CHAPTER 8. REFERENCES

3M. 2000. Sulfonated perfluorochemicals in the environment: Sources; dispersion, fate and effects. 3M Company submission to the U.S. Environmental Protection Agency’s Administrative Record. OPPT-2002-0043-0005.

+3M. 2007a. A 5-day repeat dose oral toxicity screening study in rats with a 7-day recovery period with MTDID. St. Paul, MN: 3M Corporate Toxicology.

+ Cited in supplemental document
8. REFERENCES

8. REFERENCES

Beesoon S, Martin JW. 2015. Isomer-specific binding affinity of perfluorooctanesulfonate (PFOS) and perfluoroctanoate (PFOA) to serum proteins. Environ Sci Technol 49(9):5722-5731.

8. REFERENCES

8. REFERENCES

8. REFERENCES

8. REFERENCES

8. REFERENCES

Elcombe CR, Elcombe BM, Foster JR, et al. 2010. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats following dietary exposure to ammonium perfluorooctanoate occurs through increased activation of the xenosensor nuclear receptors PPARα and CAR/PXR. Arch Toxicol 84(10):787-798.

+Elcombe CR, Elcombe BM, Foster JR, et al. 2012b. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology 293(1-3):30-40.

8. REFERENCES

8. REFERENCES

8. REFERENCES

Fei C, McLaughlin JK, Lipworth L, et al. 2008b. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Health Perspect 116(10):1391-1395.

8. REFERENCES

8. REFERENCES

Johnson JD, Ober RE. 1979. Absorption of FC-95-14C in rats after a single oral dose. 3M. Submitted to the U.S. Environmental Protection Agency's Administrative Record. AR226-0007.

Johnson JD, Ober RE. 1980. Extent and route of excretion and tissue distribution of total carbon-14 in rats after a single intravenous dose of FC-95-14C. 3M. Submitted to the U.S. Environmental Protection Agency's Administrative Record. AR226-0006.

Johnson JD, Ober RE. 1999a. Absorption of FC-143-14C in rats after a single oral dose. In: Exploratory 28-day oral toxicity study with telomer alcohol, telomer acrylate, PFHS, and PFOS (POS control) by daily gavage in the rat, w/CVR LTR DTD, 051500 (Sanitized). 3M. Submitted to the U.S. Environmental Protection Agency under TSCA Section FYI. OTS05001378S.

Johnson JD, Ober RE. 1999b. Extent and route of excretion and tissue distribution of total carbon-14 in male and female rats after a single IV dose of FC-143-14C. In: Exploratory 28-day oral toxicity study with telomer alcohol, telomer acrylate, PFHS, and PFOS (POS control) by daily gavage in the rat, w/CVR letter dated, 051500 (Sanitized). 3M. Submitted to the U.S. Environmental Protection Agency under TSCA Section FYI. OTS05001378S.

+Kirkpatrick J. 2005. A combined 28-day repeated dose oral toxicity study with the reproduction/developmental toxicity screening test of perfluorohexanoic acid and 1H, 1H, 2H-tridecafluoro-1-octanol in rats, with recovery. Final report. Volume 1 of 6 (text and tables 1-75). WIL-534001. WIL Research Laboratories, LLC.

8. REFERENCES

8. REFERENCES

References

8. REFERENCES

Maisonet M, Calafat AM, Marcus M, et al. 2015a. Prenatal exposure to perfluoroalkyl acids and serum testosterone concentrations at 15 years of age in female ALSPAC study participants. Environ Health Perspect 123(12):1325-1330. 10.1289/ehp.1408847.

Ngo HT, Hetland RB, Sabaredzovic A, et al. 2014. In utero exposure to perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) did not increase body weight or intestinal tumorigenesis in multiple intestinal neoplasia (Min/+) mice. Environ Res 132:251-263. 10.1016/j.envres.2014.03.033.

8. REFERENCES

OECD. 2006a. Results of the 2006 survey on production and use of PFOS, PFAS, PFOA, PFCA, their related substances and products/mixtures containing these substances. Organisation for Economic Co-operation and Development.

8. REFERENCES

8. REFERENCES

+Qazi MR, Nelson BD, DePierre JW, et al. 2010b. 28-Day dietary exposure of mice to a low total dose (7 mg/kg) of perfluorooctanesulfonate (PFOS) alters neither the cellular compositions of the thymus and spleen nor humoral immune responses: Does the route of administration play a pivotal role in PFOS-induced immunotoxicity? Toxicology 267(1-3):132-139. 10.1016/j.tox.2009.10.035.

Qazi MR, Nelson BD, DePierre JW, et al. 2012. High-dose dietary exposure of mice to perfluorooctanoate or perfluorooctane sulfonate exerts toxic effects on myeloid and B-lymphoid cells in the bone marrow and these effects are partially dependent on reduced food consumption. Food Chem Toxicol 50(9):2955-2963.

Qazi MR, Xia Z, Bogdanska J, et al. 2009b. The atrophy and changes in the cellular compositions of the thymus and spleen observed in mice subjected to short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by peroxisome proliferator-activated receptor-alpha (PPARα). Toxicology 260(1-3):68-76.

8. REFERENCES

8. REFERENCES

+Seacat AM, Luebker DJ. 2000. Toxicokinetic study of perfluorooctane sulfonamide (PFOS; T-7132.2) in rats. 3M Strategic Toxicology Laboratory. Submitted to the U.S. Environmental Protection Agency's Administrative Record. AR226-1030A011.

 http://doi.org/10.1016/j.envint.2016.06.024.

Small MJ. 2009. Final report of the peer consultation panel conducting the review for the scientific peer consultation process for a site environmental assessment program as part of the DuPont-EPA memorandum of understanding and Phase II Workplan. Pittsburgh, PA: Carnegie Mellon University, Civil and Environmental Engineering and Engineering and Public Policy.

8. REFERENCES

8. REFERENCES

8. REFERENCES

+Thomford PJ. 2001. 4-Week capsule toxicity study with ammonium perfluorooctanoate (APFO) in Cynomolgus monkeys. APME Ad-Hoc APFO toxicology working group.

+Thomford PJ. 2002a. 4-week capsule toxicity study with perfluorooctane sulfonic acid potassium salt (PFOS; T-6295) in Cynomolgus monkeys. St. Paul, MN: 3M.

+Thomford PJ. 2002b. 104-Week dietary chronic toxicity and carcinogenicity study with perfluorooctane sulfonic acid potassium salt (PFOS; T-6295) in rats. St. Paul, MN: 3M.

+van Otterdijk FM. 2007a. Repeated dose 28-day oral toxicity study with MTDID-8391 by daily gavage in the rat, followed by a 21-day recovery period. 3M.

van Otterdijk FM. 2007b. Repeated dose 90-day oral toxicity study with MTDID 8391 by daily gavage in the rat followed by a 3-week recovery period. 3M.

8. REFERENCES

REFERENCES

