC-ECD, with detection limits of 0.4 ng/L for GC-

NPD (Sabik and Jeannot 1998) and 2 ng/L for GC-NPD, GC-ECD, and GC-MS (Albanis et al. 1998).  

The ELISA assays will likely provide a much less expensive approach to environmental atrazine 

concentration determinations, with sensitivities approaching the levels of GC.  

 

7.3.2  Ongoing Studies 

 

The information in Table 7-3 was found as a result of a search of Federal Research in Progress (FEDRIP 

2002) and Current Research Information System (CRIS 2002).  These studies are being conducted to 

provide better means for food and environmental sample analysis.  Most of the studies listed are 

examining the use of SPE approaches for better environmental sample stabilization prior to analysis. 
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Table 7-3.  Ongoing Studies on the Development of Analytical Approaches 
to the Study of Atrazine 

 
Investigator Affiliation Research description Sponsor 
Camper ND, 
Riley MB 

Clemson University, 
Clemson, South 
Carolina 

Evaluation of SPE approaches for improving 
extraction of and stabilization of pesticides from 
water samples.  Sampling and approaches were 
tested, and stability of environmental samples was 
shown to be better when shipped in SPE matrices as 
compare to shipment of water samples.  Should lead 
to better accuracy of determinations of pesticides in 
aquatic matrices.  

Hatch award

Giesy J CSREES, Michigan 
State University 

Development of chemical fractionation techniques, 
instrumental analyses, and bioassays to screen for 
"estrogenic" compounds in animal tissues and 
human food stuffs.  Development of the use of 
wildlife sentinels for the effects of these compounds.  
Monitor for ecological health effects.  Exposure 
evaluations. 

Hatch 

Hatfield JL CSREES, New Jersey Develop new and improved methods to detect 
environmentally important compounds and assess 
agricultural impacts on water, soil, and air quality. 
Methods will be developed to extend analytical 
procedures from development to production scale 
application. 

USDA 

Leidy RB North Carolina State 
University, Raleigh, 
North Carolina 

Development of solid phase extraction approaches 
for collection and stabilization of pesticides from 
water samples.  Research will try to demonstrate 
that the SPE disks improve stability of sample during 
transport (over shipment of water samples), and will 
result in less error between test labs.  

Hatch 

Leidy RB North Carolina State 
University, Raleigh, 
North Carolina 

Validate methods for analyses conducted with 3M 
Empore disc membranes for pesticides including 
atrazine.  

Hatch 

Montvaldo R 
et al. 

University of Puerto 
Rico, Mayaguez, 
Puerto Rico 

Evaluation of solid phase extraction approaches for 
sampling water for pesticides.  Testing of sample 
showed excellent recoveries of test pesticides.  Will 
lead to better analysis of pesticides in field samples 
by minimizing transportation and storage losses.  

Hatch 

Mueller TC University of 
Tennessee, Knoxville, 
Tennessee 

Evaluation of SPE approaches for stabilization of 
pesticides in water.  Research demonstrated that the 
SPE approaches improved pesticide stability during 
transport. 

Hatch 
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Table 7-3.  Ongoing Studies on the Development of Analytical Approaches 
to the Study of Atrazine 

 
Investigator Affiliation Research description Sponsor 
Sadowsky 
MJ, Wackett 
LP 

CSREES, Minnesota Investigation of the genetic regulation of the atrazine 
degradation genes by soil factors, such as the 
presence of nitrate and ammonia and triazine 
herbicides, and use these genes to design 
biosensors that can be used to detect triazine 
compounds in soils and water. 

NRI 

 
Source: CRIS 2002; FEDRIP 2002 
 
CSREES = Cooperative State Research, Education, and Extension Service; NRI = National Research Institute;  
SPE = solid phase extraction; USDA = U.S. Department of Agriculture 
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8.  REGULATIONS AND ADVISORIES 
 

International, national, and state regulations and advisories regarding atrazine in air, water, and other 

media are summarized in Table 8-1.  These values have been established because of the potential for 

atrazine to cause adverse health effects in exposed people. 

 

The EPA (IRIS 2002) has calculated a chronic oral Reference Dose (RfD) for atrazine of 

3.5x10-2 mg/kg/day based on a NOAEL of 3.5 mg/kg/day for decreased body weight gain in rats exposed 

for their lifetimes to 70 ppm atrazine in the diet.  The NOAEL of 3.5 mg/kg/day atrazine was divided by 

uncertainty factors of 10 for extrapolation from animals to humans and 10 for human variability in 

sensitivity.  EPA has not derived a Reference Concentration (RfC) for chronic inhalation or done a 

carcinogenicity assessment for lifetime exposure. 

 

No inhalation MRLs have been derived for atrazine due to lack of data.  An MRL of 0.01 mg/kg/day has 

been derived for acute-duration oral exposure (14 days or less) to atrazine based on a NOAEL of 

1 mg/kg/day for decreased body weight gain in pregnant rabbits exposed to atrazine on gestational 

days 7–19 (Infurna et al. 1988) and an uncertainty factor of 100 (10 for extrapolation from animals to 

humans and 10 for human variability).   

 

An MRL of 0.003 mg/kg/day has been derived for intermediate-duration oral exposure (15–365 days) to 

atrazine based on a LOAEL from a 19-day study in which pigs that were administered 1 mg/kg/day 

atrazine in the diet had decreased levels of estradiol-17β (E2), resulting in delayed onset of estrus 

(Gojmerac et al. 1999).  The MRL of 0.003 mg/kg/day was calculated by dividing the LOAEL of 

1 mg/kg/day by an uncertainty factor of 300 (10 to account for the use of a LOAEL for delayed onset of 

estrus, 10 for extrapolation from animals to humans, and 3 for human variability).  An uncertainty factor 

of 3 for human variability was used instead of 10 because the critical effect was identified in a sensitive 

population (young, developing female pigs).  The existing database on the chronic-duration oral toxicity 

of atrazine was considered inadequate for MRL derivation.   
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
INTERNATIONAL 
Guidelines: 

   

 IARC Carcinogenicity classification Group 3a IARC 2001 

 WHO Drinking water guideline 2 µg/L WHO 2001 
NATIONAL 
Regulations and 
Guidelines: 

   

a.  Air:    
 ACGIH TLV–TWA 5 mg/m3 ACGIH 2000 

 NIOSH REL (TWA) 5 mg/m3 NIOSH 2001 
 OSHA PEL (8-hour TWA) 5 mg/m3 OSHA 2001 

b.  Water    
 EPA Drinking water standards 3 µg/L EPA 2001e 

40CFR141.32 
(e)(28) 

 Drinking water standards 
 DWEL 

 
1.0 mg/L 

EPA 2002b 

 MCLG 3 µg/L EPA 2001d 
40CFR141.50 

 MCL 3 µg/L EPA 2001c 
40CFR141.61 

c.  Food    
 EPA Tolerances for residues (ppm) 

 Cattle–fat, meat byproducts,  
 and meat 
 Corn, fodder–field, pop, and  
 sweet 
 Corn, forage–field, pop, and  
 sweet 
 Corn–fresh and grain 
 Eggs 
 Goats–fat, meat byproducts,  
 and meat 
 Guava 
 Hogs–fat, meat byproducts,  
 and meat 
 Horses–fat, meat byproducts, 
 and meat 
 Macadamia nuts 
 Milk 
 Poultry–fat, meat byproducts,  
 and meat 
 Rye grass, perennial 
 Sheep–fat, meat byproducts,  
 and meat 
 Sorghum-fodder and forage 
 Sorghum-grain 

 
0.02 
 
15.0 
 
15.0 
 
0.25 
0.02 
0.02 
 
0.05 
0.02 
 
0.02 
 
0.25 
0.02 
0.02 
 
15.0 
0.02 
 
15.0 
0.25 

EPA 2001h 
40CFR180.220 
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
NATIONAL (cont.)    
 EPA Tolerances for residues (ppm) 

 Sugarcane–fodder and forage 
 Wheat–fodder and straw 
 Wheat, grain 
 
Tolerances for combined residues 
of atrazine and its metabolites 
(ppm) 
 Grass, range 

 
0.25 
5.0 
0.25 
 
 
 
 
4.0 

EPA 2001h 
40CFR180.220 

 FDA Bottled water 3 µg/L FDA 2000b 
21CFR165.110 

 Food additives permitted for direct 
addition to food for human 
consumption—diethanolamide 
condensate based on a mixture of 
saturated and unsaturated 
soybean oil fatty acids (or stripped 
coconut fatty acids) as a surfactant 
in emulsifier blends  

Added to the herbicide 
atrazine for application 
to corn 

FDA 2000a 
21CFR172.710 

d.  Other    
 ACGIH Carcinogenicity classification A4b ACGIH 2000 
 RfD 3.5x10-2 mg/kg/day IRIS 2001 

 Effluent limitations for BOD5 and 
TSS 

 EPA 2001g 
40CFR455.20 

 EPA Toxic chemical release reporting; 
Community Right-to-Know; 
effective date of reporting 

01/01/95 EPA 2001i 
40CFR372.65 

 Standards for hazardous waste 
TSD facilities—Henry’s law 
constant less than 0.1 atm m3/mol 

 EPA 2001b 
40CFR265 
Appendix VI 

 NRC Acceptable daily intakes 2.15x10-2 mg/kg/day HSDB 2001 
STATE    

a.  Air    
 Alaska Air contaminant standard 5 mg/m3 BNA 2001 
 Connecticut HAP 

 8 Hours 
 30 Minutes 

 
100 µg/m3 
500 µg/m3 

BNA 2001 

 Hawaii Air contaminant 5 mg/m3 BNA 2001 

 Kentucky Air quality 
 TAL (8 hours) 
 Significant levels 

 
20 mg/m3 
1.276x10-3 pounds/hour 

BNA 2001 

 Louisiana Hazardous waste; air emission 
standards—compounds with 
Henry’s law constant less than 
0.1 atm m3/mol (at 25 °C) 

 BNA 2001 
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
STATE (cont.)    
 Michigan PEL (TWA) 5 mg/m3 BNA 2001 

 Nebraska Hazardous waste; organic air 
emission standards for tanks and 
containers—compounds with 
Henry’s law constant less than 
0.1 atm m3/mol 

 BNA 2001 

 New Hampshire Toxic air pollutant 
 OEL 
 24-Hour AAL 
 Annual AAL 
 24-Hour de minimus 
 Annual de minimus 

 
5 mg/m3 
18 µg/m3 
12 µg/m3 
1.67x10-3 pounds/hour 
3.91x101 pounds/year 

BNA 2001 

 New Mexico Toxic air pollutant 
 OEL 
 Emissions 

 
5 mg/m3 
0.333 pounds/hour 

BNA 2001 

 New York PEL (TWA) 5 mg/m3 BNA 2001 
 North Carolina PEL (TWA) 5 mg/m3 BNA 2001 
 Washington PEL (TWA) 5 mg/m3 BNA 2001 
 Toxic air pollutants 

 ASIL (24-hour average) 
 
17 µg/m3 

BNA 2001 

 Wisconsin Emission rate with emission point 
<25 feet 
Emission rate with emission point 
>25 feet 

 
4.176x10-1 pounds/hour 
 
1.752 pounds/hour 

BNA 2001 

b.  Water    
 Alabama MCL 3 µg/L BNA 2001 
 Alaska MCL 3 µg/L BNA 2001 
 Arizona Drinking water guideline 3 µg/L HSDB 2001 
 Groundwater protection list  BNA 2001 
 Safe drinking water—reporting limit 0.1 µg/L BNA 2001 
 California Drinking water standard 3 µg/L HSDB 2001 
 Pesticide contamination 

prevention—groundwater 
protection list 

 BNA 2001 

 Colorado Groundwater quality standards 3 µg/L BNA 2001 
 MCL 3 µg/L BNA 2001 
 Connecticut Standards for quality of public 

drinking water—MCL 
3 µg/L BNA 2001 

 Delaware MCL 3 µg/L BNA 2001 
 Florida Contaminant cleanup target level 

 Freshwater surface water criteria 
 Marine surface water criteria 

 
1.8 µg/L (human health) 
1.8 µg/L (human health) 

BNA 2001 

 Georgia MCL for drinking water 3 µg/L BNA 2001 
 Hawaii MCL 3 µg/L BNA 2001 
 Idaho Groundwater quality standards 3 µg/L BNA 2001 
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
STATE (cont.)    
 Illinois MCL 3 µg/L BNA 2001 
 Kansas Surface water quality criteria 

 Aquatic life 
 Acute 
 Chronic 
 Domestic water supply 

 
 
170 µg/L 
3 µg/L 
3 µg/L 

BNA 2001 

 Kentucky MCL 3 µg/L BNA 2001 
 Maine Drinking water guideline 3 µg/L HSDB 2001 
 Private water systems 

 Maximum exposure guideline 
 Action level 

 
4.3x10-2 mg/L 
2.1x10-2 mg/L 

BNA 2001 

 Maryland Drinking water 3 µg/L BNA 2001 
 Michigan MCL 

Effective date 
3 µg/L 
07/30/92 

BNA 2001 

 Minnesota Drinking water guideline 20 µg/L HSDB 2001 
 Mississippi Groundwater standards 3 µg/L BNA 2001 
 Missouri MCL 3 µg/L BNA 2001 
 Nebraska Aquatic criteriad 

 Acute 
 Chronic 

 
330 µg/L 
12 µg/L 

BNA 2001 

 MCL 3 µg/L BNA 2001 
 New Jersey Groundwater quality criteria 

PQL 
3 µg/L 
1 µg/L 

BNA 2001 

 New Mexico MCL 3 µg/L BNA 2001 
 New York Groundwater effluent limitations—

maximum allowable concentration 
7.5 µg/L BNA 2001 

 MCL 3 µg/L BNA 2001 
 North Dakota MCL 3 µg/L BNA 2001 
 Ohio MCL 3 µg/L BNA 2001 
 Oklahoma MCL 3 µg/L BNA 2001 
 Rhode Island Groundwater quality standard 

Preventive action limit 
3 µg/L 
1.5 µg/L 

BNA 2001 

 Rhode Island MCLG 
MCL 

3 µg/L 
3 µg/L 

BNA 2001 

 South Carolina MCL 3 µg/L BNA 2001 
 South Dakota Groundwater quality standards 3 µg/L BNA 2001 
 Tennessee MCL 3 µg/L BNA 2001 
 Texas MCL 3 µg/L BNA 2001 

 Utah Groundwater quality standards 3 µg/L BNA 2001 

 MCL 3 µg/L BNA 2001 

 Vermont Groundwater quality standards 
 Enforcement standard 
 Preventive action level 

 
3 µg/L 
1.5 µg/L 

BNA 2001 

 MCL 3 µg/L BNA 2001 
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
STATE (cont.)    
 Virginia MCLG 

MCL 
3 µg/L 
3 µg/L 

BNA 2001 

 Washington MCLG 
MCL 

3 µg/L 
3 µg/L 

BNA 2001 

 West Virginia Groundwater standards Not to exceed 3 µg/L BNA 2001 
 Wisconsin Groundwater quality standards 

(total chlorinated residues) 
 Enforcement standarde 
 Preventive action limite 

 
 
3 µg/L 
0.3 µg/L 

BNA 2001 

 MCLGf 
MCL 

3 µg/L 
3 µg/L 

BNA 2001 

 Wyoming Groundwater standards—MCL 3 µg/L BNA 2001 
c.  Food  No data  
d.  Other    
 Arizona Soil remediation levels 

 Residential 
 Non-residential 

 
20.0 mg/kg 
86.0 mg/kg 

BNA 2001 

 Arkansas Hazardous waste management—
compounds with Henry’s law 
constant less than 0.1 atm m3/mol 
(at 25 °C) 

 BNA 2001 

 California Hazardous substance list  BNA 2001 
 California Pesticide registration—active 

ingredient that have the most 
significant data gaps, widespread 
use, and suspected to be 
hazardous to people 

 BNA 2001 

 Restricted pesticide —agricultural, 
outdoor institutional, and outdoor 
industrial uses of pesticides 
containing atrazine are prohibited 
in the Pesticide Management 
Zones 

 BNA 2001 

 Colorado Hazardous waste—compounds 
with Henry’s law constant less than 
0.1 atm m3/mol (at 25 °C) 

 BNA 2001 

 Delaware Hazardous waste—compounds 
with Henry’s law constant less than 
0.1 atm m3/mol 

 BNA 2001 

 Florida Toxic substances in the 
workplace—substance list 

 BNA 2001 

 Iowa Restrictions on distribution and use 
of pesticides 

 BNA 2001 

 Massachusetts Containers adequately labeled 
pursuant to federal law 

 BNA 2001 

 Oil and hazardous material list  BNA 2001 
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Table 8-1.  Regulations and Guidelines Applicable to Atrazine 
 

Agency Description Information Reference 
STATE (cont.)    
 Minnesota Hazardous substance  BNA 2001 
 RfD 

Health risk limit 
3.5x10-2 mg/kg/day 
20 µg/L 

BNA 2001 

 Toxic end point Cardiovascular system BNA 2001 
 New Jersey Hazardous substance  BNA 2001 
 South Carolina Hazardous waste—compounds 

with Henry’s law constant less than 
0.1 atm m3/mol 

 BNA 2001 

 Tennessee Hazardous substance site 
remediation goals 

3x10-3 ppm  BNA 2001 

 Washington Pesticide regulation Restricted use pesticide BNA 2001 
 Wisconsin Hazardous waste—compounds 

with Henry’s law constant less than 
0.1 atm m3/mol (at 25 °C) 

 BNA 2001 

 Pesticide product restrictions  BNA 2001 
 
aGroup 3: not classifiable as to its carcinogenicity to humans 

bA4: not classifiable as a human carcinogen 

cGroup C: possible human carcinogen 
dHuman health criteria at 10-5 risk level for carcinogens based on the consumption of fish and other aquatic 
organisms. 
eTotal chlorinated atrazine residues includes parent compound and the following metabolites of health concern: 
2-chloro-4-amino-6 isopropylamino-s-triazine (formerly deethylatrazine), 2-chloro-4-amino-6-ethylamino-s-triazine 
(formerly deisopropylatrazine), and 2-chloro-4,6-diamino-s-triazine (formerly diaminoatrazine). 
fAtrazine, total chlorinated residue includes atrazine and its metabolites, diaminoatrazine, diethylatrazine, and 
deisopropylatrazine. 
 
ACGIH = American Conference of Governmental Industrial Hygienists; AAL = ambient air limits; ASIL = acceptable 
source impact levels; BOD = biological oxygen demand; BNA = Bureau of National Affairs; CFR = Code of Federal 
Regulations; DWEL = drinking water equivalent level; EPA = Environmental Protection Agency; FDA = Food and 
Drug Administration; HAL = health advisory level; HAP = hazardous air pollutant; HSDB = Hazardous Substances 
Data Bank; IARC = International Agency for Research on Cancer; IRIS = Integrated Risk Information System; 
MCL = maximum contaminant level; MCLG = maximum contaminant level goal; NIOSH = National Institute for 
Occupational Safety and Health; OEL = occupational exposure limit; OSHA = Occupational Safety and Health 
Administration; PEL = permissible exposure limit; PQL = practical quantitation level; REL = recommended 
exposure limit; RfD = reference dose; TAL = threshold ambient limit; TLV = threshold limit values; 
TSD = treatment, storage, and disposal; TSS = total suspended solids; TWA = time-weighted average; 
WHO = World Health Organization 
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10.  GLOSSARY 
 
Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 
 
Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 
 
Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 
 
Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 
 
Adsorption Ratio (Kd)—The amount of a chemical adsorbed by a sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 
 
Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10  would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%. The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible.    
 
Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 
 
Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 
 
Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples.  They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 
 
Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 
 
Carcinogen—A chemical capable of inducing cancer. 
 
Case-Control Study—A type of epidemiological study which examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 
 
Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research but are not actual research studies. 
 
Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure.  These may suggest potential topics for scientific research but are not actual research studies. 
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Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 
 
Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 
 
Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 
 
Cross-sectional Study—A type of epidemiological study of a group or groups which examines the 
relationship between exposure and outcome to a chemical or to chemicals at one point in time. 
 
Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 
 
Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 
 
Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 
 
Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 
 
Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 
 
Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.   
 
Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 
 
Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 
 
Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 
 
Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period.  
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Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 
 
Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
 
Immunological Effects—Functional changes in the immune response. 
 
In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 
 
In Vivo—Occurring within the living organism. 
 
Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air which has been 
reported to have caused death in humans or animals. 
 
Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 
 
Lethal Dose(LO) (LDLO)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 
 
Lethal Dose(50) (LD50)—The dose of a chemical which has been calculated to cause death in 50% of a 
defined experimental animal population. 
 
Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 
 
Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 
 
Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 
 
Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 
 
Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 
 
Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a minimal risk 
level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 
 
Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 
 
Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 
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Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 
 
Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 
 
Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 
 
No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 
 
Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 
 
Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) which represents the best estimate of relative risk (risk as a ratio of the 
incidence among subjects exposed to a particular risk factor divided by the incidence among subjects who 
were not exposed to the risk factor).  An odds ratio of greater than 1 is considered to indicate greater risk 
of disease in the exposed group compared to the unexposed. 
 
Organophosphate or Organophosphorus Compound—A phosphorus containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 
 
Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 
 
Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 
 
Pharmacokinetics—The science of quantitatively predicting the fate (disposition) of an exogenous 
substance in an organism. Utilizing computational techniques, it provides the means of studying the 
absorption, distribution, metabolism and excretion of chemicals by the body. 
 
Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models: data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments 
which, in general, do not represent real, identifiable anatomic regions of the body whereby the 
physiologically-based model compartments represent real anatomic regions of the body. 
 
Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically-based dose-
response model which quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance.  
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Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows.  These models require a 
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates and, possibly membrane permeabilities.  The models also utilize biochemical information 
such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also called 
biologically based tissue dosimetry models. 
 
Prevalence—The number of cases of a disease or condition in a population at one point in time.  
 
Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 
 
q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and 
µg/m3 for air). 
 
Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentrations for up to a 10-hour workday during a 40-hour 
workweek. 
 
Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime.  
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 
 
Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL-from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical.  The RfDs are not applicable to 
nonthreshold effects such as cancer. 
 
Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 24-
hour period. 
 
Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 
 
Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 
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Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 
 
Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic, that is associated with an increased occurrence of disease or other health-related 
event or condition. 
 
Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed. 
 
Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually.  No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods.  The daily Threshold Limit Value - Time Weighted Average (TLV-TWA) may 
not be exceeded. 
 
Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 
 
Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 
 
Teratogen—A chemical that causes structural defects that affect the development of an organism. 
 
Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect.  
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 
 
Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 
 
Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 
 
Toxicokinetic—The study of the absorption, distribution and elimination of toxic compounds in the 
living organism. 
 
Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data.  
A default for each individual UF is 10; if complete certainty in data exists, a value of one can be used; 
however a reduced UF of three may be used on a case-by-case basis, three being the approximate 
logarithmic average of 10 and 1. 
 
Xenobiotic—Any chemical that is foreign to the biological system. 
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APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 
 
 
The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99–

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure.  MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects.  These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach.  They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects.  MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 
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MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking.  In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive.  Thus, the resulting MRL may be as much as a hundredfold below levels 

that have been shown to be nontoxic in laboratory animals. 

 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology, expert panel peer reviews, and agency wide MRL Workgroup reviews, with 

participation from other federal agencies and comments from the public.  They are subject to change as 

new information becomes available concomitant with updating the toxicological profiles.  Thus, MRLs in 

the most recent toxicological profiles supersede previously published levels.  For additional information 

regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease 

Registry, 1600 Clifton Road NE, Mailstop E-29, Atlanta, Georgia 30333. 
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MINIMAL RISK LEVEL WORKSHEET 
 
 
Chemical Name: Atrazine 
CAS Number:   1912-24-9 
Date:      September 2003 
Profile Status:   Draft 3 Post-Public 
Route:    [   ] Inhalation [X] Oral 
Duration:   [X] Acute [   ] Intermediate [   ] Chronic 
Graph Key:  23 
Species:   Rabbit 
 
Minimal Risk Level:  0.01   [X] mg/kg/day [   ] ppm 
 
Reference:  Infurna R, Levy B, Meng C, et al.  1988.  Teratological evaluations of atrazine technical, 
atrazine herbicide, in rats and rabbits.  J Toxicol Environ Health 24:307-319. 
 
Experimental design:  Groups of 19 female New Zealand White rabbits were artificially inseminated 
(gestation day 0) and administered 0, 1, 5, or 75 mg/kg/day atrazine (Aatrex) in 3% aqueous corn starch 
containing 0.5% Tween 80 by gavage on gestational days 7–19.  Rabbits were observed twice daily for 
changes in appearance and behavior.  Feed consumption and body weight changes were monitored 
throughout gestation.  Dams were necropsied on gestational day 29.  Ovaries were examined, corpora 
lutea were counted, uteri and contents were weighed, live fetuses and resorptions were counted, and liver 
weights were recorded.  Fetuses were weighed, sexed, and examined for external, visceral, skeletal, and 
soft tissue abnormalities.  
 
Effects noted in study and corresponding doses:  Clinical signs related to treatment were increased 
incidence of stool variations (little, no, or soft stool) and bloody vulva.  Absolute, but not relative, liver 
weight was decreased in the 75 mg/kg/day group.  Food consumption and body weight gain were severely 
reduced during the treatment period in the high dose group, but rebounded after cessation of treatment; 
however, overall body weight gain corrected for weight of the uterus, placentas, and fetuses was 
significantly reduced.  Slight, but statistically significant, reductions in food consumption and body 
weight gain were noted in the 5 mg/kg/day group.   
 
Dose and end point used for MRL derivation: 
 
[ X  ] NOAEL   [  ] LOAEL 1 mg/kg/day in pregnant rabbits, decreased body weight gain at 

$5 mg/kg/day 
 
Uncertainty Factors used in MRL derivation: 
 
 [      ]   10 for use of a LOAEL 
 [ X  ]   10 for extrapolation from animals to humans 
 [ X  ]   10 for human variability 
 
Was a conversion used from ppm in food or water to a mg/body weight dose?  If so, explain: None 
needed. 
 
If an inhalation study in animals, list the conversion factors used in determining human equivalent dose:  
N/A 
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Other additional studies or pertinent information which lend support to this MRL:  The MRL is supported 
by a number of studies showing decreased body weight gain in rats (Cantemir et al. 1997; Cooper et al. 
1996b, 2000; Cummings et al. 2000b; Dési 1983; Eldridge et al. 1994a, 1999a; EPA 1984f, 1987d, 1987e; 
Infurna et al. 1988; Kniewald et al. 2000; Pinter et al. 1990; Santa Maria et al. 1987; Šimić et al. 1994; 
Suschetet et al. 1974; Tennant et al. 1994b; Ugazio et al. 1991a; Vos et al. 1983; Wetzel et al. 1994) and 
dogs (EPA 1987f).  Other effects noted in rabbits in the Infurna et al. (1988) study occurred only in the 
high-dose group (75 mg/kg/day) and included increased incidence of stool variations (little, no, or soft 
stool), bloody vulva, absolute, but not relative, liver weight decrease, and severely reduced food 
consumption and body weight gain.  Slight, but statistically significant, decreases in body weight gain 
occurred in the 5 mg/kg/day group.  Other NOAELs and LOAELs for acute-duration exposures include:  
a NOAEL of 12.5 mg/kg/day for  increased inflammation of the lateral prostate in adult male offspring of 
atrazine-treated rat dams (Stoker et al. 1999); a NOAEL of 5 mg/kg/day for increased resorptions/litter 
and decreased live fetuses/litter in rabbits exposed on gestational days 7–19 (Infurna et al. 1988); and a 
NOAEL of 1 mg/kg/day for developmental effects (decreased fetal body weight; increased incidence of 
nonossification of foot bones and patellae) in offspring of treated rabbit dams (Infurna et al. 1988); and a 
NOAEL of 10 mg/kg/day for developmental effects (incomplete ossification of skull, hyoid bone, teeth, 
forepaw metacarpals, and hindpaw distal phalanges) in rat offspring of dams exposed to 70 mg/kg/day 
(Infurna et al. 1988).  The developmental effects were attributed to severe maternal toxicity related to 
severe decreases in food intake and body weight.  Changes in serum and pituitary hormone levels have 
been seen at exposures of $50 mg/kg/day (Cooper et al. 2000; Stoker et al. 1999). 
 
Agency Contact (Chemical Manager):  Alfred S. Dorsey Jr., DVM 
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MINIMAL RISK LEVEL WORKSHEET 
 
 
Chemical Name: Atrazine 
CAS Number:   1912-24-9 
Date:      September 2003 
Profile Status:   Draft 3 Post-Public 
Route:    [   ] Inhalation [X] Oral 
Duration:   [   ] Acute [X] Intermediate [   ] Chronic 
Graph Key:  74 
Species:   Pig 
 
Minimal Risk Level:  0.003   [X] mg/kg/day [   ] ppm 
 
Reference:  Gojmerac T, Uremovic M, Uremovic S, et al.  1999.  Reproduction disturbance caused by an 
s-triazine herbicide in pigs.  Acta Veterinaria Hungarica 47(1):129-135. 
 
Experimental design:  Groups of nine female Swedish Landrace/Large Yorkshire cross pigs (6–7-month-
old gilts) were administered 0 or 1 mg/kg/day atrazine in the feed for 19 days beginning with the onset of 
estrus (day 0).  Blood samples were drawn 3 times daily at 3-hour intervals on the 5 days immediately 
following the final day of atrazine administration (this corresponded to the expected day of the next estrus 
[day 0] and 2 days before [days -1 and  -2] and 2 days [days 1 and 2] after the expected estrus).  Serum 
17β-estradiol (E2) concentrations in the blood samples were determined.  Histopathological examination 
of the uterus was performed. 
 
Effects noted in study and corresponding doses:  E2 concentrations were statistically significantly different 
(p<0.001) from controls on all 5 days measured.  In controls, E2 concentrations were high on days -2 and 
-1, then dropped on day 0 (beginning of estrus) and remained low on days 1 and 2.  In treated animals, E2 
concentrations were lower than controls on days -2 and -1, and higher than controls on days 0 through 2.  
Treated pigs failed to exhibit overt signs of estrus onset and uterine histopathology indicated a state of 
uterine rest (diestrus) at the end of the observation period.  A slight, but steady increase of E2 hormone 
level was seen in the treated animals on day 24 of the estrus cycle (day 2).  The study authors suggested 
that the balance of the E2 hormone level was being gradually restored, which is the pattern that would be 
anticipated if the animals were about to go into estrus. 
 
Dose and end point used for MRL derivation: 
 
[  ] NOAEL   [ X ] LOAEL 1 mg/kg/day in pigs, delayed onset of estrus 
 
Uncertainty Factors used in MRL derivation:   
 
 [ X  ]   10 for use of a LOAEL 
 [ X  ]   10 for extrapolation from animals to humans 
 [ X  ]   3 for human variability 
 
An uncertainty factor of 3 for human variability was used instead of 10 because the critical effect was 
identified in a sensitive population (young, developing female pigs). 
 
Was a conversion used from ppm in food or water to a mg/body weight dose?  If so, explain: N/A 
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If an inhalation study in animals, list the conversion factors used in determining human equivalent dose:  
N/A 
 
Other additional studies or pertinent information which lend support to this MRL:  Other systemic and 
reproductive effects have been observed in animals exposed to atrazine for 15–365 days.  Decreased body 
weight gain was seen in rats at LOAELs of 2.7 mg/kg/day and above (Cantemir et al. 1997; Cooper et al. 
1996b, 2000; Dési 1983; Eldridge et al. 1994a, 1999a; Kniewald et al. 2000; Laws et al. 2000; Suschetet 
et al. 1974; Trentacoste et al. 2001; Wetzel et al. 1994).  Endocrine gland weights and serum and pituitary 
gland hormone levels were altered in rats at LOAELs as low as 6.9 mg/kg/day for 1 month (Cooper et al. 
1996b, 2000; Eldridge et al. 1994a; Friedmann 2002; Laws et al. 2000; Trentacoste et al. 2001; Wetzel et 
al. 1994).  Disrupted estrus cyclicity was seen in rats at the lowest LOAEL of 6.9 mg/kg/day (Wetzel et 
al. 1994).  Other NOAELs and LOAELs observed included: a LOAEL of 50 mg/kg/day (NOAEL of 
5 mg/kg/day) for increased relative liver weights in Sprague-Dawley and Donryu rats (Aso et al. 2000); a 
LOAEL of 2 mg/kg/day for degeneration of a small number of myocardial fibers, mild degeneration and 
inflammation and mild chronic interstitial hepatitis and subacute glomerulitis, degeneration and 
desquamation of proximal tubules, a 350% increase in serum gamma-glutamyl-transferase, and mild liver 
histological changes in pigs (Ćurić et al. 1999; Gojmerac et al. 1995); a LOAEL of 33 mg/kg/day 
(NOAEL of 4.6 mg/kg/day) for abnormal estrus cycle in Sprague-Dawley rats (Eldridge et al. 1999a); and 
a LOAEL of 2 mg/kg/day for ovarian histopathology, disrupted estrogen and progesterone levels, and 
delayed onset of estrus (Gojmerac et al. 1996), and ovarian cysts and disruption of estrus cyclicity (Ćurić 
et al. 1999). 
 
Agency Contact (Chemical Manager):  Alfred S. Dorsey Jr., DVM 
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APPENDIX B.  USER'S GUIDE 
 
Chapter 1 
 
Public Health Statement 
 
This chapter of the profile is a health effects summary written in non-technical language.  Its intended 
audience is the general public especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 
 
The major headings in the Public Health Statement are useful to find specific topics of concern.  The 
topics are written in a question and answer format.  The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 
 
Chapter 2 
 
Relevance to Public Health 
 
This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions. 
 
 1. What effects are known to occur in humans? 
 
 2. What effects observed in animals are likely to be of concern to humans? 
 
 3. What exposure conditions are likely to be of concern to humans, especially around hazardous 

waste sites? 
 
The chapter covers end points in the same order they appear within the Discussion of Health Effects by 
Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect.  Human data are 
presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  In vitro 
data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered 
in this chapter.  If data are located in the scientific literature, a table of genotoxicity information is 
included. 
 
The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments.  Minimal risk levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 
 
Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 
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Interpretation of Minimal Risk Levels 
 
Where sufficient toxicologic information is available, we have derived minimal risk levels (MRLs) for 
inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic).  These 
MRLs are not meant to support regulatory action; but to acquaint health professionals with exposure 
levels at which adverse health effects are not expected to occur in humans. 
 
They should help physicians and public health officials determine the safety of a community living near a 
chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 
 
MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 
 
MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).   
 
To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest NOAEL that does not 
exceed any adverse effect levels.  When a NOAEL is not available, a lowest-observed-adverse-effect 
level (LOAEL) can be used to derive an MRL, and an uncertainty factor (UF) of 10 must be employed.  
Additional uncertainty factors of 10 must be used both for human variability to protect sensitive 
subpopulations (people who are most susceptible to the health effects caused by the substance) and for 
interspecies variability (extrapolation from animals to humans).  In deriving an MRL, these individual 
uncertainty factors are multiplied together.  The product is then divided into the inhalation concentration 
or oral dosage selected from the study.  Uncertainty factors used in developing a substance-specific MRL 
are provided in the footnotes of the LSE Tables. 
 
Chapter 3 
 
Health Effects 
 
Tables and Figures for Levels of Significant Exposure (LSE) 
 
Tables (3-1, 3-2, and 3-3) and figures (3-1 and 3-2) are used to summarize health effects and illustrate 
graphically levels of exposure associated with those effects.  These levels cover health effects observed at 
increasing dose concentrations and durations, differences in response by species, minimal risk levels 
(MRLs) to humans for noncancer end points, and EPA's estimated range associated with an upper- bound 
individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a 
quick review of the health effects and to locate data for a specific exposure scenario.  The LSE tables and 
figures should always be used in conjunction with the text.  All entries in these tables and figures 
represent studies that provide reliable, quantitative estimates of No-Observed-Adverse-Effect Levels 
(NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs), or Cancer Effect Levels (CELs). 
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The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
 
LEGEND 

See LSE Table 3-1 
 

(1) Route of Exposure One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure.  When 
sufficient data exists, three LSE tables and two LSE figures are presented in the document.  The 
three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and 
dermal (LSE Table 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not therefore have all five of the tables and figures. 
 

(2) Exposure Period Three exposure periods - acute (less than 15 days), intermediate (15–364 days), 
and chronic (365 days or more) are presented within each relevant route of exposure.  In this 
example, an inhalation study of intermediate exposure duration is reported.  For quick reference 
to health effects occurring from a known length of exposure, locate the applicable exposure 
period within the LSE table and figure. 
 

(3) Health Effect The major categories of health effects included in LSE tables and figures are death, 
systemic, immunological, neurological, developmental, reproductive, and cancer.  NOAELs and 
LOAELs can be reported in the tables and figures for all effects but cancer.  Systemic effects are 
further defined in the "System" column of the LSE table (see key number 18). 
 

(4) Key to Figure Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the 2 "18r" data points in Figure 3-1). 
 

(5) Species The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 
 

(6) Exposure Frequency/Duration The duration of the study and the weekly and daily exposure 
regimen are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies.  In this case (key number 18), rats were exposed to 1,1,2,2-tetrachloroethane via 
inhalation for 6 hours per day, 5 days per week, for 3 weeks.  For a more complete review of the 
dosing regimen refer to the appropriate sections of the text or the original reference paper, i.e., 
Nitschke et al. 1981. 
 

(7) System This column further defines the systemic effects.  These systems include: respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular.  "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, 1 systemic effect (respiratory) was 
investigated. 



ATRAZINE  B-4 
 

APPENDIX B 
 
 

 

 
(8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which 

no harmful effects were seen in the organ system studied.  Key number 18 reports a NOAEL of 
3 ppm for the respiratory system which was used to derive an intermediate exposure, inhalation 
MRL of 0.005 ppm (see footnote "b"). 
 

(9) LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest dose used in the study 
that caused a harmful health effect.  LOAELs have been classified into "Less Serious" and 
"Serious" effects.  These distinctions help readers identify the levels of exposure at which adverse 
health effects first appear and the gradation of effects with increasing dose.  A brief description of 
the specific end point used to quantify the adverse effect accompanies the LOAEL.  The 
respiratory effect reported in key number 18 (hyperplasia) is a Less serious LOAEL of 10 ppm.  
MRLs are not derived from Serious LOAELs. 
 

(10) Reference The complete reference citation is given in Chapter 9 of the profile. 
 
(11) CEL A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of 

carcinogenesis in experimental or epidemiologic studies.  CELs are always considered serious 
effects.  The LSE tables and figures do not contain NOAELs for cancer, but the text may report 
doses not causing measurable cancer increases. 
 

(12) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found in 
the footnotes.  Footnote "b" indicates the NOAEL of 3 ppm in key number 18 was used to derive 
an MRL of 0.005 ppm. 
 

LEGEND 
See Figure 3-1 

 
LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures 
help the reader quickly compare health effects according to exposure concentrations for particular 
exposure periods. 
 

(13) Exposure Period The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the intermediate and chronic exposure periods are illustrated. 
 

(14) Health Effect These are the categories of health effects for which reliable quantitative data exists.  
The same health effects appear in the LSE table. 
 

(15) Levels of Exposure concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 
 

(16) NOAEL In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the Table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 
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(17) CEL Key number 38r is 1 of 3 studies for which Cancer Effect Levels were derived.  The 
diamond symbol refers to a Cancer Effect Level for the test species-mouse.  The number 38 
corresponds to the entry in the LSE table. 
 

(18) Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 
 

(19) Key to LSE Figure The Key explains the abbreviations and symbols used in the figure. 
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Reference 

 

   ↓ 

Nitschke et al. 
1981 
 

 

Wong et al. 1982 

NTP 1982 

NTP 1982 

Serious (ppm) 

 

 

 

 

(CEL, multiple organs) 

(CEL, lung tumors, nasal 
tumors) 

(CEL, lung tumors, 
hemangiosarcomas) 

 

11 

↓ 

20 

10 

10 

 

 

LOAEL (effect) 

Less serious (ppm) 

9 

  ↓ 

10 (hyperplasia) 
 
 

 

 

 

 

SAMPLE 

  

NOAEL 
(ppm) 

8 

↓ 

3b 

 

 

 

 

 

 

 7 

System 

 

  ↓ 

 Resp 
 
 

 

 

 

 

 6 

Exposure 
frequency/ 
duration 

 

  ↓ 

13 wk 
5 d/wk 
6 hr/d 

 

18 mo 
5 d/wk 
7 hr/d 

89-104 wk 
5 d/wk 
6 hr/d 

79-103 wk 
5 d/wk 
6 hr/d 

 5 

Species 

 

  ↓ 

Rat 
 
 

 

Rat 

Rat 

Mouse 

TABLE 3-1.  Levels of Significant Exposure to [Chemical x] - Inhalation 

Key to 
figurea 

INTERMEDIATE EXPOSURE 

 

Systemic 

18 
 
 

CHRONIC EXPOSURE 

Cancer 

38 

39 

40 

a   The number corresponds to entries in Figure 3-1. 
b   Used to derive an intermediate inhalation Minimal Risk Level (MRL) of  5 x 10-3 ppm; dose adjusted for intermittent exposure and divided  
 by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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APPENDIX C.  ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
 
ACOEM American College of Occupational and Environmental Medicine 
ACGIH American Conference of Governmental Industrial Hygienists 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AOEC Association of Occupational and Environmental Clinics 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotranferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
DOT Department of Transportation 
DOT/UN/ Department of Transportation/United Nations/ 
    NA/IMCO     North America/International Maritime Dangerous Goods Code 
DWEL drinking water exposure level 
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ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank  
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System   
Kd adsorption ratio 
kg kilogram 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LCLo lethal concentration, low 
LC50 lethal concentration, 50% kill 
LDLo lethal dose, low 
LD50 lethal dose, 50% kill 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LT50 lethal time, 50% kill 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
MCL maximum contaminant level 
MCLG maximum contaminant level goal 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
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mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
NHANES National Health and Nutrition Examination Survey 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic  
PBPK physiologically based pharmacokinetic  
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
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pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RTECS Registry of Toxic Effects of Chemical Substances 
RQ reportable quantity 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 
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> greater than 
$ greater than or equal to 
= equal to 
< less than 
# less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
µm micrometer 
µg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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