

Martinsburg Berkeley County | West Virginia

INFORMATION TO PROTECT OUR COMMUNITIES

Per- and Polyfluoroalkyl Substances (PFAS) Exposure Assessment

Appendix A, B, and C

National Center for Environmental Health Agency for Toxic Substances and Disease Registry

Appendix A: Additional Tables

Table A1. Dust sample results from Berkeley County EA compared to results from other U.S. studies (nanograms per gram)

PFAS	Berkeley County EA			Fra	aser et al. (2013) ousehold ust MA*	Karásk (2 Househ	ková et al. 2016) Hold Dust J.S.†	Wu (House CA F	et al. (2015) ehold Dust Homes with ng Children [‡]	Wu Hous CA	et al. (2015) ehold Dust Homes with der Adults Only [‡]	Scher et al. (2018 Household Dust MN [§]		
	RL	GM	Range	GM	Range	Median	Range	GM	Range	GM	Range	Median	Range	
PFBS	0.18-16.2	NA	ND-683	NA	4.98–4.98	0.9	<0.73¶-2.6	_	_	_	_	<5	<5–58	
PFPeS	0.18-16.2	NA	ND-140	_	_	_	_	_	_	_	_	_	_	
PFHxS	0.18–16.2	NA	ND-16,400	NA	6.05–430	8.7	1.4-84.4	3.47	ND**-7,490	3.77	ND**-1,050	18	<5-790	
PFHpS	0.18–16.2	NA	ND-77.4	_	_	<0.42 [¶]	<0.42 [¶] -2.9	_	_	_	_	_	_	
PFOS	0.37–16.2	15.9	ND-13,900	26.9	14.1–280	14.1	5.7–239	29.0	ND**-6,670	34.6	ND**-1,040	67	8.4– 2,000	
PFNS	0.18-16.2	NA	ND-14.2	_	_	_	_	_	_	_	_			
PFDS	0.18-16.2	NA	ND-27.8	_	_	2.8	0.5–9.8	_	_	_	_	_	_	
PFDoS	0.18-16.2	NA	ND-14.4	_	_	_	_	_	_	_	_			
PFBA	0.73-64.8	NA	ND-736	13.9	4.89–999	_	_	_	_	_	_	24	<5-200	
PFPeA	0.37-32.4	NA	ND-72.4	NA	5.39–249	1.7	<0.76¶– 24.8	_	_	_	_	6.2	<5–66	
PFHxA	0.20-16.2	8.51	ND-460	8.65	4.85-1,380	6.5	2.5-190	_	_	_	_	29	5.4-240	
PFHpA	0.18-16.2	5.50	ND-456	12.0	4.93-586	3.6	0.9–86.7	_	_	_	_	23	<5-260	
PFOA	0.20-16.2	15.1	ND-3,430	23.7	5.71-894	9.0	2.9–318	41.4	ND**-2,360	45.0	ND**-728	51	9.9–970	
PFNA	0.18-16.2	3.85	ND-74.5	10.9	6.21–1,420	3.9	1.1-62.9	13.3	ND**-1,910	14.7	ND**-883	26	<5–450	
PFDA	0.18-16.2	NA	ND-27.0	NA	6.97–26.8	1.8	0.4-64.0	8.51	ND**-2,520	7.76	ND**-355	13	<5–370	
PFUnA	0.18–16.2	NA	ND-11.5	NA	10.8–39.4	1.2	<1.06¶— 13.1	_	_	_	_	7.2	ND-67	
PFDoA	0.18-16.2	NA	ND-13.9	NA	5.09-13.3	0.6	<0.72¶—9.0	_	_	_	-	8.2	ND-190	
PFTrA	0.18-16.2	NA	ND-11.5	NA	10.3-10.3	ND [¶]	ND¶-2.1	_	_	_	_	_	_	

PFAS	PFAS EA RL GM Range		unty	Н	aser et al. (2013) ousehold ust MA*	(2 Househ	ková et al. 2016) Hold Dust J.S.†	House CA F	et al. (2015) ehold Dust Homes with ng Children [‡]	Hous CA I	et al. (2015) ehold Dust Homes with der Adults Only [‡]	Scher et al. (2018) Household Dust MN [§]		
	RL	GM	Range	GM	Range	Median	Range	GM	Range	GM	Range	Median	Range	
PFTA	0.18-16.2	NA	ND-11.5	NA	11.2-11.2	0.8	<1.15¶-3.0	_	_	_	_	_	- 1	
PFOSA	0.18-16.2	NA	ND-472	_	_	_	_	_	_	_	_	_	_	
N-MeFOSA	0.21-18.6	NA	ND-289	_	_	0.6	0.6-0.6	_	_	_	_	-	_	
MeFOSAA	0.18-16.2	NA	ND-3,810	_	_	_	_	_	_	_	_	_	_	
N-MeFOSE	1.83-162	NA	ND-6,940	NA	18–488	1.0	<0.57 [¶] –9.9	_	_	_	_	-	_	
EtFOSAA	0.37-32.4	8.64	ND-300	_	_	_	_	_	_	_	-	_	_	
N-EtFOSE	2.21–122	NA	ND-2,280	NA	12.2–3,280	<0.34 [¶]	<0.34¶- 93.9	-	-	-	-	-	_	
FtS 6:2	1.32-117	NA	ND-82.7	_	_	_	_	_	_	_	_	_	_	
FtS 8:2	0.73-64.8	NA	ND-45.8	_	_	_	_	_	_	_	-	_	-	

RL = reporting limit, GM = geometric mean, ng/g = nanograms per gram, NA = not applicable (i.e., too few detected results to calculate a GM), ND = not detected, — = PFAS was not measured as part of the study

- * This study evaluated dust samples collected from homes, offices, and vehicles in the greater Boston, Massachusetts, area between January and March of 2009. This table presents results for dust samples collected in the main living areas of 30 homes.
- [†] This study evaluated dust samples collected from living rooms and bedrooms from homes in Canada, the Czech Republic, and the United States during the spring and summer of 2013. The results presented in this table are from the 14 homes in the United States.
- [‡] As part of this study, dust samples were collected between 2007 and 2009 from carpet or area rugs in the main living areas of homes in California with and without young children residing in the home. This table presents results separately for dust samples collected in the 82 homes with young children and the 42 homes with older adults only.
- As part of this study, dust samples were collected between July and September 2010 from 19 homes located in cities with PFAS—contaminated drinking water in Minnesota. Samples were collected at each home from an entryway to the yard as well as in an interior living space (e.g., family room, living room). The results presented in this table are for dust samples collected in interior living spaces only.
- [¶] Value was less than author–specified method detection limit. For this study, method detection limits varied because they were defined as mean concentration of procedural blanks plus three times the standard deviation of blank response. Values included in this table represent the upper bound of the method detection limit for a given PFAS, unless noted by "ND" (i.e., for PFTrA). For PFTrA, the upper bound method detection limit was greater than the maximum detected value. For PFTrA, the method detection limits ranged from 0.48 to 2.32 ng/g.

^{**} Reporting limits for dust not specified in Wu et al. (2015).

Table A2. Comparison values for PFAS measured in blood from other exposure assessments

PFAS/Population	Reference	Geometric Mean for Blood (μg/L)
PFHxS		
Manufacturing workers, Decatur, AL	Olsen et al. 2003	180.0
Montgomery and Bucks Counties, PA	PA DOH 2019	6.6
Decatur, AL	ATSDR 2013	6.4
Little Hocking Water Association, OH	Frisbee et al. 2009	5.7*
Portsmouth, NH	NH DPHS 2016	4.1
Westhampton Beach/Quogue Area, NY	NYDOH 2019	3.0
Berkeley County EA [†]	This EA	2.9
General U.S. population (NHANES 1999/2000)	CDC 2019	2.1
General U.S. population (NHANES 2015/2016)	CDC 2019	1.2
PFOS		
Manufacturing workers, Decatur, AL	Olsen et al. 2003	941.0
Decatur, AL	ATSDR 2013	39.8
General U.S. population (NHANES 1999/2000)	CDC 2019	30.4
Little Hocking Water Association, OH	Frisbee et al. 2009	23.5*
Montgomery and Bucks Counties, PA	PA DOH 2019	10.2
Portsmouth, NH	NH DPHS 2016	8.6
Westhampton Beach/Quogue Area, NY	NYDOH 2019	6.6
Berkeley County EA [†]	This EA	5.1
General U.S. population (NHANES 2015/2016)	CDC 2019	4.7
PFOA		
Manufacturing workers, Decatur, AL	Olsen et al. 2003	899.0
Little Hocking Water Association, OH	Frisbee et al. 2009	227.6*
Decatur, AL	ATSDR 2013	16.3
General U.S. population (NHANES 1999/2000)	CDC 2019	5.2
Montgomery and Bucks Counties, PA	PA DOH 2019	3.1
Portsmouth, NH	NH DPHS 2016	3.1
General U.S. population (NHANES 2015/2016)	CDC 2019	1.6
Westhampton Beach/Quogue Area, NY	NYDOH 2019	1.5
Berkeley County EA [†]	This EA	1.5

μg/L = micrograms per liter

^{*} The study reported medians instead of geometric means.

[†] Unadjusted geometric means from the Berkeley County EA are included in this table for comparison.

Appendix B: Additional Background Statistics

As described in the main body of this report, all statistical analyses (e.g., correlations, geometric means, univariate linear regression models, multivariate linear regression models) were completed in SAS version 9.4 (SAS Institute, Cary, NC) following the methods outlined in the study protocol. Several key details on these methods are provided below.

- Consistent with NHANES methodology and per the EA protocol, all non-detect observations
 were substituted with a value equal to the LOD divided by the square root of 2. Geometric
 means were not reported for PFAS with 40% or more non-detect observations. Additional
 information on the effect of this substitution method is provided below.
- Geometric means, 95% confidence intervals around geometric means, and percentiles were calculated with the SURVEYMEANS procedure in SAS. In this procedure, percentiles are based on the population cumulative distribution function.
- Univariate and multivariate regression analyses were conducted with the SURVEYREG procedure
 in SAS. Multivariate regressions were conducted using a backwards stepwise approach.
 "Interactions" were only considered when there was a suspected relationship between two
 variables. Due to the skewed distribution of PFAS blood levels, log transformed (log₁₀) values
 were used as dependent variables in all linear regression analyses.
- For this EA, all eligible residents within the sampling frame were invited to participate. This means a single household may have multiple participants. To account for the one-stage cluster sampling design used for this EA, household IDs were assigned to each participant. All statistics were calculated while accounting for clustering at the household level by including this household ID variable in a CLUSTER statement in SAS survey procedures. Additional information on the effect of clustering is provided below.
- A finite population correction was applied by including the total number of households in the sampling frame in a TOTAL statement in the SAS survey procedures. For this EA, a total of 2,922 households were identified within the sampling frame. A finite population corrects the standard errors when sampling without replacement from a finite population and is recommended when sample size is greater than 5% of the population being sampled.
- A p-value of less than 0.05 was used to identify statistically significant associations in regression models and 95% confidence limits were provided for all estimated geometric means.
- Age-adjusted statistics were calculated using the POSTSTRATA statement in the PROC SURVEYREG procedure in SAS. For age adjustments to the sampling frame population, the number of people in the sampling frame for each 5-year age interval (5–9 years, 10–15 years, etc.) was calculated from census block data from 2010 and was used as poststratum totals (_PSTOTAL_). Similarly, for age-adjustments to the NHANES population, estimates of the U.S. population in each age category starting from 12-14 years and increasing by 5-year age intervals (15-20 years, 25-30 years etc. through 80+) were calculated.

Additional details on non-detect observations

As noted, all results reported below the LOD were substituted with a value equal to the LOD divided by the square root of 2. For blood, all PFAS and all samples were reported from the laboratory with an LOD of 0.1 μ g/L, and non-detect observations were therefore substituted with a value equal to 0.071 μ g/L. The same method was applied to urine results (LOD=0.1 μ g/L) and dust (LOD varies by PFAS and sample); no summary statistics were computed for tap water for this EA due to low detection frequency.

The study protocol also notes that a sensitivity analysis of aggregate PFAS blood data should be performed using other statistical methods to account for censoring. More specifically, for datasets in which less than 50% of the data are censored (i.e., not detected), the Kaplan-Meier method should be used to calculate summary statistics; and for data sets with between 50% and 80% censored results, maximum likelihood estimation should be used. Only high sample percentiles should be reported for data sets with more than 80% censoring. Given that no nationally representative comparison values using these methods are available, results of this sensitivity analyses should only be used as a comparison to results obtained using the simpler substitution method described above.

Based on these criteria, ATSDR compared geometric means for all PFAS measured in blood (except Sb-PFOA) using the two alternate substitution methods. As shown in Table B1, there is little to no difference in geometric mean estimates when using these methods, and alterative substitution methods would therefore have no effect on the conclusions of this report. This is expected for these data due to the single censoring threshold for all PFAS and blood samples [Helsel 2009].

Table B1. Comparison of geometric mean blood levels with various substitution methods

PFAS	Geometric Mean Calculated with LOD/Square Root of 2 (μg/L)	Geometric Mean Calculated with Kaplan Meier Approach (μg/L)	Geometric Mean Calculated with Maximum Likelihood Estimation (μg/L)
PFHxS	2.94	2.94	2.95
n-PFOS	3.52	3.53	3.53
sm-PFOS	1.46	1.47	1.47
n-PFOA	1.37	1.37	1.37
sb-PFOA	NA*	NA*	NA*
PFNA	0.38	0.38	0.38
PFDA	0.15	0.16	0.14
PFUnA	0.12	0.14	0.10
MeFOSAA	0.11	0.13	0.09

LOD = limit of detection, μ g/L = micrograms per liter, NA = not applicable

More details on precision and clustering for PFAS blood data

As noted in the study protocol, this investigation was designed to estimate mean concentrations of PFAS in blood for the sampling frame population, with a given level of precision. The target sample size for this EA was based on a desired precision of 15% and 5% level of significance. Table B2 presents the estimated precision for the mean of the log transformed (In) PFAS concentrations. This was calculated as the difference between the upper confidence interval of In(PFAS) and the mean In(PFAS), divided by mean In(PFAS). Precision estimates ranged from 5% to 21%. Except for PFOA, these values are all below the desired precision of 15% used to determine the target sample size for this EA. The collected data met the precision target specified in the EA protocol. Additional information on target precision is provided in the study protocol.

Note that throughout the main body of the report and Appendix C, geometric means are presented with 95% confidence intervals and regression modeling results are presented with p-values. These statistics provide further insight into the precision of those estimates.

^{*} LOD does not meet the threshold set in EA protocol for sensitivity analyses (<20%).

To quantify the effect of clustering and to compare the results of this EA to the assumptions used to determine the target sample size for the EA (listed in the protocol), ATSDR calculated the intra-cluster correlation coefficient (ICC) and design effect for each PFAS that was detected in at least 60% of blood samples (Table B2). ICCs were estimated using variance components from the MIXED procedure in SAS. In brief, a mixed model was run for each PFAS while treating clusters (i.e., households) as a random effect. The ICC was calculated as the ratio of the variance attributable to the random effect (households) divided by the total of the random effect and error variances. The design effect was calculated using the DEFF option in the MODEL statement of the SURVEYREG procedure in SAS. This provides an estimate of the ratio of the actual variance to the variance computed under the assumption of simple random sampling. This information, along with the average number of study participants per house, was then used to calculate the effective sample size for each PFAS. This statistic provides an estimate of the sample size that would be required to achieve the same level of precision if a simple random sample study design was used.

The target sample size for this EA was 395 people, based on (1) an ICC of 0.54 for PFOS calculated from data collected as part of biomonitoring study conducted by the New York State Department of Health and the Pennsylvania Department of Health, (2) a design effect of 2.1, and (3) and effective sample size of 188 people. Refer to the study protocol for more details on how these values were derived.

Table B2. Statistics related to clustering in blood data (all participants)

PFAS	Household ICC (Unitless)	Design Effect (Unitless)	Effective Sample Size (n)	Standard Deviation of In(PFAS) (µg/L)	Precision of Mean In(PFAS) (%)
PFHxS	0.52	1.67	164	1.26	13.9
PFOS	0.45	1.56	177	0.99	7.2
n-PFOS	0.48	1.62	170	1.04	9.8
Sm-PFOS	0.40	1.46	188	0.97	30.0
PFOA	0.31	1.33	207	0.65	20.5
n-PFOA	0.31	1.32	208	0.69	26.0
Sb-PFOA	NA*	NA*	NA*	NA*	NA*
PFNA	0.45	1.73	159	0.98	11.9
PFDA	0.46	1.55	178	0.84	5.2
PFUnA	NA*	NA*	NA*	NA*	NA*
MeFOSAA	NA*	NA*	NA*	NA*	NA*

 μ g/L = micrograms per liter, NA = not applicable

Blood ICCs for this EA ranged from 0.31 to 0.52, suggesting weak to moderate correlation. The design effects ranged from 1.32 to 1.73, all of which are lower than the assumed design effect of 2.1. Effective sample size estimates ranged from 159 to 208. The design effect in this EA is smaller than that assumed in the protocol in part because of a smaller standard deviation of In(PFAS) (the protocol assumed a standard deviation of 1.63), and because of a smaller number of people per household. In this EA the average number of people per household was 1.67 (compared to 3.0, assumed in the protocol).

^{*} Per the protocol, geometric means were not calculated for PFAS detected in less than 60% of samples.

Appendix C: PFAS Blood Levels by Demographics and Exposure Characteristics

This appendix provides geometric mean blood PFAS concentrations and 95% confidence intervals stratified by demographic or exposure characteristics for the five PFAS with detection frequencies above 60% (i.e., PFHxS, PFOS, PFOA, PFNA, and PFDA). Also included are univariate regressions, multivariate regressions, and boxplots. For each regression, the outputs shown are coefficient estimates, p–values, and marginal effects. The coefficient represents the increase in PFAS blood levels (in units of $log_{10}[\mu g/L]$) per unit increase of the independent variable shown on the left side of the table for continuous variables, or when comparing to the reference category for categorical variables. The p-value indicates the significance of the results. Generally, p-values less than 0.05 indicate significant results. The marginal effect is the percent change in PFAS blood levels (in units of $\mu g/L$) per unit increase of the continuous variables, or in comparison to the reference category for categorical variables.

Contents

Fable C1. Adult blood PFAS geometric means (GM), 95% lower confidence intervals (LCI), and 95% upp confidence intervals (UCI) in micrograms per liter* ^{,†,‡}	
Table C2. Child blood PFAS geometric means (GM), lower confidence intervals (LCI), and upper confidence intervals (UCI) in micrograms per liter*, the confidence intervals (UCI) in micrograms per liter.	8
Table C3. Adult univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)*	 . 11
Fable C4. Child univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	
Fable C5. PFHxS adult multivariate regression results including coefficient estimate (Coef.), p-value (p- val), and marginal effect (ME)	
Table C6. PFHxS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. 17
Fable C7. PFHxS adult male multivariate regression results including coefficient estimate (Coef.), p-val p-val), and marginal effect (ME)	
Table C8. PFOS adult multivariate regression results including coefficient estimate (Coef.), p-value (p- val), and marginal effect (ME)	.18
Fable C9. PFOA adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	
Figure C1. Boxplot of adult blood (serum) PFAS concentrations by age	. 19
Figure C2. Boxplot of adult blood (serum) PFAS concentrations by sex	. 19
Figure C3. Boxplot of adult blood (serum) PFAS concentrations by race and ethnicity	. 19
Figure C4. Boxplot of adult blood (serum) PFAS concentrations by body mass index (BMI)	. 20
Figure C5. Boxplot of adult blood (serum) PFAS concentrations by years in current home	. 20
Figure C6. Boxplot of adult blood (serum) PFAS concentrations by years in sampling frame (past 20 years)	. 20
Figure C7. Boxplot of adult blood (serum) PFAS concentrations by cups of tap water drunk at home	.21

Figure C8. Boxplot	of adult blood (serum)	PFAS concentrations b	y drinking water source	21
Figure C9. Boxplot	of adult blood (serum)	PFAS concentrations b	y public water system	21
Figure C10. Boxplo	t of adult blood (serum) PFAS concentrations	by water filter type	22
Figure C11. Boxplo	t of adult blood (serum) PFAS concentrations	by kidney disease history .	22
Figure C12. Boxplo	t of adult blood (serum) PFAS concentrations	by blood donation freque	ncy22
Figure C13. Boxplo	t of adult blood (serum) PFAS concentrations	by home cleaning frequen	icy23
Figure C14. Boxplo	t of adult blood (serum) PFAS concentrations	by stain-resistant product	use23
Figure C15. Boxplo	t of adult blood (serum) PFAS concentrations	by frequency of contact w	ith soil23
•		•	by local fruit and vegetabl	
			h l £'-	
	•		by local fish consumption.	
			by local milk consumption	
	•		by fast food consumption	
	•		by presence of carpet in h	
	•		by occupational exposure	
			rations by breastfeeding h	•
Figure C23. Boxplo	t of adult female blood	(serum) PFAS concent	rations by breastfeeding d	luration26
Figure C24. Boxplo	t of adult female blood	(serum) PFAS concent	rations by biological childr	en variable 26
		•	rations by number of biolo	-
Figure C26. Boxplo	t of child blood (serum	PFAS concentrations b	by age	27
Figure C27. Boxplo	t of child blood (serum	PFAS concentrations b	by sex	27
Figure C28. Boxplo	t of child blood (serum	PFAS concentrations b	by body mass index (BMI).	28
Figure C29. Boxplo	t of child blood (serum) PFAS concentrations b	by birth order	28
Figure C30. Boxplo	t of child blood (serum	PFAS concentrations b	by race and ethnicity comb	oined28
•	•		by water consumption at o	
			by water consumption at s	
Figure C33. Boxplo	t of child blood (serum	PFAS concentrations b	by public water system	30
•			by length of residency in s	
Figure C35. Boxplo	t of child blood (serum	PFAS concentrations b	by frequency of contact w	ith soil 31
	•		by local fruit and vegetable	•
Figure C37. Boxplo	t of child blood (serum	PFAS concentrations b	by local milk consumption	31
	•		by drinking formula recons	

Figure C39. Boxplot of child blood (serum) PFAS concentrations by duration of drinking formula	
reconstituted with tap water	32
Figure C40. Boxplot of child blood (serum) PFAS concentrations by history of breastfeeding	33
Figure C41. Boxplot of child blood (serum) PFAS concentrations by breastfeeding duration	33

Table C1. Adult blood PFAS geometric means (GM), 95% lower confidence intervals (LCI), and 95% upper confidence intervals (UCI) in micrograms per liter*,†, ‡

		_ s		PFHxS		- IIICI	PFOS			PFOA			PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
All Ac	lults	275	3.19	2.77	3.69	5.49	4.92	6.14	1.51	1.39	1.63	0.40	0.36	0.45	0.16	0.14	0.17
Age	18 to <50	78	2.48	1.96	3.15	4.47	3.73	5.37	1.23	1.09	1.39	0.32	0.27	0.37	0.13	0.11	0.15
(years)	50+	169	3.59	3.03	4.25	6.04	5.30	6.89	1.65	1.50	1.81	0.45	0.40	0.51	0.17	0.15	0.19
Sex	Female	131	2.77	2.32	3.30	4.38	3.80	5.05	1.45	1.30	1.62	0.40	0.34	0.46	0.17	0.15	0.19
Sex	Male	116	3.75	3.16	4.47	7.10	6.21	8.10	1.57	1.43	1.72	0.41	0.36	0.47	0.15	0.13	0.16
Dady magazinday	<25	43	2.93	2.19	3.92	4.89	3.70	6.46	1.25	1.03	1.52	0.36	0.28	0.45	0.17	0.14	0.21
Body mass index	<25 to <30	86	3.64	2.89	4.59	6.03	5.12	7.10	1.68	1.49	1.90	0.45	0.38	0.54	0.17	0.15	0.20
(kilograms per square meter)	30 to <35	61	3.46	2.69	4.45	6.02	5.02	7.22	1.65	1.47	1.86	0.45	0.38	0.52	0.15	0.13	0.18
square meter)	35+	54	2.62	2.10	3.27	4.65	3.82	5.65	1.34	1.14	1.57	0.33	0.27	0.40	0.12	0.10	0.15
	White alone,	207	3.42	2.95	3.96	5.49	4.86	6.21	1.52	1.39	1.65	0.40	0.36	0.45	0.15	0.14	0.17
Race and ethnicity	not Hispanic	207	3.42	2.95	3.90	5.49	4.00	0.21	1.52	1.59	1.05	0.40	0.50	0.45	0.15	0.14	0.17
combined	Not White, or	37	2.36	1.62	3.43	5.68	4.29	7.51	1.44	1.16	1.79	0.42	0.31	0.57	0.19	0.14	0.25
	Hispanic	37	2.30	1.02	3.43	3.08	4.23	7.51	1.44	1.10	1.79	0.42	0.51	0.57	0.19	0.14	0.23
Length of	<10	70	2.31	1.82	2.93	4.54	3.76	5.49	1.37	1.18	1.58	0.42	0.34	0.51	0.17	0.14	0.20
residence at	10 to <20	97	2.94	2.43	3.56	5.19	4.44	6.08	1.42	1.28	1.58	0.37	0.31	0.43	0.15	0.13	0.17
current address	20 to <30	38	4.09	2.62	6.38	5.59	3.92	7.99	1.69	1.34	2.14	0.36	0.28	0.46	0.13	0.11	0.17
(years)	30+	42	5.32	4.00	7.08	8.44	6.74	10.58	1.81	1.51	2.18	0.52	0.40	0.68	0.18	0.13	0.23
Total length of	<10	37	1.82	1.25	2.64	4.11	3.16	5.34	1.19	0.96	1.49	0.39	0.31	0.48	0.16	0.13	0.19
residence in	120	J.					0.10	3.5 .		0.50			0.01	0.10	0.20		0.13
sampling frame	10 to <15	63	3.03	2.43	3.77	5.26	4.35	6.37	1.51	1.34	1.71	0.40	0.34	0.48	0.16	0.13	0.19
over the past 20	15 to 20	147	3.76	3.12	4.54	6.02	5.16	7.02	1.59	1.43	1.77	0.41	0.35	0.47	0.16	0.14	0.18
years (years)	15 to 20	147	3.76	5.12	4.54	6.02	5.10	7.02	1.59	1.45	1.//	0.41	0.33	0.47	0.10	0.14	0.18
Current and	Public water	169	3.49	2.90	4.19	5.81	5.07	6.67	1.59	1.44	1.76	0.42	0.37	0.48	0.16	0.14	0.18
primary source of																	
drinking water	Bottled water	78	2.64	2.17	3.21	4.86	4.16	5.68	1.33	1.19	1.48	0.36	0.31	0.43	0.15	0.13	0.17
Public Water	Berkeley	200	3.03	2.57	3.58	5.43	4.79	6.15	1.47	1.35	1.61	0.40	0.35	0.45	0.15	0.14	0.17
Supply	Martinsburg	47	3.97	3.05	5.18	5.78	4.60	7.28	1.66	1.41	1.95	0.44	0.35	0.55	0.18	0.14	0.23

March I.	0.1	- 8		PFHxS			PFOS			PFOA			PFNA			PFDA		
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	
	0	23	2.26	1.67	3.07	4.33	3.03	6.20	1.27	1.04	1.54	0.34	0.23	0.48	0.16	0.12	0.21	
Tap water	>0 to <2	15	2.36	1.44	3.86	4.87	3.61	6.55	1.26	1.01	1.56	0.35	0.26	0.48	0.15	0.11	0.19	
consumption at current home	2 to <4	43	2.57	1.84	3.59	5.42	4.48	6.56	1.49	1.26	1.76	0.43	0.34	0.53	0.15	0.12	0.18	
(average cups per	4 to <6	40	4.04	3.17	5.15	6.86	5.86	8.03	1.62	1.36	1.93	0.45	0.37	0.56	0.17	0.14	0.22	
day)	6 to <8	40	3.31	2.49	4.41	5.69	4.29	7.53	1.59	1.32	1.93	0.41	0.31	0.54	0.16	0.12	0.20	
uayı	8+	85	3.66	2.84	4.72	5.30	4.38	6.40	1.54	1.34	1.77	0.39	0.33	0.46	0.15	0.13	0.17	
	None, no filter or treatment device	51	2.86	2.19	3.75	6.08	4.98	7.43	1.55	1.34	1.79	0.45	0.37	0.54	0.14	0.12	0.17	
Current use of filter or treatment device for tap	None, drink bottled water only	10	3.66	2.25	5.96	6.16	3.93	9.65	1.51	1.14	2.02	0.45	0.31	0.65	0.19	0.13	0.28	
water at home	Use at least one filter or treatment device	185	3.27	2.75	3.89	5.30	4.64	6.05	1.49	1.36	1.64	0.39	0.34	0.44	0.16	0.14	0.18	
History of kidney	No	228	3.20	2.76	3.71	5.56	4.94	6.25	1.52	1.40	1.64	0.40	0.36	0.45	0.16	0.14	0.17	
disease	Yes	19	3.08	1.87	5.08	4.77	3.66	6.22	1.39	1.00	1.93	0.42	0.32	0.54	0.14	0.11	0.19	
Frequency of	Never/rarely	223	3.26	2.80	3.80	5.68	5.06	6.37	1.52	1.40	1.65	0.41	0.37	0.46	0.16	0.14	0.18	
blood donation	Once or more a year	24	2.62	1.82	3.79	4.03	2.92	5.57	1.36	1.12	1.66	0.32	0.25	0.41	0.13	0.10	0.16	
Frequency of	A few times per month or less	150	3.26	2.71	3.93	5.64	4.90	6.49	1.55	1.40	1.73	0.42	0.37	0.49	0.16	0.14	0.18	
house cleaning	Three times per week or more	95	3.11	2.49	3.88	5.27	4.47	6.21	1.43	1.28	1.60	0.37	0.32	0.44	0.15	0.13	0.17	
Frequency of	Never	208	3.23	2.76	3.78	5.40	4.76	6.14	1.50	1.38	1.64	0.40	0.35	0.45	0.15	0.14	0.17	
stain-resistant product use	Rarely or more frequently	39	3.00	2.12	4.25	6.00	5.06	7.11	1.53	1.30	1.79	0.45	0.37	0.54	0.18	0.15	0.22	

We delile		5 5		PFHxS		PFOS			PFOA				PFNA		PFDA		
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Frequency of direct contact	A few times per year or less	93	3.16	2.56	3.90	5.20	4.48	6.04	1.42	1.27	1.59	0.39	0.33	0.46	0.14	0.12	0.17
with soil at locations within	A few times per month	79	2.90	2.35	3.58	5.36	4.46	6.43	1.49	1.29	1.72	0.42	0.34	0.51	0.17	0.14	0.20
the sampling frame	Three times per week or more	73	3.71	2.84	4.84	6.34	5.22	7.70	1.68	1.47	1.92	0.42	0.36	0.49	0.16	0.14	0.19
Consumption of fruits and vegetables from	No	65	2.77	2.10	3.64	4.89	3.92	6.11	1.34	1.14	1.56	0.36	0.29	0.45	0.15	0.12	0.19
locations within the sampling frame	Yes	178	3.36	2.84	3.96	5.73	5.06	6.48	1.56	1.43	1.71	0.41	0.37	0.47	0.16	0.14	0.18
Consumption of local fish (i.e., fish	No	238	3.25	2.81	3.76	5.53	4.94	6.19	1.52	1.40	1.65	0.41	0.36	0.45	0.16	0.14	0.17
caught within the sampling frame)	Yes	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Frequency of local milk consumption	Never	231	3.14	2.70	3.65	5.40	4.81	6.07	1.48	1.36	1.60	0.39	0.35	0.44	0.15	0.14	0.17
(i.e., milk from animals within the sampling frame)	Rarely or more frequently	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Three times per week or more	73	3.49	2.76	4.41	5.94	4.89	7.22	1.48	1.28	1.71	0.43	0.36	0.51	0.15	0.13	0.18
Frequency of fast food consumption		137	3.15	2.63	3.78	5.27	4.58	6.06	1.49	1.35	1.65	0.38	0.33	0.44	0.15	0.13	0.17
	A few times per year or less	36	2.70	1.76	4.17	5.45	3.82	7.79	1.59	1.28	1.98	0.44	0.33	0.59	0.18	0.14	0.25

M. Calif.	0.1	- 8		PFHxS		PFOS			PFOA			PFNA			PFDA		
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Presence of carpeting in	No	80	3.62	2.83	4.64	5.44	4.34	6.83	1.61	1.40	1.86	0.41	0.35	0.49	0.15	0.13	0.18
bedroom, living room, or kitchen	Yes	167	3.01	2.53	3.58	5.52	4.88	6.24	1.46	1.33	1.60	0.40	0.35	0.46	0.16	0.14	0.18
Occupational exposures (count	None	216	3.21	2.75	3.76	5.45	4.82	6.16	1.51	1.39	1.65	0.40	0.36	0.45	0.16	0.14	0.18
of jobs with potential PFAS exposures)	One or more	28	2.98	2.16	4.13	5.37	4.32	6.66	1.40	1.12	1.75	0.40	0.32	0.50	0.13	0.11	0.16
Females only																	
Biological children	No	26	3.04	2.01	4.59	4.38	3.30	5.82	1.48	1.18	1.85	0.37	0.29	0.49	0.14	0.11	0.19
biological children	Yes	105	2.70	2.24	3.26	4.38	3.77	5.09	1.44	1.27	1.63	0.40	0.34	0.47	0.17	0.15	0.20
Number of	0	26	3.04	2.01	4.59	4.38	3.30	5.82	1.48	1.18	1.85	0.37	0.29	0.49	0.14	0.11	0.19
	1	34	3.00	2.19	4.11	4.73	3.51	6.36	1.59	1.23	2.05	0.45	0.34	0.59	0.19	0.14	0.25
biological children	2	42	2.37	1.72	3.26	3.69	2.93	4.65	1.31	1.10	1.57	0.35	0.27	0.45	0.15	0.13	0.19
Ciliuren	3+	29	2.90	2.10	4.00	5.12	4.05	6.47	1.47	1.20	1.81	0.44	0.33	0.58	0.18	0.14	0.24
Breastfeeding or previously	No	63	2.86	2.28	3.58	4.40	3.73	5.17	1.41	1.24	1.61	0.39	0.33	0.46	0.15	0.13	0.17
breastfed children	Yes	68	2.68	2.08	3.46	4.36	3.55	5.37	1.48	1.25	1.76	0.40	0.33	0.50	0.19	0.15	0.23
Total duration of	0	64	2.93	2.33	3.68	4.49	3.80	5.30	1.47	1.26	1.71	0.41	0.34	0.49	0.15	0.13	0.18
breastfeeding for	>0 to <6	20	3.37	2.29	4.96	5.25	4.19	6.59	1.59	1.28	1.97	0.44	0.35	0.56	0.16	0.12	0.20
all	6 to <12	11	2.03	1.17	3.53	5.36	3.67	7.83	1.41	0.95	2.09	0.47	0.29	0.75	0.25	0.14	0.45
children	12 to <18	11	3.28	1.52	7.11	4.60	2.52	8.41	1.60	0.98	2.60	0.38	0.22	0.64	0.17	0.11	0.25
(months)	18+	25	2.17	1.43	3.30	3.18	2.15	4.70	1.26	0.96	1.66	0.33	0.22	0.48	0.17	0.12	0.24

^{*} Several variables that were collected in the questionnaire are not included in these tables. These variables may not be included because they did not have sufficient variability or were not associated with PFAS blood concentrations in preliminary analyses. These variables include full-time vs. part-time residence, behavior change questions, and occupational history in specific industries.

[†] Geometric means and confidence levels are not shown for categories with fewer than 10 responses.

 $^{^{\}scriptsize \scriptsize t}$ Detection limits for all PFAS are 0.1 micrograms per liter (µg/L).

[§] Some frequency counts may not sum to the total because of missing values. Some variable categories that were presented in the questionnaire were collapsed into larger variable categories.

Table C2. Child blood PFAS geometric means (GM), lower confidence intervals (LCI), and upper confidence intervals (UCI) in micrograms per liter*,†,‡

		&		PFHxS	ter		PFOS			PFOA			PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
All (Children	28	1.40	0.94	2.11	2.53	1.93	3.32	1.08	0.94	1.24	0.21	0.15	0.28	0.10	0.08	0.13
Age	3 to <12	13	1.68	0.77	3.67	2.73	1.74	4.30	1.19	0.93	1.53	0.21	0.13	0.33	0.13	0.09	0.19
(years)	12 to <18	15	1.20	0.87	1.65	2.37	1.79	3.13	0.99	0.88	1.11	0.21	0.15	0.29	0.08	0.07	0.10
Cov	Female	16	1.23	0.79	1.91	2.46	1.66	3.64	1.06	0.87	1.29	0.22	0.14	0.34	0.11	0.08	0.15
Sex	Male	12	1.68	0.97	2.90	2.62	1.91	3.61	1.10	0.95	1.28	0.19	0.13	0.28	0.09	0.07	0.12
Body mass index	15 to 20	14	1.66	0.93	2.97	3.10	2.22	4.35	1.24	1.03	1.48	0.26	0.18	0.38	0.12	0.09	0.17
(kilograms per square	20 to <25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
meter)	25+	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	First born	14	1.34	0.93	1.93	2.72	2.09	3.53	1.09	0.96	1.23	0.21	0.15	0.29	0.10	0.08	0.13
Birth order	Second born	11	1.45	0.89	2.37	2.53	1.75	3.65	1.04	0.87	1.24	0.21	0.14	0.34	0.10	0.07	0.13
	Third born	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Race and ethnicity	White alone, not Hispanic	15	2.03	1.09	3.77	3.08	2.10	4.51	1.22	0.98	1.52	0.25	0.17	0.35	0.12	0.08	0.17
combined	Not White, or Hispanic	12	0.95	0.74	1.22	1.92	1.36	2.70	0.94	0.80	1.09	0.16	0.09	0.28	0.08	0.07	0.10
Water consumption at	0 to <2	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
current home	2 to <4	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(average cups per day)	4+	11	1.03	0.64	1.67	1.71	1.14	2.57	0.90	0.75	1.08	0.18	0.10	0.31	0.08	0.07	0.10
Public Water Supply	Berkeley	21	1.53	0.87	2.68	2.89	2.04	4.10	1.14	0.95	1.38	0.23	0.15	0.35	0.11	0.08	0.16
Public Water Supply	Martinsburg	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0 to <1	12	1.91	0.87	4.22	2.43	1.44	4.09	1.11	0.83	1.47	0.18	0.12	0.29	0.11	0.07	0.17
Water consumption at	1 to <2	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
school	2 to <3	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(a.c. age caps per day)	3+	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Length of residency in	<6	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sampling frame	6 to <12	15	1.46	0.84	2.53	2.48	1.69	3.65	1.05	0.90	1.23	0.20	0.13	0.32	0.11	0.08	0.15
(years)	12 to <18	10	1.10	0.78	1.57	2.38	1.69	3.34	1.01	0.86	1.19	0.21	0.14	0.31	0.08	0.07	0.10

W. C.H.	0.1	-		PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Frequency [§]	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Frequency of direct	A few times per year or less	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
contact with soil at locations within the	A few times per month	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sampling frame	Three times per week or more	15	1.58	0.75	3.34	2.97	1.92	4.59	1.20	0.96	1.50	0.27	0.18	0.40	0.13	0.09	0.18
Consumption of fruits and vegetables from	No	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
locations within the sampling frame	Yes	20	1.45	0.78	2.68	2.68	1.81	3.98	1.12	0.91	1.37	0.23	0.16	0.33	0.11	0.08	0.15
Frequency of local milk consumption (i.e., milk	Rarely or more frequently	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
from animals within the sampling frame)	Never	25	1.42	0.87	2.32	2.37	1.72	3.27	1.06	0.89	1.26	0.20	0.14	0.29	0.10	0.07	0.13
Drank formula	No	15	1.54	0.72	3.29	2.66	1.67	4.23	1.14	0.89	1.47	0.20	0.12	0.34	0.12	0.08	0.18
reconstituted with tap water	Yes	13	1.26	0.86	1.84	2.39	1.68	3.40	1.01	0.88	1.16	0.22	0.14	0.33	0.09	0.07	0.11
Duration of drinking	<7	18	1.44	0.76	2.75	2.75	1.86	4.06	1.14	0.93	1.41	0.21	0.14	0.33	0.12	0.08	0.16
formula reconstituted	7 to <13	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
with tap water duration (months)	13 to <19	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Currently breastfeeding	No	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
or previously breastfed	Yes	19	1.41	0.76	2.63	2.39	1.63	3.53	1.07	0.87	1.32	0.20	0.14	0.28	0.10	0.07	0.15
B	<7	19	1.26	0.93	1.70	2.54	1.90	3.40	1.06	0.93	1.22	0.21	0.14	0.31	0.09	0.07	0.12
Breastfeeding duration (months)	7 to <19	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(months)	19+	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

^{*} Several variables that were collected in the questionnaire are not included in these tables. These variables may not be included because they did not have sufficient variability or were not associated with PFAS blood concentrations in preliminary analyses. These variables include full-time vs. part-time residence and school attendance.

[†] Geometric means and confidence levels are not shown for categories with fewer than 10 responses.

[‡] Detection limits for all PFAS are 0.1 micrograms per liter (µg/L).

§	Some frequency counts may not sum to the total because of missing values. Some variable categories that were presented in the questionnaire were collapsed into larger variable categories.

Table C3. Adult univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)*

	Table C3. Adult univ	ariate re		results	nciuaing		ent estir	nate (Co		iiue (p-v	aij, and		ептест (IVIE)*		
			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)
Age	NA—continuous variable	0.006	0.006	1.3	0.005	<.001	1.1	0.004	<.001	0.9	0.004	0.001	1.0	0.003	0.031	0.6
_	Male	0.133	0.004	35.7	0.210	<.001	62.1	0.035	0.238	8.4	0.016	0.666	3.7	-0.055	0.077	-11.9
Sex	Female	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Body mass index	NA—continuous variable	-0.002	0.597	-0.5	0.001	0.825	0.2	0.002	0.443	0.6	0.000	0.918	0.1	-0.004	0.351	-0.9
Race and ethnicity	Not White, or Hispanic	-0.161	0.067	-31.0	0.014	0.834	3.3	-0.023	0.660	-5.1	0.014	0.847	3.3	0.096	0.153	24.8
combined	White alone, not Hispanic	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Length of residence at current address (years)	NA—continuous variable	0.009	<.001	2.1	0.007	<.001	1.6	0.003	0.013	0.7	0.003	0.121	0.6	0.000	0.819	0.1
Total length of residence in sampling frame over the past 20 years (years)	NA—continuous variable	0.025	<.001	5.9	0.014	0.005	3.2	0.010	0.010	2.3	0.003	0.445	0.8	-0.001	0.853	-0.2
Current and	Bottled water	-0.121	0.037	-24.2	-0.078	0.075	-16.4	-0.079	0.014	-16.6	-0.067	0.126	-14.3	-0.017	0.667	-3.9
primary source of drinking water	Public water system	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Dudalia Matau Cumalu	Martinsburg	0.117	0.091	30.8	0.028	0.633	6.5	0.053	0.194	12.9	0.046	0.413	11.1	0.082	0.182	20.8
Public Water Supply	Berkeley	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tap water consumption at current home (average cups per day)	NA—continuous variable	0.005	0.218	1.2	0.001	0.693	0.3	0.001	0.580	0.2	-0.001	0.687	-0.2	-0.004	0.063	-0.9

			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)
	None, no filter or treatment device	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Current use of filter or treatment device for tap water at	· ·	0.107	0.385	27.9	0.005	0.962	1.2	-0.010	0.892	-2.2	0.007	0.937	1.7	0.122	0.211	32.3
home	Use at least one filter or treatment device	0.057	0.413	14.1	-0.060	0.252	-12.9	-0.017	0.658	-3.8	-0.058	0.240	-12.5	0.040	0.411	9.6
History of kidney	Yes	-0.016	0.884	-3.7	-0.066	0.295	-14.2	-0.038	0.606	-8.4	0.015	0.800	3.6	-0.049	0.454	-10.6
disease	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Frequency of blood	Once or more a Year	-0.095	0.273	-19.6	-0.149	0.048	-29.1	-0.047	0.311	-10.3	-0.112	0.064	-22.8	-0.096	0.093	-19.8
donation	Never/rarely	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Frequency of house	Three times per week or more	-0.021	0.735	-4.8	-0.030	0.513	-6.6	-0.036	0.286	-8.0	-0.052	0.254	-11.4	-0.020	0.634	-4.6
cleaning	A few times per month or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Frequency of stain- resistant product	Rarely or more frequently	-0.032	0.706	-7.0	0.045	0.331	11.0	0.007	0.857	1.6	0.056	0.250	13.9	0.076	0.141	19.2
use	Never	_	_	_	<u> </u>	_	_	_	_	-	_	_	_	_	_	_
Frequency of direct	A few times per month	-0.037	0.549	-8.3	0.013	0.804	3.0	0.019	0.638	4.5	0.033	0.565	7.8	0.065	0.212	16.0
contact with soil at pocations within the pocations within the pocations frame	Three times	0.069	0.333	17.3	0.086	0.108	21.9	0.072	0.063	17.9	0.031	0.526	7.4	0.053	0.282	12.9
	A few times per year or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p val	ME (%)												
Consumption of fruits and vegetables from	Yes	0.084	0.226	21.3	0.068	0.208	17.0	0.068	0.084	16.9	0.060	0.281	14.9	0.030	0.609	7.1
locations within the sampling frame	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	A few times per month	0.067	0.514	16.5	-0.015	0.858	-3.4	-0.027	0.610	-6.0	-0.064	0.347	-13.8	-0.084	0.258	-17.6
Frequency of fast food consumption	Three times per week or more	0.111	0.298	29.0	0.037	0.682	8.9	-0.030	0.608	-6.6	-0.014	0.844	-3.3	-0.087	0.269	-18.2
	A few times per year or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Presence of carpeting in	Yes	-0.081	0.224	-17.1	0.006	0.917	1.4	-0.043	0.252	-9.5	-0.016	0.732	-3.7	0.013	0.760	3.1
bedroom, living room, or kitchen	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Occupational exposures (count of jobs with potential		-0.032	0.683	-7.1	-0.007	0.899	-1.6	-0.034	0.520	-7.5	-0.006	0.922	-1.3	-0.073	0.149	-15.5
PFAS exposures)	None	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Females only																
Dialogical children	Yes	-0.051	0.597	-11.1	-0.001	0.993	-0.1	-0.011	0.846	-2.5	0.031	0.627	7.5	0.078	0.231	19.7
Biological children	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Number of biological children	NA—continuous variable	-0.017	0.589	-3.9	0.006	0.807	1.4	-0.010	0.617	-2.3	0.009	0.725	2.1	0.014	0.538	3.3
Breastfeeding or	Yes	-0.028	0.702	-6.2	-0.003	0.955	-0.7	0.022	0.645	5.1	0.018	0.748	4.3	0.104	0.057	27.1
previously	No	0.000	_	0.0	0.000	_	0.0	0.000	_	0.0	0.000	_	0.0	0.000	_	0.0

			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p val	ME (%)	Coef.	p val	ME (%)									
Total duration of breastfeeding for all biological children (months)	NA—continuous variable	-0.005	0.099	-1.1	-0.003	0.039	-0.8	-0.003	0.036	-0.7	-0.002	0.231	-0.6	0.002	0.270	0.4

^{*} Not all categorical variables included in Table C1 are included in Table C3: variable categories that had fewer than 10 responses were not included in the regressions (Table C3). These variables include frequency of local milk consumption and local fish consumption.

Table C4. Child univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

	e c4. Cillia dilivariate		PFHxS			PFOS			PFOA	or (b	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PFNA		(1112)	PFDA	
ParamModel	Parameter	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)	Coef.	p val	ME (%)
Age	NA—continuous variable	-0.027	0.260	-6.1	-0.011	0.434	-2.5	-0.016	0.081	-3.5	-0.006	0.695	-1.4	-0.025	0.058	-5.7
Sex	Male	0.136	0.169	36.6	0.028	0.745	6.6	0.017	0.645	4.1	-0.059	0.532	-12.8	-0.099	0.139	-20.3
Sex	Female	_	1	_	_	_	_	_	_	-	_	_	1	_	_	_
Body mass index (kilograms per square meter)	NA—continuous variable	-0.019	0.057	-4.2	-0.016	0.022	-3.7	-0.010	0.004	-2.3	-0.017	0.015	-3.9	-0.011	0.047	-2.6
Race and ethnicity	Not White, or Hispanic	-0.329	0.026	-53.1	-0.206	0.065	-37.7	-0.115	0.052	-23.3	-0.183	0.198	-34.4	-0.150	0.115	-29.2
combined	White alone, not Hispanic	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Water consumption at current home (average cups per day)	NA—continuous variable	-0.034	0.021	-7.5	-0.033	<.001	-7.4	-0.015	<.001	-3.4	-0.027	0.006	-5.9	-0.016	0.102	-3.7
Water consumption at school (average cups per day)	NA—continuous variable	-0.037	0.106	-8.2	-0.001	0.953	-0.2	0.002	0.832	0.4	0.014	0.304	3.4	-0.010	0.398	-2.2
Length of residency in sampling frame (years)	NA—continuous variable	-0.029	0.231	-6.5	-0.010	0.531	-2.4	-0.014	0.174	-3.2	-0.004	0.836	-0.9	-0.020	0.188	-4.6
Drank formula	Yes	-0.089	0.619	-18.5	-0.046	0.710	-10.0	-0.053	0.387	-11.5	0.028	0.841	6.7	-0.141	0.160	-27.8
reconstituted with tap water	No	_	_	_	_		_		_	_	_		_		_	

			PFHxS			PFOS			PFOA			PFNA			PFDA	
ParamModel	Parameter	Coef.	p val	ME (%)												
Drank formula reconstituted with tap water duration (months)	NA—continuous variable	-0.007	0.580	-1.6	-0.008	0.364	-1.8	-0.005	0.209	-1.2	-0.004	0.710	-0.8	-0.013	0.047	-2.9
Currently	Yes	0.008	0.961	1.8	-0.074	0.510	-15.8	-0.012	0.846	-2.7	-0.051	0.707	-11.0	0.034	0.700	8.1
breastfeeding or previously breastfed	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Breastfeeding duration (months)	NA—continuous variable	0.018	0.257	4.2	0.003	0.790	0.7	0.007	0.301	1.7	0.005	0.631	1.2	0.011	0.269	2.5

^{*} Not all categorical variables in included in Table C2 are also included in Table C4: variable categories that had fewer than 10 responses were not included in the regressions (Table C4). These variables include birth order, frequency of direct contact with soil at locations within the sampling frame, frequency of local fruit and vegetable consumption, frequency of local milk consumption, and currently breastfeeding or previously breastfed.

Table C5. PFHxS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p val	ME (%)
Age (continuous)	0.010	<.0001	2.4
Sex: male* (categorical)	0.800	<.0001	531.3
Age × sex: male*,† (continuous)	-0.012	<.0001	-2.7
Years in sampling frame in the past 20 years (continuous)	0.022	0.0007	5.3
Public Water Supply: Martinsburg [‡] (categorical)	0.177	0.0069	50.3

Model statistics: R^2 = 0.191 p-value = <0.0001, n = 247, n-households = 165, intercept = -0.516

Table C6. PFHxS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p val	ME (%)
Age (continuous)	0.011	<.0001	2.4
Years in sampling frame in the past 20 years (continuous)	0.019	0.008	4.6

Model statistics: R^2 = 0.216, p-value = <0.0001, n = 131, n-households = 124, intercept = -0.326

Table C7. PFHxS adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p val	ME (%)
Years in sampling frame in the past 20 years (continuous)	0.022	0.026	5.1
Public Water Supply: Martinsburg* (categorical)	0.204	0.0099	60.1

Model statistics: R2 = 0.091, p-value = 0.0149, n = 116, n-households = 109, intercept = 0.187

^{*} Reference category is adult participants who identified as female.

[†] This variable is an interaction term between age and sex.

[‡] Reference category is adult participants who are on the Berkeley County public water system.

^{*} Reference category is adult participants who are on the Berkeley County public water system.

Table C8. PFOS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p val	ME (%)
Age (continuous)	0.008	<.0001	1.8
Sex: male* (categorical)	0.583	<.0001	282.7
Age × Sex: male*,† (continuous)	-0.007	0.0029	-1.5
Years in sampling frame in the past 20 years (continuous)	0.010	0.0327	2.3
Blood donation frequency: once or more a year‡ (categorical)	-0.158	0.0273	-30.5
Kidney Disease History: yes§ (categorical)	-0.134	0.0291	-26.6

Model statistics: R2 = 0.204, p-value = <0.0001, n = 247, n-households = 165, intercept = 0.073

- * Reference category is adult participants who identified as female.
- [†] This variable is an interaction term between age and sex.
- [‡] Reference category is adult participants who reported donating blood never or rarely.
- § Reference category is adult participants who reported no history of kidney disease.

Table C9. PFOA adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p val	ME (%)
Age (continuous)	0.007	<.0001	1.5
Sex: male* (categorical)	0.349	0.0017	123.2
Age × sex: male*,† (continuous)	-0.006	0.0036	-1.3
Water Source: bottled water [‡] (continuous)	-0.065	0.0306	-13.8

Model statistics: R2 = 0.100, p-value = <0.0001, n = 247, n-households = 165, intercept = -0.190

- * Reference category is adult participants who identified as female.
- [†] This variable is an interaction term between age and sex.
- [‡] Reference category is adult participants who reported primarily drinking tap water at home.

Boxplots

Figure C1. Boxplot of adult blood (serum) PFAS concentrations by age

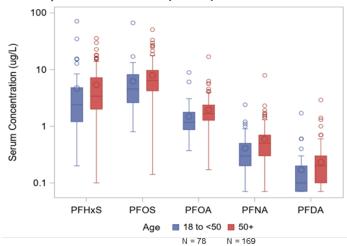


Figure C2. Boxplot of adult blood (serum) PFAS concentrations by sex

Figure C3. Boxplot of adult blood (serum) PFAS concentrations by race and ethnicity

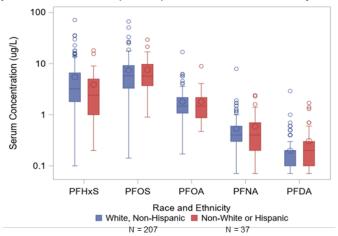


Figure C4. Boxplot of adult blood (serum) PFAS concentrations by body mass index (BMI)

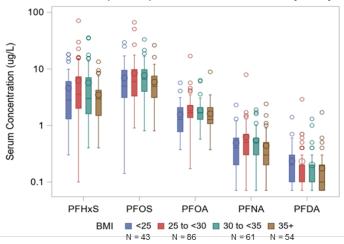


Figure C5. Boxplot of adult blood (serum) PFAS concentrations by years in current home

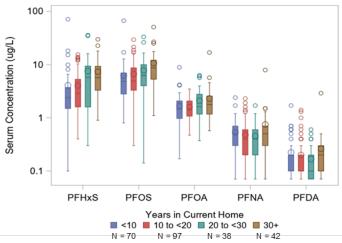


Figure C6. Boxplot of adult blood (serum) PFAS concentrations by years in sampling frame (past 20 years)

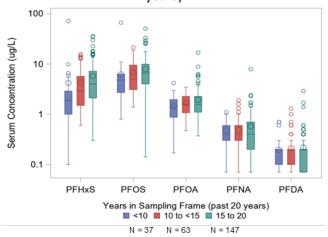


Figure C7. Boxplot of adult blood (serum) PFAS concentrations by cups of tap water drunk at home

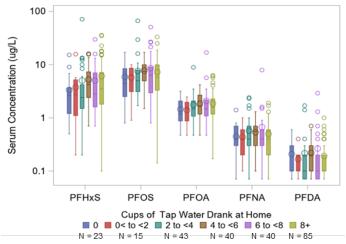


Figure C8. Boxplot of adult blood (serum) PFAS concentrations by drinking water source

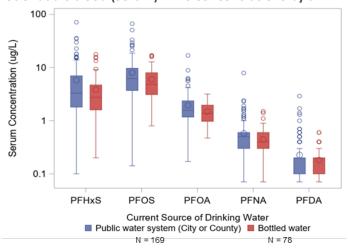


Figure C9. Boxplot of adult blood (serum) PFAS concentrations by public water system

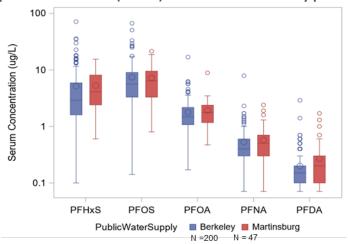


Figure C10. Boxplot of adult blood (serum) PFAS concentrations by water filter type

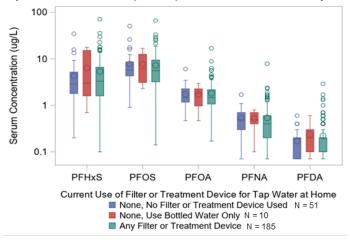


Figure C11. Boxplot of adult blood (serum) PFAS concentrations by kidney disease history

Figure C12. Boxplot of adult blood (serum) PFAS concentrations by blood donation frequency

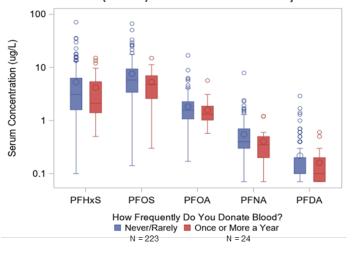


Figure C13. Boxplot of adult blood (serum) PFAS concentrations by home cleaning frequency

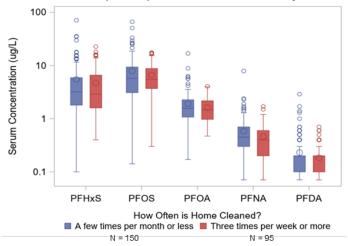


Figure C14. Boxplot of adult blood (serum) PFAS concentrations by stain-resistant product use

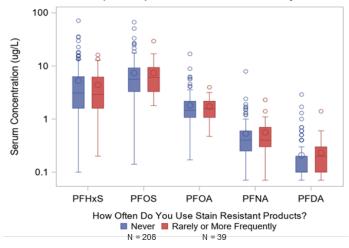


Figure C15. Boxplot of adult blood (serum) PFAS concentrations by frequency of contact with soil

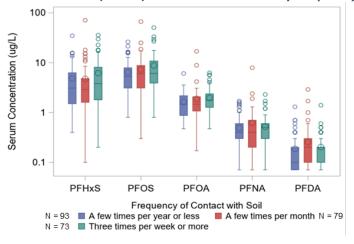


Figure C16. Boxplot of adult blood (serum) PFAS concentrations by local fruit and vegetable consumption

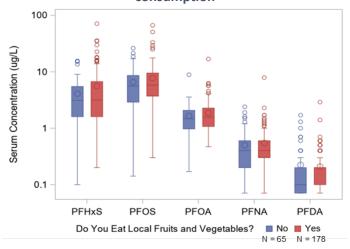


Figure C17. Boxplot of adult blood (serum) PFAS concentrations by local fish consumption

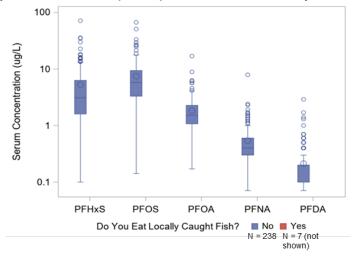


Figure C18. Boxplot of adult blood (serum) PFAS concentrations by local milk consumption

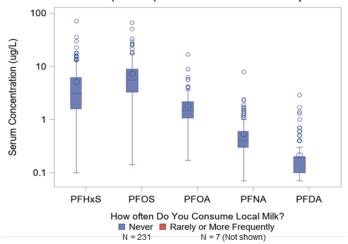


Figure C19. Boxplot of adult blood (serum) PFAS concentrations by fast food consumption frequency

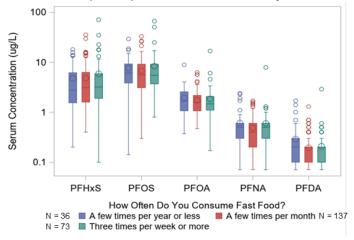


Figure C20. Boxplot of adult blood (serum) PFAS concentrations by presence of carpet in home

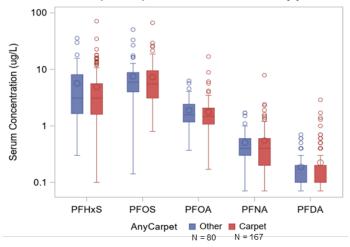


Figure C21. Boxplot of adult blood (serum) PFAS concentrations by occupational exposure

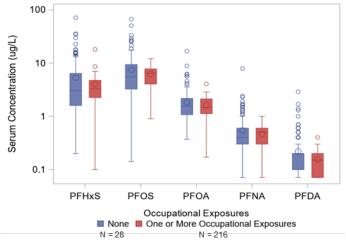


Figure C22. Boxplot of adult female blood (serum) PFAS concentrations by breastfeeding history

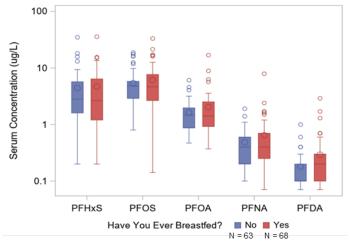


Figure C23. Boxplot of adult female blood (serum) PFAS concentrations by breastfeeding duration

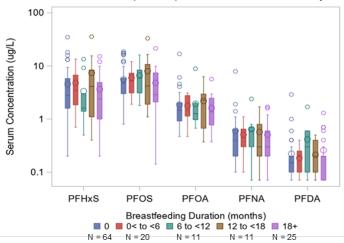


Figure C24. Boxplot of adult female blood (serum) PFAS concentrations by biological children variable

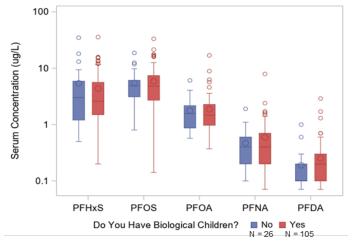


Figure C25. Boxplot of adult female blood (serum) PFAS concentrations by number of biological children

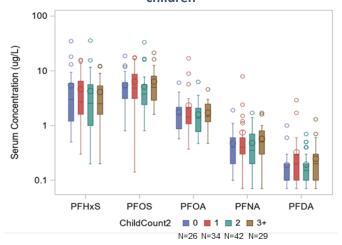


Figure C26. Boxplot of child blood (serum) PFAS concentrations by age

Figure C27. Boxplot of child blood (serum) PFAS concentrations by sex

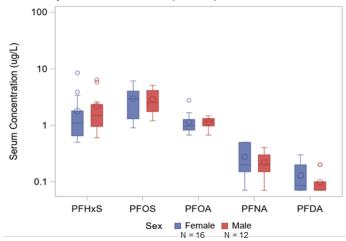


Figure C28. Boxplot of child blood (serum) PFAS concentrations by body mass index (BMI)

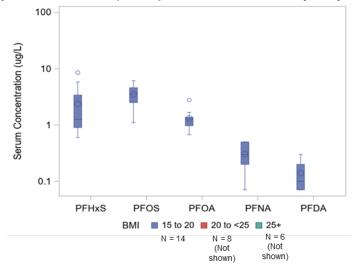


Figure C29. Boxplot of child blood (serum) PFAS concentrations by birth order

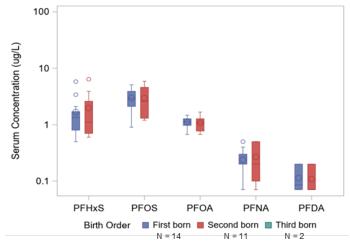


Figure C30. Boxplot of child blood (serum) PFAS concentrations by race and ethnicity combined

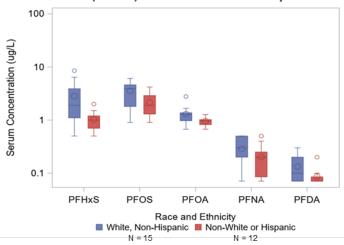


Figure C31. Boxplot of child blood (serum) PFAS concentrations by water consumption at current home

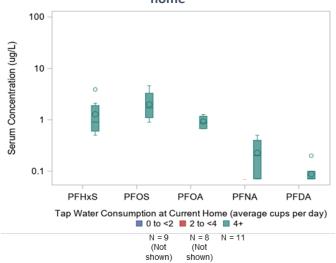


Figure C32. Boxplot of child blood (serum) PFAS concentrations by water consumption at school

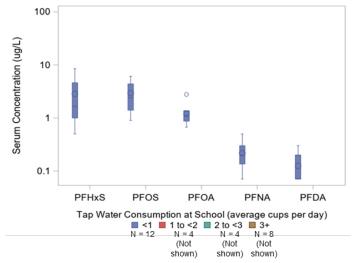


Figure C33. Boxplot of child blood (serum) PFAS concentrations by public water system

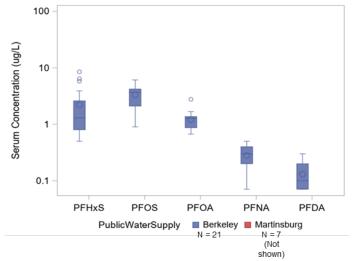


Figure C34. Boxplot of child blood (serum) PFAS concentrations by length of residency in sampling frame

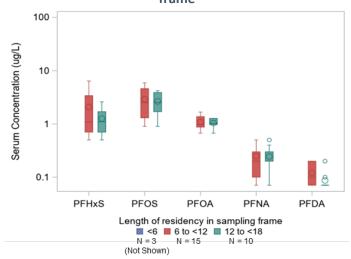


Figure C35. Boxplot of child blood (serum) PFAS concentrations by frequency of contact with soil

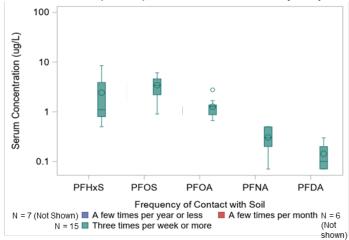


Figure C36. Boxplot of child blood (serum) PFAS concentrations by local fruit and vegetable consumption

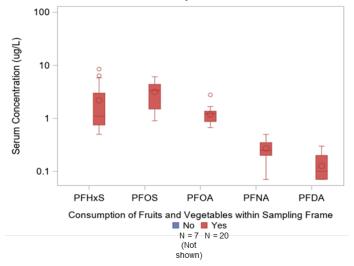


Figure C37. Boxplot of child blood (serum) PFAS concentrations by local milk consumption

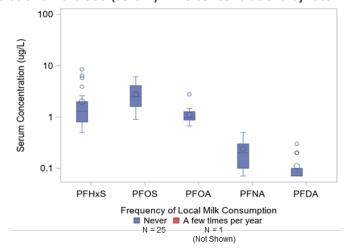


Figure C38. Boxplot of child blood (serum) PFAS concentrations by drinking formula reconstituted with tap water

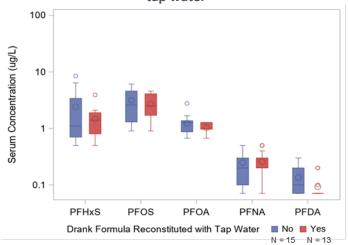


Figure C39. Boxplot of child blood (serum) PFAS concentrations by duration of drinking formula reconstituted with tap water

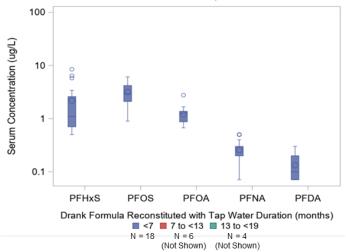


Figure C40. Boxplot of child blood (serum) PFAS concentrations by history of breastfeeding

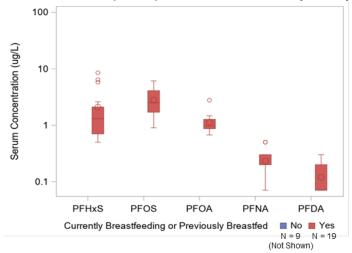
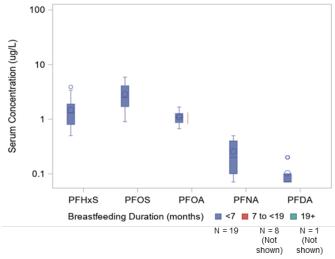



Figure C41. Boxplot of child blood (serum) PFAS concentrations by breastfeeding duration

