Agency for Toxic Substances and Disease Registry
Division of Toxicology and Human Health Sciences
Atlanta, Georgia 30333

October 2014
CONTENTS

CONTRIBUTORS ... iii
Background Statement ... iv

2. HEALTH EFFECTS .. 1
 2.1 INTRODUCTION ... 1
 2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE ... 2
 2.2.1 Inhalation Exposure ... 2
 2.2.1.1 Death .. 2
 2.2.1.7 Genotoxic Effects .. 5
 2.3 TOXICOKINETICS ... 5

4. PRODUCTION, IMPORT, USE, AND DISPOSAL .. 6
 4.4 DISPOSAL .. 6

5. POTENTIAL FOR HUMAN EXPOSURE ... 9
 5.2 RELEASES TO THE ENVIRONMENT .. 9
 5.3 Environmental Fate .. 10
 5.3.2 Transformation and Degradation ... 10
 5.3.2.2 Water ... 11
 5.3.2.3 Soil .. 12
 5.4 Levels Monitored in the Environment .. 13
 5.4.4 Other Environmental Media .. 13
 5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE .. 14

7. REGULATIONS AND ADVISORIES ... 16

8. REFERENCES .. 18

Appendix A ... 26
 Microbial Considerations in the Generation of Volatile Sulfur Substances in Drywall 26
CONTRIBUTORS

Author of the Addendum:

Francisco A. Tomei Torres, PhD
ATSDR, Division of Toxicology and Human Health Sciences

Chemical manager/author of the toxicological profile:

Obaid Faroon, DVM, Ph.D.
ATSDR, Division of Toxicology and Human Health Sciences

This Addendum has undergone the following ATSDR internal reviews:

1. Internal Peer review by:
 a. Obaid Faroon, DVM, PhD, ATSDR, Division of Toxicology and Human Health Sciences, Atlanta, GA.
 b. Greg Zarus, MS, ATSDR, Division of Community Health Investigations
2. ATSDR internal clearance process review.
Background Statement

This addendum to the Toxicological Profile for Methyl Mercaptan supplements the profile released in 1992.

Toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986, which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund.) CERCLA further states that the Administrator will “establish and maintain inventory of literature, research, and studies on the health effects of toxic substances” (Title 42, Chapter 103, Subchapter I, § 9604 [i] [1] [B]).

This addendum is a non-peer-reviewed supplement containing scientific data that were published in the open peer-reviewed literature since the release of the toxicological profile in 1992.

Chapter numbers in this addendum coincide with the Toxicological Profile for Methyl Mercaptan (1992). This document should be used with the profile; it does not replace it.
2. HEALTH EFFECTS

2.1 INTRODUCTION

Methyl mercaptan (CH$_3$SH) is a substance used in manufacturing and other industries. It has a strong odor and is added to natural gas, for example, to help detect leaks. It is also a waste product in certain industries, such as papermaking. As such, its toxicity, combined with production in large amounts, represents a threat to human health. Methyl mercaptan and related substances, such as dimethyl sulfide (CH$_3$)$_2$S, dimethyl disulfide (CH$_3$SSCH$_3$), and hydrogen sulfide (H$_2$S), are also produced in large concentrations by bacteria in anaerobic sediments and by intestinal microflora. These substances are also present in nontoxic concentrations in wine, cheese, and other foods.

The odor of methyl mercaptan is noticeable at concentrations much lower than those that are hazardous. People can smell methyl mercaptan at about 2 ppb in air, whereas studies in rats and mice show that the concentrations detrimental to health are greater than 100 ppm ([EPA] 2008). Thus, most people can become aware of the presence of hydrogen sulfide and methyl mercaptan at levels significantly below those considered harmful to human health. However, after prolonged exposure, the smell can become less noticeable (Brenneman et al. 2000). When such olfactory fatigue occurs, a person’s sense of smell might not provide adequate warning of hazardous air levels.

A question that needs further research is whether methyl mercaptan is genotoxic at concentrations to which humans are often exposed. (See the Genotoxicity section for a discussion on the subject.)

Methyl mercaptan is also known as methanethiol and often abbreviated as MeSH.
2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

2.2.1 Inhalation Exposure

2.2.1.1 Death

The 1992 Toxicological Profile for Methyl Mercaptan ([ATSDR] 1992) lists a single death after exposure to methyl mercaptan, that of a worker who emptied tanks containing methyl mercaptan (Shults et al. 1970). In a later document, EPA noted the reported death of a 19-year-old exposed to greater than 10,000 ppm of methyl mercaptan for a few minutes ([EPA] 2008). “Death ensued in 45 minutes as a result of respiratory arrest and ‘heart failure.’ The blood concentration of methyl mercaptan was greater than 2.5 nmol/mL (Syntex Corporation 1979).”

The EPA report also cites a report from Shertzer (2001) of a third death: “A 24-year-old male working in a sodium methyl sulfhydrate factory was found dead. Large quantities of methyl mercaptan were detected in his liver, kidneys, lungs, blood, urine, and in the washout solution of his trachea.”

Table 1 lists, for comparison, data included in the Toxicological Profile for Methyl Mercaptan ([ATSDR] 1992).

<table>
<thead>
<tr>
<th></th>
<th>LC₅₀ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen sulfide</td>
<td>444</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td>675</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td>805</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td>40,250</td>
</tr>
<tr>
<td>Equimolar mixture of methyl mercaptan, dimethyl sulfide, and dimethyl disulfide</td>
<td>550</td>
</tr>
</tbody>
</table>

Respiratory. Researchers who collected air samples from 10 kraft pulp mills found concentrations of 0–20 ppm hydrogen sulfide and 0–15 ppm methyl mercaptan (Kangas et al. 1984). Comparable amounts of dimethyl sulfide with dimethyl disulfide were as high as 1.5 ppm. In a clinical survey of the pulp mill workers, subjective symptoms included increased chronic or recurrent headaches compared to unexposed controls (p<0.025). Other effects (not
statistically significant) included decreased mental concentration capacity and nervous system symptoms such as restlessness and lack of vigor.

In its “2008 Interim Acute Exposure Guideline Levels (AEGLs) for Methyl Mercaptan,” EPA cites two non-peer-reviewed reports, one on rats ([DuPont] 1992) and one on mice ([SRI] 1996) ([EPA] 2008). Tables 2, 3, and 4, and Figure 1 show data extracted from these documents and summarized by EPA ([EPA] 2008).

TABLE 2. Acute inhalation toxicity in rats exposed to methyl mercaptan

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Duration (hours)</th>
<th>Mortality</th>
<th>Clinical signs</th>
<th>Necropsy findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>4</td>
<td>0/2</td>
<td>Ocular and nasal irritation</td>
<td>Pneumonitis in 2 rats; considered coincidental</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>0/2</td>
<td>Ocular and nasal irritation, shallow respiration</td>
<td>Focal atelectasis (9 days after treatment in 2 rats)</td>
</tr>
<tr>
<td>750</td>
<td>3–3.5</td>
<td>2/2</td>
<td>Comatose a few minutes before death</td>
<td>none</td>
</tr>
<tr>
<td>1000</td>
<td>3.17</td>
<td>2/2</td>
<td>Shallow respiration, cyanosis, comatose in 3 hours</td>
<td>none</td>
</tr>
<tr>
<td>2000</td>
<td>0.33</td>
<td>2/2</td>
<td>Comatose in 15 minutes</td>
<td>none</td>
</tr>
</tbody>
</table>

TABLE 3. Subchronic Inhalation Toxicity in Rats Exposed to Methyl Mercaptan

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Duration (days)</th>
<th>Mortality</th>
<th>Clinical Signs</th>
<th>Necropsy Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6 hours/day x 10 days</td>
<td>0/2</td>
<td>Occasional restlessness</td>
<td>Bronchopneumonia (both rats)</td>
</tr>
<tr>
<td>200</td>
<td>6 hours/day x 6 days</td>
<td>1/4</td>
<td>Occasional restlessness, ears red</td>
<td>No effects (2 rats) pneumonia (2 rats, including decedent)</td>
</tr>
<tr>
<td>200</td>
<td>6 hours/day x 10 days</td>
<td>1/4</td>
<td>Slight dyspnea and chromodacryorrhea after sixth exposure, slight cyanosis, moist rales (decedent)</td>
<td>Decedent: bronchopneumonia Rat #2: coincidental atelectasis Rat #3: slight pulmonary congestion and emphysema Rat #4: slight bronchitis and emphysema, coincidental atelectasis</td>
</tr>
</tbody>
</table>

TABLE 4. Clinical signs and mortality in Swiss-Webster mice following acute nose-only inhalation exposure to methyl mercaptan for 6 hours.

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Clinical Signs</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
<td>None of 15 mice</td>
</tr>
<tr>
<td>114</td>
<td>None</td>
<td>None of 15 mice</td>
</tr>
<tr>
<td>258</td>
<td>Shallow breathing and hypoactivity in all mice during the fourth and fifth hours of exposure; appeared normal by day 2</td>
<td>None of 15 mice</td>
</tr>
<tr>
<td>512</td>
<td>Shallow breathing in all mice at the third and fourth hours of exposure and hypoactivity during the fifth hour of exposure</td>
<td>Out of 15 mice, 3 female and 2 male mice were found dead on day 2; all surviving mice group appeared normal by day 2.</td>
</tr>
</tbody>
</table>

Figure 1. Category plot for chemical toxicity animal data for methyl mercaptan (extracted from ([EPA] 2008)); triangles represent interim acute exposure guideline levels [AEGL])
2.2.1.7 Genotoxic Effects

[SRI] (1996) performed bone marrow micronucleus assays of male and female Swiss-Webster mice following acute nose-only inhalation of methyl mercaptan ([EPA] 2008). A statistically significant increase in micronucleated polychromatic erythrocytes was observed in male mice after exposure to 512 ppm methyl mercaptan for 6 hours. However, exposure to 500 ppm in air can lead to death, rendering the genotoxic effects moot. EPA questioned the biological significance of the findings because of unexpected values in the control group ([EPA] 2008).

Notwithstanding the lack of genotoxicity data for methyl mercaptan, data from hydrogen sulfide studies suggest that methyl mercaptan might be genotoxic in vivo, given the similarity of its toxicity mechanisms with those of hydrogen sulfide. Attene-Ramos et al. (2010) determined that hydrogen sulfide is genotoxic to nontransformed human intestinal epithelial cells at concentrations (found in the intestines) as low as 250 µM. The authors suggest that hydrogen sulfide could be linked to chronic disorders such as ulcerative colitis and colorectal cancer.

Methyl mercaptan, together with hydrogen sulfide and dimethyl sulfide, are the three most common volatile sulfur substances found in the human colon (Suarez et al. 1998). Quite often, the concentration of methyl mercaptan is higher than that of hydrogen sulfide. One study found that the methyl mercaptan concentration exceeded that of hydrogen sulfide in 22% of samples (Suarez et al. 1998).

As discussed below, the colon can quickly detoxify hydrogen sulfide and methyl mercaptan to thiosulfate (Levitt et al. 1999).

2.3 TOXICOKINETICS

The primary source of human exposure to methyl mercaptan is the gas generated in the large intestine. Intestinal microflora can generate concentrations of methyl mercaptan, hydrogen sulfide, and dimethyl sulfide in excess of 1,000 ppm. However, the lining of the colon rapidly detoxifies methyl mercaptan via mechanisms that oxidize methyl mercaptan and hydrogen sulfide to thiosulfate, resulting in no or minimal absorption of methyl mercaptan (Levitt et al.)
1999). For example, the oxidation rate of hydrogen sulfide by colonic mucosa is 10,000 times greater than the reported methylation rate (Levitt et al. 1999). Thus, the actual concentrations of these gases expelled in the flatus range from 0.2 ppm to 30 ppm (Furne et al. 2001; Levitt et al. 1999; Suarez et al. 1997).

Human bodies also generate methyl mercaptan in other ways. In the mouth, for example, methyl mercaptan generated around the teeth and gums can contribute to adult periodontitis and inhibit healing surgical wound healing by adversely affecting cell function (Johnson et al. 1992; Lancero et al. 1996; Nakano et al. 2002).

In the large intestine, a detoxification mechanism quickly oxidizes methyl mercaptan (Levitt et al. 1999). This presumably does not happen in the lungs, and inhalation of methyl mercaptan continues to be the primary hazard to human health. Suarez et al. (1998) observed concentrations of 2,000 ppm hydrogen sulfide and 500 ppm methyl mercaptan in gas aspirated from the ceca of rats (Jiang et al. 2001). These are concentrations that would be lethal in less than 1 hour had the exposure occurred in the lungs.

4. PRODUCTION, IMPORT, USE, AND DISPOSAL

4.4 DISPOSAL

Oxidizing agents can be used to control methyl mercaptan and other sulfur gas emissions from sewage sludge. Potassium permanganate and hydrogen peroxide are most effective in reducing methyl mercaptan and dimethyl sulfide emissions, followed by sodium hypochlorite and ferric chloride. Potassium nitrate had no effect on the removal of the sulfur gases (Devai and Delaune 2002).

Methyl mercaptan also can be trapped and oxidized in activated carbon filters by inorganic mechanisms. Activated carbon can remove methyl mercaptan by absorption. By this process, the compound is oxidized to disulfides. Depending on the chemistry of the carbon surface, the disulfides might then be converted to sulfonic acid in the presence of water and active radicals (Bashkova et al. 2002).
Removal of Methyl Mercaptan by Aerobic and Anaerobic Biological Treatment

Thiobacillus thioparus can oxidize hydrogen sulfide, methyl mercaptan, dimethyl sulfide \((\text{CH}_3\text{S})\), and dimethyl disulfide \((\text{CH}_3\text{SSCH}_3)\). The effectiveness of this aerobic bacterium in removing the gases was demonstrated in tests of a pilot-scale peat biofilter treating the exhaust gas from a night soil treatment plant. Average removal ratios with *T. thioparus* inoculated into the biofilter were of 99.8% for hydrogen sulfide, 99.0% for methyl mercaptan, 89.5% for dimethyl sulfide, and 98.1% for dimethyl disulfide. No acclimation period was needed. The pH needs to be controlled to maintain removal efficiency (Cho et al. 1992; Park et al. 1993).

Biological deodorization of dimethyl sulfide was best achieved using an activated carbon fabric in a biofilter. IM1, the probable dominant bacterial strain isolated from the biofilter, degraded dimethyl sulfide, hydrogen sulfide, methyl mercaptan, and dimethyl disulfide (Tiwaree et al. 1992).

A packed bed filter filled with immobilized microorganism beads was studied for removing hydrogen sulfide and methyl mercaptan from wastewater treatment facilities. Optimum pH for the removal of hydrogen sulfide and methyl mercaptan differed markedly. The values were 2-3 and 6-8, respectively. A two-stage biofilter operated in series under different pH values might remove the hydrogen sulfide and methyl mercaptan more effectively (Pinjing et al. 2001).

Ruokojärvi et al. (2001) used similar strategies. The authors connected in series two biotrickling filters with different microbes and operating pH levels to create a two-stage system. The first filter operated at a pH of 2. It removed most of the hydrogen sulfide and some of the methyl mercaptan and dimethyl sulfide. The second filter, at a pH of approximately 6.5, removed the rest of the methyl mercaptan and most of the dimethyl sulfide. The total maximum loads of the whole two-stage biotrickling filter, counted in sulfur amounts, were 1,150 g/m\(^3\)/day for hydrogen sulfide, 879 g/m\(^3\)/day for dimethyl sulfide, and 66 g/m\(^3\)/day for methyl mercaptan treated in a gas mixture. The average removal efficiencies for all gases tested were 99% or higher.

An aerobic enrichment culture grown on a mixture of hydrogen sulfide and methyl mercaptan as sole energy sources was used to remove hydrogen sulfide and methyl mercaptan from a sulfide-
laden spent-sulfidic caustic waste stream. The culture was immobilized in support matrix in a continuous flow, fluidized-bed column bioreactor. Complete oxidation was achieved at sulfate levels below 12 g/L (Conner et al. 2000). *Clostridium methoxybenzovorans* sp. nov., an isolate from an anaerobic methanogenic pilot-scale digester fed with olive oil mill wastewater, was capable of *O*-demethylating a wide range of methoxylated aromatic compounds. Methyl mercaptan and dimethyl sulfide were fermented to acetate (Mechichi et al. 1999b).

Volatile sulfurs such as methyl mercaptan, dimethyl sulfide, and dimethyl disulfide can be removed from wastewater by anaerobic treatment. In one study, biomass originating from an anaerobic wastewater treatment facility treating brewery wastewater converted the three gases to methane and hydrogen sulfide (Sipma et al. 2002). Conversion to methane occurred mainly through respiration by anaerobic bacteria (methanogenesis), as indicated by inhibition of the conversion process with 2-bromoethanesulfonic acid, an inhibitor of bacterial methanogenesis. This process does not address the removal of hydrogen sulfide.

Bioaugmentation is another method for methyl mercaptan odor control and to reduce gaseous emissions from biosolids. This process consists of adding cultured bacteria and nutrients to improve the digestion process. For example, anaerobic biosolids bioaugmented with a commercial product containing selected strains of bacteria from the genera *Bacillus*, *Pseudomonas*, and *Actinomycetes*, organic compounds, and micronutrients, generated 29% more net methane during 8 weeks of operation. As expected, increased methane production removed most of the methyl mercaptan in the bioaugmented digester. The resulting methyl mercaptan concentration was only 37% of the control concentration of nearly 300 ppm(v) (Duran et al. 2006).

Some of the bacteria capable of converting methyl mercaptan to methane gas show sustained growth only on methyl mercaptan and not on related substrates such as methanol, methylamine, or dimethyl sulfide. This was demonstrated using a laboratory-scale anaerobic sludge blanket reactor to which granular sludge from a pulp mill wastewater treatment plant was added. The wastewater methyl mercaptan was degraded at 30°C to hydrogen sulfide, carbon dioxide, and methane. At a volumetric loading rate of 16.5 mmol/liter/day, a bacterial succession was
observed. Methanogenic bacteria related to the genus *Methanolobus* grew initially, but eventually were outcompeted by *Methanomethylovorans hollandica*. Some of the species related to the latter could only show sustained growth on methyl mercaptan (de Bok et al. 2006).

Land application of wastewater biosolids is economical and beneficial to resource recycling. However, this environmentally friendly practice is sometimes restricted because of odor complaints. Methyl mercaptan, dimethyl sulfide, and dimethyl disulfide are among the volatile organic sulfur compounds that contribute to biosolids odor. These odors can be controlled if precautions are taken to store biosolids under anaerobic conditions and proper temperature. Proper temperature can promote the growth of methanogenic bacteria that convert the volatile compounds to methane and carbon dioxide (Chen et al. 2005).

5. POTENTIAL FOR HUMAN EXPOSURE

5.2 RELEASES TO THE ENVIRONMENT

On a global scale, the two primary sources of methyl mercaptan are demethoxylation of lignin byproducts and the amino acid methionine. Lignin, together with cellulose and hemicellulose, is a component of wood, and thus among the most abundant polymers in living ecosystems. Methionine is essential to life, and thus present in all living organisms. The formation of methyl mercaptan from lignin requires the presence of hydrogen sulfide, the formation from methionine does not. The requirement for hydrogen sulfide in the formation of methyl mercaptan from lignin implies the presence of anaerobic conditions.

In anaerobic freshwater sediments, methyl mercaptan formation is a function of the concentrations of sulfide and methyl group-donating compounds. Demethoxylation of syringate (an intermediate microbial metabolite of lignin) is one of the primary sources of methyl mercaptan. The degradation of methyl mercaptan to methane is mediated by a group of obligately methylotrophic methanogens that are phylogenetically related to *M. hollandica* (Lomans et al. 2001b).
Holophaga foetida gen. nov., sp. nov., a gram-negative, obligately anaerobic, rod-shaped bacterium isolated from a black anoxic freshwater mud sample produced dimethyl sulfide and methyl mercaptan during growth on trimethoxybenzoate or syringate. The products originate from the transmethylation of lignin-derived methyl groups and inorganic sulfide (Liesack et al. 1994).

Sporobacterium olearium gen. nov., sp. nov., strain SR1T grew on coronate, methanol, and a number of aromatic compounds as carbon and energy sources. Those compounds included 3,4,5-trimethoxybenzoate (TMB), 3,4,5-trimethoxycinnamate (TMC), syringate, 3,4,5-trimethoxyphenylacetate (TMPA), 3,4,5-trimethoxyphenylpropionate (TMPP), ferulate, sinapate, vanillate, 3,4-dimethoxybenzoate, 2,3-dimethoxybenzoate, gallate, 2,4,6-trihydroxybenzoate (THB), pyrogallol, phloroglucinol, and quercetin. Methyl mercaptan was produced from methoxylated aromatic compounds and methanol (Mechichi et al. 1999a).

Parasporobacterium paucivorans produced methyl mercaptan and dimethyl sulfide from the methoxy groups of syringate only in the presence of sulfide (Lomans et al. 2001a).

5.3 Environmental Fate

5.3.2 Transformation and Degradation

Microbial aerobic oxidation of methyl mercaptan has been shown to occur by *Thiobacillus* (Subramaniyan et al. 1998; Visscher and Taylor 1993; Kim et al. 1999), *Hyphomicrobium* (Pol et al. 1994), *Pseudomonas* (Honma and Akino 1998), *Methylophaga* (Schäfer 2007), *Marinobacterium* (Fuse et al. 2000), and *Klebsiella* (Seiflein and Lawrence 2001).

The two most common mechanisms of anaerobic oxidation of methyl mercaptan by microbes are sulfate reduction (Eq. 1) and methanogenesis (Eq. 2) (Lomans et al. 2001b).

\[
4\text{CH}_3\text{SH} + 3\text{SO}_4^{2-} \rightarrow 4\text{HCO}_3^- + 7\text{HS}^- + 5\text{H}^+ \quad \text{(Eq. 1)}
\]

\[
4\text{CH}_3\text{SH} + 3\text{H}_2\text{O} \rightarrow 3\text{CH}_4 + \text{HCO}_3^- + 4\text{HS}^- + 5\text{H}^+ \quad \text{(Eq. 2)}
\]

Three thermophilic strains of *Desulfotomaculum* MTS5, TDS2, and SDN4 isolated from a sludge fermentor completely oxidized methyl mercaptan or dimethyl sulfide with sulfate or nitrate as
electron acceptors. The byproducts were carbon dioxide and sulfide or ammonia (Tanimoto and Bak 1994).

5.3.2.2 Water

The *Roseobacter* group of marine bacteria is numerically important in coastal seawater and sediments. Several isolates have been shown to degrade dimethyl sulfide and methyl mercaptan. This group of bacteria can play an important role in the cycling of sulfur compounds in the marine environment. (González et al. 1999).

Aerobic degradation rates for dimethyl sulfide and methyl mercaptan measured under controlled conditions in the lab were 10-fold higher than the maximal anaerobic degrading capabilities. However, under simulated conditions in freshwater sediments the aerobic degradation of dimethyl sulfide and methyl mercaptan was low due to oxygen limitation. Thus, the evidence suggests that in freshwater sediments, conversion to methane is the major mechanism of dimethyl sulfide and methyl mercaptan degradation (Lomans et al. 1999c). These two sulfur compounds can also be oxidized to carbon dioxide by sulfate reducing bacteria when sulfate is present in the sediments. The possibility also exists that the compounds are degraded by a syntrophic association of sulfate or nitrate reducers, and methanogenic bacteria (Lomans et al. 1999b). *M. hollandica* gen. nov., sp. nov., is an example of a methanogen found in freshwater sediments that is able to grow on dimethyl sulfide and methyl mercaptan (Lomans et al. 1999a).

Lomans et al. (2002) studied the general mechanisms for the production and degradation of methyl mercaptan and dimethyl sulfide in anoxic environments. They found that methylation of sulfide was a major mechanism in the generation of methyl mercaptan and dimethyl sulfide. The methyl groups originated from the byproducts of lignin degradation, e.g., syringate. They isolated an anaerobic bacterium that formed methyl mercaptan and dimethyl sulfide with syringate as a methyl group donating compound and sole carbon source. They also isolated a methanogenic bacterium that grew on dimethyl sulfide as the sole carbon source. Methyl mercaptan and dimethyl sulfide produced in freshwater sediments are consumed quickly by methanogenic bacteria, which convert the two gases to methane. When sulfate is present, the two gases are oxidized to carbon dioxide by sulfate-reducing bacteria. A large survey of sediments
slurries of various origin demonstrated that both isolates commonly occur in anaerobic freshwater sediments (Lomans et al. 2002).

5.3.2.3 Soil

Organobromine compounds, including methyl bromide, are produced by a large array of marine organisms (Gribble 2000). Methyl bromide is degraded sequentially to methyl mercaptan and dimethyl sulfide in anaerobic saltmarsh sediments. The two sulfur molecules are in turn converted to methane by methanogenic bacteria (Oremland et al. 1994).

Methyl mercaptan is also a byproduct of the degradation of two oxime carbamate pesticides: oxamyl and methomyl. Iron (Fe[II]) and copper (Cu[I]) can catalyze the inorganic reaction (Strathmann and Stone 2001). The pesticide ethoprop (Mocap) exhibits a similar phenomenon when applied on potato fields, with the subsequent release of n-propyl mercaptan, an odorous compound. These odors were correlated in a survey with a series of symptoms such as headaches, asthma attacks and burning/itching eyes (Ames and Stratton 1991). The significance of these symptoms has been questioned (Greenberg and Campbell 1992).

Studies have shown that rice paddies in China emit hydrogen sulfide, carbonyl sulfide (COS), methyl mercaptan, carbon disulfide (CS₂), dimethyl sulfide, and dimethyl disulfide. Dimethyl sulfide was the predominant sulfur gas emitted. Emissions vary in time and space. Emissions increased with application of organic manure. Diurnal and seasonal variations were influenced by air temperature and the activity of the rice plant. The annual emission of total volatile sulfur gases from a rice paddy in Nanjing ranged from 4.0 mg to 9.5 mg sulfur/m²/year. Emissions of dimethyl sulfide ranged from 3.1 mg to 6.5 mg sulfur/m²/year (Yang et al. 1998).

Serratia odorifera, a root-colonizing bacterium that forms symbiotic relationships with many plants, can generate significant amounts of methyl mercaptan and other volatile sulfur compounds (e.g., dimethyl disulfide and dimethyl trisulfide). In laboratory experiments, *S. odorifera* produced 25 μg·h⁻¹ of methyl mercaptan. These volatile sulfur compound emissions can inhibit the growth of the test plant *Arabidopsis thaliana* (Kai et al. 2010).
Bending and Lincoln (1999) measured concentrations of sulfur compounds during decomposition of leaf tissues of *Brassica juncea* (a species of mustard plant) in sandy-loam and clay-loam soils. In both soils, the volatile sulfur-containing compounds carbon disulfide, dimethyl disulfide, dimethyl sulfide, and methyl mercaptan were the dominant headspace components, with maximum concentrations reaching 88, 39, 406, and 992 nmol g\(^{-1}\) dry weight leaf incorporated, respectively, in sandy loam and 152, 22, 119, and 473 nmol g\(^{-1}\) dry weight leaf added in clay loam.

Methyl mercaptan and carbon disulfide competitively inhibited methane oxidation in two landfill cover soils at concentrations occurring in landfills (Börjesson 2001).

5.4 Levels Monitored in the Environment

5.4.4 Other Environmental Media

Formation of Methyl Mercaptan in Food

Cheddar cheese gets its flavor, in part, from volatile sulfur compounds such as methyl mercaptan, dimethyl disulfide, dimethyl trisulfide, and hydrogen sulfide. To varying degrees, these compounds are produced from sulfur-containing amino acids (i.e., methionine and cysteine) by bacteria such as lactobacilli and lactococci during fermentation (Seefeldt and Weimer 2000); (Bonnarme et al. 2001); (De Angelis et al. 2002); (Arfi et al. 2003); (Cholet et al. 2007); (Psoni et al. 2007).

Probiotic bacteria are added to foods such as yogurt as live cultures. These bacteria generate several volatile sulfur compounds, including hydrogen sulfide, methyl mercaptan, dimethyl disulfide, and dimethyl trisulfide. Probiotic bacteria include *Lactobacillus acidophilus*, *L. plantarum*, *L. rhamnosus*, *L. reuteri*, *L. delbrueckii*, and *L. lactis* (Sreekumar et al. 2009).

Methyl mercaptan, together with dimethyl disulfide, 3-(methylsulphonyl) propanol, and 3-(methylsulphonyl) propionic acid, is also the product of malolactic fermentation of wine (a process that follows alcoholic fermentation). These compounds add to the aroma produced by the wine. These sulfur compounds are probably produced via catabolism of methionine by lactic acid...
bacteria (e.g., *Oenococcus oeni*) present or added to the wine (Pripis-Nicolau et al. 2004). *O. oeni* isolated from wine produced methyl mercaptan, dimethyl disulfide, methionol, and 3-(methylthio) propionic acid when grown on methionine (Vallet et al. 2008).

Cultivation of edible mushrooms (e.g., *Agaricus bisporus*) can also be a source of methyl mercaptan (above the odor threshold) and other sulfur volatile compounds such as hydrogen sulfide and dimethyl sulfide (Noble et al. 2001). These same mushrooms can also remove methyl mercaptan. The odor typical of those who eat garlic, produced by methyl mercaptan and allyl thiols, could be controlled by adding to the diet foods rich in polyphenols. For example, extracts of the mushroom *A. bisporus* have a deodorizing effect on the methyl mercaptan and allyl thiols generated when garlic is eaten. This appears to be accomplished by a reaction of the sulfur compounds with the polyphenols in the fungal extracts (Tamaki et al. 2007).

A representative isolate from *Pseudomonas fluorescens* and three isolates from non-fluorescent *Pseudomonas* recovered from spoiled commercial ground beef produced volatile sulfur compounds, including methyl mercaptan, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, and methyl thioacetate, but not hydrogen sulfide (Intarapichet and Bailey 1993).

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

When eaten, certain foods release amounts of methyl mercaptan that people can smell. Persons who eat a raw garlic clove, for example, can release concentrations of a few parts per million in their mouth (Suarez et al. 1999). Eating asparagus produces a mixture of volatile sulfur compounds, including methyl mercaptan, in urine at concentrations up to several thousand times greater than in persons who did not eat asparagus (Waring et al. 1987). People also are regularly exposed to transient amounts of methyl mercaptan in releases of intestinal gas.

Inhalation in occupational settings is probably a significant human exposure scenario for methyl mercaptan.

Pulp mills that use kraft or sulfite processes to bleach paper, for example, can emit hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, and other volatile sulfur
compounds in varying concentrations. Methyl mercaptan and dimethyl sulfide represent more than 80% of total reduced sulfur (TRS) emissions in mill digester blow and relief gases. Hydrogen sulfide and methyl mercaptan comprise more than 75% of TRS emissions in evaporator gases, combined low volume high concentration (LVHC) non-condensable gases (NCGs), recovery furnaces, and tall oil reactor vents. Hydrogen sulfide, methyl mercaptan, and dimethyl sulfide are each present in significant amounts in stripper off-gases (SOGs) and heavy black liquor tank vents ([NCASI] 2002).

In a clinical survey of pulp mill workers, subjective symptoms of those exposed to sulfur compounds included increased chronic or recurrent headaches compared to unexposed controls (p<0.025) (Kangas et al. (1984). Other effects (not statistically significant) included decreased mental concentration capacity and nervous system symptoms such as restlessness and lack of vigor.

Conversely, peak ambient concentrations near a community adjacent to a kraft pulp mill site were not detectable (DL = 200 ppb), although sulfur dioxide (as high as 400 ppb), hydrogen sulfide (as high as 1,800 ppb), and carbonyl sulfide (as high as 1,300 ppb) were measured (ATSDR 2007).

Indoor air methyl mercaptan levels in a construction and demolition debris recycling plant were as high as 750 ppb. Butyl mercaptan was as high as 83 ppb, but little or no methyl mercaptan or butyl mercaptan were detected in the adjacent ambient environment (ATSDR 2006). One house had an indoor measurement of 12 ppb methyl mercaptan, but none outdoors. Methyl mercaptan was also found at 1,204 ppb on a school property adjacent to a landfill (ATSDR and PDOH 2010). Some of these ambient concentrations exceeded the 15-minute recommended exposure limit of 500 ppb (0.5 ppm) set by the National Institute for Occupational Safety and Health ([NIOSH] 2010).
7. REGULATIONS AND ADVISORIES

Table 5 lists EPA exposure guidelines for methyl mercaptan [EPA] (2008). National Research Council AEGL-2 acute exposure guideline levels based on one-third reduction of AEGL-3 values also have been added ([NRC] 2013)

| Table 5. Extant Standards and Guidelines for Methyl Mercaptan ([EPA] 2008) |
|---------------------------------|--------|--------|--------|--------|--------|
| Guideline | 10 min | 30 min | 1 hour | 4 hour | 8 hour |
| AEGL-1 | NR | NR | NR | NR | NR |
| AEGL-2 | 59 ppm | 59 ppm | 47 ppm | 30 ppm | 19 ppm |
| AEGL-2 ([NRC] 2013) | 40 ppm | 29 ppm | 23 ppm | 14 ppm | 7.3 ppm |
| AEGL-3 | 120 ppm | 86 ppm | 68 ppm | 43 ppm | 22 ppm |
| ERPG-1 | - | - | 0.005 ppm | - | - |
| ERPG-2 | - | - | 25 ppm | - | - |
| ERPG-3 | - | - | 100 ppm | - | - |
| NIOSH IDLH | 150 ppm | | | | |
| NIOSH REL | | | | | 0.5 ppm |
| OSHA PEL* | | | | | 10 ppm |
| ACGIH TLV-TWA | | | | | 0.5 ppm |
| OEL (Swedish) | | | | | 1 ppm |
| MAK (German) | | | | | 0.5 ppm |
| MAC (Dutch) | | | | | 0.5 ppm |

Note: “The OSHA Permissible Exposure Limit (PEL) for General Industry” used to be 0.5 ppm, matching the NIOSH recommended exposure limit (REL). The OSHA PEL value for General Industry went back to the old value of 10 ppm as a result of court action ([NIOSH] 2010).

AEGL-1: The airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm or mg/m³]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL-2: The airborne concentration (expressed as ppm or mg/m³ of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL-3: The airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

ERPG-1: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour without experiencing other than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor, based on the threshold limit value (TLV).

ERPG-2: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual’s ability to take protective action (based on repeated-dose animal experiments).

ERPG-3: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour without experiencing or developing life-threatening health effects. Based on 4-hour acute inhalation exposure of 400 ppm in rats (Tansy et al. 1981).

For NIOSH RELs, “TWA” indicates a time-weighted average concentration for up to a 10-hour workday during a 40-hour workweek. A short-term exposure limit (STEL) is designated by "ST" preceding the value; unless noted otherwise, the STEL is a 15-minute TWA exposure that should not be exceeded at any time during a workday. A ceiling REL is designated by "C" preceding the value; unless noted otherwise, the ceiling value should not be exceeded at any time. (See: NIOSH Pocket Guide to Chemical Hazards: Exposure Limits.)
8. REFERENCES

Appendix A

Microbial Considerations in the Generation of Volatile Sulfur Substances in Drywall

(This discussion assumes the presence of sufficient moisture and nutrients to stimulate microbial growth.)

Methyl mercaptan is one of the many volatile sulfur compounds generated in drywall (Burdack-Freitag et al. 2009).

Bacterially-mediated processes that could play a role in the generation of volatile sulfur substances in drywall include the following.

1. Drywall is largely made of calcium sulfate (CaSO₄).
 a. Most of the gaseous sulfur substances emitted from drywall should be in the form of hydrogen sulfide (H₂S), if the origin of the malodors is caused by biofouling (from the reduction of sulfate to hydrogen sulfide by anaerobic respiration.)
 i. 2[H] + SO₄²⁻ -> H₂S + H₂O

2. Reports of pyrite (FeS₂, fool’s gold) in drywall.
 a. Pyrite is biodegradable. Acidophilic bacteria can solubilize and oxidize pyrite to ferric ions and sulfuric acid.
 b. The production of sulfuric acid can in turn volatilize any hydrogen sulfide present in the drywall.
 c. Please note that the bacteria that grow on pyrite, also grow on hydrogen sulfide and other volatile sulfur compounds, e.g., methyl mercaptan

3. Reports of strontium sulfide (SrS) in drywall.
 a. Strontium sulfide is slightly soluble in water, but highly soluble in acid.
 b. Acidification owing to microbial fouling can lead to volatilization of H₂S.
 i. SrS (s) + 2H⁺ (aq.) -> Sr²⁺ (aq.) + H₂S (g)

 a. Under anaerobic conditions elemental sulfur is reduced to hydrogen sulfide.
 i. 2[H] + S⁰ -> H₂S
 b. Under aerobic conditions elemental sulfur is oxidized to sulfuric acid.
 i. 2 S + 3 O₂ + 2 H₂O → 2 H₂SO₄
 c. Elemental sulfur can also undergo disproportionation to sulfate and hydrogen sulfide.
 i. 4S⁰ + 4H₂O → SO₄²⁻ + 3H₂S + 2H⁺

5. Reports of organic matter (e.g., paper [cellulose, hemicellulose, and lignin) or starch in drywall.
 a. Polymers plus acid pH (from the microbial production of organic acids) favor the growth of molds.
 b. Anaerobic degradation of lignin in the presence of hydrogen sulfide leads to the production of methyl mercaptan and dimethyl sulfide.
 c. Anaerobic conditions favor the growth of sulfate-reducing bacteria, leading to the production of hydrogen sulfide.