Lubbock County

Texas | near Reese Technology Center

INFORMATION TO PROTECT OUR COMMUNITIES

Per- and Polyfluoroalkyl **Substances (PFAS) Exposure Assessment**

Appendix A, B, and C

National Center for Environmental Health **Agency for Toxic Substances** and Disease Registry

Appendix A: Additional Tables

Table A1. Dust sample results from Lubbock County EA compared to results from other U.S. studies (nanograms per gram)

PFAS	Lubboo			Fras	ser et al. 2013)	Karásk (2	ová et al. 016)	Wu e	t al. (2015) hold Dust—	Wu et	al. (2015)	Scher et	al. (2018)
FFAS				l	nold Dust— MA*		old Dust— I.S. [†]		omes with g Children [‡]		with Older Its Only [‡]	N	ΛN [§]
	RL	GM	Range	GM	Range	Median	Range	GM	Range	GM	Range	Median	Range
PFBS	0.649-5.78	NA	ND-16.3	NA	4.98-4.98	0.9	<0.73¶-2.6	_	_	_	_	<5	<5–58
PFHxS	0.649-5.78	NA	ND-226	NA	6.05-430	8.7	1.4-84.4	3.47	ND**-7,490	3.77	ND**-1,050	18	<5-790
PFOS	0.649-5.78	5.42	ND-135	26.9	14.1–280	14.1	5.7–239	29.0	ND**-6,670	34.6	ND**-1,040	67	8.4–2000
PFDS	0.649–5.78	NA	ND-4.1	<u> </u>	_	2.8	0.5-9.8	_	_	_	_	_	_
PFPeA	1.3–11.6	NA	ND-8.2	NA	5.39–249	1.7	<0.76¶— 24.8	_	_	_	_	6.2	<5–66
PFHxA	0.649–5.78	3.56	ND-24.3	8.65	4.85– 1,380	6.5	2.5–190	_	_	_	_	29	5.4–240
PFHpA	0.649-5.78	NA	ND-10.6	12.0	4.93-586	3.6	0.9-86.7	_	_	_	_	23	<5–260
PFOA	0.649–5.78	4.77	ND-78.2	23.7	5.71–894	9.0	2.9–318	41.4	ND**-2,360	45.0	ND**-728	51	9.9–970
PFNA	0.649–5.78	NA	ND-4.1	10.9	6.21– 1,420	3.9	1.1–62.9	13.3	ND**-1,910	14.7	ND**-883	26	<5–450
PFDA	0.649-5.78	NA	ND-7.0	NA	6.97–26.8	1.8	0.4-64.0	8.51	ND**-2,520	7.76	ND**-355	13	<5–370
PFUnA	0.649–5.78	NA	ND-4.1	NA	10.8–39.4	1.2	<1.06¶— 13.1	_	_	_	_	7.2	<5–67
PFDoA	0.649–5.78	NA	ND-4.1	NA	5.09-13.3	0.6	<0.72¶-9.0	_	_	_	_	8.2	<6.5–190
PFTA	0.649-5.78	NA	ND-4.1	NA	11.2–11.2	0.8	<1.15¶-3.0	_	_	_	_	_	_
N- MeFOSA	0.746–6.64	NA	ND-4.7	_	_	0.6	0.6–0.6	_	_	_	_	_	_
MeFOSAA	0.649-5.78	NA	ND-30.9	_	_	_	_	_	_	_	_	_	_
N- MeFOSE	6.49–57.8	NA	ND-311	NA	18–488	1.0	<0.57¶- 9.9	_	_	_	_	_	_

PFAS	Lubboo	ck Coun	ty EA	(2 Househ	er et al. 2013) nold Dust— MA*	(20 Househo	ová et al. 016) old Dust— .S. [†]	House CA H	t al. (2015) hold Dust— omes with g Children [‡]	Househo Homes	al. (2015) old Dust—CA with Older lts Only [‡]	Househ	al. (2018) old Dust— //N§
	RL	GM	Range	GM	Range	Median	Range	GM Range		GM	Range	Median	Range
EtFOSAA	0.649-5.78	NA	ND-10.3	_	_	_	_			_	_	<u> </u>	_
N-EtFOSE	4.86–43.3	NA	ND-30.6	NA	12.2– 3,280	<0.34¶—	<0.34 [¶] – 93.9			_	_	_	_
FtS 6:2	2.34-20.8	NA	ND-14.7	_	_	_	_	_	<u> </u>			_	_

RL = reporting limit, GM = geometric mean, ng/g = nanograms per gram, NA = not applicable (i.e., too few detected results to calculate a GM), ND = not detected, M = PFAS was not measured as part of the study

- * This study evaluated dust samples collected from homes, offices, and vehicles in the greater Boston, Massachusetts, area between January and March of 2009. This table presents results for dust samples collected in the main living areas of 30 homes.
- [†] This study evaluated dust samples collected from living rooms and bedrooms from homes in Canada, the Czech Republic, and the United States during the spring and summer of 2013. The results presented in this table are from the 14 homes in the United States.
- [‡] As part of this study, dust samples were collected between 2007 and 2009 from carpet or area rugs in the main living areas of homes in California with and without young children residing in the home. This table presents results separately for dust samples collected in the 82 homes with young children and the 42 homes with older adults only.
- As part of this study, dust samples were collected between July and September 2010 from 19 homes located in cities with PFAS—contaminated drinking water in Minnesota. Samples were collected at each home from an entryway to the yard as well as in an interior living space (e.g., family room, living room). The results presented in this table are for dust samples collected in interior living spaces only.
- [¶] Value was less than author-specified method detection limit. For this study, method detection limits varied because they were defined as mean concentration of procedural blanks plus three times the standard deviation of blank response. Values included in this table represent the upper bound of the method detection limit for a given PFAS.
- ** Reporting limits for dust not specified in Wu et al. (2015).

Table A2. Comparison values for PFAS measured in blood from other exposure assessments

PFAS/Population	Reference	Geometric Mean for Blood (μg/L)
PFHxS		
Manufacturing Workers, Decatur, AL	Olsen et al. 2003	180.0
Montgomery and Bucks Counties, PA	PA DOH 2019	6.6
Decatur, AL	ATSDR 2013	6.4
Lubbock County EA [†]	This EA	6.0
Little Hocking Water Association, OH	Frisbee et al. 2009	5.7*
Portsmouth, NH	NH DHHS 2016	4.1
Westhampton Beach/Quogue Area, NY	NYDOH 2019	3.0
General U.S. Population (NHANES 1999/2000)	CDC 2019	2.1
General U.S. Population (NHANES 2015/2016)	CDC 2019	1.2
PFOS		
Manufacturing Workers, Decatur, AL	Olsen et al. 2003	941.0
Decatur, AL	ATSDR 2013	39.8
General U.S. Population (NHANES 1999/2000)	CDC 2019	30.4
Little Hocking Water Association, OH	Frisbee et al. 2009	23.5*
Montgomery and Bucks Counties, PA	PA DOH 2019	10.2
Portsmouth, NH	NH DHHS 2016	8.6
Westhampton Beach/Quogue Area, NY	NYDOH 2019	6.6
General U.S. Population (NHANES 2015/2016)	CDC 2019	4.7
Lubbock County EA [†]	This EA	4.2
PFOA		
Manufacturing Workers, Decatur, AL	Olsen et al. 2003	899.0
Little Hocking Water Association, OH	Frisbee et al. 2009	227.6*
Decatur, AL	ATSDR 2013	16.3
General U.S. Population (NHANES 1999/2000)	CDC 2019	5.2
Montgomery and Bucks Counties, PA	PA DOH 2019	3.1
Portsmouth, NH	NH DHHS 2016	3.1
Lubbock County EA [†]	This EA	2.2
General U.S. Population (NHANES 2015/2016)	CDC 2019	1.6
Westhampton Beach/Quogue Area, NY	NYDOH 2019	1.5

μg/L = micrograms per liter

 ^{*} The study reported medians instead of geometric means.
 † Unadjusted geometric means from the Lubbock County, TX EA are included in this table for comparison.

Appendix B: Additional Background Statistics

As described in the main body of this report, all statistical analyses (e.g., correlations, geometric means, univariate linear regression models, multivariate linear regression models) were completed in SAS version 9.4 (SAS Institute, Cary, NC) following the methods outlined in the study protocol. Several key details on these methods are provided below.

- Consistent with NHANES methodology and per the EA protocol, all non-detect observations
 were substituted with a value equal to the LOD divided by the square root of 2. Geometric
 means were not reported for PFAS with 40% or more non-detect observations. Additional
 information on the effect of this substitution method is provided below.
- Geometric means, 95% confidence intervals around geometric means, and percentiles were calculated with the SURVEYMEANS procedure in SAS. In this procedure, percentiles are based on the population cumulative distribution function.
- Univariate and multivariate regression analyses were conducted with the SURVEYREG procedure
 in SAS. Multivariate regressions were conducted using a backwards stepwise approach.
 "Interactions" were only considered when there was a suspected relationship between two
 variables. Due to the skewed distribution of PFAS blood levels, log transformed (log₁₀) values
 were used as dependent variables in all linear regression analyses.
- For this EA, all eligible residents within the sampling frame were invited to participate. This
 means a single household may have multiple participants. To account for the one—stage cluster
 sampling design used for this EA, household IDs were assigned to each participant. All statistics
 were calculated while accounting for clustering at the household level by including this
 household ID variable in a CLUSTER statement in SAS survey procedures. Additional information
 on the effect of clustering is provided below.
- A finite population correction was applied by including the total number of households in the sampling frame in a TOTAL statement in the SAS survey procedures. For this EA, a total of 701 households were identified within the sampling frame. A finite population corrects the standard errors when sampling without replacement from a finite population and is recommended when sample size is greater than 5% of the population being sampled.
- A p-value of less than 0.05 was used to identify statistically significant associations in regression models and 95% confidence limits were provided for all estimated geometric means.
- Age-adjusted statistics were calculated using the POSTSTRATA statement in the PROC SURVEYREG procedure in SAS. For age adjustments to the sampling frame population, the number of people in the sampling frame for each 5-year age interval (5–9 years, 10–15 years, etc.) was calculated from census block data from 2010 and was used as poststratum totals (_PSTOTAL_). Similarly, for age-adjustments to the NHANES population, estimates of the U.S. population in each age category starting from 12–14 years and increasing by 5-year age intervals (15–19 years, etc. through 80+) were calculated.

Additional details on non-detect observations

As noted, all results reported below the LOD were substituted with a value equal to the LOD divided by the square root of 2. For blood, all PFAS and all samples were reported from the laboratory with an LOD of 0.1 μ g/L, and non–detect observations were therefore substituted with a value equal to 0.071 μ g/L. The same method was applied to urine results (LOD=0.1 μ g/L) and dust (LOD varies by PFAS and sample); no summary statistics were computed for tap water for this EA due to low detection frequency.

The study protocol also notes that a sensitivity analysis of aggregate PFAS blood data should be performed using other statistical methods to account for censoring. More specifically, for datasets in which less than 50% of the data are censored (i.e., not detected), the Kaplan–Meier method should be used to calculate summary statistics; and for data sets with between 50% and 80% censored results, maximum likelihood estimation should be used. Only high sample percentiles should be reported for data sets with more than 80% censoring. Given that no nationally representative comparison values using these methods are available, results of this sensitivity analyses should only be used as a comparison to results obtained using the simpler substitution method described above.

Based on these criteria, ATSDR compared geometric means for all PFAS measured in blood (except Sb–PFOA) using the two alternate substitution methods. As shown in Table B1, there is little to no difference in geometric mean estimates when using these methods, and alterative substitution methods would therefore have no effect on the conclusions of this report. This is expected for these data due to the single censoring threshold for all PFAS and blood samples [Helsel 2009].

Table B1. Comparison of geometric mean blood levels with various substitution methods

PFAS	Geometric Mean Calculated with LOD/Square Root of 2 (μg/L)	Geometric Mean Calculated with Kaplan Meier Approach (μg/L)	Geometric Mean Calculated with Maximum Likelihood Estimation (μg/L)
PFHxS	6.04	6.04	6.05
n-PFOS	2.67	2.67	2.67
sm-PFOS	1.44	1.44	1.44
n-PFOA	2.08	2.08	2.08
sb-PFOA	NA*	NA*	NA*
PFNA	0.19	0.21	0.18
PFDA	0.13	0.14	0.13
PFUnA	0.08	0.11	0.06
MeFOSAA	0.12	0.15	0.09

LOD = limit of detection, μ g/L = micrograms per liter, NA = not applicable

More details on precision and clustering for PFAS blood data

As noted in the study protocol, this investigation was designed to estimate mean concentrations of PFAS in blood for the sampling frame population, with a given level of precision. The target sample size for this EA was based on a desired precision of 15% and 5% level of significance. Table B2 presents the estimated precision for the mean of the log transformed (In) PFAS concentrations measured in serum. This was calculated as the difference between the upper confidence interval of In(PFAS) and the mean In(PFAS), divided by mean In(PFAS). Precision estimates ranged from 5% to 24%. Except for PFHxS and PFOA, these values are all below the desired precision of 15% used to determine the target sample size for this EA. The collected data met the precision target specified in the EA protocol; the precision estimate for PFOS was 11%, which is below the target precision of 15% for the EA. Additional information on target precision is provided in the study protocol.

^{*} LOD does not meet the threshold set in EA protocol for sensitivity analyses (<20%).

Note that throughout the main body of the report and Appendix C, geometric means are presented with 95% confidence intervals and regression modeling results are presented with p-values. These statistics provide further insight into the precision of those estimates.

To quantify the effect of clustering and to compare the results of this EA to the assumptions used to determine the target sample size for the EA (listed in the protocol), ATSDR calculated the intra–cluster correlation coefficient (ICC) and design effect for each PFAS that was detected in at least 60% of blood samples (Table B2). ICCs were estimated using variance components from the MIXED procedure in SAS. In brief, a mixed model was run for each PFAS while treating clusters (i.e., households) as a random effect. The ICC was calculated as the ratio of the variance attributable to the random effect (households) divided by the total of the random effect and error variances. The design effect was calculated using the DEFF option in the MODEL statement of the SURVEYREG procedure in SAS. This provides an estimate of the ratio of the actual variance to the variance computed under the assumption of simple random sampling. This information, along with the average number of study participants per house, was then used to calculate the effective sample size for each PFAS. This statistic provides an estimate of the sample size that would be required to achieve the same level of precision if a simple random sample study design was used.

The target sample size for this EA was 395 people, based on (1) an ICC of 0.54 for PFOS calculated from data collected as part of biomonitoring study conducted by the New York State Department of Health and the Pennsylvania Department of Health, (2) a design effect of 2.1, and (3) and effective sample size of 188 people. Refer to the study protocol for more details on how these values were derived.

Table B2. Statistics related to clustering in blood data (all participants)

PFAS	Household ICC (Unitless)	Design Effect (Unitless)	Effective Sample Size (n)	Standard Deviation of In(PFAS) (µg/L)	Precision of Mean In(PFAS) (%)
PFHxS	0.76	2.91	74	2.54	18.9
PFOS	0.53	1.90	112	1.19	11.2
n-PFOS	0.55	1.94	110	1.19	16.2
Sm-PFOS	0.48	1.83	117	1.22	44.6
PFOA	0.65	2.35	91	1.41	24.0
n-PFOA	0.64	2.34	91	1.45	26.6
Sb-PFOA	NA*	NA*	NA*	NA*	NA*
PFNA	0.20	1.42	150	0.903	7.3
PFDA	0.46	1.88	114	0.747	5.0
PFUnA	NA*	NA*	NA*	NA*	NA*
MeFOSAA	NA*	NA*	NA*	NA*	NA*

 μ g/L = micrograms per liter, NA = not applicable

Blood ICCs for this EA ranged from 0.20 to 0.76, suggesting moderate correlation. The design effects ranged from 1.42 to 2.91, all but three of which are lower than the assumed design effect of 2.1. Effective sample size estimates ranged from 74 to 150. For some PFAS, the design effect in this EA is smaller than that assumed in the protocol in part because of a smaller standard deviation of In(PFAS)

^{*} Per the protocol, geometric means were not calculated for PFAS detected in less than 60% of samples.

(the protocol assumed a standard deviation of 1.63), and because of a smaller number of people per household. In this EA the average number of people per household was 2.23 (compared to 3.0, assumed in the protocol).

Appendix C: PFAS Blood Levels by Demographics and Exposure Characteristics

This appendix provides geometric mean blood PFAS concentrations and 95% confidence intervals stratified by demographic or exposure characteristics for the five PFAS with detection frequencies above 60% (i.e., PFHxS, PFOS, PFOA, PFNA, and PFDA). Also included are univariate regressions, multivariate regressions, and box and whisker plots. For each regression, the outputs shown are coefficient estimates, p–values, and marginal effects. The coefficient represents the increase in PFAS blood levels (in units of $log_{10}[\mu g/L]$) per unit increase of the independent variable shown on the left side of the table for continuous variables, or when comparing to the reference category for categorical variables. The p–value indicates the significance of the results. Generally, p–values less than 0.05 indicate significant results. The marginal effect is the percent change in PFAS blood levels (in units of $\mu g/L$) per unit increase of the continuous variables, or in comparison to the reference category for categorical variables.

Contents

Table C1. Adult blood PFAS geometric means (GM), 95% lower confidence intervals (LCI), and 95% upper confidence intervals (UCI) in micrograms per liter*, †, ‡	C3
Table C2. Child blood PFAS geometric means (GM), lower confidence intervals (LCI), and upper confidence intervals (UCI) in micrograms per liter*, †	C8
Table C3. Adult univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)*	. C12
Table C4. Child univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C16
Table C5. PFHxS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C18
Table C6. PFHxS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	
Table C7. PFHxS adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C19
Table C8. PFOS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C20
Table C9. PFOS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C20
Table C10. PFOS adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C21
Table C11. PFOA adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C21
Table C12. PFOA adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C22
Table C13. PFOA adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)	. C22
Figure C1. Boxplot of adult blood (serum) concentrations by age	. C23

Figure C2. Boxplot of adult blood (serum) concentrations by sex	. C23
Figure C3. Boxplot of adult blood (serum) concentrations by race and ethnicity	. C23
Figure C4. Boxplot of adult blood (serum) concentrations by body mass index	. C24
Figure C5. Boxplot of adult blood (serum) concentrations by years in current home	. C24
Figure C6. Boxplot of adult blood (serum) concentrations by years in sampling frame (past 20 years).	. C24
Figure C7. Boxplot of adult blood (serum) concentrations by cups of tap water drunk at home	. C25
Figure C8. Boxplot of adult blood (serum) concentrations by drinking water source	. C25
Figure C9. Boxplot of adult blood (serum) concentrations by water filter type	. C25
Figure C10. Boxplot of adult blood (serum) concentrations by kidney disease history	. C26
Figure C11. Boxplot of adult blood (serum) concentrations by blood donation frequency	. C26
Figure C12. Boxplot of adult blood (serum) concentrations by home cleaning frequency	. C26
Figure C13. Boxplot of adult blood (serum) concentrations by stain—resistant product use	. C27
Figure C14. Boxplot of adult blood (serum) concentrations by frequency of contact with soil	. C27
Figure C15. Boxplot of adult blood (serum) concentrations by local fruit and vegetable consumption.	. C27
Figure C16. Boxplot of adult blood (serum) concentrations by local fish consumption	. C28
Figure C17. Boxplot of adult blood (serum) concentrations by fast food consumption frequency	. C28
Figure C18. Boxplot of adult blood (serum) concentrations by presence of carpet in home	. C28
Figure C19. Boxplot of adult blood (serum) concentrations by occupational exposure	. C29
Figure C20. Boxplot of adult female blood (serum) concentrations by breastfeeding history	. C29
Figure C21. Boxplot of adult female blood (serum) concentrations by breastfeeding duration	. C30
Figure C22. Boxplot of adult female blood (serum) concentrations by biological children variable	. C30
Figure C23. Boxplot of adult female blood (serum) concentrations by number of biological children	. C30
Figure C24. Boxplot of child blood (serum) concentrations by age	. C31
Figure C25. Boxplot of child blood (serum) concentrations by sex	. C31
Figure C26. Boxplot of child blood (serum) concentrations by body mass index	. C31
Figure C27. Boxplot of child blood (serum) concentrations by race and ethnicity combined	. C32
Figure C28. Boxplot of child blood (serum) concentrations by water consumption at school	. C32
Figure C29. Boxplot of child blood (serum) concentrations by length of residency in sampling frame	. C33
$ \label{thm:concentrations} \textbf{Figure C30. Boxplot of child blood (serum) concentrations by local fruit and vegetable consumption . } \\$. C33
Figure C31. Boxplot of child blood (serum) concentrations by drinking formula reconstituted with tap water	
Figure C32. Boxplot of child blood (serum) concentrations by duration of drinking formula	
reconstituted with tap water	
Figure C33. Boxplot of child blood (serum) concentrations by history of breastfeeding	
Figure C34. Boxplot of child blood (serum) concentrations by breastfeeding duration	. C35

Table C1. Adult blood PFAS geometric means (GM), 95% lower confidence intervals (LCI), and 95% upper confidence intervals (UCI) in micrograms per liter*, †, ‡

Mawiah la	Catanan	F	_	PFHxS		ernter	PFOS			PFO.	<u> </u>	_	PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
All A	dults	190	6.45	4.61	9.01	4.42	3.75	5.21	2.25	1.85	2.73	0.20	0.18	0.23	0.14	0.12	0.15
Age	18 to <50	61	4.19	2.39	7.33	3.09	2.37	4.01	1.75	1.34	2.30	0.15	0.12	0.18	0.11	0.10	0.13
(years)	50+	129	7.91	5.73	10.92	5.24	4.43	6.19	2.53	2.03	3.15	0.23	0.20	0.27	0.15	0.13	0.17
Sex	Female	102	5.56	3.89	7.95	3.48	2.94	4.12	2.03	1.65	2.49	0.19	0.16	0.22	0.13	0.12	0.15
Jex	Male	88	7.65	5.29	11.07	5.84	4.81	7.08	2.54	2.02	3.19	0.22	0.19	0.25	0.14	0.13	0.16
Body Mass	<25	40	6.15	3.78	10.02	5.45	4.45	6.68	2.12	1.59	2.82	0.23	0.18	0.30	0.17	0.14	0.22
Index	25 to <30	73	6.96	4.55	10.63	4.18	3.32	5.26	2.29	1.83	2.86	0.18	0.16	0.21	0.13	0.12	0.15
(kilograms per	30 to <35	40	5.92	3.53	9.95	4.47	3.32	6.01	2.50	1.76	3.54	0.22	0.16	0.30	0.14	0.11	0.18
square meter)	35+	35	6.38	3.63	11.20	3.97	2.84	5.57	2.06	1.39	3.06	0.19	0.15	0.23	0.11	0.10	0.13
Race and	White alone, not Hispanic	121	7.30	5.25	10.15	4.83	4.18	5.58	2.41	1.95	2.98	0.21	0.18	0.24	0.14	0.13	0.16
ethnicity combined	Not White, or Hispanic	67	5.26	2.63	10.55	3.79	2.62	5.49	2.01	1.37	2.95	0.19	0.15	0.23	0.13	0.11	0.15
Length of	<10	47	2.55	1.85	3.53	3.39	2.74	4.19	1.22	1.05	1.41	0.17	0.14	0.20	0.14	0.12	0.16
residence at	10 to <20	38	10.51	5.23	21.11	6.06	3.89	9.44	2.94	1.99	4.35	0.23	0.18	0.30	0.13	0.11	0.15
	20 to <30	49	5.35	2.97	9.65	3.81	3.16	4.59	2.16	1.59	2.94	0.18	0.15	0.23	0.14	0.11	0.16
(years)	30+	56	11.86	7.13	19.70	5.09	3.78	6.85	3.25	2.22	4.74	0.23	0.19	0.29	0.14	0.12	0.17
Total length of residence in	<10	24	2.61	1.55	4.39	3.38	2.43	4.69	1.31	1.05	1.64	0.16	0.12	0.20	0.13	0.11	0.16
sampling frame over the past 20	10 to <15	14	5.95	2.67	13.25	5.23	3.47	7.88	2.19	1.54	3.11	0.29	0.20	0.41	0.15	0.11	0.20
years (years)	15 to 20	152	7.49	5.11	10.99	4.54	3.75	5.50	2.46	1.95	3.09	0.20	0.18	0.23	0.14	0.12	0.15
Current and	Public water system	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
primary source of drinking	Private well	92	7.16	4.45	11.53	4.66	3.73	5.83	2.45	1.85	3.26	0.20	0.17	0.24	0.12	0.11	0.14
water	Bottled water	93	6.33	4.18	9.59	4.30	3.45	5.35	2.15	1.69	2.75	0.20	0.17	0.24	0.15	0.13	0.17

Martin.	0.1	5 8		PFHxS	5		PFOS			PFO <i>F</i>	4		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
	0	20	5.63	2.77	11.47	4.74	3.70	6.08	2.15	1.30	3.55	0.22	0.15	0.33	0.17	0.12	0.25
Tap water	>0 to <2	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
consumption at current home	2 to <4	39	6.24	3.50	11.15	3.17	2.47	4.06	1.84	1.33	2.55	0.15	0.12	0.19	0.12	0.10	0.13
(average cups	4 to <6	31	6.33	3.63	11.01	6.13	4.12	9.12	2.32	1.74	3.08	0.26	0.21	0.32	0.14	0.12	0.18
per day)	6 to <8	19	5.56	2.50	12.37	5.66	3.65	8.79	2.49	1.54	4.01	0.28	0.19	0.40	0.19	0.14	0.26
per day)	8+	73	7.66	4.42	13.30	4.40	3.37	5.73	2.55	1.82	3.59	0.19	0.15	0.23	0.12	0.11	0.14
Current use of	None, no filter or treatment device	29	2.51	1.31	4.82	3.49	2.28	5.34	1.40	1.00	1.95	0.22	0.16	0.29	0.14	0.11	0.18
filter or treatment device for tap	None, drink bottled water only	31	5.81	3.04	11.11	4.59	3.32	6.34	2.35	1.57	3.50	0.23	0.16	0.32	0.19	0.14	0.26
water at home	Use at least one filter or treatment device	129	8.12	5.55	11.87	4.61	3.80	5.61	2.48	1.98	3.11	0.19	0.17	0.22	0.13	0.11	0.14
History of	No	177	6.28	4.43	8.89	4.36	3.67	5.18	2.24	1.83	2.74	0.20	0.17	0.22	0.14	0.12	0.15
kidney disease	Yes	12	9.11	4.59	18.07	5.11	3.74	6.99	2.37	1.39	4.03	0.24	0.16	0.37	0.14	0.10	0.19
Frequency of	Never/rarely	178	6.88	4.88	9.71	4.47	3.76	5.30	2.29	1.88	2.81	0.20	0.17	0.22	0.14	0.12	0.15
blood donation	Once or more a year	11	2.18	1.03	4.63	3.69	2.19	6.20	1.70	1.11	2.61	0.26	0.20	0.35	0.16	0.12	0.21
Frequency of	A few times per month or less	106	8.11	5.63	11.68	4.81	3.87	5.97	2.45	1.94	3.10	0.21	0.18	0.25	0.14	0.12	0.15
house cleaning	Three times per week or more	83	4.86	2.75	8.61	3.94	3.12	4.99	2.03	1.49	2.76	0.19	0.16	0.22	0.14	0.12	0.16

March L	0.1	5 8		PFHxS	5		PFOS			PFO	4		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Frequency of	Never	172	6.63	4.72	9.32	4.39	3.69	5.22	2.31	1.89	2.81	0.19	0.17	0.22	0.13	0.12	0.15
stain-resistant product use	Rarely or more frequently	16	5.50	2.41	12.56	4.97	3.21	7.68	1.89	1.23	2.92	0.30	0.20	0.46	0.18	0.12	0.25
Frequency of	A few times per year or less	70	4.88	3.07	7.76	4.08	3.08	5.39	2.10	1.60	2.76	0.20	0.16	0.25	0.14	0.12	0.16
direct contact with soil at locations within	A few times per month	39	7.63	4.30	13.52	4.35	3.24	5.83	2.54	1.78	3.64	0.21	0.18	0.25	0.12	0.10	0.14
the sampling frame	Three times per week or more	81	7.57	4.89	11.72	4.78	3.87	5.91	2.25	1.74	2.91	0.20	0.17	0.23	0.14	0.12	0.17
Consumption of fruits and vegetables from	No	112	5.78	3.72	8.97	3.99	3.33	4.76	2.11	1.63	2.74	0.19	0.16	0.21	0.13	0.11	0.14
locations within the sampling frame	Yes	77	7.77	4.83	12.50	5.18	3.85	6.95	2.50	1.93	3.26	0.23	0.18	0.29	0.16	0.13	0.19
Consumption of local fish (i.e., fish caught	No	187	6.58	4.71	9.21	4.41	3.73	5.21	2.27	1.87	2.76	0.20	0.18	0.23	0.14	0.12	0.15
within the sampling frame)	Yes	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

				PFHxS	5		PFOS			PFO <i>F</i>	4		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Frequency of	Three times per week or more	88	6.11	3.86	9.66	3.80	3.11	4.64	2.08	1.60	2.70	0.19	0.16	0.23	0.13	0.11	0.15
fast food consumption	A few times per month	91	6.43	4.24	9.77	4.84	4.02	5.83	2.33	1.80	3.01	0.21	0.18	0.25	0.15	0.13	0.17
	A few times per year or less	10	12.25	3.18	47.21	7.54	2.51	22.64	3.32	1.42	7.77	0.17	0.10	0.29	0.11	0.09	0.14
Presence of carpeting in bedroom, living	No	37	4.10	2.16	7.81	3.21	2.44	4.23	1.67	1.18	2.35	0.16	0.13	0.19	0.13	0.11	0.16
room, or kitchen	Yes	153	7.19	5.05	10.24	4.78	3.97	5.74	2.42	1.96	2.99	0.21	0.18	0.25	0.14	0.12	0.16
Occupational exposures (count of jobs	None	187	6.56	4.69	9.18	4.42	3.75	5.21	2.27	1.87	2.75	0.20	0.18	0.22	0.14	0.12	0.15
with potential PFAS exposures)	One or more	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Females only																	
Biological	No	22	6.15	3.33	11.34	3.41	2.35	4.95	2.01	1.31	3.10	0.20	0.14	0.30	0.15	0.12	0.20
children	Yes	78	5.31	3.57	7.90	3.51	2.92	4.21	2.02	1.64	2.50	0.18	0.16	0.21	0.13	0.11	0.14
	0	22	6.15	3.33	11.34	3.41	2.35	4.95	2.01	1.31	3.10	0.20	0.14	0.30	0.15	0.12	0.20
Number of	1	5	NA	NA	NA				NA	NA	NA						
biological children	2	31	4.32	2.47	7.55	3.25	2.51	4.22	1.65	1.23	2.21	0.17	0.13	0.21	0.12	0.10	0.15
cimaren	3+	42	6.22	3.70	10.44	3.72	2.77	5.00	2.36	1.76	3.16	0.19	0.16	0.23	0.13	0.11	0.16
Breastfeeding or previously	No	60	6.11	3.93	9.50	3.83	3.05	4.81	2.14	1.64	2.78	0.21	0.17	0.26	0.14	0.12	0.16
breastfed children	Yes	40	4.66	2.88	7.55	3.02	2.37	3.86	1.86	1.42	2.43	0.16	0.13	0.19	0.13	0.11	0.15

Vovielele	Cotogonia	F		PFHxS			PFOS			PFO <i>F</i>	<u> </u>		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Total duration	0	62	6.23	4.06	9.58	3.81	3.03	4.79	2.14	1.66	2.77	0.21	0.17	0.26	0.14	0.12	0.16
of	>0 to <6	11	6.76	2.51	18.18	3.20	2.03	5.06	2.36	1.17	4.73	0.15	0.11	0.21	0.12	0.09	0.16
breastfeeding for all	6 to <12	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
children	12 to <18	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(months)	18+	17	4.03	1.92	8.46	3.07	2.23	4.21	1.77	1.22	2.57	0.17	0.13	0.24	0.13	0.10	0.16
Private Well Wa	ater Data	-				'											
	>0 - <70 ppt	67	2.21	1.63	3.00	_	_	_	_	_	_	_	_	_	_	_	_
Man DELLIG	70 - >250 ppt	31	6.79	4.16	11.08	_	_	_	_	_	_	_	_	_	_	_	_
Max PFHxS	250 - <500 ppt	47	12.97	8.03	20.95	_	_	_	_	_	_	_	_	_	_	_	_
concentration in private well	500 - <1000 ppt	17	37.42	15.69	89.20	_	_	_	_	_	_	_	_	_	_	_	_
iii private weii	1000 - <1500 ppt	7	NA	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_
5506	>0 - <70 ppt	144	_	_	_	3.89	3.39	4.47	_	_	_	_	_	_	_	_	_
Max PFOS	70 - >250 ppt	10	_	_	_	5.66	4.10	7.82	_	_	_	_	_	_	_	_	_
concentration	250 - <500 ppt	2	_	_	_	NA	NA	NA	_	_	_	_	_	_	_	_	_
in private well	500 - <1000 ppt	13	_	_	_	27.28	13.75	54.12	_	_	_	_	_	_	_	_	_
	>0 - <70 ppt	102	_	_	_	_	_	_	1.54	1.34	1.77	_	_	_	_	_	_
May DEOA	70 - >250 ppt	51	_	_	_	_	_	_	3.15	2.29	4.34	_	_	_	_	_	_
Max PFOA	250 - <500 ppt	10	_	_	_	_	_	_	8.36	3.84	18.23	_	_	_	_	_	_
in private well	1000 - <1500 ppt	2	_	_	_	_	_	_	NA	NA	NA	_	_	_	_	_	
	1500+ ppt	4	_	_	_	_	_	_	NA	NA	NA	_	_	_	_	_	_

^{*} Several variables that were collected in the questionnaire are not included in these tables. These variables may not be included because they did not have sufficient variability or were not associated with PFAS blood concentrations in preliminary analyses. These variables include full-time vs. part-time residence, consumption of local milk, behavior change questions, and occupational history in specific industries.

[†] Geometric means and confidence levels are not shown for categories with fewer than 10 responses.

[‡] Detection limits for all PFAS are 0.1 micrograms per liter (µg/L).

[§] Some frequency counts may not sum to the total because of missing values. Some variable categories that were presented in the questionnaire were collapsed into larger variable categories.

Table C2. Child blood PFAS geometric means (GM), lower confidence intervals (LCI), and upper confidence intervals (UCI) in micrograms per liter*,†

March I.		- \$		PFHxS			PFOS			PF	OA		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GМ	LCI	UCI	GM	LCI	UCI
All Child	en	24	3.60	1.61	8.08	2.60	1.98	3.40	1.85	1.20	2.87	0.14	0.09	0.20	0.11	0.09	0.15
Age	3 to <12	11	5.35	2.12	13.52	2.96	1.84	4.75	2.30	1.33	3.97	0.14	0.08	0.23	0.12	0.08	0.17
(years)	12 to <18	13	2.58	0.75	8.90	2.33	1.67	3.24	1.54	0.81	2.93	0.14	0.08	0.22	0.11	0.08	0.15
Sex	Female	16	3.94	1.61	9.67	2.57	1.59	4.14	1.86	1.17	2.96	0.12	0.06	0.21	0.11	0.07	0.18
Jex	Male	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	<15	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Body mass index	15 to 20	11	2.63	0.95	7.25	1.84	1.20	2.84	1.36	0.82	2.26	0.12	0.07	0.19	0.11	0.08	0.17
(kilograms per square meter)	20 to <25	6	6.06	1.88	19.56	3.61	2.27	5.75	3.06	1.54	6.09	0.29	0.09	0.97	0.15	0.08	0.25
540000000000000000000000000000000000000	25+	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	First born	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Birth order	Second born	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Third born	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fourth born	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Race and ethnicity	White alone, not Hispanic	14	4.59	1.16	18.13	2.79	1.87	4.15	2.27	1.03	5.03	0.15	0.08	0.28	0.12	0.08	0.20
combined	Not White , or Hispanic	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Water consumption at	0 to <2	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
current home (average cups per	2 to <4	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
day)	4+	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

				PFHxS	;		PFOS			PF	OA		PFNA			PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Water	0 to <1	12	1.84	0.80	4.24	3.06	2.02	4.62	1.44	0.85	2.42	0.16	0.07	0.37	0.14	0.08	0.23
consumption at school	1 to <2	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(average cups per	2 to <3	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
day)	3+	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Length of	<6	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
residency in sampling frame	6 to <12	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(years)	12 to <18	11	3.10	0.75	12.79	2.43	1.68	3.52	1.77	0.87	3.60	0.15	0.09	0.25	0.12	0.08	0.16
Frequency of	A few times per year or less	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
direct contact with soil at locations within the	A few times per month	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sampling frame	Three times per week or more	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Consumption of fruits and vegetables from	No	15	4.21	1.06	16.64	2.50	1.79	3.49	1.94	0.91	4.16	0.11	0.08	0.15	0.10	0.09	0.11
locations within the sampling frame	Yes	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Drank formula reconstituted with	No	15	2.77	1.17	6.57	2.40	1.47	3.91	1.59	1.00	2.53	0.12	0.06	0.23	0.12	0.07	0.19
tap water	Yes	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	Catalan	5		PFHxS			PFOS			PF	OA		PFNA		_	PFDA	
Variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
Duration of drinking formula	<7	16	3.32	1.35	8.13	2.41	1.53	3.81	1.78	1.10	2.89	0.12	0.07	0.23	0.12	0.07	0.18
reconstituted with	7 to <13	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
tap water duration (months)	13 to <19	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Currently breastfeeding or	No	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
previously breastfed	Yes	16	4.58	1.34	15.66	3.01	2.09	4.32	2.21	1.09	4.45	0.14	0.08	0.24	0.12	0.08	0.18
B If If	<7	16	4.62	1.25	17.15	2.18	1.52	3.12	1.93	0.94	3.96	0.13	0.08	0.19	0.10	0.08	0.11
Breastfeeding duration (months)	7 to <19	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
duration (months)	19+	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	>0 - <70 ppt	5	NA	NA	NA	_	_	_	_	_	_	-	_	_	_	_	_
	70 - >250 ppt	5	NA	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_
Max PFHxS concentration in	250 - <500 ppt	11	5.59	0.99	31.44	_	_	_	_	_	_	_	_	_	_	_	_
private well	500 - <1000 ppt	1	NA	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_
	1000 - <1500 ppt	1	NA	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_
	>0 - <70 ppt	19	_	_	_	2.64	1.85	3.76	_	_	_	_	_	_	_	_	_
Max PFOS concentration in	70 - >250 ppt	3	_	_	_	NA	NA	NA	_	_	_	_	_	_	_	_	_
private well	500 - <1000 ppt	1	_	_	_	NA	NA	NA	_	_	_	_	_	_	_	_	_

Variable	Catagoni	Francisco S.		PFHxS			PFOS			PF	OA		PFNA			PFDA	
variable	Category	Frequency	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI	GM	LCI	UCI
	>0 - <70 ppt	8	_	_	_	-	_	_	NA	NA	NA	_	_	_	_		-
Max PFOA concentration in	70 - >250 ppt	14	_	_	_	_	_	_	2.70	1.35	5.39	_	_	_	_	_	_
private well	250 - <500 ppt	1	_	_	_	_	_	_	NA	NA	NA	_	_	_	_	_	

^{*} Several variables that were collected in the questionnaire are not included in these tables. These variables may not be included because they did not have sufficient variability or were not associated with PFAS blood concentrations in preliminary analyses. These variables include full-time vs. part-time residence, consumption of local fish, consumption of local milk, school attendance.

[†] Geometric means and confidence levels are not shown for categories with fewer than 10 responses.

[‡] Detection limits for all PFAS are 0.1 micrograms per liter (µg/L).

[§] Some frequency counts may not sum to the total because of missing values. Some variable categories that were presented in the questionnaire were collapsed into larger variable categories.

Table C3. Adult univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)*

	dult univariate		PFHxS			PFOS			PFOA	- (p		PFNA	giriai		PFDA	
Variable	Category	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)
Age	NA— continuous variable	0.008	0.021	1.8	0.007	<.001	1.6	0.004	0.028	0.9	0.005	0.001	1.2	0.003	0.003	0.8
Sex	Male Female	0.138	0.028	37.5 —	0.225	<.001	67.7 —	0.098	0.022	25.3	0.062	0.126 —	15.3	0.025	0.300	6.0
Body mass index (kilograms per square meter)	NA— continuous variable	-0.005	0.475	-1.0	-0.007	0.048	-1.5	-0.003	0.498	-0.7	-0.003	0.363	-0.6	-0.008	0.003	-1.8
Race and ethnicity	Not White, or Hispanic	-0.142	0.393	-27.9	-0.105	0.230	-21.5	-0.078	0.414	-16.4	-0.049	0.349	-10.7	-0.045	0.332	-9.8
combined	White alone, not Hispanic	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Length of residence at current address (years)	NA— continuous variable	0.015	<.001	3.4	0.003	0.198	0.6	0.009	<.001	2.1	0.003	0.080	0.7	0.001	0.628	0.2
Total length of residence in sampling frame over the past 20 years (years)	NA— continuous variable	0.031	<.001	7.3	0.007	0.201	1.5	0.018	<.001	4.3	0.005	0.248	1.1	0.001	0.808	0.2
	Public Water System	-0.737	<.001	-81.7	-0.222	0.224	-40.1	-0.376	<.001	-57.9	-0.136	0.046	-26.9	0.034	0.852	8.2
Current and primary source of drinking water	Bottled water	-0.054	0.684	-11.6	-0.035	0.587	-7.8	-0.056	0.486	-12.1	0.003	0.953	0.7	0.081	0.045	20.4
water	Private well	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p-val	ME (%)												
Tap water consumption at current home (average cups per day)	NA— continuous variable	0.012	0.282	2.9	0.006	0.358	1.4	0.010	0.167	2.2	-0.001	0.825	-0.2	-0.005	0.107	-1.0
6.01	None, no filter or treatment device	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Current use of filter or treatment device for tap water at home	None, drink bottled water only	0.364	0.027	131.5	0.119	0.318	31.4	0.225	0.009	68.0	0.023	0.830	5.4	0.121	0.168	32.1
nome	Use at least one filter or treatment device	0.510	0.002	223.2	0.121	0.234	32.2	0.249	0.005	77.4	-0.060	0.406	-12.8	-0.051	0.338	-11.0
History of kidney	Yes	0.162	0.300	45.1	0.069	0.359	17.3	0.025	0.842	5.8	0.091	0.336	23.3	0.006	0.927	1.5
disease	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Frequency of blood	Once or more a Year	-0.499	0.005	-68.3	-0.083	0.482	-17.5	-0.129	0.192	-25.7	0.126	0.049	33.5	0.069	0.294	17.3
donation	Never/rarely	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Frequency of house	Three times per week or more	-0.222	0.128	-40.0	-0.086	0.216	-18.0	-0.082	0.325	-17.2	-0.054	0.282	-11.8	0.007	0.866	1.7
cleaning	A few times per month or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

			PFHxS			PFOS			PFOA			PFNA			PFDA	
Variable	Category	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)
Frequency of stain- resistant product use	Rarely or more frequently	-0.081	0.649	-17.0	0.054	0.589	13.1	-0.085	0.372	-17.8	0.192	0.054	55.5	0.119	0.130	31.7
	Never	_	_	_	_	_	_	<u> </u>	<u> </u>	_	_	_	_	_	_	_
	A few times per month	0.194	0.139	56.3	0.028	0.735	6.7	0.083	0.288	21.1	0.021	0.728	5.0	-0.053	0.272	-11.5
Frequency of direct contact with soil at locations within the	Three times per week or more	0.191	0.155	55.1	0.069	0.349	17.3	0.030	0.708	7.1	-0.010	0.853	-2.4	0.019	0.697	4.5
sampling frame	A few times per year or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consumption of fruits and vegetables from locations	Yes	0.128	0.364	34.4	0.113	0.136	29.9	0.074	0.355	18.7	0.088	0.123	22.5	0.094	0.046	24.3
within the sampling frame	No		_	_	<u> </u>	_	_	<u> </u>	<u> </u>	_	_	<u> </u>		_	_	_
Consumption of local fish (i.e., fish	Yes	-0.540	<.001	-71.2	0.156	0.207	43.1	-0.245	0.100	-43.1	0.048	0.835	11.8	0.106	0.499	27.5
caught within the sampling frame)	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	A few times per month	-0.280	0.365	-47.5	-0.192	0.424	-35.8	-0.154	0.427	-29.8	0.101	0.404	26.3	0.122	0.053	32.3
Frequency of fast food consumption	Three times per week or more	-0.302	0.311	-50.1	-0.298	0.219	-49.6	-0.203	0.289	-37.4	0.050	0.689	12.2	0.063	0.301	15.7
	A few times per year or less	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

			PFHxS			PFOS		i.	PFOA			PFNA			PFDA	
Variable	Category	Coef.	p-val	ME (%)												
Presence of carpeting in	Yes	0.244	0.106	75.3	0.172	0.017	48.5	0.162	0.052	45.3	0.125	0.015	33.3	0.016	0.724	3.8
bedroom, living room, or kitchen	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Occupational exposures (count of jobs with potential	One or more occupational exposures	-0.477	0.001	-66.6	0.004	0.973	0.9	-0.197	0.001	-36.5	0.261	0.016	82.3	0.116	0.483	30.6
PFAS exposures)	None	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Log ₁₀ of Max PFAS concentration in private well	NA— continuous variable	0.497	<.001	214.1	0.230	<.001	69.6	0.285	<.001	92.8		_		_	_	_
Females only																
Biological children	Yes	-0.064	0.664	-13.6	0.012	0.893	2.9	0.001	0.989	0.3	-0.045	0.634	-9.9	-0.072	0.270	-15.2
Biological children	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Number of biological children	NA— continuous variable	0.039	0.325	9.4	0.022	0.392	5.2	0.033	0.150	7.9	-0.005	0.851	-1.1	-0.013	0.420	-3.0
Breastfeeding or	Yes	-0.117	0.353	-23.7	-0.103	0.166	-21.0	-0.060	0.419	-13.0	-0.119	0.070	-23.9	-0.043	0.401	-9.4
previously breastfed children	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total duration of breastfeeding for all biological children (months)	NA— continuous variable	-0.004		-0.8	-0.000	0.899	-0.1	-0.002	0.535	-0.5	-0.002			-0.001		

^{*} Not all categorical variables included in Table C1 are included in Table C3: variable categories that had fewer than 10 responses were not included in the regressions (Table C3). These variables include frequency of local milk consumption.

Table C4. Child univariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Table C4. Child univa	riate regression res	uits incl	uaing c	оеттісі	ent esti	mate (C	.oet.),	p-value	(p-vai)	, and	margin	ai effec	t (IVIE)		
			PFHxS			PFOS			PFOA			PFNA			PFDA	
ParamModel	Parameter	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)
Age	NA—continuous variable	-0.058	0.068	-12.5	-0.020	0.129	-4.4	-0.035	0.070	-7.6	-0.013	0.429	-2.8	-0.005	0.536	-1.3
Cov	Male	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sex	Female	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Body mass index (kilograms per square meter)	NA—continuous variable	-0.008	0.629	-1.9	-0.006	0.252	-1.5	-0.003	0.713	-0.7	0.001	0.896	0.2	-0.001	0.767	-0.3
Race and ethnicity	Not White, or Hispanic	-0.202	0.600	-37.2	-0.084	0.552	-17.6	-0.201	0.265	-37.1	-0.078	0.683	-16.4	-0.095	0.408	-19.6
combined	White alone, not Hispanic	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Fourth Born	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Birth	Third Born	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Order	Second Born	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	First Born	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Water consumption at current home (average cups per day)	NA—continuous variable	0.100	<.001	26.0	0.004	0.631	1.0	0.057	<.001	14.0	0.009	0.261	2.1	-0.005	0.291	-1.1
Water consumption at school (average cups per day)	NA—continuous variable	0.198	0.043	57.7	-0.028	0.338	-6.1	0.079	0.273	20.0	-0.028	0.595	-6.3	-0.044	0.164	-9.7
Length of residency in sampling frame (years)	NA—continuous variable	0.001	0.968	0.3	-0.012	0.050	-2.6	-0.001	0.943	-0.3	0.009	0.417	2.2	0.002	0.463	0.6

			PFHxS			PFOS			PFOA			PFNA			PFDA	
ParamModel	Parameter	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)	Coef.	p-val	ME (%)
Consumption of fruits and	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
vegetables from locations within the sampling frame	Yes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Drank formula reconstituted with tap water duration (months)	NA—continuous variable	0.014	0.689	3.4	0.013	0.249	3.0	0.009	0.589	2.1	0.015	0.350	3.6	-0.002	0.861	-0.4
Currently	No	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
breastfeeding or previously breastfed	Yes	0.313	0.391	105.4	0.190	0.157	55.0	0.228	0.161	68.9	0.017	0.929	4.0	0.055	0.608	13.4
Breastfeeding duration (months)	NA—continuous variable	-0.013	0.477	-2.9	0.018	0.018	4.2	0.001	0.890	0.3	0.002	0.883	0.5	0.009	0.379	2.1
Log ₁₀ of Max PFAS concentration in private well	NA—continuous variable	0.001	0.010	0.3	0.001	0.002	0.1	0.003	0.025	0.8	_	_	_	_	_	_

^{*} Not all categorical variables in included in Table C2 are also included in Table C4: variable categories that had fewer than 10 responses were not included in the regressions (Table C4). These variables include sex, frequency of direct contact with soil at locations within the sampling frame, birth order, frequency of local fruits and vegetables consumption, frequency of local fish consumption, and frequency of local milk consumption.

Table C5. PFHxS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.004	0.0289	1.024
Logarithm of maximum PFHxS well concentration (continuous)	0.540	<.0001	0.540*
Years in sampling frame in the past 20 years (continuous)	0.026	0.001	6.18
Drinking water source: Bottled water [†] (categorical)	-0.226	0.0125	-40.5
Presence of Carpet in Home: Yes [‡] (categorical)	0.300	0.0033	99.6
Soil Contact Frequency: Three times per week or more§ (categorical)	0.250	0.0115	78.0
Soil Contact Frequency: A few times per month§ (categorical)	0.211	0.202	62.5

Model statistics: R^2 = 0.5605, p-value = <0.0001, n = 169, n-households = 85, intercept = -1.202

^{*} This marginal effect is interpreted as percent increase in blood PFHxS level per percent increase in PFHxS well water concentration.

[†] Reference category is adult participants who reported mainly drinking from a private well at home. Results for the few participants who reported a public water source at home are not shown.

[‡] Reference category is adult participants who did not report any carpet in their homes.

[§] Reference category is adult participants who reported contacting soil a few times per year or less.

Table C6. PFHxS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.010	0.0002	2.26
Logarithm of maximum PFHxS well concentration (continuous)	0.572	<.0001	0.572*
Years in sampling frame in the past 20 years (continuous)	0.020	0.0327	4.64
Drinking water source: Bottled water [†] (categorical)	-0.258	0.0112	-44.8
Presence of Carpet in Home: Yes [‡] (categorical)	0.335	0.0096	116
Soil Contact Frequency: Three times per week or more [§] (categorical)	0.342	0.0017	120
Soil Contact Frequency: A few times per month§ (categorical)	0.338	0.0074	118
Children: Yes¶ (categorical)	-0.378	0.0004	-58.1

Model statistics: R^2 = 0.6088, p-value = <0.0001, n = 86, n-households = 70, intercept = -1.255

- * This marginal effect is interpreted as percent increase in blood PFHxS level per percent increase in PFHxS well water concentration.
- [†] Reference category is adult female participants who reported mainly drinking from a private well at home. Results for the few participants who reported a public water source at home are not shown.
- [‡] Reference category is adult female participants who did not report any carpet in their homes
- § Reference category is adult female participants who reported contacting soil a few times per year or less.
- ¶ Reference category is adult female participants who reported having no children.

Table C7. PFHxS adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Logarithm of maximum PFHxS well concentration (continuous)	0.578	<.0001	0.578*
Years in sampling frame in the past 20 years (continuous)	0.023	0.0301	5.38
Drinking water source: Bottled water [†] (categorical)	-0.267	0.0159	-45.9

Model statistics: R^2 = 0.527, p-value = <0.0001, n = 81, n-households = 65, intercept = 0.510

- * This marginal effect is interpreted as percent increase in blood PFHxS level per percent increase in PFHxS well water concentration.
- [†] Reference category is adult male participants who reported mainly drinking from a private well at home. Results for the few participants who reported a public water source at home are not shown.

Table C8. PFOS adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.007	<.0001	1.68
Sex: Male*(categorical)	0.230	<.0001	69.8
Logarithm of maximum PFOS well concentration (continuous)	0.270	<.0001	0.270 [†]
Filter: use bottled water only [‡] (categorical)	-0.048	0.6727	-10.5
Filter: any filter or treatment device [‡] (categorical)	-0.210	0.0256	-38.4

Model statistics: R^2 = 0.426 p-value = <0.0001, n = 169, n-households = 85, intercept = 0.100

Table C9. PFOS adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.008	0.0003	1.81
Logarithm of maximum PFOS well concentration (continuous)	0.227	<.0001	0.227*
Breastfed: yes [†] (categorical)	-0.134	0.0399	-26.5

Model statistics: R^2 = 0.327, p-value = <0.0001, n = 86, n-households = 70, intercept = 0.016

^{*} Reference category is adult participants who identified as female.

[†] This marginal effect is interpreted as percent increase in blood PFOS level per percent increase in PFOS well water concentration.

[‡] Reference category is adult participants who reported using no filter or treatment device.

^{*} This marginal effect is interpreted as percent increase in blood PFOS level per percent increase in PFOS well water concentration.

[†] Reference category is adult participants who reported never having breastfed.

Table C10. PFOS adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.006	0.0033	1.30
Logarithm of maximum PFOS well concentration (continuous)	0.295	<.0001	0.295*
Filter: use bottled water only [†] (categorical)	0.006	0.9576	1.404
Filter: any filter or treatment device [†] (categorical)	-0.243	0.0193	-42.9

Model statistics: R^2 = 0.451, p-value = <0.0001, n = 81, n-households = 65, intercept = 0.424

Table C11. PFOA adult multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.005	0.0004	1.17
Sex: Male*(categorical)	0.352	0.0003	125
Age x Sex [†] (continuous)	-0.005	0.0035	-1.12
Logarithm of maximum PFOA well concentration (continuous)	0.298	<.0001	0.298 [‡]
Years in sampling frame in the past 20 years (continuous)	0.010	0.0289	2.37
Drinking water consumption in cups per day (continuous)	0.010	0.0351	2.37
Presence of carpet in home: Yes [§] (categorical)	0.133	0.0381	35.8

Model statistics: R^2 = 0.452 p-value = <0.0001, n = 169, n-households = 85, intercept = -0.736

^{*} This marginal effect is interpreted as percent increase in blood PFOS level per percent increase in PFOS well water concentration.

[†] Reference category is adult participants who reported using no filter or treatment device.

^{*} Reference category is adult participants who identified as female.

[†] This is an interaction variable between age and sex.

[‡] This marginal effect is interpreted as percent increase in blood PFOA level per percent increase in PFOA well water concentration.

[§] Reference category is adult participants who did not report any carpet in their homes.

Table C12. PFOA adult female multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Age (continuous)	0.006	0.0004	1.30
Logarithm of maximum PFOA well concentration (continuous)	0.259	<.0001	0.259*
Years in sampling frame in the past 20 years (continuous)	0.010	0.0477	2.42
Drinking water consumption in cups per day (continuous)	0.017	0.0047	4.05

Model statistics: R^2 = 0.375 p-value = <0.0001, n = 88, n-households = 71, intercept = -0.654

Table C13. PFOA adult male multivariate regression results including coefficient estimate (Coef.), p-value (p-val), and marginal effect (ME)

Parameter	Coef.	p-val	ME (%)
Logarithm of maximum PFOA well concentration (continuous)	0.332	<.0001	0.332*
Years in sampling frame in the past 20 years (continuous)	0.016	0.016	3.71
Presence of carpet in home: Yes [†] (categorical)	0.180	0.0351	51.4

Model statistics: R^2 = 0.501 p-value = <0.0001, n = 81, n-households = 65, intercept = -0.473

^{*} This marginal effect is interpreted as percent increase in blood PFOA level per percent increase in PFOA well water concentration.

^{*} This marginal effect is interpreted as percent increase in blood PFOA level per percent increase in PFOA well water concentration.

[†] Reference category is adult male participants who did not report any carpet in their homes.

Box and Whisker Plots (or Boxplots)

Figure C1. Boxplot of adult blood (serum) concentrations by age

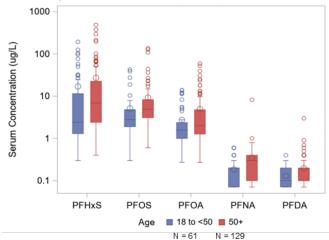


Figure C2. Boxplot of adult blood (serum) concentrations by sex

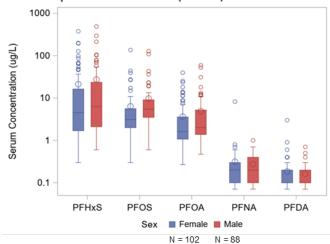


Figure C3. Boxplot of adult blood (serum) concentrations by race and ethnicity

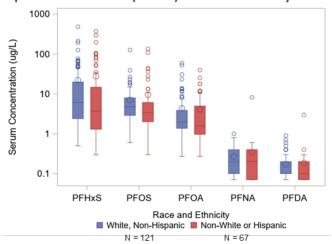


Figure C4. Boxplot of adult blood (serum) concentrations by body mass index

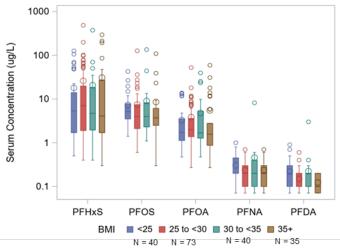


Figure C5. Boxplot of adult blood (serum) concentrations by years in current home

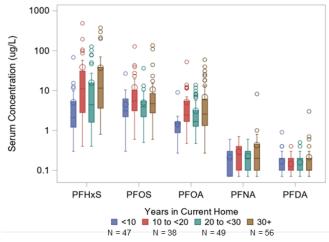


Figure C6. Boxplot of adult blood (serum) concentrations by years in sampling frame (past 20 years)

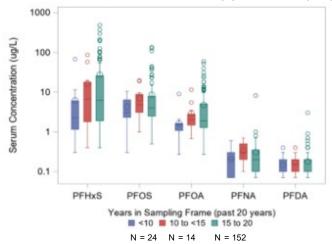


Figure C7. Boxplot of adult blood (serum) concentrations by cups of tap water drunk at home

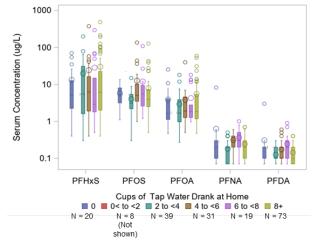


Figure C8. Boxplot of adult blood (serum) concentrations by drinking water source

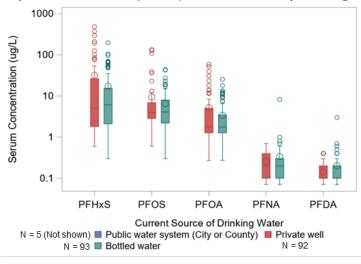


Figure C9. Boxplot of adult blood (serum) concentrations by water filter type

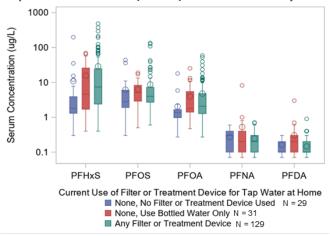


Figure C10. Boxplot of adult blood (serum) concentrations by kidney disease history

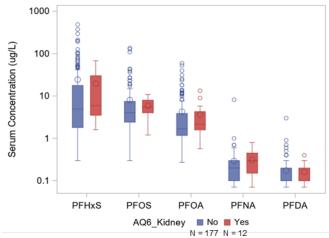


Figure C11. Boxplot of adult blood (serum) concentrations by blood donation frequency

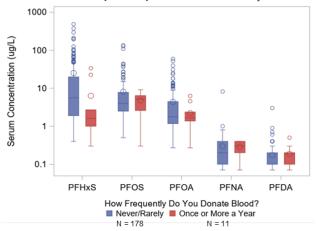


Figure C12. Boxplot of adult blood (serum) concentrations by home cleaning frequency

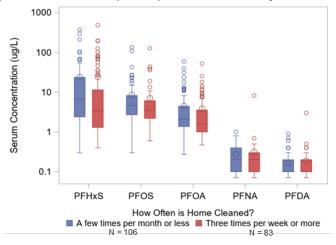


Figure C13. Boxplot of adult blood (serum) concentrations by stain-resistant product use

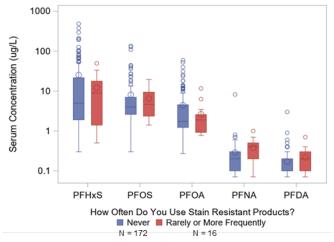


Figure C14. Boxplot of adult blood (serum) concentrations by frequency of contact with soil

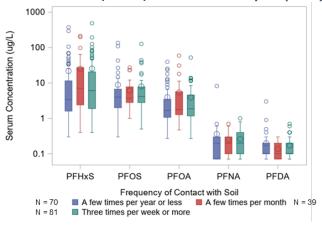


Figure C15. Boxplot of adult blood (serum) concentrations by local fruit and vegetable consumption

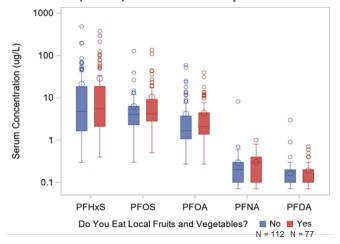


Figure C16. Boxplot of adult blood (serum) concentrations by local fish consumption

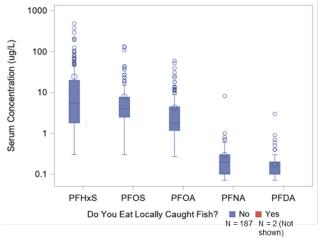


Figure C17. Boxplot of adult blood (serum) concentrations by fast food consumption frequency

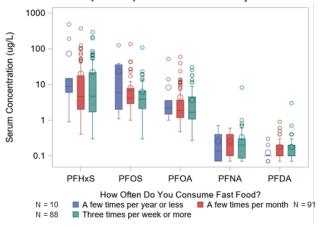


Figure C18. Boxplot of adult blood (serum) concentrations by presence of carpet in home

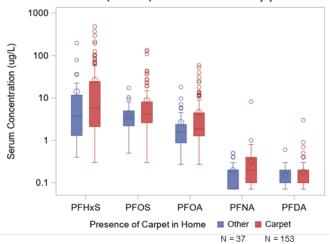


Figure C19. Boxplot of adult blood (serum) concentrations by occupational exposure

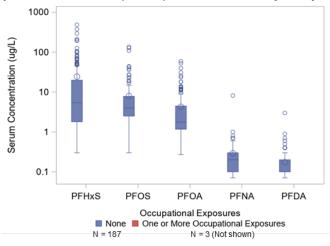


Figure C20. Boxplot of adult female blood (serum) concentrations by breastfeeding history

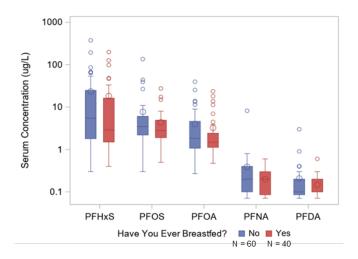


Figure C21. Boxplot of adult female blood (serum) concentrations by breastfeeding duration

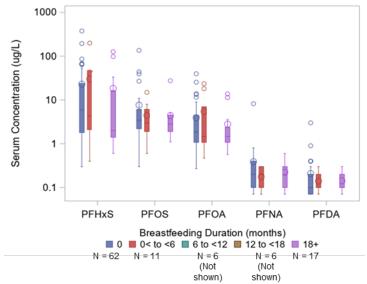


Figure C22. Boxplot of adult female blood (serum) concentrations by biological children variable

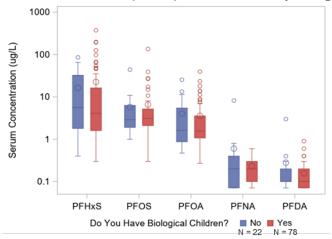


Figure C23. Boxplot of adult female blood (serum) concentrations by number of biological children

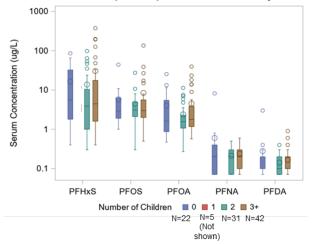


Figure C24. Boxplot of child blood (serum) concentrations by age

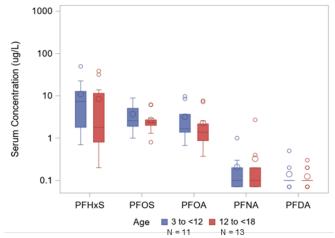


Figure C25. Boxplot of child blood (serum) concentrations by sex

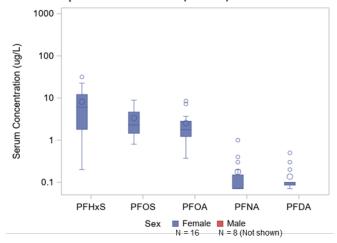


Figure C26. Boxplot of child blood (serum) concentrations by body mass index

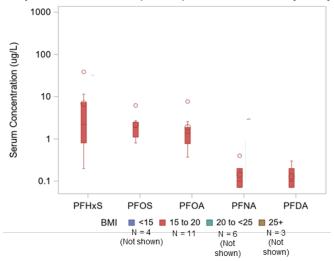


Figure C27. Boxplot of child blood (serum) concentrations by race and ethnicity combined

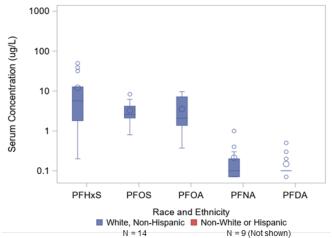


Figure C28. Boxplot of child blood (serum) concentrations by water consumption at school

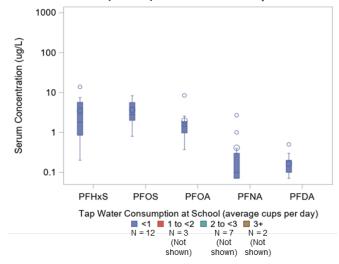


Figure C29. Boxplot of child blood (serum) concentrations by length of residency in sampling frame

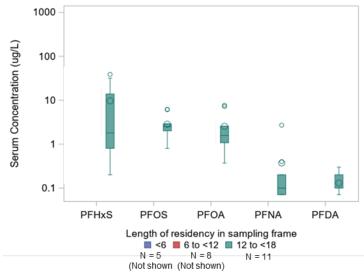


Figure C30. Boxplot of child blood (serum) concentrations by local fruit and vegetable consumption

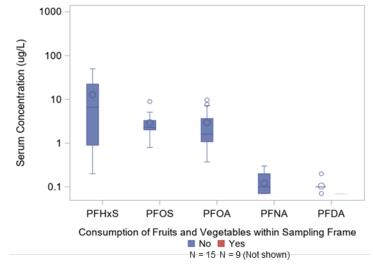


Figure C31. Boxplot of child blood (serum) concentrations by drinking formula reconstituted with tap

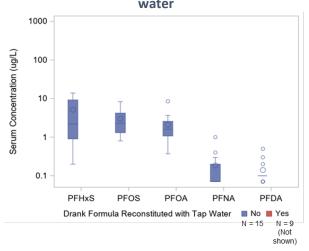


Figure C32. Boxplot of child blood (serum) concentrations by duration of drinking formula reconstituted with tap water

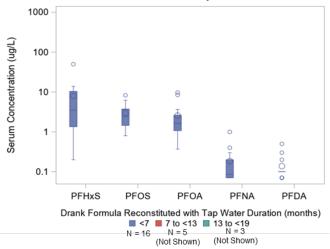
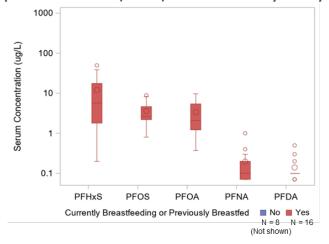
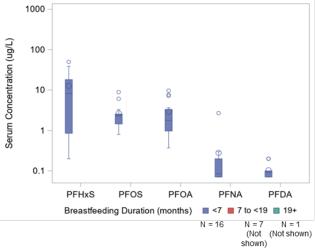




Figure C33. Boxplot of child blood (serum) concentrations by history of breastfeeding

