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DISCLAIMER  
 
 
Use of  trade names is for  identification only and  does not imply endorsement by the Agency for  Toxic  
Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health  and Human  
Services.  



  
 
 
 
 

UPDATE STATEMENT
  
 
 
A Toxicological Profile for  Parathion, Draft  for Public Comment was released in October  2014.  This  
edition supersedes  any previously released draft or final profile.   
 
Toxicological profiles are revised and republished as necessary.  For information regarding the update 
status of previously released profiles,  contact ATSDR at:  
 

Agency for Toxic Substances and Disease Registry 
 
Division of  Toxicology and Human Health Sciences 
 

Environmental Toxicology B ranch 
 
1600 Clifton Road NE 
 

Mailstop F-57 
 
Atlanta, Georgia 30329-4027 
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FOREWORD 
 
 
 
This toxicological profile is prepared in  accordance with guidelines* developed by the Agency for  Toxic 
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA).  The  
original guidelines were published in the  Federal Register  on April 17, 1987.  Each profile will  be revised 
and republished as necessary.  
 
The ATSDR  toxicological  profile succinctly characterizes the toxicologic and  adverse health effects 
information for  these  toxic  substances described therein.  Each peer-reviewed profile identifies and  
reviews the key literature that describes a substance's toxicologic properties.  Other pertinent  literature is  
also  presented, but  is described in  less detail than the key studies.   The profile is not intended  to be an  
exhaustive document; however, more comprehensive sources of specialty information are referenced.  
 
The focus of the profiles is  on health and toxicologic information;  therefore, each toxicological profile  
begins with a public health  statement that  describes,  in  nontechnical language,  a substance's relevant  
toxicological  properties.  Following the public health  statement is information concerning levels of  
significant human exposure and, where known, significant health effects.  The adequacy of information to 
determine a substance's health  effects is described in a health effects summary.  Data needs that  are of  
significance  to protection of public  health are identified by ATSDR.  
 
 Each  profile includes the following:  
 
 (A)  The examination, summary, and interpretation of available  toxicologic information and 

epidemiologic evaluations  on a toxic substance  to ascertain the  levels  of significant human 
exposure for  the substance and the associated acute, subacute, and chronic health  effects;  

 
 (B)  A determination of whether adequate  information on  the health  effects of each  substance 

is available or in the process of development to  determine levels of exposure that  present  a 
significant  risk to human health of  acute, subacute, and chronic health effects; and  

 
 (C)  Where appropriate, identification of toxicologic  testing needed to identify the types or  

levels of exposure that may present  significant risk of adverse health effects in humans.  
 
The principal audiences for the toxicological profiles are health professionals at  the Federal, State, and 
local levels; interested private  sector  organizations and groups; and members of the public.   
 
This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that  has been  
peer-reviewed.  Staffs of the Centers for Disease Control and Prevention and other Federal  scientists have  
also  reviewed the profile.  In addition, this profile has been peer-reviewed by a nongovernmental panel  
and was made available for public review.  Final  responsibility for the contents and views expressed in  
this toxicological profile resides with ATSDR.  
 

 
Patrick N. Breysse, Ph.D.,  CIH
  

Director, National Center for Environmental Health and 
 
Agency for Toxic Substances and Disease Registry 
 

Centers for Disease Control and Prevention 
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*Legislative Background 

The toxicological profiles are developed under the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980, as amended (CERCLA or Superfund).  CERCLA section 
104(i)(1) directs the Administrator of ATSDR to “…effectuate and implement the health related 
authorities” of the statute.  This includes the preparation of toxicological profiles for hazardous 
substances most commonly found at facilities on the CERCLA National Priorities List and that pose the 
most significant potential threat to human health, as determined by ATSDR and the EPA. Section 
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a toxicological profile 
for each substance on the list.  In addition, ATSDR has the authority to prepare toxicological profiles for 
substances not found at sites on the National Priorities List, in an effort to “…establish and maintain 
inventory of literature, research, and studies on the health effects of toxic substances” under CERCLA 
Section 104(i)(1)(B), to respond to requests for consultation under section 104(i)(4), and as otherwise 
necessary to support the site-specific response actions conducted by ATSDR. 
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies are 
reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Chapter 1 How Can (Chemical X) Affect Children?
 
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)?
 
Section 3.7 Children’s Susceptibility
 
Section 6.6 Exposures of Children
 

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center 
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY) 
Internet: http://www.atsdr.cdc.gov 

The following additional material is available online at www.atsdr.cdc.gov: 

Case Studies in Environmental Medicine—Case Studies are self-instructional publications designed to 
increase primary care provider’s knowledge of a hazardous substance in the environment and to 
aid in the evaluation of potentially exposed patients.  

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 

http:www.atsdr.cdc.gov
http:http://www.atsdr.cdc.gov
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incident.  Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III— 
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances. 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact:  NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, 
GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 395 E Street, S.W., Suite 9200, 
Patriots Plaza Building, Washington, DC 20201 • Phone: (202) 245-0625 or 1-800-CDC-INFO 
(800-232-4636). 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

Publically Available Information 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone: 202-347-4976 
• FAX: 202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk 
Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266. 

The American College of Medical Toxicology (ACMT) is a nonprofit association of physicians with 
recognized expertise in medical toxicology.  Contact: ACMT, 10645 North Tatum Boulevard, 
Suite 200-111, Phoenix AZ 85028 • Phone:  844-226-8333 • FAX:  844-226-8333 • Web Page: 
http://www.acmt.net. 

The Pediatric Environmental Health Specialty Units (PEHSUs) is an interconnected system of specialists 
who respond to questions from public health professionals, clinicians, policy makers, and the 
public about the impact of environmental factors on the health of children and reproductive-aged 
adults.  Contact information for regional centers can be found at http://pehsu.net/findhelp.html. 

http://pehsu.net/findhelp.html
http:http://www.acmt.net
http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
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The American Association of Poison Control Centers (AAPCC) provide support on the prevention and 
treatment of poison exposures.  Contact:  AAPCC, 515 King Street, Suite 510, Alexandria VA 
22314 • Phone:  701-894-1858 • Poison Help Line: 1-800-222-1222. 
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1.	 Health Effects Review. The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2.	 Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3.	 Data Needs Review. The Environmental Toxicology Branch reviews data needs sections to 
assure consistency across profiles and adherence to instructions in the Guidance. 

4.	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 



  
 
 
 
 

PEER REVIEW
  
 
 
A  peer review  panel was assembled for  parathion.  The panel consisted of  the  following m embers:   
 
1. 	 Dr.  Edward Levin, P sychology and Behavioral Sciences, School of Medicine, Duke University, 

Durham, North Carolina;  
 
2. 	 Dr.  Falicia Edwards,  Center for Environmental Health, College of Science, Engineering and 

Technology, Jackson  State University, Jackson, Mississippi; and  
 
3. 	 Dr.  Asa Bradman,  Center for Environmental Research and Children's Health (CERCH), School of  

Public Health, University of California, Berkeley,  Berkeley, California.  
 
These experts collectively have knowledge of  parathion’s physical and  chemical properties,  
toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and 
quantification of risk to humans.  All reviewers were selected in conformity with the conditions for peer  
review specified in Section 104(I)(13) of  the Comprehensive Environmental Response, Compensation, 
and Liability Act, as amended.  
 
Scientists from the Agency for  Toxic Substances and Disease Registry (ATSDR) have reviewed  the peer  
reviewers' comments and determined which comments will be  included in the  profile.  A listing of  the  
peer  reviewers' comments not incorporated in the  profile, with a brief explanation of the rationale  for  their  
exclusion, exists as part  of  the administrative record for this compound.   
 
The citation of  the peer review panel should not be understood to imply its approval of the profile's final  
content.  The responsibility for  the  content of  this profile lies with the ATSDR.  
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1 PARATHION 

1. PUBLIC HEALTH STATEMENT FOR PARATHION 

This Public Health Statement summarizes the Agency for Toxic Substances and Disease Registry’s 

findings on parathion, tells you about it, identifies the effects of exposure, and describes what you can do 

to limit that exposure. 

The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the 

nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal 

clean-up activities.  U.S. EPA has found parathion in at least 20 of the 1,832 current or former NPL sites. 

The total number of NPL sites evaluated for parathion is not known.  But the possibility remains that as 

more sites are evaluated, the sites at which parathion is found may increase. This information is 

important because these future sites may be sources of exposure, and exposure to parathion may be 

harmful. 

If you are exposed to parathion, many factors determine whether you’ll be harmed.  These include how 

much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of 

exposure).  You must also consider the other chemicals you are exposed to and your age, sex, diet, family 

traits, lifestyle, and state of health. 

WHAT IS PARATHION? 

Parathion does not occur naturally in the environment.  Parathion is the common name of an 

organophosphorus insecticide formerly used in the United States and is still available in some other 

countries for the control of sucking and chewing insects and mites in a wide variety of crops. 

The pure chemical is a pale-yellow liquid with a faint phenol-like odor.  Technical parathion is a pale-

yellow to dark-brown liquid. 

WHAT HAPPENS TO PARATHION WHEN IT ENTERS THE ENVIRONMENT? 

When released to the environment, parathion is degraded by photolysis (degradation by reacting with 

light), hydrolysis (reaction with water), and biodegradation (microorganisms in soil and water that 

degrade parathion). Measured photolysis half-lives in water (the time that it takes for half the amount of 

parathion in water to disappears) were approximately 2–3 weeks. Hydrolysis takes place more slowly, 

with a half-life of about 1–4 months depending upon temperature and the degree of acidity of the water. 



   
 

   
 
 

 
 
 
 
 

     

     

 

  
 

      

      

   

     

 

  
 

      

   

     

  

  

 

    

     

      

  

   

 

   
 

2 PARATHION 

1.  PUBLIC HEALTH STATEMENT 

Parathion is not expected to bioaccumulate in fish and other aquatic organisms. The mobility of parathion 

in soils is expected to be low, so it is not expected to move from the soil surface to groundwater. 

HOW MIGHT I BE EXPOSED TO PARATHION? 

Since parathion is no longer used as an insecticide in the United States, it is unlikely that you will be 

exposed to large amounts of it from produce grown in the United States. If you eat foods or drink water 

that contain parathion you may be exposed to low levels of it; however, since it is not used any longer in 

the United States, it is unusual to find it in air, water, soil, or food.  

HOW CAN PARATHION ENTER AND LEAVE MY BODY? 

If you breathe air contaminated with parathion, some parathion will enter the lungs and may pass into the 

bloodstream.  If you eat food or drink water contaminated with parathion, some will enter the bloodstream 

through the digestive tract.  Contact with soil contaminated with parathion or with fruits or plants that 

have been sprayed with parathion will also result in some parathion entering the body through the skin.  

Studies in volunteers showed that absorption through the skin can vary greatly depending on which area 

of the skin is exposed.  Once in the body, parathion distributes primarily to the liver where it is broken 

down into other chemicals (metabolites).  Low levels of parathion and metabolites have been found also 

in other organs of exposed animals, including the kidneys, muscle, lungs, and brain.  Less parathion will 

reach the liver if it is inhaled or there is skin contact than if it is ingested. Parathion is eliminated 

primarily via the excretion of metabolites in the urine.  A small proportion of metabolites are eliminated 

through the feces.  It can take several days to eliminate parathion from your body after a single exposure. 

See Section 3.4 for more information on how parathion can enter and leave the body. 



   
 

   
 
 

 
 
 
 
 

  
 

 

    

  

    

 

  

   

    

 

 

    

  

    

    

  

 

  

  

        

    

   

 

 

 

  
 

   

 

 

3 PARATHION 

1.  PUBLIC HEALTH STATEMENT 

HOW CAN PARATHION AFFECT MY HEALTH? 

Parathion is a nerve poison, and works by stopping your nervous system from turning off, leading to 

overload so the rest of your body cannot function.  The health effects of parathion depend on how much 

parathion you are exposed to and the length of that exposure.  Environmental monitoring data suggest that 

any parathion levels that the general public might encounter through contact with water, soil, or food are 

lower than levels that have caused health effects in animal studies. 

People who ingested parathion either intentionally or in contaminated food, who were exposed during 

application of the pesticide to fields, or who entered areas that had been sprayed too soon after application 

of this substance suffered excessive eye watering and salivation, blurred vision, stomach crumps, 

diarrhea, difficulty breathing, tremors, and seizures, and some died. The same types of effects have been 

observed in animals exposed briefly to high levels of parathion. 

Studies of agricultural workers suggested that long-term exposure (i.e., years) to low-to-moderate 

amounts of parathion may be associated with allergic asthma, hearing loss, alterations of the thyroid 

gland, depression, and diabetes.  A study of Chinese male workers suggested that parathion may be 

associated with low sperm count.  In all of these cases, the associations were weak and the subjects may 

have been exposed to other chemicals at the same time. Animal studies have shown that eating parathion-

contaminated food over long periods may cause occasional diarrhea and tremors. 

A study of agricultural workers suggested that exposure to parathion may be associated with increased 

risk of skin cancer.  However, the evidence was not conclusive because it was based on a small number of 

cases.  Parathion caused cancer of the adrenal cortex in rats. The U.S. Department of Health and Human 

Services (DHHS) has not classified parathion as to its carcinogenicity. The U.S. EPA has classified 

parathion as a Group C carcinogen (possible human carcinogen).  The International Agency for Research 

on Cancer (IARC) has placed parathion in Group 2B (possibly carcinogenic to humans). 

See Section 3.2 for more information on how parathion can affect your health. 

HOW CAN PARATHION AFFECT CHILDREN? 

This section discusses potential health effects of parathion exposure in humans from when they’re first 

conceived to 18 years of age. 



   
 

   
 
 

 
 
 
 
 

   

 

  

    

 

 

  

  

      

 

     

  

 

 

  

 
 

  

 

 

 

    

  

  

   

    

  

 

4 PARATHION 

1.  PUBLIC HEALTH STATEMENT 

Children who accidentally ate parathion or had skin contact with high amounts of parathion suffered the 

same effects seen in adults exposed to high amounts of parathion (excessive secretions, stomach cramps, 

diarrhea, tremors, and seizures).  No long-term exposure studies of children are available.  However, 

studies of other similar pesticides found that long-term exposure might results in nervous system 

problems in children. 

We do not know whether parathion can cause birth defects in children.  A study of women from an 

agricultural community in California did not find an association between exposure to parathion and 

growth of the fetus.  However, the study did not conclusively demonstrate specific exposure to parathion; 

it was only assumed based on the presence of a chemical in the urine that could have come from the 

breakdown of parathion or other substances in the body. Studies in which pregnant rats and rabbits were 

given parathion by mouth did not find increases in birth defects. 

See Section 3.7 for more information on how parathion can affect children. 

HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO PARATHION? 

If your doctor finds that you have been exposed to significant amounts of parathion, ask whether your 

children might also be exposed.  Your doctor might need to ask your state health department to 

investigate. 

To prevent exposure and risk to the general population, the EPA terminated most production of parathion 

as of December, 2002, with the remaining production ending in 2003.  The EPA also terminated the last 

registration for parathion products effective on December 21, 2006.  Because of these actions and 

environmental degradation processes, it is likely that neither the general population nor workers are 

exposed to parathion in the United States. If you find an old products that contain parathion, you should 

dispose of it according to the labeled instructions. 



   
 

   
 
 

 
 
 
 
 

 
  

 

 

   

 

 

 
 

  

 

 

  

 
    

 

  

 
  

 

 

  
  

 

    

     

  

  

   

 

   

 

 

    

  

   

5 PARATHION 

1.  PUBLIC HEALTH STATEMENT 

ARE THERE MEDICAL TESTS TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO 
PARATHION? 

Parathion and its breakdown products (metabolites) can be measured in blood and urine.  However, the 

detection of parathion or its metabolites cannot predict the kind of health effects that might develop from 

that exposure.  Because parathion and its metabolites leave the body fairly rapidly, the tests need to be 

conducted within days after exposure. 

One of parathion’s degradation products, p-nitrophenol, has been widely used to determine exposure to 

parathion.  However, p-nitrophenol is also a breakdown product of a similar pesticide, methyl parathion, 

and a product used in the production of some medicines, like acetaminophen.  So the presence of 

p-nitrophenol in your urine cannot be used to indicate exposure to parathion without information on 

possible sources of exposure. 

Where known parathion exposure occurred, measurements of p-nitrophenol helped doctors and public 

health officials obtain reference values so that they could determine whether people had been exposed to 

higher amounts of parathion than were found in the general population. 

For more information on the different substances formed by parathion breakdown and on tests to detect 

these substances in the body, see Sections 3.4 and 7.1. 

WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT 
HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  Regulations 

can be enforced by law.  Federal agencies that develop regulations for toxic substances include the 

Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), 

and the Food and Drug Administration (FDA).  Recommendations provide valuable guidelines to protect 

public health but cannot be enforced by law.  Federal organizations that develop recommendations for 

toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

National Institute for Occupational Safety and Health (NIOSH). 

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic 

substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect 

animals; levels are then adjusted to help protect humans.  Sometimes these not-to-exceed levels differ 

among federal organizations.  Different organizations use different exposure times (an 8-hour workday or 



   
 

   
 
 

 
 
 
 
 

   

 

 

   

   

 

 

       

   

  

   

 

 
 

   

 

    

 

  

 
    

 
 

  
  

  
 

 
 

 

  

 

 

6 PARATHION 

1.  PUBLIC HEALTH STATEMENT 

a 24-hour day), different animal studies, or emphasize some factors over others, depending on their 

mission. 

Recommendations and regulations are also updated periodically as more information becomes available. 

For the most current information, check with the federal agency or organization that issued the regulation 

or recommendation. 

The EPA does not regulate or provide guidelines for parathion in drinking water. The FDA does not 

regulate parathion in food or drugs.  OSHA has set a legal limit of 0.1 milligrams per cubic meter 

(mg/m3) for parathion in air averaged over an 8-hour work day.  NIOSH has set a recommended limit of 

0.05 mg/m3 for parathion in air averaged over a 10-hour work day. 

WHERE CAN I GET MORE INFORMATION? 

If you have any questions or concerns regarding parathion, please contact your community or state health 

or environmental quality department, or contact ATSDR at the address and phone number below.  You 

may also contact your doctor if experiencing adverse health effects or for medical concerns or questions. 

ATSDR can also provide publically available information regarding medical specialists with expertise 

and experience recognizing, evaluating, treating, and managing patients exposed to hazardous substances. 

•	 Call the toll-free information and technical assistance number at
 
1-800-CDCINFO (1-800-232-4636) or
 

•	 Write to:
 
Agency for Toxic Substances and Disease Registry
 
Division of Toxicology and Human Health Sciences
 
1600 Clifton Road NE
 
Mailstop F-57
 
Atlanta, GA 30329-4027
 

Toxicological profiles and other information are available on ATSDR’s web site: 

http://www.atsdr.cdc.gov. 

http:http://www.atsdr.cdc.gov


   
 
 
 
 

 
 
 
 
 

 
 

    
  

 

   

      

  

 

 

 

  

   

 

 

    

   

     

    

       

      

      

  

 

   

  

     

      

 

  

     

   

  

   

7 PARATHION 

2. RELEVANCE TO PUBLIC HEALTH
 

2.1  	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO PARATHION IN THE 
UNITED STATES 

Parathion is an organophosphorus insecticide that was primarily used prior to 2006 for agricultural 

purposes and was released to the environment through spraying on a wide variety of agricultural crops 

and at agricultural sites.  Once parathion is introduced into the environment, it may be degraded by 

atmospheric photooxidation and catalyzed by ozone or degraded by hydrolysis or biodegradation 

mediated by microorganisms found in most sediment, soils, and water.  Parathion is not likely to migrate 

through the soil and into groundwater since it has little to no mobility in soils under varying conditions.  

Volatilization of parathion from water surfaces has been observed; however, volatilization of parathion 

from soil surfaces is expected to be low.  Data from limited studies suggest that bioconcentration of 

parathion does not occur to a significant extent in most aquatic organisms tested, and that it may be 

metabolized when it is accumulated. 

Significant exposure of the general population to parathion is not likely at present, due to the ban on all 

uses in the United States.  Parathion was formerly used as a widespread insecticide in agriculture.  In 

1991, parathion was registered as a restricted use insecticide and had been limited to use on nine crops.  

Due to the toxicity of this chemical, most production of manufacturing use products was cancelled 

effective as of September 2000 with the remainder cancelled in 2003. The production of end use products 

was slated to be terminated as of December 31, 2002, with the last legal use of this chemical and its 

products to be effective on October 31, 2003. The production and registration for the remaining end use 

products ended in 2006. 

When parathion was still used as a registered insecticide, general population exposure may have occurred 

through ingestion of contaminated food and inhalation.  Ingestion of foods contaminated with small 

residues of parathion was the most likely route of exposure for the general population not living in areas 

where parathion was extensively used. Populations living within or very near areas of heavy agricultural 

parathion use would have had an increased risk of exposure to relatively larger amounts of parathion 

through dermal contact with contaminated plants, soils, or surface waters; by inhalation of the mist 

formed from the applied insecticide; or by ingestion of food-borne residues. Those likely to have 

received the highest exposures are those who were involved in the production, formulation, handling, and 

application of parathion, farm workers who enter treated fields prior to the passage of the appropriate 

restricted entry intervals, and workers involved in the disposal of parathion or parathion-containing 



   
 

   
 
 

 
 
 
 
 

    

   

 

 

 

  

   

    

    

  

 

  

 

 

  
 

 

  

     

    

   

       

     

      

  

     

   

    

    

   

  

 

 

8 PARATHION 

2. RELEVANCE TO PUBLIC HEALTH 

wastes.  Dermal contact appears to have been the major route of exposure for workers.  Inhalation of 

parathion in occupational settings depended on its volatility, the type of formulation used, and the 

application technique employed. 

Children would have been expected to be exposed to parathion by the same routes that affect adults.  

Small children were more likely to come into contact with parathion residues that may have been present 

in soil and dust, due to increased hand-to-mouth activity and playing habits.  Ingestion of foods 

contaminated with small residues of parathion was the most likely route of exposure for children. No data 

were located regarding parathion in breast milk; therefore, an adequate determination of the importance of 

this route of child exposure has not been made. 

See Chapter 6 for more detailed information regarding concentrations of parathion in environmental 

media. 

2.2  SUMMARY OF HEALTH EFFECTS 

Parathion is an organophosphate pesticide of relatively high acute toxicity compared to other 

organophosphates.  Signs and symptoms of acute toxicity are typical of those induced by organo­

phosphate insecticides as a group.  With the current state of knowledge, the great majority of systemic 

effects observed following exposure to parathion are due to the action of its active metabolite, paraoxon, 

on the nervous system, or are secondary to this primary action.  Paraoxon inhibits the enzyme, 

acetylcholinesterase (AChE), at the various sites where the enzyme is present in the nervous system: the 

central nervous system, the sympathetic and parasympathetic divisions of the autonomic nervous system, 

and the neuromuscular junction.  Inhibition of AChE results in accumulation and continuous action of the 

neurotransmitter acetylcholine at postsynaptic sites.  Information regarding effects of parathion in humans 

is derived mainly from cases of accidental or intentional ingestion of parathion, studies of workers 

involved in the manufacture of parathion, studies of agricultural workers, members of the general 

population, and a few controlled exposure studies with volunteers.  Oral ingestion or dermal absorption of 

high amounts of parathion resulted in typical signs and symptoms of organophosphate intoxication, 

including reduced plasma and red blood cell cholinesterase activity, excessive bronchial secretions, 

respiratory distress, salivation, pinpoint pupils, bradycardia, decreased blood pressure, abdominal cramps, 

diarrhea, tremor, fasciculations, and possibly death. 



   
 

   
 
 

 
 
 
 
 

   

   

 

       

  

    

    

  

 

  

   

    

 

 

  

 

     

   

      

    

    

    

    

   

    

  

    

  

   

    

    

    

       

   

9 PARATHION 

2. RELEVANCE TO PUBLIC HEALTH 

Limited data are available regarding health effects in humans exposed to parathion other than 

neurological effects.  Evaluations of participants in the Agricultural Health Study (AHS) have suggested 

weak associations between exposure to parathion and allergic asthma, hearing loss, cutaneous melanoma, 

hypothyroidism, and diabetes. The AHS is a prospective cohort study of nearly 90,000 private pesticide 

applicators (mostly farmers), their spouses, and commercial pesticide applicators in Iowa and North 

Carolina.  Parathion was one of multiple pesticides involved in the evaluations.  The AHS is funded by 

the National Cancer Institute and the National Institute of Environmental Health Sciences in collaboration 

with the EPA and NIOSH.  Results from the AHS also showed no significant association between 

exposure to parathion and wheezing, non-allergic asthma, neurobehavioral function (memory, motor 

speed and coordination, sustained attention, verbal learning, and visual scanning and processing), and 

peripheral nervous system function.  However, exposure to parathion was found positively associated 

with depression in the AHS. Two population-based, case-control studies did not find a significant 

association between exposure to parathion and Parkinson’s disease.  A small study of Chinese workers 

exposed to parathion and methamidophos reported sperm alterations in workers compared to unexposed 

subjects; however, the small sample size (only 20 workers) renders the results uncertain at best.  A study 

of Latina women living in an agricultural community in California did not find significant associations 

between several measures of in utero exposure to parathion and fetal growth. That study, however, 

assessed exposure to parathion by measuring urinary p-nitrophenol, which could have been produced by 

exposure to chemicals other than parathion.  Studies in animals support the human data and confirm that 

the main target of parathion toxicity is the nervous system. Exposure levels were not available in the 

studies mentioned above. Very few studies that evaluated reproductive and developmental effects of 

parathion in animals were available for review.  An intermediate-duration oral study in rats reported that 

doses of 2.6 mg parathion/kg/day (only dose tested and in the lethal range estimate for human adults) 

induced testicular tubular atrophy, necrotic spermatogenic cells, and enlargement of the interstitial space 

of the testes.  Oral chronic-duration studies in rats exposed to up to 4.4 mg parathion/kg/day or in mice 

exposed to up to 27.6 mg parathion/kg/day did not find gross or microscopic alterations in the 

reproductive organs.  Parathion was not embryotoxic or teratogenic in rats and rabbits following repeated 

oral administration of up to 1 and 0.3 mg parathion/kg/day, respectively, during gestation.  An additional 

study in rats reported that pups exposed during gestation and lactation showed alterations in the 

electrocardiograms (EKGs) (i.e., decreased rate of atrial depolarization and ventricular repolarization) on 

postnatal day 25 even with the lowest maternal dose tested, 0.01 mg parathion/kg/day.  Since this is not a 

developmental end point routinely tested in standard developmental studies, it would be helpful to try to 

replicate these results to determine if they are developmental in nature. A series of studies in which 

neonatal rats were administered subcutaneous doses of parathion that did not induce significant inhibition 
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2. RELEVANCE TO PUBLIC HEALTH 

of AChE reported alterations in the development of neurotransmitter systems, neurobehavior, and 

metabolic dysregulation that were evident at later times up to adulthood. 

Parathion increased the incidence of adrenal gland adenomas and carcinomas in Osborne-Mendel rats in a 

dietary bioassay.  Parathion induced immunosuppression in mice in acute oral studies; the lowest dose to 

do so was 1.5 mg parathion/kg/day.  However, none of these studies challenged the mice with an external 

agent to evaluate whether resistance to infection was compromised.  Evidence suggested that cholinergic 

stimulation played a major role in parathion-induced plaque-forming cell response.  Parathion also 

increased the sensitivity to allergens in mice at the relatively low dose of 0.15 mg parathion/kg/day.  The 

investigators suggested that the effects may involve alterations in the number of helper and cytotoxic 

T-cells, in levels of TH1 and TH2 cytokines, and in gene expression in lymph nodes.  Chronic-duration 

studies in rats and mice did not find gross or microscopic alterations in lymphoreticular organs.  In 

general, little systemic toxicity was reported in the animal studies available for review.  Mild liver 

histopathology was reported in rats in a 90-day gavage study.  The chronic-duration oral studies available 

for review did not find gross or microscopic alterations in the liver, kidneys, heart, or lungs from rats or 

mice. Neurotoxicity is the main effect of parathion in humans and animals, and the mechanism of 

neurotoxic action has been studied extensively and is well understood.  Therefore, the section below will 

focus only on neurological effects.  The reader is referred to Section 3.2, Discussion of Health Effects by 

Route of Exposure, for information on additional effects that may have been observed sporadically in 

animal studies and in human case reports, and are of unclear physiological significance. 

Neurological Effects. Clinical signs and symptoms of parathion intoxication are typical of 

organophosphate poisoning.  Parathion through its active metabolite, paraoxon, inhibits the enzyme 

AChE and thus prevents the hydrolysis of the neurotransmitter, acetylcholine, in the central and 

peripheral nervous systems.  Continuous presence of acetylcholine at parasympathetic autonomic 

muscarinic receptors results in ocular effects (miosis, blurred vision), gastrointestinal effects (nausea, 

vomiting, abdominal cramps, diarrhea), respiratory effects (excessive bronchial secretions, chest 

tightness, bronchoconstriction), cardiovascular effects (bradycardia, decreased blood pressure), effects on 

exocrine glands (increased salivation, lacrimation), and effects on the bladder (incontinence).  At the level 

of parasympathetic and sympathetic autonomic nicotinic receptors, sufficient acetylcholine will induce 

tachycardia and increase blood pressure.  At the neuromuscular junction, excess acetylcholine will induce 

muscle fasciculations, cramps, diminished tendon reflexes, muscle weakness in peripheral and respiratory 

muscles, ataxia, and paralysis.  Finally, overstimulation of brain cholinergic receptors will lead to 

drowsiness, lethargy, fatigue, headache, generalized weakness, dyspnea, convulsions, and cyanosis. 



   
 

   
 
 

 
 
 
 
 

  

  

 

 

   

  

  

    

   

     

    

      

        

   

    

    

 

   

   

   

    

 

     

    

    

   

 

 

 

 

   

   

11 PARATHION 
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Death generally occurs due to respiratory failure attributed to excessive tracheobronchial and salivary 

secretions, nicotinic paralysis of the diaphragm and respiratory muscles and depression of central nervous 

system respiratory centers. 

The signs and symptoms described above have been documented in almost all of the cases of accidental 

or intentional ingestion or dermal exposure to high amounts of parathion.  Estimates of lethal doses range 

from about 2 to 13 mg/kg in adults and from 0.1 to 1.3 mg/kg in children.  Studies that measured 

cholinesterase levels showed significant decreases in both red blood cell AChE and plasma cholinesterase 

levels.  In general, plasma cholinesterase activity can be inhibited by 20–25% without significant 

physiological consequences.  Red blood cell AChE activity can be reduced 20–25% without manifestation 

of clinical signs.  A decrease of 40% is a danger signal for overexposure, and a depression of ≥60% is an 

indication for removal from the exposure site to prevent overt poisoning.  Studies also have shown that 

the rate of decrease of red blood cell AChE correlates better with the appearance of symptoms than the 

absolute value reached after exposure. Red blood cell AChE better reflects the AChE content in the 

central nervous system than plasma cholinesterase. In a study of multiple cases of severe oral 

intoxication, red blood cell cholinesterase was depressed 78%.  In another study of six cases of severe 

oral poisoning with parathion, red blood cell cholinesterase activity was reduced to <10% of normal in all 

cases.  In workers exposed to high amounts of parathion primarily by dermal contact during the synthesis 

and handling of various parathion formulations, and who suffered severe symptoms, red blood cell 

cholinesterase activity reached 11–22% of normal.  In two fatal cases of oral poisoning, inhibition of 

brain AChE was found to be regionally selective.  Measurements done within 32 hours of death showed 

the biggest decreases (65–80%) in the cerebellum, some thalamic nuclei, and the cortex.  Moderate 

decreases of 10–30% were reported in the substantia nigra and basal ganglia; no significant changes were 

seen in the white matter.  Studies in volunteers exposed orally to parathion indicate that repeated doses of 

approximately 0.1 mg parathion/kg may result in reductions of red blood cell AChE activity of <20% and 

no adverse clinical signs. Application of approximately 100 mg to the hand and forearm of volunteers for 

2 hours during 5 consecutive days resulted in maximal inhibition of red blood cell AChE of 14%, and no 

clinical signs were observed.  As detailed in Section 3.2, numerous studies in animals exposed to 

parathion by any route have shown inhibition of plasma, red blood cell, and brain cholinesterase 

activities. 

A condition that has been reported in humans as a consequence of acute exposure to high amounts of 

some organophosphate pesticides is the intermediate syndrome. The intermediate syndrome is termed as 

such because it occurs in the time interval (24–96 hours) between the end of the acute cholinergic crisis 
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2. RELEVANCE TO PUBLIC HEALTH 

and the usual onset of delayed neuropathy, and it is thought to be due to persistent cholinesterase 

inhibition leading to combined pre- and post-synaptic impairment of neuromuscular transmission.  Single 

cases due to specific exposure to parathion have been reported.  In a report of 68 cases of acute exposure 

to parathion, 7 developed intermediate syndrome (10.3%). 

A serious neurological effect of some organophosphate pesticides is delayed neurotoxicity.  

Organophosphorus pesticide-induced neuropathy (OPIDN) is a neurodegenerative disorder characterized 

by a delayed onset of prolonged ataxia and upper motor neuron spasticity.  The lesion is a central-

peripheral distal axonopathy caused by a Wallerian-type degeneration of the axon, followed by myelin 

degeneration of the central and peripheral nervous systems.  A few cases of parathion-induced delayed 

neuropathy have been described. 

2.3  MINIMAL RISK LEVELS (MRLs) 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made for parathion.  An 

MRL is defined as an estimate of daily human exposure to a substance that is likely to be without an 

appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure. MRLs are 

derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive 

health effect(s) for a specific duration within a given route of exposure. MRLs are based on 

noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis.  As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 
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Inhalation MRLs 

An acute-duration inhalation MRL was not derived for parathion.  Adequate human data were not 

available.  Hartwell et al. (1964) exposed two volunteers to various formulations of heated parathion dust 

or liquid technical parathion for periods of 30 minutes and measured red blood cell AChE activity. 

However, the concentrations of parathion to which the subjects were exposed were not determined.  An 

acute-duration study that identified no-observed-adverse-effect levels (NOAELs) and lowest-observed­

adverse-effect levels (LOAELs) for neurological end points including red blood cell AChE activity and 

clinical signs in rats and dogs was available for review; the exposure period was 4 hours for both species 

(NIOSH 1974).  Red blood cell AChE activity was the most sensitive end point in both species and, since 

it is a valid neurological end point in the absence of brain AChE data, could be considered for MRL 

derivation.  However, studies of cholinesterase inhibition have shown that it takes approximately 21– 

28 days for inhibition of cholinesterase activity to reach a steady state and that values obtained in single 

dose or short-duration studies carry great uncertainty (EPA 2001, 2006).  In addition, such studies have 

shown an apparent lack of dose-response, particularly at the low exposure levels.  For example, in the 

NIOSH (1974) study with parathion, 24 hours after exposure to 0.035, 0.206, 0.235, 0.825, 0.905, 1.21, or 

2.17 mg/m3 parathion aerosol, red blood cell AChE activity in male rats was inhibited 7, 8, 28, 17, 8, 11, 

and 30%, respectively.  Examination of the extent of red blood cell AChE inhibition across time gives a 

similar picture.  For example, in male rats, exposure to 0.235 mg/m3 parathion aerosol resulted in 0, 23, 

14, 0, and 26% inhibition at 4, 24, 48, 168, and 336 hours after exposure ceased, respectively.  In dogs, 

the lowest exposure level tested (0.153 mg/m3) resulted in levels of red blood cell AChE activity 62.1, 

49.3, 44.0, 71.6, and 58.0% of normal at 4 hours, 24 hours, 48 hours, 7 days, and 14 days after exposure, 

respectively.  For these reasons, and also based on data collected on enzyme inhibition for a great number 

of organophosphate pesticides that suggest that AChE inhibition data obtained in single-dose or short-

duration studies carry great uncertainty (EPA 2006), as indicated above, an acute-duration inhalation 

MRL was not derived for parathion.  However, since the lowest acute-duration inhalation LOAEL is 

0.153 mg/m3, the intermediate-duration inhalation MRL of 20 ng/m3 (see below) is protective of acute 

effects. 

•	 An MRL of 20 ng/m3 has been derived for intermediate-duration inhalation exposure (15– 
364 days) to parathion based on adverse neurological effects in rats. 

The only quantitative information regarding long-term exposure of humans to parathion in air is from a 

study of 13 workers at an industrial plant that manufactured concentrated parathion as well as dusts 

containing various concentrations of parathion (Brown and Bush 1950).  Only one of these workers was 
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unexposed to parathion.  The exact duration of exposure was not known.  Parathion was measured in air 

at different operations.  The maximum concentration determined was 0.8 mg/m3 and the estimated 

average was about 0.2 or 0.3 mg/m3. Due to the rotation of personnel, the 12 exposed subjects had only 

intermittent contact with parathion-contaminated air until July 1949, when production ceased.  Therefore, 

it was impossible to determine exactly what the total exposure had been.  Analyses of blood from five 

subjects who provided successive blood samples over a 6-month period showed a decrease in plasma 

cholinesterase activity.  However, the changes in red blood cell cholinesterase activity were less 

conclusive.  The investigators noted that probably the most significant finding was the fact that 

measurements of cholinesterase activities conducted 5 months after the plant had stopped manufacturing 

parathion showed a marked increase in activities in almost all cases. The information presented in this 

study is inadequate for MRL derivation. 

Although only one intermediate-duration study provided information regarding effects of parathion in 

animals, the study was considered adequate for derivation of an intermediate-duration MRL (NIOSH 

1974).  The study monitored clinical signs and plasma cholinesterase and red blood cell AChE activities 

in male Sprague-Dawley rats and in male beagle dogs exposed whole-body to aerosolized technical 

parathion. 

Groups of male rats (20/group) were exposed to 0, 0.01, 0.1, or 0.74 mg parathion/m3 7 hours/day, 

5 days/week for 6 weeks. Blood samples obtained from 71 rats were assayed for red blood cell and 

plasma cholinesterase and served as baseline controls. Ten rats per exposure group and control group 

were sacrificed at various times during the exposure period and during a 6-week post-exposure period to 

collect blood samples.  The rats were observed for clinical signs and were weighed before blood sampling 

and sacrifice.  No clinical signs were seen in rats exposed to 0.01 or 0.1 mg parathion/m3.  Some rats in 

the high-concentration group showed signs of parathion toxicity, including tremors and ataxia.  Blood 

collected from the high-dose group after the last exposure showed no significant alteration in hematocrit. 

Body weight was not significantly altered by exposure to parathion.  In the low-exposure group, red blood 

cell AChE activity was maximally decreased by approximately 30% on exposure weeks 4 and 5; no data 

were available for week 3.  On exposure week 6, red blood cell AChE activity in the low-exposure group 

had recovered to 97.3% of control levels.  In the mid-exposure group, the maximum decrease in red blood 

cell AChE was 43% and occurred on week 1.  During the rest of the exposure period, red blood cell 

cholinesterase activity was 60–70% of pretest levels, suggesting that a steady state had been achieved. 

Red blood cell AChE activity during the first and second week of the post-exposure period was 82 and 

84.4% of controls, indicating that recovery was in progress.  In the high-exposure group, red blood cell 
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AChE activity achieved its maximal depression on week 5 of exposure, reaching 15% of controls.  In 

general, enzyme activities recovered during the 6-week post-dosing period.  Changes in plasma 

cholinesterase activity paralleled red blood cell changes, but recovered faster and significantly exceeded 

controls starting the first week post-exposure.  Since the exposure level of 0.1 mg parathion/m3 induced a 

level of depression of red blood cell AChE activity that appeared to achieve steady state at approximately 

60–70% of controls during exposure, this exposure concentration constitutes a less serious LOAEL for 

neurological effects in rats; the exposure concentration of 0.01 mg parathion/m3 is a NOAEL. 

Male beagle dogs (6/group) were exposed to parathion aerosol at concentrations of 0, 0.001, 0.01, or 

0.2 mg/m3 7 hours/day, 5 days/week for 6 weeks and were held for an additional 6-week post-exposure 

period.  Blood samples obtained from the dogs at various times during the exposure and post-exposure 

periods were assayed for red blood cell AChE and plasma cholinesterase.  Blood samples were taken pre­

exposure so that each dog served as its own control.  No clinical signs were observed in the dogs. 

Exposure to parathion did not affect body weight gain in the dogs.  No significant effects on red blood 

cell AChE activity were observed at the low-exposure level.  Exposure to 0.01 mg parathion/m3 reduced 

red blood cell AChE activity by 21% by the end of the second week of exposure, but levels recovered to 

86% of pre-exposure values by the third week of exposure and to 100% of pretest levels during the 

remaining of the exposure period.  In the high-exposure group, red blood cell AChE activity was reduced 

between 26 and 46% during the first 5 weeks of exposure and inhibition reached a maximum of 41% of 

pre-exposure levels on week 6 of exposure.  Slow recovery was evident during the post-exposure period, 

with complete recovery at 6 weeks in dogs exposed to 0.20 mg/m3. Plasma cholinesterase activity was 

inhibited to a greater extent during the exposure period, but seemed to recover faster during the post-

exposure period.  Based on the fact that red blood cell AChE activity was depressed over 20% (21%) only 

on week 2 of exposure in the 0.01 mg/m3 group, this exposure level is considered a NOAEL for 

neurological effects in dogs in an intermediate-duration study; the LOAEL was 0.2 mg/parathion/m3. 

Since only means without deviation parameters were reported for red blood cell AChE values, dose-

responses using the benchmark dose approach could not be constructed to estimate points of departure 

from the rat and dog data.  Therefore, a NOAEL/LOAEL approach was be used and the NOAEL of 

0.01 mg parathion/m3 for red blood cell AChE in rats was the point of departure for MRL derivation.  

Although the NOAEL was the same in both species, the data from the rat study was preferred over that 

from the dog study because a lower LOAEL was established in the rat study, there were 20 rats per group 

compared to 6 dogs per group, and more extensive data regarding cholinesterase inhibition have been 

collected in rats than in dogs.  In addition, the data from dogs support the findings in rats. 
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Although NIOSH (1974) stated that particle size was determined by the use of a Rochester cascade 

impactor, no data regarding droplet size were located in the report available for review.  In the absence of 

droplet size data, a dosimetric adjustment could not be performed to estimate a human equivalent 

concentration.  Therefore, the MRL was derived by applying an uncertainty factor of 100 (10 for animal 

to human extrapolation and 10 for human variability) to the duration-adjusted NOAEL (0.01 mg/m3 x 

7 hours/24 hours x 5 days/7 days x 1/100).  This yielded an intermediate-duration inhalation MRL of 

20 ng/m3 for parathion. 

A chronic-duration inhalation MRL was not derived for parathion. No chronic-duration inhalation studies 

in humans or animals exposed to parathion were located.  It is possible that in the study of workers 

exposed to parathion conducted by Brown and Bush (1950) summarized above, some workers could have 

been exposed for over a year. 

Oral MRLs 

An acute-duration oral MRL was not derived for parathion for the reasons discussed below.  Data 

regarding inhibition of red blood cell AChE activity in short-term studies, including a 5-day exposure 

study in volunteers (Morgan et al. 1977), were not considered for MRL derivation for the reasons 

previously discussed regarding an acute-duration inhalation MRL for parathion.  The decision is based on 

the fact that studies of cholinesterase inhibition have shown that it takes approximately 21–28 days for 

inhibition of cholinesterase activity to reach a steady state, and that values obtained in single-dose or 

short-duration studies carry great uncertainty.  In addition to data on blood cholinesterase activity, 

intermediate-duration oral studies in animals provided information on systemic effects (mostly body 

weight), developmental effects, and effects on the immune system. Acute oral developmental studies in 

rats and rabbits reported NOAEL values of 1 and 0.3 mg parathion/kg/day, respectively, the highest doses 

tested (Renhof 1984, 1985). A study in mice identified a relatively low LOAEL of 0.15 mg 

parathion/kg/day for increased sensitivity to allergens (Fukuyama et al. 2011); that dose was the lowest 

dose tested.  Another study from the same group of investigators found that mice dosed with 1.5 mg 

parathion/kg/day for 5 days exhibited decreased IgM antibody plaque-forming cells in response to sheep 

red blood cell (SRBC) antigen; the NOAEL was 0.15 mg parathion/kg/day (Fukuyama et al. 2012).  Other 

studies had reported similar effects, but had tested higher doses (Casale et al. 1983, 1984; Kim et al. 2005; 

Wiltrout et al. 1978).  The plaque-forming cell assay is a widely used test of immuno-competence, 

specifically humoral-mediated immunity, and has been shown to be a sensitive target of toxicity.  This 
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end point has been used to derive MRLs for various chemicals (Abadin et al. 2007) and could have been 

considered for derivation of an acute-oral MRL for parathion.  However, as explained below, an 

intermediate-duration oral study in humans (Rider et al. 1969) identified a LOAEL of 0.11 mg 

parathion/kg/day and a NOAEL of 0.09 mg parathion/kg/day for red blood cell AChE inhibition.  The 

NOAEL of 0.09 mg parathion/kg/day is lower than the LOAEL for increased sensitivity to allergens 

(0.15 mg/kg/day) and decreased humoral-mediated immunity (1.5 mg/kg/day) identified in the Fukuyama 

et al. (2011, 2012) studies. Because human data are preferred over animal data, and because an 

intermediate-duration oral MRL based on the human NOAEL would be protective of the immunological 

effects reported in the acute-duration studies in mice, the immunological data were not used for derivation 

of an acute-duration oral MRL for parathion. 

•	 An MRL of 0.009 mg/kg/day has been derived for intermediate-duration oral exposure (15– 
364 days) to parathion based on neurological effects in humans. 

Two intermediate-duration oral studies in volunteers provide information on red blood cell AChE activity 

in humans during exposure to parathion.  The first study identified a NOAEL of 0.1 mg parathion/kg/day 

(the highest dose tested) for red blood cell AChE activity in female volunteers administered the pesticide 

orally for 6 weeks; no further information regarding red blood cell AChE was provided (Edson 1964).  

The second human study identified a NOAEL of approximately 0.09 mg parathion/kg/day for red blood 

cell AChE activity in male volunteers administered the pesticide in a capsule for 30 days (Rider et al. 

1969).  The intermediate-duration oral studies in animals provided information on body weight, 

neurological effects, immunological effects, and reproductive and developmental effects.  The lowest 

LOAEL for neurological effects was 0.047 mg parathion/kg/day for a 25% inhibition of red blood cell 

AChE in dogs in a 24-week dietary study; the NOAEL was 0.021 mg/kg/day (Frawley and Fuyat 1957).  

In another study in dogs, doses of 0.5 mg parathion/kg/day in a capsule reduced red blood cell AChE 

activity 25–58% during a 6-week treatment period followed by a 6-week recovery period; the NOAEL 

was 0.1 mg/kg/day (NIOSH 1974).  Two studies in rats dosed for several weeks identified LOAELs of 

0.1 mg parathion/kg/day for red blood cell AChE; the NOAELs were 0.024 and 0.05 mg parathion/kg/day 

(Ivens et al. 1998; NIOSH 1974).  An intermediate-duration oral study in monkeys identified a LOAEL of 

0.1 mg parathion/kg/day (the only dose tested) for altered auditory detection behavior; no measurements 

of enzyme activities were conducted in this study (Reishchl et al. 1975).  Increased sensitivity to allergens 

was reported in a study in mice exposed to ≥0.15 mg parathion/kg/day for 56 weeks (Nishino et al. 2013).  

Data on reproductive effects are limited to a study in male rats in which daily gavage administration of 

2.6 mg parathion/kg/day (only dose tested) for 90 days caused tubular atrophy in the testes, necrosed 

spermatogenic cells, and enlargement of the interstitial space of the testes (Dikshith et al. 1978). The only 
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developmental study available for review reported a considerably lower LOAEL of 0.01 mg 

parathion/kg/day (the lowest dose tested) for altered EKGs in 24-day-old pups from rats dosed from day 2 

of gestation through day 15 of lactation (Deskin et al. 1979).  Since this is not a developmental end point 

routinely tested in guideline developmental studies, it would be helpful to try to replicate these results 

before it could be considered for MRL derivation. 

The available intermediate-duration oral studies suggest that in humans, rats, and dogs, significant 

inhibition (>20%) of red blood cell AChE activity occurs with repeated doses ≥0.1 mg parathion/kg/day.  

In the Frawley and Fuyat (1957) study, red blood cell AChE activity was depressed approximately 25% in 

dogs dosed 0.047 mg parathion/kg/day for 12 weeks, but appeared to increase to near 90% of pretest 

values on week 16 of exposure.  Another study in dogs showed that a constant inhibition of the enzyme of 

>20% could be achieved only with repeated doses of 0.5 mg parathion/kg/day (NIOSH 1974).  Since 

utilizing human data will reduce the uncertainty over using animal data, the study of Rider et al. (1969) in 

volunteers was selected for derivation of an intermediate-duration oral MRL for parathion. 

In the Rider et al. (1969) study, five male volunteers were administered 3, 4.5, 6, or 7.5 mg parathion/day 

in a capsule (0.04, 0.06, 0.09, and 0.11 mg/kg/day assuming 70 kg body weight) for approximately 

30 days; two additional subjects served as controls.  Although not explicitly stated in the paper, it 

appeared that all of the subjects were exposed to all of the doses.  In a pretest period of 30 days, blood 

was collected to establish baseline levels of plasma cholinesterase and red blood cell AChE.  The subjects 

were also monitored during a post-test period of about 30 days.  At the beginning of the pretest period, 

routine blood counts, urinalysis, and prothrombin time were performed, and these were repeated at the 

end of each test period.  Doses of 0.04 or 0.06 mg parathion/kg/day did not affect the levels of either 

enzyme.  Administration of 0.09 mg parathion/kg/day caused a slight depression of plasma cholinesterase 

(data not provided).  Doses of 0.11 mg parathion/kg/day induced a 27% decrease in the plasma enzyme in 

one subject on day 4.  On day 9, two subjects showed 36 and 32% inhibition of the plasma enzyme.  On 

day 16, the levels of plasma cholinesterase in these two subjects were 50 and 52% of pretest levels, and 

parathion dosing was discontinued.  In the other three subjects, plasma cholinesterase levels were 97, 82, 

and 69% of pretest levels. On day 16, the mean levels of plasma cholinesterase in the five exposed 

subjects was reduced by 28% from the control value.  In two subjects who received parathion during 

35 days, the lowest plasma cholinesterase levels were 86 and 78% of their pretest values. Red blood cell 

AChE activity in the three subjects who discontinued the parathion dosing achieved maximal inhibition 

levels of 63, 78, and 86% of pretest levels.  In the two subjects who completed the test period, there was 

no significant effect on red blood cell AChE activity.  By the end of the post-test period, both enzymes 
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had returned to pretest levels.  No information was provided regarding blood counts, urinalysis, or 

prothrombin test results.  Based on a >20% inhibition of red blood cell AChE activity in two out of five 

subjects for 16 days, the dose of 0.11 mg parathion/kg/day is a LOAEL for neurological effects; the next 

lower dose, 0.09 mg parathion/kg/day, is a NOAEL.  Benchmark dose analysis could not be performed 

because the data were not presented as means plus or minus a measure of dispersion such as standard 

deviation or standard error of the mean.  The intermediate-duration oral MRL for parathion was derived 

by dividing the NOAEL of 0.09 mg parathion/kg/day by an uncertainty factor of 10 (to account for human 

variability); this yielded an MRL of 0.009 mg parathion/kg/day (9 µg/kg/day). 

A comparison of the intermediate-duration inhalation (20 ng/m3) and oral (9,000 ng/kg/day) MRLs for 

parathion suggests that there may be a relatively large difference (perhaps as large as 3 orders of 

magnitude) in the exposure dose between these two route-specific MRLs. This could be due, in part, to 

differences in study design, as well as species- and route-specific differences in parathion toxicokinetics 

and toxicodynamics. For example, dose spacing in the rat inhalation study resulted in a 10-fold difference 

between the NOAEL and the LOAEL, compared to a 0.12-fold difference in the human oral study—a 

difference equivalent to almost 2 orders of magnitude. The lack of absorption data in humans and rats for 

the inhalation and oral routes of exposure and limited species-specific toxicodynamics data preclude 

making a direct comparison of MRL values. Although our understanding of the differences in rat and 

human toxicokinetics to parathion is as yet incomplete, the currently available information indicates that 

both of these MRLs should be adequately protective of human health. 

A chronic-duration oral MRL was not derived for parathion.  No chronic-duration oral studies with 

parathion in humans were located, and the available animal studies were inadequate for MRL derivation. 

In an early dietary study in rats, administration of up to approximately 1.7 mg parathion/kg/day for 

365 days did not induce adverse clinical signs (Barnes and Denz 1951).  Histological examination of the 

major organs and tissues from 14 out of 70 rats did not show treatment-related alterations.  In another 

chronic-duration study, exposure of rats to up to 4.4 mg parathion/kg/day or of mice to up to 

approximately 27.6 mg parathion/kg/day did not result in gross or microscopic alterations in the brain 

(NCI 1979).  In the NCI (1979) study, the investigators noted that during the first half of the second year, 

clinical signs among dosed rats appeared at a low or moderate incidence, and during the second half of 

the year, they increased.  However, no quantitative data were presented.  In addition, the investigators 

mentioned that by week 60 of the study, all high-dose male mice (approximately 27.6 mg 

parathion/kg/day) showed signs of hyperexcitability, but no data were shown. Furthermore, none of these 

studies monitored AChE activity. 
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3.1  INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of parathion.  It 

contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

Many of the systemic effects observed following exposure to parathion discussed below under inhalation, 

oral, and dermal exposure (Sections 3.2.1, 3.2.2, and 3.2.3) are due to the inhibition by paraoxon (the 

active metabolite of parathion) of AChE at nerve terminals from the central, peripheral somatic, and 

autonomic divisions of the nervous system.  Inhibition of AChE at these various levels triggers signs and 

symptoms that involve mainly, but not exclusively, the respiratory, cardiovascular, and gastrointestinal 

systems, and also induce ocular effects (see Section 3.5.2).  Therefore, although listed under specific 

systems, the reader should keep in mind that these effects are secondary to a neurological effect, 

inhibition of the enzyme AChE.  AChE inhibition is a biochemical feature common to all 

organophosphate pesticides. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

3.2  DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, 

developmental, genotoxic, and carcinogenic effects). These data are discussed in terms of three exposure 

periods:  acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 
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or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 

the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of parathion are 

indicated in Table 3-2 and Figure 3-2.  

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

3.2.1 Inhalation Exposure 

Individuals who work with parathion are potentially exposed through inhalation of aerosols or dusts and 

through dermal contact. Minor oral exposure may also occur since inhaled materials can be swallowed 

through hand-to-mouth activities or deposited in the oral mucosa and either directly absorbed or 

swallowed. However, the specific contribution of each route of exposure is difficult to determine, 

especially in cases in which it is not known whether or not the workers were using protective clothing 

and/or respirators.  Because technical parathion has relatively low vapor pressure, it is unlikely that 

workers would be subjected to saturated air for prolonged periods of time.  On the other hand, agricultural 
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workers, particularly thinners and harvesters, had extensive contact between the fruit and their hands and 

less extensive contact between their arms and other parts of their body and the foliage (Milby et al. 1964; 

Quinby and Lemmon 1958). Therefore, studies of agricultural workers and other studies of humans in 

which no specific mention is made regarding which exposure route prevailed are summarized in 

Section 3.2.3, Dermal Exposure. This decision is somewhat arbitrary and is, in part, dictated by the 

document format, but the reader should keep in mind that both inhalation and dermal routes combined 

contributed to the effects described. 

3.2.1.1  Death 

Among 30 deaths that occurred in children due to parathion exposure in Florida from 1956 through 1964, 

one was due to inhalation of parathion powder (Eitzman and Wolfson 1967); in this lethal case, the time 

from contact of a hospital to death was 7 hours.  Inhalation may have contributed to three additional 

deaths (Eitzman and Wolfson 1967). 

A 1-hour LC50 of 137 mg/m3 was calculated for technical parathion in female Sprague-Dawley rats (EPA 

1978).  All rats exhibited typical signs of cholinesterase inhibition, including salivation, lacrimation, 

exophthalmos, defecation, urination, and muscle fasciculations.  An additional study reported a 4-hour 

LC50 of 84 mg/m3 in male Sprague-Dawley rats exposed to technical-grade parathion (NIOSH 1974).  

Tremors, convulsions, and death occurred at concentrations ≥50 mg/m3, but not at ≤35 mg/m3. No 

lethality was observed in groups of four male beagle dogs exposed to up to 37.1 mg/m3 aerosolized 

technical parathion for 4 hours followed by an observation period of 14 days (NIOSH 1974). 

The LC50 values in female rats in the EPA (1978) study and in male rats in the NIOSH (1974) study are 

recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.2  Systemic Effects 

The highest NOAEL values and all reliable LOAEL values from each study for systemic effects in each 

species and duration category are recorded in Table 3-1 and plotted in Figure 3-1.  No studies were 

located regarding hepatic, renal, endocrine, dermal, or ocular effects in humans or animals after inhalation 

exposure to parathion. 

Respiratory Effects. Male Sprague-Dawley rats exposed to 50 mg/m3 parathion aerosol for 4 hours 

showed respiratory difficulties; no such effect was observed at 35 mg/m3 (NIOSH 1974).  A study that 
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Table 3-1  Levels of Significant Exposure to Parathion  - Inhalation 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Sprague-
Dawley) 

1 hr 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

137 F (1-hour LC50) 

Reference 
Chemical Form 

EPA 1978 

Comments 

2 Rat 
(Sprague-
Dawley) 

Systemic 
3 Rat 

(Sprague-
Dawley) 

4 hr 

4 hr Resp 35 M 50 M (respiratory difficulties) 

84 M (LC50) NIOSH 1974 

NIOSH 1974 

Gastro 26.1 M (diarrhea in 15/34 rats) 

4 Rat 
(Wistar) 

1 hr Resp 63 M (increased lung 
resistance after 
provocation test) 

Pauluhn et al. 1987 No increase in lung 
resistance in the 
absence of provocation 
test 

Neurological 
5 Rat 

(Sprague-
Dawley) 

4 hr 5.4 M (50% inhibition of RBC 
cholinesterase) 

50 M (tremors in 8/34 rats) NIOSH 1974 

6 Dog 
(Beagle) 

4 hr 0.015 M (56% Inhibition RBC 
cholinesterase) 

3.4 M (62% inhibition RBC 
cholinesterase) 

NIOSH 1974 No apparent clinical 
signs. 

INTERMEDIATE EXPOSURE 
Systemic 
7 Rat 

(Sprague-
Dawley) 

6 wk 
5 d/wk 
7 hr/d 

Hemato 0.74 M NIOSH 1974 Hematology NOAEL is 
for hematocrit on week 
6. 

Bd Wt 0.74 M 

24
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Table 3-1  Levels of Significant Exposure to Parathion  - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

LOAEL 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form Comments 

8 Dog 
(Beagle) 

6 wk 
5 d/wk 
7 hr/d 

Neurological 
9 Rat 

(Sprague-
Dawley) 

6 wk 
5 d/wk 
7 hr/d 

Bd Wt 0.2 M 

b 
0.01 M 

NIOSH 1974 

NIOSH 19740.1 M (35-40% decrease RBC 
cholinesterase during 
exposure) 

0.74 M (85% decrease RBC 
cholinesterase on week 
5) 

10 Dog 
(Beagle) 

6 wk 
5 d/wk 
7 hr/d 

0.01 M NIOSH 19740.2 M (59% reduced RBC 
cholinesterase on week 
6) 

a The number corresponds to entries in Figure 3-1. 

b Used to derive an intermediate-duration inhalation minimal risk level (MRL) of 0.00002 mg/m3 for parathion; the MRL was derived by dividing the duration-adjusted NOAEL by an 
uncertainty factor of 100 (10 for animal-to-human extrapolation and 10 for human variability). 

Bd Wt = body weight; d = day; F = female; Gastro = gastrointestinal; Hemato = hematological;hr = hour; LC50 = lethal concentration, 50% kill; LOAEL = 
lowest-observed-adverse-effect level; M = male; NOAEL = no-observed-adverse-effect level; RBC = red blood cell; Resp = respiratory; wk = week 
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Figure 3-1 Levels of Significant Exposure to Parathion - Inhalation
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Figure 3-1 Levels of Significant Exposure to Parathion - Inhalation (Continued)
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28 PARATHION 

3. HEALTH EFFECTS 

examined the effects of technical-grade parathion on lung function in male Wistar rats reported that nose-

only exposure to 63 mg/m3 (the only concentration tested) aerosolized parathion did not affect basal lung 

resistance (Pauluhn et al. 1987).  However, airway resistance was increased after a provocation test with 

acetylcholine. 

Cardiovascular Effects. No explicit information regarding cardiovascular effects in animals was 

located in the limited number of inhalation studies available, most likely because cardiovascular end 

points were not monitored.  Toxic doses of parathion high enough to induce a cholinergic crisis typically 

also affect heart rate and blood pressure, usually inducing hypertension. 

Gastrointestinal Effects. Diarrhea was reported in 15 out of 34 male Sprague-Dawley rats exposed 

to 26.1 mg/m3, the lowest concentration tested, technical parathion aerosol for 4 hours (NIOSH 1974).  

Gastrointestinal symptoms, such as diarrhea, nausea, abdominal pain and cramps, are commonly reported 

by humans after high exposure to parathion. 

Hematological Effects. The only relevant information in the inhalation studies in animals available 

is that hematocrit was not altered in male Sprague-Dawley rats after exposure to 0.74 mg/m3 (the highest 

concentration tested) technical parathion aerosol 7 hours/day, 5 days/week for 6 weeks (NIOSH 1974). 

Musculoskeletal Effects. The available inhalation studies in animals do not provide any 

information regarding musculoskeletal effects following exposure to parathion. Muscle fasciculation 

tremors that occur following high exposure to parathion are of neurological origin and are discussed 

below in Section 3.2.1.4. 

Body Weight Effects. Body weight was not affected in male Sprague-Dawley rats or male beagle 

dogs exposed to concentrations of 0.74 and 0.2 mg/m3, respectively, of technical parathion aerosol (the 

highest concentrations tested) 7 hours/day, 5 days/week for 6 weeks (NIOSH 1974). 

3.2.1.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological and lymphoreticular effects in humans or animals 

following inhalation exposure to parathion. 



   
 

    
 
 

 
 
 
 
 

  
 

   

    

      

  

    

    

   

   

  

   

   

   

 

 

    

  

    

   

    

  

   

      

  

   

   

 

 

   

   

29 PARATHION 

3. HEALTH EFFECTS 

3.2.1.4  Neurological Effects 

Limited information regarding neurological effects in humans comes from two studies that assessed 

changes in red blood cell cholinesterase in subjects during exposure to parathion. The first study assessed 

the activity of plasma and red blood cell cholinesterase among workers at an industrial plant that 

manufactured concentrated parathion as well as dusts containing various concentrations of parathion 

(Brown and Bush 1950).  Parathion was measured in air at different operations. The maximum 

concentration determined was 0.8 mg/m3 and the estimated average was about 0.2 or 0.3 mg/m3. The 

cohort consisted of 13 workers; only 1 worker was an unexposed person.  No further data were provided 

regarding the study group.  Due to the rotation of personnel, the 12 exposed subjects had only intermittent 

contact with parathion-contaminated air until July 1949, when production ceased.  Therefore, the 

investigators noted that it was impossible to determine exactly what the total exposure had been.  

Analyses of blood from five subjects who provided successive blood samples over a 6-month period 

showed a decrease in plasma cholinesterase activity.  However, the changes in red blood cell 

cholinesterase activity were less conclusive. The investigators noted that probably the most significant 

finding was the fact that measurements of cholinesterase activities conducted 5 months after the plant had 

stopped manufacturing parathion showed a marked increase in activities in almost all cases. 

In the second study, two volunteers were exposed to various formulations of heated parathion dust or 

liquid technical parathion for periods of 30 minutes (Hartwell et al. 1964).  The concentrations of 

parathion to which the subjects were exposed were not determined.  Exposure to dusts heated to 82°F 

(~28°C) did not immediately reduced red blood cell cholinesterase activity, but it did so (15–20%) 

7 hours after exposure began; levels returned to pre-exposure levels after 20 hours.  Exposure to dust 

heated to 120°F (~49°C) reduced red blood cell cholinesterase activity (19%) in one subject immediately 

after exposure.  A second exposure 24 hours later reduced the enzyme activity to 78% of pre-exposure 

levels.  Exposure of one subject to vaporized technical parathion at 105°F (~41°C) had no significant 

effect on red blood cell cholinesterase; however, when the subject was exposed to the chemical at 120°F 

(~49°C) for 3 consecutive days, only the second exposure reduced the enzyme activity (29%) following 

exposure, and pre-exposure levels were achieved 20 hours later.  No p-nitrophenol was detected in the 

urine after exposures at 82°F (~28°C), and only small amounts were detected at the higher temperatures. 

Typical cholinergic signs were observed in acute toxicity studies with parathion in rats.  Exposure of male 

Sprague-Dawley rats for 4 hours induced tremors and convulsions and eventually death (NIOSH 1974).  

The ED50 for red blood cell cholinesterase (exposure concentration that caused 50% inhibition) was 
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3. HEALTH EFFECTS 

5.4 mg/m3. The ED50 for tremors and convulsions were 73.7 and 110.6 mg/m3, respectively.  Exposure of 

groups of four male beagle dogs for 4 hours to up to 37.1 mg/m3 parathion aerosol did not induce acute 

cholinergic signs; however, the lowest concentration tested, 0.015 mg/m3, reduced red blood cell 

cholinesterase activity by 56% 48 hours after exposure, while 3.4 mg/m3 inhibited the enzyme by 62% 

(NIOSH 1974). 

In an intermediate-duration study, male Sprague-Dawley rats were exposed to 0.01, 0.1, or 0.74 mg/m3 

parathion aerosol 7 hours/day, 5 days/week for 6 weeks (NIOSH 1974).  No clinical signs were seen in 

rats in the low- or mid-concentration groups.  Some rats in the high-concentration group showed signs of 

parathion toxicity, but quantitative information was not available. The maximum decrease in red blood 

cell cholinesterase in the low-concentration group was approximately 30% and occurred on weeks 4 and 

5. In the mid-concentration group, the maximum decrease in red blood cell cholinesterase was 43% and 

occurred on week 1.  During the rest of the exposure period, red blood cell cholinesterase activity was 60– 

70% of pretest levels.  In the high-concentration group, red blood cell cholinesterase activity was 

decreased 85% on week 5.  In general, activities recovered during a 6-week post-dosing period.  Groups 

of male beagle dogs were exposed in a similar manner to 0.001, 0.01, or 0.2 mg/m3 parathion aerosol 

(NIOSH 1974).  No information was provided regarding clinical signs in the dogs.  No significant effects 

on levels of red blood cell cholinesterase were observed at the low exposure level.  Exposure to 

0.01 mg/m3 parathion reduced red blood cell cholinesterase by 21% by the end of the second week of 

exposure.  Red blood cell levels recovered and were <20% reduced the rest of the study.  Exposure to 

0.2 mg/m3 parathion reduced red blood cell cholinesterase by 59% by the end of week 6 of exposure.  

Data regarding red blood cell AChE inhibition in rats were used to derive an intermediate-duration 

inhalation MRL for parathion. 

The highest NOAEL values and all LOAEL values from each reliable study for neurological effects in 

each species and duration category are recorded in Table 3-1 and Figure 3-1. 

No information was located regarding the following effects after inhalation exposure to parathion: 

3.2.1.5  Reproductive Effects 
3.2.1.6  Developmental Effects 
3.2.1.7  Cancer 
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3. HEALTH EFFECTS 

3.2.2 Oral Exposure 

3.2.2.1  Death 

Severe parathion poisoning can lead to death if not treated.  Severe poisoning is generally characterized 

by unconsciousness, marked miosis and loss of pupillary reflex to light, muscle fasciculations, flaccid 

paralysis, secretions from the mouth and nose, moist rales in the lungs, respiratory difficulty and cyanosis, 

and serum cholinesterase levels <10% of normal value (Namba et al. 1971).  If untreated patients 

poisoned with parathion are alive 24 hours after the onset, they usually recover (Namba et al. 1971). 

Death generally occurs due to respiratory failure attributed to excessive tracheobronchial and salivary 

secretions, nicotinic paralysis of the diaphragm and respiratory muscles and depression of central nervous 

system respiratory centers (Abou-Donia 1995). 

There are numerous reports of deaths involving adults and children following ingestion of either a 

commercial parathion formulation or food prepared with contaminated components such as contaminated 

flour.  Selected studies that reported multiple deaths are briefly summarized below; additional references 

can be found in those reports and in review articles (i.e., Gallo and Lawryk 1991). 

Wishahi et al. (1958) reported that 8 out of 22 children who consumed parathion contaminated food in 

Egypt died.  All fatal cases fell rapidly into a coma and died from respiratory failure 4–9 hours after the 

onset of symptoms.  In a similar case of consumption of contaminated food, 17 out of 79 people died in 

Jamaica (Diggory et al. 1977).  Deaths occurred within 6 hours of poisoning as a result of respiratory 

arrest.  Postmortem examinations conducted in two cases showed pulmonary edema with intra-alveolar 

hemorrhage; no other significant gross findings were noted.  In yet another report of ingestion of 

contaminated food, 14 out of 49 people exposed died in Sierra Leone (Etzel et al. 1987).  Eitzman and 

Wolfson (1967) reported that 30 children died in the state of Florida from 1945 through 1964 due to 

exposure to parathion; 16 of the deaths resulted from ingestion of the pesticide. Six children ingested the 

parathion from improper containers such as a soft drink bottle.  Another group of six children obtained the 

parathion from the floor or windowsill where it had been placed to kill roaches. The majority of the 

children were dead on arrival to the emergency room and the remainder died within 3 hours.  Estimates of 

lethal doses range from about 2 to 13 mg/kg in adults (assuming 70 kg body weight) and from 0.1 to 

1.3 mg/kg in children (Gallo and Lawryk 1991). However, Gallo and Lawryk (1991) also indicate that 

there have been reports of patients who survived after ingesting 20,000–40,000 mg parathion and that 

prompt treatment with oximes can save some patients who have ingested as much as 50,000 mg 

parathion. In addition to potentially unreliable estimates, whether or not proper treatment was 
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implemented after poisoning and how fast this was done probably impacted the outcome and contributed 

to the wide range of lethal doses reported for parathion in humans. 

Several studies provide information regarding death in animals following oral exposure to parathion.  

Oral LD50 values of 14 and 7.9 mg/kg were reported in male and female Sprague-Dawley rats, 

respectively (EPA 1978).  In another study with technical parathion in Sprague-Dawley rats, the 24-hour 

LD50 in males was 6.8 mg/kg, no deaths occurred at 4 mg/kg, and all rats in the group (n=10) dosed with 

10 mg/kg died within 2 hours (NIOSH 1974).  Gaines (1960) reported oral LD50 values of 13 and 

3.6 mg/kg in male and female Sherman rats, respectively.  To determine whether LD50 values underwent 

seasonal variations, Gaines and Linder (1986) conducted bimonthly determinations in male and female 

Sherman rats over a period of 1 year.  The LD50 values ranged from 6.9 to 11.0 mg/kg in males and from 

3.0 to 3.4 mg/kg in females, suggesting that LD50 values were little affected by the time of the year that 

the tests were conducted.  Pasquet et al. (1976) reported 10-day LD50 values of 16 and 6 mg/kg for 

technical parathion in male and female CD rats, respectively.  The results of these studies also suggested 

that female rats are more sensitive to the acute effects of parathion than male rats.  Signs of poisoning 

reported in some of these studies included muscle fasciculation, excessive salivation, lacrimation, 

tremors, diarrhea, and involuntary urination.  In a developmental study, administration of 1 mg 

parathion/kg/day to a group of 25 pregnant Wistar rats on gestation days 6 through 15 resulted in 

13 deaths; no deaths occurred with 0.3 mg parathion/kg/day (Renhof 1984).  The exact time of death was 

not indicated, but it was before the study termination on gestation day 20 (Renhof 1984).  Deaths were 

attributed to respiratory and circulatory failure. 

In a 6-week dietary study with technical parathion in Osborne-Mendel rats, two out of five males dosed 

approximately 14 mg parathion/kg/day died within 2 weeks and two out of five females dosed with 

approximately 7.6 mg parathion/kg/day died during the first week of the study (NCI 1979).  No males 

dosed with 7 mg/kg/day or females dosed with 3.8 mg/kg/day died during the study. 

In an intermediate-duration study in albino rats, feeding the animals a diet that provided approximately 

5.3 mg parathion/kg/day (76.8% active ingredient) 6 days/week resulted in 24 out of 72 rats dying within 

3 weeks of starting the experiment; the exact times of death were not specified (Barnes and Denz 1951). 

The 5.3 mg/kg/day dose was the lowest dose tested.  In a group dosed with approximately 7.9 mg/kg/day, 

59 out of 72 rats died within 27 days in the study.  In a group dosed with approximately 10.5 mg/kg/day 

group, 65 out of 72 rats died in the first 19 days of the study. 
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A 36% mortality rate was reported among male C57BL/6N mice 2 days after receiving a single gavage 

dose of 16 mg technical parathion/kg (Casale et al. 1983).  Mild to severe signs of toxicity, including 

tremors, muscle fasciculation, and excessive salivation, began 1–2 hours after dosing and lasted for 4– 

7 hours.  In a 6-week dietary study with B6C3F1 mice, all five males dosed with approximately 58 mg 

technical parathion/kg/day and four of the five females dosed with approximately 62 mg parathion/kg/day 

died during the second week of the study (NCI 1979).  Doses of approximately 29 and 31 mg/kg/day were 

not lethal to males or females, respectively. 

In male beagle dogs (4/group), the 24-hour LD50 for technical parathion administered in a capsule was 

8.27 mg/kg (NIOSH 1974).  No deaths occurred at 2.5 mg/kg; all dogs administered doses of 20 mg/kg 

died. 

Reliable oral LD50 values and lethal doses are recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.2  Systemic Effects 

The highest NOAEL values and all reliable LOAEL values from each study for systemic effects in each 

species and duration category are recorded in Table 3-2 and plotted in Figure 3-2. 

Respiratory Effects. Commonly reported respiratory signs and symptoms occurring after oral 

exposure to parathion include excessive bronchial secretions, rhinorrhea, wheezing, edema, tightness of 

the chest, bronchospasms, bronchoconstriction, cough, and dyspnea.  In cases of fatal intoxication in 

children described by Wishahi et al. (1958), hyperpnea was the earliest manifestation of respiratory 

failure, which in turn was the direct cause of death.  Shallow respiration and pulmonary edema were 

reported in similar cases described by Eitzman and Wolfson (1967).  Among 246 cases of acute parathion 

poisoning reported by Tsachalinas et al. (1971), 92 had increased bronchial secretions and 33 developed 

lung edema.  Among 79 cases of intoxication due to ingestion of contaminated food in Jamaica, dyspnea 

was reported in the more severe cases (Diggory et al. 1977); deaths occurring in this study were due to 

respiratory arrest.  Postmortem examination of 17 fatalities showed pulmonary edema and intra-alveolar 

hemorrhage in two of them.  Edema of the lungs and bronchospasms were reported in a study of 68 cases 

of acute poisoning in China (He et al. 1998).  Similar findings were reported in multiple cases of 

intoxication due to consumption of contaminated food in Sierra Leone (Etzel et al. 1987). 
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Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

ACUTE EXPOSURE
Death
1

26

EPA 1978M14 (LD50)
14

F7.9 (LD50)
7.9

Rat
(Sprague-
Dawley)

once
(G)

2

79

Gaines 1960M13 (LD50)
13

F3.6 (LD50)
3.6

Rat
(Sherman)

once
(GO)

3

18

Gaines and Linder 1986M6.9 (LD50)
6.9

F3 (LD50)
3

Rat
(Sherman)

once
(GO)

4

39

NCI 1979M14 (2/5 deaths on week 2)
14

F7.6 (2/5 deaths on week 1)
7.6

Rat
(Osborne-
Mendel)

1 wk
ad libitum
(F)

5

55

NIOSH 1974M6.83 (24-hour LD50)
6.83

Rat
(Sprague-
Dawley)

once
(GO)

6

13

Pasquet et al. 1976M16 (10-day LD50)
16

F6 (10-day LD50)
6

Rat
(CD)

once
(G)

7

89

Renhof 1984F1 (13/25 deaths)
1

Rat
(Wistar)

10 d
Gd 6-15
1 x/d
(GW)

8

21

Casale et al. 1983M16 (36% mortality rate)
16

Mouse
(C57BL/6N)

once
(GO)
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(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

9

10

Casale et al. 1984M16 (20% lethality)
16

Mouse
(C57BL/6N)

once

10

41

NCI 1979M58 (5/5 deaths on week 2)
58

F62 (4/5 deaths on week 2)
62

Mouse
(B6C3F1)

2 wk
ad libitum
(F)

11

58

NIOSH 1974M8.27 (24-hour LD50)
8.27

Dog
(Beagle)

once
(C)

Systemic
12

12

Moser 1995Bd Wt M4
4

M7 (9.7% body weight loss)
7

Rat
(Long- Evans)

once
(GO)

13

91

1 mg/kg/day also
caused lethality.

Renhof 1984Bd Wt F0.3
0.3

F1 (56% reduced weight
gain during treatment)

1

Rat
(Wistar)

10 d
Gd 6-15
1 x/d
(GW)

14

83

Hepatic NOAEL is for
serum AST and ALT
activities.

Kim et al. 2005Hepatic F16
16

Mouse
(BALB/c)

once
(GO)

Bd Wt F16
16

15

85

Thomas and Schein 1974Bd Wt M5.3
5.3

Mouse
(Swiss-
Webster)

5 d
1 x/d
(GO)
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(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

16

44

Wiltrout et al. 1978Bd Wt F2.2 (20% reduction in body
weight)

2.2

Mouse
(BALB/c)

8 d
1x/d
(GO)

Immuno/ Lymphoret
17

19

Dose also caused
lethality.

Casale et al. 1983M16 (suppressed IgM PFC
response)

16

Mouse
(C57BL/6N)

once
(GO)

18

9

The high dose also
caused lethality.

Casale et al. 1984M4
4

M16 (suppressed IgM
response to SRBC)

16

Mouse
(C57BL/6N)

once

19

45

Fukuyama et al. 2010F0.4 (increased response to
allergens)

0.4

Mouse
CBA/J

5 d
1 x/d
(GO)

20

46

Fukuyama et al. 2011F0.15 (increased sensitivity to
allergens)

0.15

Mouse
(BALB/c)

5 d
1 x/d
(GO)

21

77

Fukuyama et al. 2012F0.15
0.15

F1.5 (decreased
SRBC-specific IgM
response in blood)

1.5

Mouse
C3H/HeN

5 d
1 x/d
(GO)

22

82

Kim et al. 2005F4
4

F16 (suppressed antibody
response to SRBC)

16

Mouse
(BALB/c)

once
(GO)
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Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

23

43

A 20% loss in body
weight occurred at 2.2
mg/kg/day

Wiltrout et al. 1978F2.2 (suppressed humoral
immune response)

2.2

Mouse
(BALB/c)

8 d
1x/d
(GO)

Neurological
24

86

NOAEL is for clinical
signs and RBC
cholinesterase activity.

Morgan et al. 19770.028
0.028

Human
NA

5 d
1 x/d
(F)

25

17

Elkner et al. 19912 (50% depression of RBC
cholinesterase)

2

Monkey
(Cynomolgus)

once
(GO)

26

67

Reiter et al. 1975M0.5
0.5

M1 (abolished performance
of a learned task)

1

Monkey
(Rhesus)

once

27

11

Moser 1995M4
4

M7 (altered neurological
functions)

7

Rat
(Long- Evans)

once
(GO)

28

56

NIOSH 1974M4
4

M5 (tremors in 10/10)
5

Rat
(Sprague-
Dawley)

once
(GO)

29

57

NIOSH 1974M0.35
0.35

M0.7 (27.4% inhibition of RBC
cholinesterase)

0.7

M5.6 (69.7% inhibition of RBC
cholinesterase)

5.6

Rat
(Sprague-
Dawley)

once
(GO)
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a
Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

30

65

NIOSH 1974M2.8 (56% inhibiton RBC
cholinesterase 4 hours
after dosing)

2.8

Rat
(Sprague-
Dawley)

once
(GO)

31

81

Percent inhibition 24
hours after dosing.

Pasquet et al. 1976F1.1 (50% inhibition of RBC
cholinesterase)

1.1

Rat
(CD)

once
(G)

32

88

1 mg/kg/day also
caused lethality.

Renhof 1984F0.3
0.3

F1 (tremors in 8/25 rats)
1

Rat
(Wistar)

10 d
Gd 6-15
1 x/d
(GW)

33

20

Dose also caused
lethality.

Casale et al. 1983M16 (tremors, fasciculations)
16

Mouse
(C57BL/6N)

once
(GO)

34

28

Reiter et al. 1973M6 (impaired learning of a
passive avoidance task)

6

Mouse
(Swiss-
Webster)

once
(G)

35

59

NIOSH 1974M2.5
2.5

M6.3 (tremors, ataxia,
convulsions)

6.3

Dog
(Beagle)

once
(C)

36

60

NIOSH 1974M0.5 (29% inhibition of RBC
cholinesterase)

0.5

M2.5 (64% inhibition of RBC
cholinesterase)

2.5

Dog
(Beagle)

once
(C)
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Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

37

66

NIOSH 1974M2.5 (64% inhibition of RBC
cholinesterase 24 hours
after dosing)

2.5

Dog
(Beagle)

once
(C)

Reproductive
38

84

NOAEL is for testis and
prostate weight and
metabolism of
testosterone.

Thomas and Schein 1974M5.3
5.3

Mouse
(Swiss-
Webster)

5 d
1 x/d
(GO)

Developmental
39

87

NOAEL is for standard
developmental
parameters.

Renhof 1984F1
1

Rat
(Wistar)

10 d
Gd 6-15
1 x/d
(GW)

40

90

NOAEL is for standard
developmental
parameters.

Renhof 1985F0.3
0.3

Rabbit
(Himalayan)

13 d
Gd 6-18
1 x/d
(GW)

INTERMEDIATE EXPOSURE
Death
41

68

Barnes and Denz 19515.3 (24/72 deaths within 3
weeks)

5.3

Rat
(albino)

3 wk
6 d/wk
(F)

Systemic
42

6

Dikshith et al. 1978Hepatic M2.6 (mild liver histopathology)
2.6

Rat
(NS)

90 d
1 x/d
(GO)

Renal M2.6
2.6
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Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

43

16

Ivens et al. 1998Bd Wt F0.55
0.55

Rat
(Wistar)

4-15 wk
ad libitum
(F)

44

40

NCI 1979Bd Wt F3.8
3.8

F7.6 (body weight reduced
24%)

7.6

Rat
(Osborne-
Mendel)

6 wk
ad libitum
(F)

45

63

NIOSH 1974Bd Wt M0.25
0.25

Rat
(Sprague-
Dawley)

6 wk
5 d/wk
(GO)

46

42

NCI 1979Bd Wt M29 (body weight reduced
14%)

29

Mouse
(B6C3F1)

6 wk
ad libitum
(F)

47

5

Atkinson et al. 1994Bd Wt 0.794
0.794

Dog
(Beagle)

60 d
1 x/d
(C)

48

64

NIOSH 1974Bd Wt M0.5
0.5

Dog
(Beagle)

6 wk
5 d/wk
(C)

Immuno/ Lymphoret
49

92

Nishino et al. 20130.15 (increased sensitivity to
allergens)

0.15

Mouse
NC/Nga

6 wk
5 d/wk
(GO)
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a
Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

Neurological
50

74

NOAEL is for RBC
cholinesterase activity.

Edson 1964F0.1
0.1

Human
(NA)

25-70 d
5 d/wk
(NS)

51

76

Rider et al. 1969b
M0.09

0.09

M0.11 (22 and 37% reduced
RBC cholinesterase in
2/5 subjects)

0.11

Human
(NA)

30 d
1 x/d
(C)

52

29

Reishchl et al. 1975M0.1 (increased variability in
hearing thresholds)

0.1

Monkey
Squirrel

148 d
1 x/d
(C)

53

70

Dose also caused
lethality.

Barnes and Denz 19515.3 (fasciculations, tremors)
5.3

Rat
(albino)

3 wk
6 d/wk
(F)

54

7

Dikshith et al. 1978M2.6 (50% reduced brain
cholinesterase)

2.6

Rat
(NS)

90 d
1 x/d
(GO)

55

15

Ivens et al. 1998M0.024
0.024

M0.1 (36-39% reduced RBC
cholinesterase)

0.1

M0.4 (>80% reduced RBC
cholinesterase)

0.4

Rat
(Wistar)

4-15 wk
ad libitum
(F)

56

32

NCI 1979F3.5 (generalized body
tremors)

3.5

Rat
(Osborne-
Mendel)

364 d
ad libitum
(F)
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Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

57

61

NIOSH 1974M0.05
0.05

M0.1 (22% inhibition of RBC
cholinesterase on week
4)

0.1

Rat
(Sprague-
Dawley)

6 wk
5 d/wk
(GO)

58

4

NOAEL is for ocular
function.

Atkinson et al. 19940.794
0.794

Dog
(Beagle)

60 d
1 x/d
(C)

59

75

Frawley and Fuyat 19570.021
0.021

0.047 (25% reduced RBC
cholinesterase)

0.047

Dog
Mixed breed

24 weeks
ad libitum
(F)

60

62

NIOSH 1974M0.1
0.1

M0.5 (25-58% inhibition of
RBC cholinesterase)

0.5

Dog
(Beagle)

6 wk
5 d/wk
(C)

Reproductive
61

8

Dikshith et al. 1978M2.6 (tubular atrophy in testes)
2.6

Rat
(NS)

90 d
1 x/d
(GO)

Developmental
62

3

Deskin et al. 19790.01 (altered EKG in pups)
0.01

Rat
(CD)

34 d
Gd 2-21
Ld 1-15
(GO)
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a
Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

CHRONIC EXPOSURE
Systemic
63

71

NOAELs are for organs
histopathology.

Barnes and Denz 1951Resp 1.7
1.7

Rat
(albino)

365 d
6 d/wk
(F)

Cardio 1.7
1.7

Gastro 1.7
1.7

Hepatic 1.7
1.7

Renal 1.7
1.7

Endocr 1.7
1.7

Bd Wt 1.7
1.7

Other 1.7
1.7

64

30

NOAELs are for organ
histopathology.
Hematological NOAEL
is for bone marrow.

NCI 1979Resp M4.4
4.4

Rat
(Osborne-
Mendel)

80 wk
ad libitum
(F)

Cardio M4.4
4.4

Gastro M4.4
4.4

Hemato M4.4
4.4

Musc/skel M4.4
4.4

Hepatic M4.4
4.4

Renal M4.4
4.4

Endocr M4.4
4.4

Dermal M4.4
4.4
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a
Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

65

34

NOAELs are for organ
histopathology.
Hematology NOAEL is
for bone marrow.

NCI 1979Resp 27.6
27.6

Mouse
(B6C3F1)

62-80 wk
ad libitum
(F)

Cardio 27.6
27.6

Hemato 27.6
27.6

Musc/skel 27.6
27.6

Hepatic 27.6
27.6

Renal 27.6
27.6

Endocr 27.6
27.6

Immuno/ Lymphoret
66

72

NOAEL is for
histopathology of
lymphoreticular
organs.

Barnes and Denz 19511.7
1.7

Rat
(albino)

365 d
6 d/wk
(F)

67

31

NOAEL is for
histopathology of the
spleen and lymph
nodes.

NCI 1979M4.4
4.4

Rat
(Osborne-
Mendel)

80 wk
ad libitum
(F)

68

35

NOAEL is for
histopathology of the
spleen and lymph
nodes.

NCI 197927.6
27.6

Mouse
(B6C3F1)

62-80 wk
ad libitum
(F)
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a
Key to
Figure

(continued)Table 3-2  Levels of Significant Exposure to Parathion  -  Oral

Species
(Strain)

LOAEL

CommentsSystem
NOAEL

(mg/kg/day)
Less Serious

(mg/kg/day)
Serious
(mg/kg/day)

Reference
Chemical Form

Exposure/
Duration/

Frequency
(Route)

Neurological
69

69

NOAEL is for clinical
signs and brain
histopathology.

Barnes and Denz 19511.7
1.7

Rat
(albino)

365 d
6 d/wk
(F)

Reproductive
70

73

NOAEL is for
histopathology of
ovaries and testis.

Barnes and Denz 19511.7
1.7

Rat
(albino)

365 d
6 d/wk
(F)

71

33

NOAEL is for
histopathology of the
sex organs.

NCI 1979M4.4
4.4

F3.5
3.5

Rat
(Osborne-
Mendel)

80 wk
ad libitum
(F)

72

36

NOAEL is for
histopathology of the
sex organs.

NCI 197927.6
27.6

Mouse
(B6C3F1)

62-80 wk
ad libitum
(F)

Cancer
73

a The number corresponds to entries in Figure 3-2.

b Used to derive an intermediate-duration oral minimal risk level (MRL) of 0.009 mg/kg/day for parathion; the MRL was derived by dividing the NOAEL by an uncertainty factor of 10
(for human variability).

ALT = alanine aminotransferase; AST = aspartate aminotransferase; Bd Wt = body weight; (C) = capsule; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr =
endocrine; (F) = feed; F = Female; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; (GO) = gavage in oil; Hemato = hematological; IgM = immunoglobulin M;
Immuno/Lymphoret = immunological/lymphoreticular; Ld = lactation day; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; Musc/skel =
musculoskeletal; NA = not applicable; NOAEL = no-observed-adverse-effect level; NS = not specified; PFC = plaque-forming cells; RBC = red blood cell; Resp = respiratory; SRBC =
sheep red blood cell; x = time(s); wk = week(s)

38

Comparison is between
low-dose group and
pooled controls.

NCI 1979M2.2 (CEL:adrenal cortical
adenoma or carcinoma)

2.2

Rat
(Osborne-
Mendel)

80 wk
ad libitum
(F)
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Figure 3-2  Levels of Significant Exposure to Parathion - Oral
Acute (≤14 days)

c-Cat
d-Dog
r-Rat
p-Pig
q-Cow

k-Monkey
m-Mouse
h-Rabbit
a-Sheep

f-Ferret
j-Pigeon
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g-Guinea Pig
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  Cancer Effect Level-Animals
  LOAEL, More Serious-Animals
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  NOAEL - Animals

  Cancer Effect Level-Humans
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Figure 3-2  Levels of Significant Exposure to Parathion - Oral (Continued)
Intermediate (15-364 days)

c-Cat
d-Dog
r-Rat
p-Pig
q-Cow

k-Monkey
m-Mouse
h-Rabbit
a-Sheep

f-Ferret
j-Pigeon
e-Gerbil
s-Hamster
g-Guinea Pig

n-Mink
o-Other

  Cancer Effect Level-Animals
  LOAEL, More Serious-Animals
  LOAEL, Less Serious-Animals
  NOAEL - Animals

  Cancer Effect Level-Humans
  LOAEL, More Serious-Humans
  LOAEL, Less Serious-Humans
  NOAEL - Humans

  LD50/LC50
  Minimal Risk Level
   for effects
   other than
   Cancer

Systemic
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Figure 3-2  Levels of Significant Exposure to Parathion - Oral (Continued)
Chronic (≥365 days)

Systemic

c-Cat
d-Dog
r-Rat
p-Pig
q-Cow

k-Monkey
m-Mouse
h-Rabbit
a-Sheep

f-Ferret
j-Pigeon
e-Gerbil
s-Hamster
g-Guinea Pig

n-Mink
o-Other

  Cancer Effect Level-Animals
  LOAEL, More Serious-Animals
  LOAEL, Less Serious-Animals
  NOAEL - Animals

  Cancer Effect Level-Humans
  LOAEL, More Serious-Humans
  LOAEL, Less Serious-Humans
  NOAEL - Humans

  LD50/LC50
  Minimal Risk Level
   for effects
   other than
   Cancer

*Doses represent the lowest dose tested per study that produced a tumorigenic 
response and do not imply the existence of a threshold for the cancer endpoint. 
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49 PARATHION 

3. HEALTH EFFECTS 

Chronic exposure of rats to up to 4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day 

did not result in gross or microscopic alterations in the respiratory tract (Barnes and Denz 1951; NCI 

1979). 

Cardiovascular Effects. Inhibition of AChE can result in overstimulation of muscarinic and 

nicotinic receptors, both of which play a role in the control of blood pressure and heart rate. Therefore, 

individuals acutely poisoned with parathion can present with tachycardia or bradycardia and hypertension 

or hypotension.  Six of eight fatal cases of children described by Wishahi et al. (1958) developed shock 

and two of them developed hypertension; hypertension was also reported in cases that survived.  One of 

the cases studied by Lankisch et al. (1990) developed high blood pressure and tachycardia 1 week after 

ingesting parathion; the other case was in shock (no blood pressure measurable) on admission to the 

emergency room.  Hypotension and bradycardia were seen among the children who died as described by 

Eitzman and Wolfson (1967).  Bradycardia and hypertension were prevalent in a study of 246 acute 

poisonings in Greece (Tsachalinas et al. 1971).  Among 79 cases of acute poisoning via contaminated 

food studied by Diggory et al. (1977), bradycardia was reported in the most severe cases.  Circulatory 

insufficiency and bradycardia were seen in four out of six cases of acute poisoning studied by Eyer et al. 

(2003).  Bradycardia was also reported in other single cases of poisoning (i.e., De Jager et al. 1981; Nisse 

et al. 1998). 

Chronic exposure of rats to up to 4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day 

did not result in gross or microscopic alterations in the heart (Barnes and Denz 1951; NCI 1979). 

Gastrointestinal Effects. Nausea, vomiting, abdominal tightness, swelling and cramps, diarrhea, 

tenesmus, and fecal incontinence are typical signs and symptoms of acute intoxication with 

organophosphorus pesticides.  Nausea, vomiting, and cramps have been reported in numerous studies of 

multiple and single cases of poisoning that included children and adults (i.e., Diggory et al. 1977; 

Eitzman and Wolfson 1967; Etzel et al. 1987; He et al. 1998; Hoffman and Papendorf 2006; Tsachalinas 

et al. 1971; Wishahi et al. 1958).  Severe poisoning can rapidly induce loss of consciousness; therefore, 

information regarding gastrointestinal effects in these cases may not be available. In addition, some 

reports only state that the victim suffered a cholinergic crisis without detailing specific signs and 

symptoms. 

Diarrhea has been reported in animals in studies of acute toxicity of parathion.  Diarrhea is neurological in 

origin and results from stimulation of parasympathetic autonomic post-ganglionic fiber innervating 



   
 

    
 
 

 
 
 
 
 

  

   

  

 

       

 

  

  

     

  

 

 

 

 

    

  

 

 

      

  

      

   

    

   

  

  

     

     

 

   

  

     

    

50 PARATHION 

3. HEALTH EFFECTS 

smooth gastrointestinal musculature.  Chronic exposure of rats to up to 4.4 mg parathion/kg/day or of 

mice to up to 27.6 mg parathion/kg/day did not result in gross or microscopic alterations in the 

gastrointestinal tract (Barnes and Denz 1951; NCI 1979). 

Hematological Effects. Very few reports of humans exposed orally to parathion provide information 

regarding hematological effects following oral exposure to parathion.  In most cases, it is unknown 

whether hematological tests were conducted following poisoning with parathion or, if conducted, the 

results were unremarkable and were not discussed in the report.  Leukocytosis was reported in one of the 

six cases described by Eyer et al. (2003), in a case described by Nisse et al. (1998), and in two cases 

described by Lankisch et al. (1990).  Leukocytosis may occur secondary to increased catecholamine 

release from the adrenal medulla triggered by acetylcholine released by preganglionic fibers (Osmundson 

1998).  Effects on red blood cell cholinesterase are discussed in Section 3.2.4, Neurological Effects. 

No information was located in the studies available regarding hematological effects in animals following 

oral exposure to parathion, except for lack of alterations in bone marrow from rats exposed to up to 

4.4 mg parathion/kg/day and mice exposed to up to 27.6 mg parathion/kg/day in chronic-duration studies 

(Barnes and Denz 1951; NCI 1979). 

Musculoskeletal Effects. Acute intoxication with parathion results in tremors, muscle 

fasciculations, and convulsions.  These are signs of hyperstimulation of both nicotinic and muscarinic 

receptors in the central nervous system and of nicotinic receptors at the neuromuscular junction. 

Denervation potentials were recorded in the anterior tibial and gastrocnemius muscles and in the small 

hand muscles from a subject who developed polyneuropathy (see Section 3.2.2.4) after ingesting a large 

amount of parathion (De Jager et al. 1981).  The subject had been in a coma for 7 weeks and the 

recordings were made 54 days after the poisoning.  Denervation potentials were still seen in the anterior 

tibial muscles 1 year after poisoning.  In another case of polyneuropathy, electromyography (EMG) of 

both anterior tibial muscles showed profuse fibrillations without voluntary motor unit potentials present 

several weeks after poisoning (Besser et al. 1993). Thenar EMG showed only few fasciculations with 

reduced recruitment.  Microscopic examination of the quadriceps and deltoid muscles from a subject who 

developed intermediate syndrome (see Section 3.2.2.4) after ingesting parathion showed small groups of 

atrophic fiber and mild fiber type grouping in the former (De Bleecker et al. 1992).  Endplate staining for 

AChE and nonspecific esterase was absent in both muscles. Microscopic examination of the intercostal 

muscle 35 days after the poisoning showed a fair number of atrophic angulated fibers.  Muscle potentials 
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of reduced amplitude were reported in another study of cases that developed intermediate syndrome after 

ingestion of parathion (He et al. 1998). 

Chronic-duration studies did not report gross or microscopic alterations in skeletal bone from rats exposed 

to up to 4.4 mg parathion/kg/day through the diet or in bone from mice similarly exposed to up to 

27.6 mg parathion/kg/day (Barnes and Denz 1951; NCI 1979). 

Hepatic Effects. No information was located regarding hepatic effects in humans following oral 

exposure to parathion.  It is reasonable to assume that laboratory tests conducted in poisoned individuals 

may have included tests for liver function.  Therefore, the lack of explicit information probably reflects 

the fact that liver function is usually not affected, except in the most severe cases in which death is due to 

multiorgan failure, as in, for example, cases described by Eyer et al. (2003). 

Administration of a single dose of 16 mg parathion/kg, the highest dose tested, to Balb/c mice did not 

significantly alter alanine aminotransferase (ALT) or aspartate aminotransferase (AST) or the liver 

content of reduced glutathione 4 days after dosing (Kim et al. 2005).  However, these parameters were 

altered by parathion in mice pretreated with phenobarbital, indicating that metabolic activation plays a 

role in parathion-induced hepatotoxicity.  In an intermediate-duration study, daily treatment of male rats 

by gavage with 2.6 mg parathion/kg/day (only dose level tested) for 90 days resulted in mild changes in 

the liver consisting of hepatocyte swelling, congestion of blood vessels of the portal triads, and mild 

proliferation of fibroblasts around the bile ducts (Dikshith et al. 1978).  Chronic exposure of rats to up to 

4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day did not result in gross or 

microscopic alterations in the liver (Barnes and Denz 1951; NCI 1979). 

Renal Effects. As with hepatic effects, renal failure seems to develop in severe cases of poisoning 

with parathion that ultimately result in death (i.e., Eyer et al. 2003). 

Treatment of male rats by gavage with 2.6 mg parathion/kg/day, the only dose level tested, for 90 days 

did not induce microscopic alterations in the kidneys (Dikshith et al. 1978).  Chronic exposure of rats to 

up to 4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day did not result in gross or 

microscopic alterations in the kidneys (Barnes and Denz 1951; NCI 1979). 

Endocrine Effects. No information was located regarding endocrine effects in humans following 

oral exposure to parathion.  However, effects such as tachycardia, hypertension, and hyperglycemia, 
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which have been reported in some cases of acute poisoning with parathion, may have been due, in part, to 

stimulation of the adrenal medulla by pre-ganglionic autonomic fibers. 

No information was located in the available literature regarding endocrine effects in animals following 

oral exposure to parathion. 

Dermal Effects. No information was located regarding dermal effects in humans following oral 

exposure to parathion. 

Chronic dietary exposure of Osborne-Mendel rats to up to 4.4 mg parathion/kg/day or B6C3F1 mice to up 

to 27.6 mg parathion/kg/day did not induce microscopic alterations in the skin (NCI 1979).  No further 

information was located in the available literature. 

Ocular Effects. Miosis and loss of pupillary reflexes resulting from the excess acetylcholine on 

parasympathetic autonomic post-ganglionic nerve fibers are typically seen in individuals acutely poisoned 

with parathion (see Section 3.2.2.4, Neurological Effects). 

No information was located regarding ocular effects in animals following oral exposure to parathion. 

Body Weight Effects. Effects on body weight would not be expected in humans following acute 

intoxication with parathion. 

Acute-, intermediate-, and chronic-duration studies provide information regarding body weight in animals 

following oral exposure to parathion.  In general, information regarding food consumption was not 

provided.  In male Long-Evans rats, a single gavage dose of 7 mg parathion/kg induced a 9.7% reduction 

in body weight in 24 hours; this dose also caused tremors and gait changes (Moser 1995).  In Balb/c mice, 

a single gavage dose of 16 mg parathion/kg did not affect body weight over a 4-day observation period 

(Kim et al. 2005), but 2.2 mg parathion/kg administered by gavage to female Balb/c mice for 8–13 days 

induced a 20% reduction in body weight (Wiltrout et al. 1978). 

In intermediate-duration studies, the lowest LOAEL was 7.6 mg parathion/kg/day, a dose that induced a 

24% decrease in body weight in female Osborne-Mendel rats following 6 weeks of dietary exposure (NCI 

1979); the NOAEL was 3.8 mg parathion/kg/day.  Mice appeared to be less sensitive, as doses of 31 mg 

parathion/kg/day in the diet for 6 weeks did not significantly affect the mean body weight of female 
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B6C3F1 mice, but 29 mg parathion/kg/day reduced body weight in males by 14% (NCI 1979). In a 

6-week study in beagle dogs, 0.5 mg parathion/kg/day administered in a capsule 5 days/week did not 

significantly affect body weight (NIOSH 1974). 

NCI (1979) reported that Osborne-Mendel rats fed a diet that provided approximately 4.4 mg 

parathion/kg/day to males and 3.5 mg/kg/day to females for 80 weeks had generally lower body weight 

than controls, but quantitative data were not provided.  A similar observation was noted regarding male 

B3C6F1 mice dosed with 27.6 mg parathion/kg/day for 62 weeks, but not in females receiving the same 

dose for 80 weeks (NCI 1979). 

Metabolic Effects. No specific information was located regarding metabolic effects in humans 

following oral exposure to parathion.  However, effects secondary to adrenal medulla stimulation, such as 

hyperglycemia, would not be unexpected.  In addition, alterations in acid/base balance such as metabolic 

acidosis may be expected in severely poisoned subjects, particularly those exhibiting renal failure. 

No information was located in the available literature regarding metabolic effects in animals following 

oral exposure to parathion. 

Other Systemic Effects. Painless acute hemorrhagic pancreatitis was reported in two out of nine 

cases of acute parathion intoxication described by Lankisch et al. (1990). The investigators discussed the 

possibility that the condition was due to parathion-induced increase of pancreatic intraductal pressure and 

stimulation of pancreatic secretion. 

3.2.2.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological and lymphoreticular effects in humans following 

oral exposure to parathion. 

A limited number of studies in animals have shown that oral exposure to parathion can affect immune 

function.  Administration of eight doses of 2.2 mg parathion/kg/day to female BALB/c mice immunized 

on day 9 induced a statistically significant suppression of the humoral immune response in terms of 

plaque-forming cells per spleen 4 days after immunization (Wiltrout et al. 1978).  In similar studies, 

Casale et al. (1983, 1984) showed that a single gavage dose of 16 mg parathion/kg, which induced severe 

cholinergic signs and caused some lethality in C57BL/6N mice, significantly suppressed the primary IgM 
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response.  However, when the mice received multiple lower doses of parathion, which produced no 

cholinergic signs, the primary IgM response was not suppressed. The results of additional experiments 

with arecoline, a cholinomimetic agent, suggested that cholinergic stimulation played a major role in 

parathion-induced suppression of the plaque-forming cells response. Kim et al. (2005) also reported that 

a single dose of 4 or 16 mg parathion/kg suppressed the antibody response to immunization with SRBCs 

in female Balb/c mice; no significant effects were reported at 1 mg/kg.  More recently, Fukuyama et al. 

(2012) also showed that exposure to 1.5 mg parathion/kg/day for 5 days significantly decreased the 

SRBC-specific IgM response in blood from female C3H/HeN mice; no significant effect was seen at 

0.15 mg parathion/kg. The IgM plaque-forming cell response to SRBC in splenocytes showed a 

decreasing trend, but the differences from the control were not statistically significant.  In addition, 

parathion did not decrease the total cell counts in the spleen.  Finally, the 1.5 mg/kg dose significantly 

decreased the ratio, but not the number, of IgM-positive lymphocytes and germinal center-positive 

B-lymphocytes in splenocytes. 

Studies in mice have also shown that pretreatment with 0.4 mg parathion/kg/day (the lowest dose tested) 

for 5 days increased the response to allergens such as 2,4-D-butyl and eugenol (Fukuyama et al. 2010).  

Both agents were classified as moderate sensitizers after pretreatment with vehicle, corn oil, and as strong 

sensitizers after pretreatment with parathion.  In a subsequent study, the same group of investigators 

showed that pretreatment with parathion (0.15 mg/kg/day, the lowest dose tested) aggravated TH1- and 

TH2-type allergy (Fukuyama et al. 2011).  Increased response to allergens was also reported in mice 

exposed to ≥0.15 mg parathion/kg/day for 6 weeks and later sensitized with ovalbumin (Nishino et al. 

2013).  According to the investigators, the mechanism for these effects may involve alterations in the 

number of helper and cytotoxic T-cells, in levels of TH1 and TH2 cytokines, and in gene expression in 

lymph nodes. Since TH1- and TH2-helper cells direct different immune pathways, alteration of their 

normal ratio may result in an unbalanced immune response to a challenge.  Excessive proinflammatory 

responses due to overactivation of TH1-type cytokines may lead to uncontrolled tissue damage, whereas 

excess TH-2 responses will counteract the TH-1-mediated microbicidal action. 

Long-term dietary studies in Osborne Mendel rats and B6C3F1 mice dosed with up to approximately 

4.4 and 27.6 mg parathion/kg/day, respectively, did not find gross or microscopic alterations in the spleen 

or lymph nodes (NCI 1979). 

The highest NOAEL values and all LOAEL values from each reliable study for immunological and 

lymphoreticular effects in each species and duration category are recorded in Table 3-2 and Figure 3-2. 
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3.2.2.4  Neurological Effects 

Information regarding neurological effects in humans is available from reports of intentional or accidental 

ingestion of formulations of the pesticide, ingestion of food accidentally contaminated with parathion, and 

studies in volunteers. 

In a short communication, Edson (1964) reported that oral administration of up to approximately 0.1 mg 

parathion/kg/day 5 days/week for 25–70 days did not result in adverse clinical signs in a small group of 

volunteers.  However, it did reduce red blood cell cholinesterase activity by 16% when administered to 

four females for 6 weeks.  At this time, whole blood cholinesterase was inhibited 33% and plasma 

cholinesterase was inhibited 37%.  No further information was provided.  In another study of controlled 

oral exposure in five volunteers, administration of approximately 0.11 mg parathion/kg/day for about 

20 days resulted in red blood cell cholinesterase levels reduced to 63, 78, and 86% of pretest levels and 

dosing was discontinued (Rider et al. 1969).  In two subjects who completed the test period of 30 days, 

there was no significant effect on red blood cell cholinesterase.  By the end of a 30-day post-test period, 

red blood cell cholinesterase activity had returned to pretest levels.  No significant depression of red 

blood cell cholinesterase occurred in any subject who received doses ≤0.09 mg parathion/kg/day.  No 

explicit information was provided regarding clinical signs.  In a study that examined the urinary excretion 

of parathion metabolites, administration of 1 or 2 mg parathion (0.014 or 0.028 mg/kg/day assuming 

70 kg body weight) to four volunteers for 5 consecutive days did not cause any symptoms or signs of 

parathion intoxication, nor did it alter red blood cell or plasma cholinesterase activities (Morgan et al. 

1977).  Data from the Rider et al. (1969) study regarding red blood cell AChE inhibition were used to 

derive an intermediate-duration oral MRL for parathion. 

Subjects who ingested food contaminated with parathion usually show the typical signs and symptoms 

caused by inhibition of acetyl cholinesterase.  For example, Diggory et al. (1977) reported that 79 persons 

were acutely poisoned by parathion in Jamaica in 1976 following consumption of contaminated wheat 

flour.  Signs and symptoms began 10 minutes to 4 hours after a meal; 17 people died.  Severe cases had 

double vision, pinpoint pupils, muscle fasciculations, and convulsions.  Mean red blood cell 

cholinesterase activity measured in nine patients 5 days from the onset of illness was 78% depressed. 

Measurements done in 50% of the patients on day 31 showed that red blood cell cholinesterase activity 

was still depressed by 47%.  Similar findings were reported by Etzel et al. (1987) in 49 persons from 

Sierra Leone acutely poisoned following ingestion of bread baked with parathion contaminated flour, 
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14 of whom died.  Most common signs and symptoms included loss of consciousness, excess sweating 

and salivation, muscle twitching, and convulsions.  Tsachalinas et al. (1971) examined 246 cases 

following acute poisoning with parathion in Greece. Although not explicitly indicated, it appeared that 

most cases were due to consumption of contaminated food.  Neurological signs and symptoms recorded 

included miosis and muscle cramps and spontaneous contractions.  No data regarding cholinesterase 

activities were provided in the Etzel et al. (1978) or Tsachalinas et al. (1971) reports. 

More recently, Eyer et al. (2003) studied the toxicokinetics of parathion in six acute oral poisoning cases 

and provided information regarding neurological effects and levels of red blood cell cholinesterase 

activity.  Two of the subjects presented to the emergency room with cholinergic signs; red blood cell 

cholinesterase activity measured in one of them was reduced to <10% of normal. The other four subjects 

were unconscious when they arrived at the emergency room. Red blood cell cholinesterase activity in one 

of them was 3% of normal, whereas no activity could be detected in two of them.  In all of the subjects, 

administration of obidoxime was able to reactivate the enzyme to some degree.  Worth noting is the fact 

that estimates of the amount of parathion absorbed in four subjects (0.31, 0.13, 0.36, and 1.15 g) based on 

measurements of p-nitrophenol in the urine were more than 2 orders of magnitude lower than estimated 

from anecdotal reports of the amount ingested. 

Data regarding brain AChE activity following intoxication with parathion is available in a study by 

Finkelstein et al. (1998).  The investigators employed a computerized method of quantitative 

histochemical analysis to measure levels of the enzyme in the brain of a man and a woman who died 

following intentional ingestion of parathion.  Brains from two subjects who died of unrelated causes were 

used as matched controls.  In all cases, the postmortem delay did not exceed 32 hours.  The results of the 

enzyme analysis showed that inhibition of brain AChE by parathion was regionally selective.  Relative to 

controls, the biggest decreases (65–80%) occurred in the cerebellum, some thalamic nuclei, and the 

cortex.  Moderate decreases of 10–30% were seen in the substantia nigra and basal ganglia; no significant 

changes were seen in the white matter.  Macroscopic observation of the parathion-exposed brains showed 

slight diffuse edematous changes; no other gross abnormalities were detected.  Brain congestion and 

edema were also observed in fatal cases of children described by Wishahi et al. (1958). 

A condition that has been reported infrequently in humans as a consequence of acute exposure to high 

amounts of parathion is the intermediate syndrome. The intermediate syndrome is termed as such 

because it occurs in the time interval (24–96 hours) between the end of the acute cholinergic crisis and the 

usual onset of delayed neuropathy, is thought to be due to persistent cholinesterase inhibition leading to 
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combined pre- and post-synaptic impairment of neuromuscular transmission, and was first described by 

Senanayake and Karalliedde (1987) in a study of organophosphorus pesticides other than parathion. 

De Bleecker et al. (1992) described the first case due to acute parathion exposure.  The syndrome was 

characterized by respiratory paresis, weakness in the territory of several motor cranial nerves, and 

weakness of proximal limb and neck flexor muscles, and persisted for 3 weeks.  During this time, 

cholinesterase activity remained markedly depressed. Serial EMGs with repetitive nerve stimulation 

suggested a combined pre- and post-synaptic disorder of neuromuscular transmission.  Among 68 cases of 

acute exposure to parathion studied by He et al. (1998), 7 developed intermediate syndrome (10.3%). 

Nisse et al. (1998) also described a case of intermediate syndrome following acute exposure to parathion.  

Besser et al. (1993) described a case of intermediate syndrome in a subject who later developed delayed 

neuropathy (see below). 

Very few cases of parathion-induced delayed neuropathy have been described.  Organophosphorus 

pesticide-induced delayed neuropathy (OPIDN) is a neurodegenerative disorder characterized by a 

delayed onset of prolonged ataxia and upper motor neuron spasticity (Abou-Donia 1995; Abou-Donia and 

Lapadula 1990; Johnson 1975).  The lesion is a central-peripheral distal axonopathy caused by a 

Wallerian-type degeneration of the axon, followed by myelin degeneration of the central and peripheral 

nervous systems.  De Jager et al. (1981) described the case of a man who ingested an estimated 150 g of 

parathion and became comatose.  He was treated for the acute cholinergic crisis, but remained in a coma 

for 7 weeks.  Upon recovering from the coma, he had flaccid paralysis of both legs and weakness of the 

muscles of both hands.  The patient gradually recovered but after 3 months, there was still marked muscle 

wasting and weakness of dorsiflexors and plantar flexors of the feet.  Besser et al. (1993) described an 

additional case of severe intoxication with coma, cholinergic crisis, and intermediate syndrome.  After 

gradually recovering over a 28-day period, the patient complained of numbness and weakness in his feet 

and hands.  Clinical examination showed signs of severe, symmetrical, distal sensorimotor 

polyneuropathy.  The patient was unable to stand and walk.  Gradual recovery was observed during the 

next 5 weeks, more completely in the hands than in the feet.  Eventually, the patient was able to walk 

without assistance, but distal weakness persisted in the legs. 

Results from studies in animals support the findings in humans.  The available studies provide 

information regarding enzyme activities, clinical signs, and neurobehavioral end points. 

The lowest LOAEL for a >20% inhibition of red blood cell cholinesterase activity in an acute-duration 

study was reported in male beagle dogs administered a single dose of 0.5 mg parathion/kg in a capsule 
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(NIOSH 1974).  That dose inhibited the enzyme by 29% 24 hours after dosing.  The ED50 (dose reducing 

the enzyme activity to 50% of pretest levels) for red blood cell cholinesterase was 0.385 mg/kg and the 

ED50 for plasma cholinesterase was 1.67 mg/kg.  A dose of 2.5 mg parathion/kg reduced red blood cell 

cholinesterase activity by 64%, but did not induce clinical signs.  However, single doses ≥6.3 mg 

parathion/kg induced tremors, ataxia, convulsions, and prostration.  A time-course experiment showed 

that 36 days after dosing with 2.5 mg/kg, red blood cell cholinesterase activity was reduced by 11% and 

plasma cholinesterase had recovered to pre-dosing levels (NIOSH 1974).  Similar studies in male 

Sprague-Dawley rats showed that a doses of 0.7 and 5.6 mg parathion/kg reduced red blood cell 

cholinesterase activity by 27.4 and 69.7%, respectively, at an unspecified time after dosing (NIOSH 

1974).  The ED50 values for red blood cell and plasma cholinesterase were 2.60 and 2.55 mg/kg, 

respectively.  Tremors occurred in 10/10 rats given a single dose of 5 mg parathion/kg, but not in rats 

dosed with 4 mg parathion/kg.  In a time-course experiment in rats administered a dose of 2.8 mg 

parathion/kg, red blood cell and plasma cholinesterase activities were 44 and 35% of pretest values, 

respectively, 4 hours after dosing and 67 and 89% of pretest values, respectively, 14 days after dosing.  A 

study in female CD rats reported ED50 values of 1.7, 1.1, and 1.1 mg parathion/kg for red blood cell 

cholinesterase activity 2, 5, and 24 hours after dosing, respectively (Pasquet et al. 1976).  The 

corresponding ED50 values for brain cholinesterase were >3.6, 3.6, and >3.6 mg parathion/kg.  The ratio 

of red blood cell cholinesterase ED50/LD50 was about 1/5. 

In a neurobehavioral study in male Rhesus monkeys, a single dose of 1 mg parathion/kg abolished 

performance of a learned task 5 hours after dosing, an effect that lasted 3–7 days (Reiter et al. 1975).  

That dose inhibited blood cholinesterase activity by 40–45%.  A dose of 0.5 mg parathion/kg, which 

reduced blood cholinesterase activity by about 20%, did not affect performance of the learned task.  The 

highest dose tested in the study, 2 mg parathion/kg, produced mild signs of toxicity consisting of 

decreased postural tone and slight vomiting.  Neurobehavioral screening of male Long-Evans rats with 

tests that assessed autonomic function, neuromuscular function, sensorimotor domain, activity levels, and 

excitability showed that a single gavage dose of 7 mg parathion/kg, which induced tremors and gait 

alterations, affected all of the neurobehavioral parameters measured; the largest magnitude of effects was 

obtained on the day of dosing and the NOAEL was 4 mg/kg (Moser 1995).  Cholinesterase activity was 

not measured in this study.  In male Swiss-Webster mice, administration of a single gavage dose of 6 mg 

parathion/kg (only dose tested) blocked learning of a one-trial passive avoidance task, but did not 

significantly affect memory (Reiter et al. 1973). The maximum effect of parathion occurred when it was 

given within the first hour before the learning trial and correlated with maximum changes in brain and 

blood true cholinesterase and pseudocholinesterase activities (50–60% depression). 
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A study that examined the effects of parathion on the dark-adapted pupil dilation in cynomolgus monkeys 

reported that a single gavage dose of 2 mg parathion/kg (only dose tested) reduced red blood cell AChE 

activity by approximately 50% 3–12 hours after dosing and that the maximum depression of plasma 

cholinesterase (65–80% of pre-dosing) occurred approximately 3 hours after dosing (Elkner et al. 1991).  

The only clinical sign observed was loss of appetite in three of the four monkeys, which corresponded 

with the time of maximum enzyme inhibition.  The study did not find a consistent pattern of change in 

pupil/iris diameter ratios following exposure to parathion due to high dispersion of the data, which led the 

investigators to conclude that measurements of pupil dilation after dark adaptation is not a sensitive 

indicator for systemic exposure to organophosphorus pesticides. 

In intermediate-duration studies, exposure of male Sprague-Dawley rats to 0.1 mg parathion/kg/day by 

gavage 5 days/week for 6 weeks resulted in a 22% decrease in red blood cell cholinesterase activity; no 

significant inhibition occurred with doses of 0.05 mg/kg (NIOSH 1974).  The highest dose of parathion 

tested, 0.25 mg/kg, reduced red blood cell cholinesterase activity by 26% on week 1 and to 43–57% of 

control on weeks 4–6 of exposure and on week 1 post-exposure.  Plasma cholinesterase was inhibited 

about 48% on weeks 5–6 of exposure. No toxic signs were observed in the rats in this study.  In another 

intermediate-duration study, dietary exposure of male Wistar rats to 0.4 mg parathion/kg/day significantly 

inhibited red blood cell AChE (>80%), 0.1 mg/kg inhibited the enzyme by 36–67%, and <20% inhibition 

occurred in males dosed with 0.024 mg/kg (Ivens et al. 1998).  In females, doses of 0.036, 0.152, and 

0.550 mg parathion/kg/day reduced red blood cell cholinesterase activity by 27, 67, and 92%, 

respectively; brain cholinesterase was reduced 10% in high-dose females.  On week 15, plasma 

cholinesterase was significantly reduced in males dosed with 0.4 mg/kg (44%) and in females dosed with 

0.55 mg/kg (52%); the red blood cell enzyme was reduced in mid-dose males and females (36–44%) and 

high-dose males and females (85%); brain cholinesterase was not affected.  In a group of rats exposed for 

13 weeks and tested on weeks 45–49, all cholinesterase levels had recovered.  Ivens et al. (1998) also 

subjected the rats to four learning and memory tests during the study and reported that exposure to 

parathion did not affect the results of the tests.  In yet another study in male rats (strain not reported), 

90 daily gavage doses of 2.6 mg parathion/kg (only dose tested) reduced brain cholinesterase activity by 

50% and blood cholinesterase by 74%; no clinical signs were observed in the rats (Dikshith et al. 1978).  

In a chronic-duration study in Osborne-Mendel rats, the investigators reported that there were no 

significant clinical signs during the first 6 months of the study.  However, during the second 6 months, 

25/50 female rats dosed with approximately 3.5 mg parathion/kg/day, the highest dose tested, had 
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generalized body tremors (NCI 1979).  No information was provided regarding rats dosed with lower 

doses. 

A 6-week study in male beagle dogs reported that doses of 0.05 mg parathion/kg/day in a capsule (the 

lowest doses tested) induced a maximal inhibition of red blood cell cholinesterase of 30% on week 1 post-

treatment (NIOSH 1974); at that time, the highest dose tested, 0.5 mg/kg/day, reduced the enzyme’s 

activity by 50%.  No toxic signs were seen in the dogs.  Similar results had been reported by Frawley and 

Fuyat (1957) in mixed breed dogs exposed to parathion in the diet for 24 weeks.  A study that examined 

the ocular toxicity of parathion in male and female beagle dogs reported that the highest dose tested, 

0.794 mg parathion/kg/day, induced a maximum decrease in red blood cell AChE of about 20% on 

week 6 of the 6-month study (Atkinson et al. 1994).  At study termination, retinal cholinesterase was 

depressed by about 50% in males and females, ocular muscle cholinesterase was not significantly 

affected, and pons and cerebellum cholinesterase was reduced by 23–25%.  Routine ophthalmoscopic and 

slit lamp examinations, refraction and intraocular pressure determinations, and electroretinograms 

performed at various intervals during the study were not significantly altered by exposure to parathion 

and microscopic examination of the retina, optic nerve, ocular muscles, and ciliary body did not show 

changes indicative of ocular toxicity. 

A study examined the effects of parathion on auditory detection behavior in male squirrel monkeys during 

a 148-day period in which the monkeys were given a daily capsule with 0.1 mg parathion/kg (Reischl et 

al. 1975).  The dose of parathion did not induce signs of toxicity.  Hearing thresholds were determined at 

500, 1000, 2000, 4000, 8000, and 16,000 Hz.  Exposure to parathion did not significantly change the 

mean hearing thresholds at any auditory frequency.  However, the group exposed to parathion showed a 

significantly increased standard deviation in hearing thresholds after 40 days of parathion exposure.  The 

investigators suggested that parathion disrupted the monkey's tone reporting behavior during hearing 

threshold testing.  The disruption became significant at tones presented near the animal's hearing 

threshold, but not for tones presented 20–25 dB above the threshold. 

Chronic exposure of rats to up to 4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day 

did not result in gross or microscopic alterations in the brain (Barnes and Denz 1951; NCI 1979).  In the 

NCI (1979) study, the investigators noted that during the first half of the second year, clinical signs 

among dosed rats were noted at a low or moderate incidence, and during the second half of the year, they 

increased.  However, no quantitative data were presented.  In addition, the investigators mentioned that by 
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week 60 of the study, all high-dose male mice (approximately 27.6 mg parathion/kg/day) were showing 

signs of hyperexcitability, but no data were provided. 

3.2.2.5  Reproductive Effects 

No studies were located regarding reproductive effects in humans following oral exposure to parathion. 

Limited information was located in the available studies regarding reproductive effects of parathion in 

animals.  Thomas and Schein (1974) reported that daily gavage administration of up to 5.3 mg 

parathion/kg for 5 consecutive days to male Swiss-Webster mice did not significantly affect the weight of 

the testes or prostate.  In an intermediate-duration study, daily gavage administration of 2.6 mg 

parathion/kg/day (only dose tested) to male rats (strain not reported) for 90 days caused tubular atrophy in 

the testes, necrosed spermatogenic cells, and enlargement of the interstitial space of the testes (Dikshith et 

al. 1978).  There was also proliferation of new blood vessels in the interstitial space. Chronic exposure of 

rats to up to 4.4 mg parathion/kg/day or of mice to up to 27.6 mg parathion/kg/day did not result in gross 

or microscopic alterations in the reproductive organs (Barnes and Denz 1951; NCI 1979). 

3.2.2.6  Developmental Effects 

No studies were located regarding developmental effects in humans following oral exposure to parathion. 

Limited information is available regarding developmental effects of parathion in animals. Conventional 

developmental end points were examined in Wistar rats (Renhof 1984) and Himalayan rabbits (Renhof 

1985).  The rats were exposed to 0.1, 0.3, or 1 mg technical parathion/kg on gestation days 6 through 15 

and cesarean sections were performed on gestation day 20.  Treatment with parathion did not significantly 

affect the number of live fetuses/litter, number of resorptions/litter, mean fetal weight/litter, number of 

fetuses with slight bone alterations/litter, number of runts/litter, or number of fetuses with 

malformations/litter.  Maternal toxicity, including significantly reduced weight gain during treatment and 

tremors, occurred in the group dosed with 1 mg/parathion/kg/day.  Pregnant rabbits were administered 

0.03, 0.1, or 0.3 mg parathion/kg/day on gestation days 6–18 and cesarean sections were performed on 

gestation day 29.  Evaluation of the same end points examined in rats showed no significant embryotoxic 

or teratogenic effects in rabbits under the conditions of the study.  No significant maternal toxicity 

occurred in the rabbits. 
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In an earlier study, pregnant CD rats were administered 0, 0.01, 0.1, or 1.0 mg parathion /kg/day from day 

2 of gestation through day 15 of lactation (Deskin et al. 1979).  On postnatal day 25, five pups per sex 

were evaluated for pseudocholinesterase and red blood cell cholinesterase activities and plasma renin.  An 

EKG was also performed in anesthetized pups.  EKG values for males and females were combined.  No 

data were presented regarding maternal effects.  Perinatal exposure to parathion did not significantly 

affect red blood cell AChE activity, but reduced pseudocholinesterase activity in female pups by 17–27%.  

Heart rate was not significantly affected by parathion exposure, but there were alterations in the EKG 

including a 43% reduction in atrial depolarization (P-R interval) in low-dose pups.  Plasma renin was also 

reduced in a dose-related manner (60% with the lowest dose). 

3.2.2.7  Cancer 

No studies were located regarding cancer effects in humans following oral exposure to parathion. 

A bioassay for parathion was conducted in Osborne-Mendel rats and B6C3F1 mice (NCI 1979).  Rats 

were fed diets that provided approximately 0, 2.2, or 4.4 mg parathion/kg/day to males and 0, 1.8, or 

3.5 mg parathion/kg/day to females for 80 weeks; the rats were then observed for 32–33 weeks.  In males, 

analyses of neoplastic lesions showed significant increased incidence of cortical adenomas of the adrenal 

gland in high-dose group using pool controls (2/80 vs. 9/46, p<0.002).  Analysis of combined cortical 

adenomas and carcinomas showed significantly increased incidences in both low- and high-dose groups 

(3/80 pooled control vs. 7/49 and 11/46, respectively). Also significantly elevated in high-dose males 

were the incidences of follicular cell adenoma of the thyroid (5/76 pooled control vs. 8/43, p=0.046) and 

carcinoma of the pancreatic islet-cell (0/79 pooled control vs. 3/46, p=0.048).  In females, the incidences 

of adrenal cortical adenomas or adrenal cortical adenomas and carcinomas were significantly elevated 

when compared with pooled controls (adenomas 4/78 pooled control vs. 11/42 high-dose, p=0.001; 

adenomas plus carcinoma 4/78 pooled control vs. 13/42 high-dose, p=0.001).  The investigators 

concluded that, under the conditions of the study, parathion was carcinogenic to Osborne-Mendel rats. 

The dose of 2.2 mg parathion/kg/day in male rats is listed as a CEL in Table 3-2 and is plotted in 

Figure 3-2. 

Mice were fed a diet that provided approximately 0, 13.7, or 27.6 mg parathion/kg/day (NCI 1979).  Low-

dose males were treated for 71 weeks, high-dose males for 62 weeks, and low- and high-dose females for 

80 weeks. All mice were killed at 89 or 90 weeks.  Gross and microscopic examination of organs and 
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tissues showed that neoplastic lesions were distributed equally between dosed and control groups.  

Therefore, under the conditions of the assay, parathion was not carcinogenic to B6C3F1 mice. 

Based on the results of the NCI (1979) bioassay, the EPA placed parathion on Group C, possible human 

carcinogen (IRIS 2003).  Under updated guidelines, the data regarding carcinogenicity of parathion are 

“suggestive evidence of carcinogenic potential” (EPA 2005). A quantitative estimated of carcinogenic 

risk from oral exposure is not available. 

3.2.3 Dermal Exposure 

3.2.3.1  Death 

Deaths have been reported in humans following occupational or accidental dermal exposure to parathion. 

In a study of 40 occupationally exposed subjects, Grob et al. (1950) reported that six of them died due to 

contact with the pesticide.  Exposure occurred during the synthesis or handling of various parathion 

formulations; inhalation exposure was also likely to have occurred.  All the men who died had been 

exposed on ≥1 days during the month preceding the day on which symptoms occurred. The average 

exposure length for the whole cohort was 8 hours/day for 12 days.  Four of the patients who died walked 

into the hospital and two died before they could be brought to a hospital.  Ataxia, tremor, drowsiness, 

difficulty in concentrating, mental confusion, occasionally disorientation, and changes in speech 

developed, followed by profound coma with absence of all reflexes. The coma began, on average, 

4 hours after the onset of symptoms and lasted an average of 3.5 hours before death occurred. The 

immediate cause of death was not known but, according to Grob et al. (1950), contributing factors may 

have been depression of the respiratory and circulatory centers in the medulla, weakness of the muscles of 

respiration, and pulmonary edema. 

Among 20 deaths reported in children due to exposure to parathion in the state of Florida from 1959 

through 1964, four were due to dermal contact with the pesticide (Eitzman and Wolfson 1967).  Limited 

information provided regarding two of these cases indicates that both developed cholinergic crisis and 

died within 5 hours of being seen by a physician.  Autopsy was performed on one of them and revealed 

increased bronchial secretions. 

Lores et al. (1978) described the case of a young man whose death was attributed to dermal contact with 

parathion residue <24 hours after application of the pesticide to a tobacco field where he had worked.  He 

was found unconscious at home and was taken to the hospital where he was pronounced dead on arrival. 



   
 

    
 
 

 
 
 
 
 

 

   

   

  

  

 

  

   

 

  

   

   

  

 

 

 

   

 

   
 

   

 

    

 

         

   

    

   

 

  

  

    

    

      

64 PARATHION 

3. HEALTH EFFECTS 

The dermal LD50 values for technical parathion in male and female Sherman rats were 21 and 6.8 mg/kg, 

respectively, suggesting sex-related differences in susceptibility (Gaines 1960).  In males, the minimal 

survival time was 24 minutes and the maximum survival time was 3 days.  In females, the minimal 

survival time was 1 hour and the maximum survival time was 4 days.  Signs of poisoning included muscle 

fasciculation, excessive salivation and lacrimation, tremors, diarrhea, and involuntary urination.  The 

doses tested were not specified.  A dermal LD50 of 49.4 mg/kg was reported for technical parathion in 

male Sprague-Dawley rats; the LD50 in females was 19.5 mg/kg (EPA 1978).  No information was 

provided regarding whether the application site was occluded or washed at some point.  All rats exhibited 

typical signs of cholinesterase inhibition including salivation, lacrimation, exophthalmos, defecation, 

urination, and muscle fasciculations; the doses tested were not specified. This study also supports the 

view that female rats are more susceptible than male rats to the acute effects of parathion.  A similar study 

reported a dermal LD50 of approximately 8 mg/kg for female CD rats (Pasquet et al. 1976).  The rats were 

fitted with a collar for 24 hours and the application site was washed with soap and lukewarm water; the 

observation period was 10 days.  No further information was provided. 

The LD50 values mentioned above are recorded in Table 3-3. 

3.2.3.2  Systemic Effects 

No studies were located that provide information regarding endocrine, dermal, or body weight effects in 

humans following dermal exposure to parathion.  The only effects in animals recorded in Table 3-3 are 

dermal effects in rats following dermal exposure to parathion. 

Respiratory Effects. Using the AHS, Hoppin et al. (2006) examined the association of 40 individual 

pesticides (parathion among them) with wheeze.  The AHS is a prospective cohort study of nearly 

90,000 private pesticide applicators (mostly farmers), their spouses, and commercial pesticide applicators 

in Iowa and North Carolina.  Exposure and medical history of farmers and pesticide applicators was 

assessed by means of self-administered questionnaires.  Pesticides were evaluated using logistic 

regression models adjusted for age, sex, state, smoking status, and body mass index.  The final analysis 

included 17,920 farmers and 2,255 commercial applicators.  Nineteen percent of farmers and 22% of 

commercial applicators reported wheezing at least once in the year before enrollment.  For parathion, 7% 

of farmers reported past use and 1% reported current use (ever used in the year prior enrollment); the 

corresponding percentages for commercial applicators were 3 and 1%. The odds ratio (OR) was elevated 



Table 3-3  Levels of Significant Exposure to Parathion  -  Dermal

Species
(Strain)

Exposure/
Duration/

Frequency
(Route) CommentsSystem NOAEL Less Serious

LOAEL

Serious
Reference
Chemical Form

ACUTE EXPOSURE
Death

(Sprague-
Dawley)

Rat

27

once
49.4 M (LD50)

mg/kg
mg/kg

19.5 F (LD50)

mg/kg
mg/kg

EPA 1978 27

(Sherman)
Rat

80

once
21 M (LD50)

mg/kg
mg/kg

6.8 F (LD50)

mg/kg
mg/kg

Gaines 1960 80

(CD)
Rat

14

once
8 F (10-day LD50)

mg/kg
mg/kg

Pasquet et al. 1976 14

Systemic

NS
Gn Pig

22

5 d
1 x/d Dermal 0.004 F (hyperkeratinization of

epidermis; thickening of
stratum corneum)

mg/kg/day

mg/kg/day

Dikshith and Datta 1972 22

Neurological

(NA)
Human

78

5 d
2 hr/d 100

mg
mg

Hayes et al. 1964 NOAEL is for RBC
cholinesterase activity.

78
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A
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Table 3-3  Levels of Significant Exposure to Parathion  -  Dermal (continued)

Species
(Strain)

Exposure/
Duration/

Frequency
(Route) CommentsSystem NOAEL Less Serious

LOAEL

Serious
Reference
Chemical Form

INTERMEDIATE EXPOSURE
Systemic

NS
Gn Pig

d = day(s); F = Female; Gn pig = guinea pig; hr = hour(s); LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; NA = not applicable; NOAEL =
no-observed-adverse-effect level; NS = not specified; RBC = red blood cell x = time(s)

23

15 d
1 x/d Dermal 0.004 F (Hyperkeratinizationn of

the dermis; proliferation
of connective tissue)

mg/kg/day

mg/kg/day

Dikshith and Datta 1972 23

P
A

R
A
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N
66
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for farmers, but did not achieve statistical significance (OR=1.37, 95% confidence interval [CI] 0.93– 

2.03).  An OR was not calculated for parathion because there were fewer than five exposed cases.  In a 

more recent report, the same group of investigators examined the association between pesticide exposure 

and allergic and non-allergic asthma among 19,704 male farmers in the AHS (Hoppin et al. 2009).  

Parathion was found to be significantly associated with allergic asthma (OR=2.05, 95% CI 1.21–3.46), 

although there was no exposure-response trend.  Exposure to parathion was not associated with non­

allergic asthma (OR=1.11, 95% CI 0.75–1.66).  Exposure-response was evaluated using three measures of 

cumulative pesticide exposure: total years of use, lifetime days of use, and intensity-adjusted lifetime 

days of use. 

Respiratory difficulty suggestive of bronchospasm, excessive bronchial secretions, and pulmonary edema 

with cyanosis were reported in workers acutely exposed to parathion during the synthesis or handling of 

various formulations of the pesticide (Grob et al. 1950).  Pulmonary edema was reported in a child who 

later died following dermal exposure to parathion; shallow respiration was reported in a child who 

survived dermal exposure to the pesticide (Eitzman and Wolfson 1967). 

Cardiovascular Effects. Elevated blood pressure was reported in most workers with moderate or 

severe symptoms described by Grob et al. (1950).  The investigators noted that decreased blood pressure 

was not noticed, except shortly before death. EKGs performed in four patients who recovered did not 

show alterations.  Eitzman and Wolfson (1967) reported hypotension in two children who eventually died 

following dermal contact with parathion; a third child who survived also had hypotension and 

bradycardia. 

Gastrointestinal Effects. Anorexia, nausea, vomiting, abdominal cramps, and diarrhea were 

commonly reported in workers exposed during synthesis and handling various parathion formulations 

(Grob et al. 1950) and in agricultural workers exposed to parathion (Milby et al. 1964; Quinby and 

Lemmon 1958).  Nausea and vomiting were also reported in two poisoning cases in children; one of them 

also complained of abdominal pain (Eitzman and Wolfson 1967). 

Diarrhea and defecation were reported in rats given high dermal doses of parathion in LD50 studies (EPA 

1978; Gaines 1960). 

Hematological Effects. Hematological tests conducted in four workers who recovered from severe 

poisoning symptoms following exposure to parathion revealed no appreciable abnormality regarding red 

http:0.75�1.66
http:1.21�3.46
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blood count, hematocrit, hemoglobin, and sedimentation rate (Grob et al. 1950).  In 12 patients in whom 

the leucocyte count was determined, there was slight to moderate leukocytosis. The differential count 

showed a slight increase in the percent of mature polymorphonuclear leucocytes (Grob et al. 1950). 

Musculoskeletal Effects. No direct effects on muscle or bone were reported in humans following 

dermal exposure to parathion.  Clinical signs such as muscle fasciculation, twitching, and tremors are of 

neurological origin, as mentioned in Section 3.2.3.4. 

Hepatic Effects. The only information located in the available literature regarding hepatic effects in 

humans following exposure to parathion is in the study of workers by Grob et al. (1950).  Laboratory 

testing performed in four subjects who recovered after severe symptoms showed cephalin flocculation, 

serum alkaline phosphatase activity, total serum protein, and albumin/globulin values within normal 

limits. 

Renal Effects. Normal blood urea nitrogen (BUN) was reported in the four workers who recovered 

from severe parathion intoxication described by Grob et al. (1950).  No further relevant information was 

located. 

Endocrine Effects. Evaluation of thyroid disease among 22,246 male participants in the AHS 

showed that ever-use of parathion was not associated with hyperthyroid or hypothyroid disease (Goldner 

et al. 2013).  However, in an analysis of exposure-response assessed on the basis of intensity-weighed 

cumulative days of use, high exposure to parathion was associated with a significant increase in 

hypothyroid disease (OR=1.9, 95% CI 1.15–3.13) based on 18 cases. No significant associations were 

found for other organophosphorus pesticides such as diazinon and malathion. Evaluation of 13,637 wives 

of male participants in the AHS showed a weak, but significant, association of incident diabetes with 

ever-use of parathion (hazard ratio [HR]=1.61, 95% CI 1.05–2.46) (Starling et al. 2014).  The analysis 

was limited to spouses who reported ever mixing or applying any pesticides before enrollment in 1993– 

1997. Participation was further restricted to those who completed at least one of the follow-up interviews 

and those with prevalent diabetes were excluded. When the cohort was divided into groups based on five 

exposure-duration categories, there was no evidence of an exposure-duration relationship.  However, 

women who applied pesticides (any pesticide) for >30 years were 60% more likely to be diagnosed with 

diabetes than women who applied pesticides for 1 year. 

http:1.05�2.46
http:HR]=1.61
http:1.15�3.13
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Dermal Effects. In a study in 30 female guinea pigs, the animals were applied 1 mL of a 1-ppm 

solution of parathion in 50% ethanol to a clipped latero-abdominal area daily for 5 or 10 days 

(approximately 4 µg/kg/day based on a body weight of 0. 250 kg) (Dikshith and Datta 1972).  Ten guinea 

pigs were killed 24 hours after the 5th, 10th, and 15th application, and the skin was prepared for gross and 

microscopic examination. Treatment with parathion did not induce adverse clinical signs.  Gross 

examination of the skin did not show dermatitis or any other noticeable changes.  Microscopic 

examination showed hyperkeratinization of the epidermal layer and thickening of the stratum corneum 

after 5 days of treatment.  Five applications also induced mild damage to the endothelial cells of the blood 

vessels. Ten days of treatment resulted in scattered infiltration of mononuclear cells in the dermis. The 

dermis also showed mild proliferation of connective tissue around hair follicles and sebaceous glands. 

Additional applications induced changes such as thickening of the wall of the blood vessels and swelling 

of the endothelial cells.  A mild perivascular inflammatory infiltrate was also present. 

Ocular Effects. Clinical signs such as miosis, unresponsive pupils, and blurred vision are caused by 

alterations in the neural control of the eye, but can be exacerbated by directly touching the eyes with 

contaminated objects or the hands. 

3.2.3.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological and lymphoreticular effects in humans following 

dermal exposure to parathion, except for the report of an association (OR=2.05, 95% CI 1.21–3.46) 

between exposure to parathion and allergic asthma in participants in the AHS (Hoppin et al. 2009).  

Exposure to parathion was not associated with non-allergic asthma (OR=1.11, 95% CI 0.75–1.66). 

3.2.3.4  Neurological Effects 

Neurological effects have been studied in volunteers exposed to controlled amounts of parathion, in adults 

and children acutely exposed to high amounts of parathion, and in workers exposed chronically to lower 

levels of parathion.  In addition, data are available regarding neurobehavioral and peripheral effects in 

agricultural workers and on the possible role of parathion exposure and Parkinson’s disease. 

In an early study, Grob et al. (1950) described the effects of parathion in 38 men and 8 women involved 

in the synthesis or handling of various parathion formulations.  About half of the subjects began to have 

symptoms while they were still exposed to parathion.  The remaining subjects developed symptoms 0.5– 

8 hours after their last exposure to parathion. The severity of the acute cholinergic crisis seemed to 

http:0.75�1.66
http:1.21�3.46
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depend on the severity of the intoxication.  In cases of marked intoxication, ataxia, tremor, drowsiness, 

difficulty in concentrating, mental confusion, occasionally disorientation, and changes in speech 

developed.  In the most severe cases, coma gradually developed. The average durations of the acute 

effects were 25 hours in four patients who had severe symptoms and 12 hours in 30 patients who had less 

severe effects.  Patients who recovered from severe illness showed giddiness, uneasiness, headache, 

anxiety, insomnia, and weakness for 48–72 hours after their last exposure to parathion.  In patients 

suspected of spraying or rubbing parathion into the eyes, it took several weeks for pinpoint pupils to 

return to normal size.  Four patients who survived severe symptoms had red blood cell AChE activity 

reduced to11–22% of normal activity.  In six subjects with less severe symptoms, red blood cell AChE 

activity ranged from 12 to 28% of normal.  When 18 subjects whose enzyme had been depressed were 

removed from further exposure, red blood cell AChE activity increased at an average rate of 

approximately 10% of normal activity during the first 3 days and diminished to between 1 and 2% per day 

by the fourth day.  The rate of recovery subsequently remained fairly constant until a normal level of 

activity was reached. 

Milder effects were described by Quinby and Lemmon (1958) among >70 subjects who had contact with 

parathion residues.  The workers were engaged in picking, thinning, cultivating, and irrigating various 

crops.  Dermal exposure appeared to have been favored by the removal of protective clothing and by the 

persistent wearing of contaminated clothing.  Weakness, twitching of arm and leg muscles and of the 

eyelids, and some cases of miosis were reported.  Effects such as headache, weakness, miosis, blurred 

vision, and dizziness were reported in a study of 186 peach orchard workers (Milby et al. 1964). 

Measurements of parathion residues in the fruit, on the subjects’ skin, and in the air from two orchards 

that had produced the highest rates of clinical illness led to an estimate of total exposure by a picker of 

<4 mg; dermal exposure contributed the highest amount, approximately 3.2 mg.  Ingestion and inhalation 

contributed only 0.5 and 0.3 mg, respectively. 

Weakness, headache, muscle fasciculations, tremors, and severely depressed red blood cell AChE activity 

were reported in three children dermally exposed when a burlap sack heavily contaminated with parathion 

and filled with old clothing was used as a swing (Eitzman and Wolfson 1967). 

Hayes et al. (1964) conducted a series of experiments with volunteers exposed to controlled amounts of 

parathion.  Application of 5 g of 2% parathion dust at a constant temperature of 105°F onto the right hand 

and forearm for 2 hours on 5 consecutive days resulted in a maximum decrease of 14% in red blood cell 

cholinesterase activity 24 hours after exposure; no adverse clinical signs were noted.  The daily amount 
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applied was 100 mg parathion (5 g dust x 2 mg parathion/100 mg dust).  This amount is listed as a 

NOAEL in Table 3-3.  In additional experiments in which volunteers were exposed to other parathion 

formulations (4 L of 2% emulsion for 70 minutes at 81°F; unspecified amount of 47.5% emulsifiable 

concentrate for 120 minutes at 69°F or 90 minutes at 103°F), no significant depression of red blood cell 

cholinesterase was seen. Whole-body exposure of volunteers to 7 pounds of 2% parathion dust 

(~7 hours) or to parathion vapor (3 hours) did not significantly depress red blood cell AChE (<20%) 

activity, and no clinical signs were observed. Exposure of volunteers for 3 hours to filter paper pads 

containing 40–50 g of parathion did not result in significant depression of red blood cell AChE.  In 

general, plasma cholinesterase was more affected than the red blood cell enzyme in all experiments. 

The association between exposure to pesticides, parathion included, and self-reported hearing loss was 

examined among private pesticide applicators in the AHS (MacCrawford et al. 2008).  Pesticide exposure 

and medical history were assessed by questionnaires. The final sample available for analysis consisted of 

14,229 applicators.  Of these, 4,926 met the case inclusion criterion of self-reporting hearing troubles and 

9,303 met the criterion to serve as controls.  Logistic regression was performed with adjustment for state, 

age, and noise, solvents, and metals.  Exposure to organophosphate pesticides was modestly associated 

with hearing loss, with a 17% increase in odds in the highest quartile of exposure (OR=1.17, 95% CI 

1.03–1.31).  Analysis of individual organophosphate pesticide using traditional logistic regression showed 

elevated odds for various pesticides, marginally significant for parathion (OR=1.21, 95% CI 1.04–1.40).  

Strengths of the study included a large population, an internal control group, detailed information on 

pesticide exposure, and information on additional potential causes of hearing loss. 

The association between pesticide exposure and behavioral function has also been examined in the AHS 

(Starks et al. 2012a).  The cohort consisted of 701 males with a mean age of 61 years who were 

administered nine neurobehavioral tests to assess memory, motor speed and coordination, sustained 

attention, verbal learning, and visual scanning and processing.  Associations between pesticide (parathion 

among them) use and neurobehavioral tests performance were estimated with liner regression controlling 

for age, height, education, state, smoking status, alcohol consumption, head injury, current antidepressant 

use, caffeine consumption, and exposure to other potentially neurotoxic substances. The results showed 

that parathion exposure was associated with better verbal learning and memory and better performance on 

a test of sustained attention.  The investigators noted that given the large number of statistical tests 

performed, the possibility existed that the results were due to chance; however, a non-monotonic dose-

effect function of parathion could not be ruled out. Neither ever-use nor continuous days of use of 

parathion were significantly associated with peripheral nervous system function (electrophysiological 

http:1.04�1.40
http:1.03�1.31
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tests, hand strength, sway speed, and vibrotactile threshold) among the 701 male workers (Starks et al. 

2012b). 

In a study of 21,208 male participants in the AHS, ever-use of parathion (as well as several other 

pesticides) was positively associated with depression (Beard et al. 2014).  Dividing the cases into three 

groups based on when the physician diagnosis of depression occurred (before or after enrollment) and on 

when it was reported (at enrollment, at follow-up, or both) resulted in three comparable ORs: 1.5 (95% 

CI 1.2–1.9) for pre-enrollment, 1.2 (95% CI 1.0–1.6) for pre- and post-enrollment, and 1.3 (95% CI 1.0– 

1.6) for post-enrollment.  

Two studies were located that examined the relationship between exposure to parathion and Parkinson’s 

disease.  Neither one found a significant risk associated with exposure to parathion.  In an ongoing 

population-based, case-control study of Parkinson’s disease in western Washington State, Firestone et al. 

(2005) assessed occupational and home-base exposure using a structured interview.  The final cohort 

consisted of 250 incident Parkinson’s disease case patients and 388 healthy controls with a participation 

rate of 73% for cases and 66% for controls.  ORs and 95% CIs were determined using logistic regression 

models controlling for age, sex, and smoking.  Analysis of only the occupationally exposed subjects 

(156 cases and 241 controls) showed that parathion had the highest OR among organophosphate 

pesticides (OR=8.08, 95% CI 0.92–70.85).  Analysis of the entire cohort showed an OR for the 

organophosphate class of 0.83 (95% CI 0.60–1.16).  Manthripragada et al. (2010) examined the 

association between Parkinson’s disease and parathion (among other organophosphate pesticides) and the 

influence of a functional polymorphism at position 55 in the coding region of the PON1gene (PON1-55).  

Studies have suggested that individuals with low PON1 activity might be at higher risk for 

organophosphate toxicity (reviewed in Costa et al. 2013).  The cohort consisted of 351 incident cases and 

363 controls from three rural California counties in a population-based, case-control study.  Residential 

exposure was estimated for each study participant using their residential history and a geographic 

information system.  The results showed no increased risk of Parkinson’s disease for people exposed to 

parathion, and risk did not increase in carriers of the variant MM PON1-55 genotype. In a more recent 

study, the same group of investigators examined whether single nucleotide polymorphisms PON1Q192R 

and PON1C-108T impact the association between Parkinson’s disease and residential exposure to parathion 

(Lee et al. 2013).  PON1Q192R affects catalytic efficiency of PON1, whereas PON1C-108T has been 

associated with lower expression levels. The results of the analyses showed no significant increased risk 

associated with the variant genotypes studied (effect estimates included the null). 

http:0.60�1.16
http:0.92�70.85
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Acute toxicity studies aimed at determining dermal LD50 values in rats have reported cholinergic signs 

such as muscle fasciculations and tremors, but the dose levels at which these signs were observed were 

not provided (EPA 1978; Gaines 1960). 

3.2.3.5  Reproductive Effects 

A study of Chinese workers exposed to parathion and methamidophos reported that the workers (n=20) 

had a modestly lower sperm count, lower sperm concentration, and lower percentage of motile sperm than 

an unexposed control group (n=23) (Padungtod et al. 2000).  However, the results should be interpreted 

with caution due to the small sample size.  In addition, when the exposed subjects were assigned to a 

high- or low-exposure group based on job titles, measurements of exposure could not differentiate 

between them.  Exposure was assessed by attaching a piece of gauze onto nine body areas, attaching a 

pump to the lapel of the subject’s shirt to asses potential inhalation, and measuring urinary p-nitrophenol 

in five samples collected at the end of the shift.  While the results were suggestive, the role of parathion, 

if any, remained unclear. It should also be noted that the mean number of pregnancies fathered by the 

exposed subjects was four, compared to two for the unexposed group, suggesting that fertility was not 

impaired. 

3.2.3.6  Developmental Effects 

Limited information is available regarding developmental effects in humans exposed to parathion.  

Eskenazi et al. (2004) studied the effects of organophosphate pesticide exposure during pregnancy on 

fetal growth and gestational length in a cohort of 488 low-income Latina women living in an agricultural 

community in the Salinas Valley, California.  Although exposure by multiple routes is likely to have 

occurred, touching produce sprayed with pesticides was likely the most significant exposure route. 

Exposure to parathion was assessed by measuring p-nitrophenol in the urine during pregnancy and by 

measuring cholinesterase in whole blood and butyl cholinesterase in plasma from the mothers during 

pregnancy and delivery and from umbilical cord.  The investigators acknowledged that p-nitrophenol can 

also be derived from exposure to methyl parathion and other non-pesticide chemicals.  Infant birth 

weight, crown-heel length, head circumference, and gestational length were obtained from medical 

records and hospital delivery logs.  Linear regression models were used to test for associations between 

exposure measurements and length of gestation, birth weight, length, head circumference, and ponderal 

index. Logistic regression was used to test for associations between exposure measurements and low 

birth weight, preterm delivery, and small for gestational age births.  The results of the analyses did not 

show an adverse association between fetal growth and any measure of in utero exposure to parathion, if 
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there was true exposure to parathion.  It is also possible that there was no exposure to parathion since, as 

mentioned above, p-nitrophenol may be derived from exposure to other chemicals. 

3.2.3.7  Cancer 

Dennis et al. (2010) examined the potential association between exposure to 50 agricultural pesticides, 

parathion among them, and the incidence of cutaneous melanoma in the AHS cohort of pesticide 

applicators along with ever-use of older pesticides that contain arsenic.  Pesticide applicators completed 

an enrollment questionnaire that sought information on ever use of 50 pesticides and on a number of 

potential confounders.  Pesticide applicators also completed an additional “take home” questionnaire that 

sought more extensive information on occupational activities.  Logistic regression was used to examine 

ORs and 95% CIs associated with pesticide exposure adjusted for age, sex, and other potential 

confounders.  A total of 150 cases of melanoma were identified among 24,704 subjects who completed 

the “take home” questionnaire. The investigators found no association between melanoma incidence and 

organophosphate insecticides as a class.  However, there was a significant association between melanoma 

and parathion (≥56 days of exposure; OR=2.4; 95% CI 1.3–4.4; p=0.003) based on 11 cases.  The study 

also found a higher OR of 7.3 (95% CI 1.5–34.6) among those who had used arsenical pesticides. The 

investigators noted that strengths of the AHS include a prospective design, comprehensive pesticide 

exposure assessment, completeness of follow-up, and high participation rates.  A limitation of the Dennis 

et al. (2010) study, noted by the investigators, was the small number of subjects who used parathion for at 

least 56 days and had melanoma (n=11). Overall, the study could not rule out the possibility that 

cutaneous melanoma was caused by exposure to arsenical pesticides. The investigators suggested that 

more research is needed regarding chemicals and other environmental factors that may increase the risk of 

cutaneous melanoma. 

3.2.4 Other Routes of Exposure 

A series of publications from Slotkin and coworkers have provided evidence of neurological effects of 

parathion, as well as other organophosphate pesticides, dissociated from parathion-induced inhibition of 

AChE. The experiments were conducted in male and female Sprague-Dawley rats. To avoid the high 

first-pass removal by the liver, neonatal rats were injected with parathion subcutaneously on postnatal 

days 1–4 and neurochemical parameters were evaluated in various brain regions within days of dosing or 

during adulthood.  Parathion was tested at doses of 0.02–0.1 mg/kg/day, which were below the threshold 

for overt toxicity as defined by mortality data.  While parathion did not compromise the development of 

neuritic projections or emergence of the cholinergic phenotype in the forebrain and brainstem in 5-day­
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old pups (Slotkin et al. 2006a), it did decrease serotonin 5HT1A receptors in the brainstem and forebrain 

but had no significant effect on 5HT2 receptors or serotonin transporter in 5-day-old pups (Slotkin et al. 

2006b).  In another study, examination of rats at older ages showed that parathion upregulated 5HT1A 

receptors with a peak in the frontal/parietal cortex at about 60 days of age, followed by a decrease of the 

effect in most brain regions and eventually inducing deficits at 100 days of age (Slotkin et al. 2009a).  

The investigators also showed that parathion produced lasting alterations in acetylcholine markers in the 

frontal/parietal cortex, temporal/occipital cortex/ midbrain, hippocampus, and striatum in adolescence and 

adulthood; in general, effects were more pronounced in males than in females (Slotkin et al. 2008). In 

additional studies, parathion induced long-lasting selective behavioral alterations in adolescence and 

adulthood, some of which were sex-dependent (Levin et al. 2010; Timofeeva et al. 2008). 

Subcutaneous administration of parathion to neonatal rats also caused a metabolic dysregulation in adult 

rats characterized in males by a net anabolic response at a low dose (0.1 mg parathion/kg) and a catabolic 

response at a higher dose (0.2 mg parathion/kg) and by a greater sensitivity to catabolic effects in females; 

the metabolic alterations were consistent with a pre-diabetic state (Lassiter et al. 2008). A likely 

mechanism for the pre-diabetic state involved a persistent parathion-induced disruption of adenylyl 

cyclase (the enzyme that synthesizes cyclic adenosine monophosphate [cAMP] from adenosine 

triphosphate [ATP]) signaling in peripheral tissues, particularly in the liver (Adigun et al. 2010). Studies 

also showed that a high-fat diet in adulthood reversed the parathion-induced alterations in acetylcholine 

systems and lessened some of the effects of parathion on serotonin synaptic function (Slotkin et al. 2009b, 

2009c), presumably due to global changes in the composition of synaptic membrane lipids.  Furthermore, 

early exposure to parathion was found to disrupt major control points of lipid metabolism and induced an 

inflammatory response in adipose tissue. The changes in lipid metabolism were found to interact with 

deficits in synaptic function which, according to the investigators, may contribute to impaired behavioral 

performance (Lassiter et al. 2010). 

Behavioral effects and effects on the brain morphology have been described following subcutaneous 

injections of parathion into neonatal rats.  For example, treatment of 5-day-old rats with 1.3 or 

1.9 mg/kg/day parathion until postnatal day 20 did not affect developmental landmarks such as eye 

opening or incisor eruption (Stamper et al. 1988).  That treatment affected only one out of four tests of 

reflex development before weaning. However, evaluations conducted post-weaning showed small 

deficits in tests of spatial memory in both the T-maze and radial arm maze.  These effects were associated 

with significant decreases in brain AChE activity (35–68%) and muscarinic receptor density, but not 

affinity, in the cerebral cortex.  The investigators concluded that early exposure to parathion affected the 
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performance of spatial memory tasks by interfering with the development of the cholinergic system. In a 

similar study, neonatal rats were administered 0.882 mg/kg/day parathion on gestation days 5–20 and 

morphological, histochemical, and biochemical tests were conducted in the hippocampus collected on 

gestation day 21 (Veronesis and Pope 1990).  The results showed hippocampal damage consisting of 

cellular disruption and necrosis in the dentate gyrus, CA4, and CaA3c regions.  On postnatal day 12, 

hippocampal AChE was depressed 73% while muscarinic receptor binding was depressed by 36%.  Since 

the dosing period coincided with a time critical to hippocampal neurogenesis and synapse formation, the 

resulting changes may translate into permanent neurobehavioral alterations. 

3.3  GENOTOXICITY 

No information was located regarding genotoxic effects in humans exposed specifically to parathion.  A 

study of 25 male workers in India occupationally exposed to organophosphate pesticides (parathion 

among them), organochlorine pesticides, and fertilizers reported that the frequency of chromosomal 

aberrations and sister chromatid exchanges in peripheral lymphocytes were significantly elevated 

compared to unexposed control subjects; however, the role of parathion, if any, cannot be determined 

(Rupa et al. 1988).  A similar study from India reported increased DNA damage in peripheral 

lymphocytes from pesticide sprayers after a day of intense spraying compared to controls (Kaur et al. 

2011).  Parathion was one of many pesticides used by the subjects and no chemical-specific analyses were 

conducted, so the role of parathion, in any, is unknown. In vivo studies in animals have yielded negative 

results in tests for induction of micronuclei, chromosomal aberrations, and dominant lethality (Table 3-4).  

Intraperitoneal administration of a single dose of 10 mg parathion/kg to male mice did not significantly 

increase the frequency of chromosomal aberrations in bone marrow cells or spermatogonia assessed 12, 

24, and 36 hours after dosing (Degraeve and Moutschen 1984).  Gavage administration of a single dose of 

2.2 mg parathion/kg to male mice or 1.5 mg/kg to female mice did not significantly increase the 

frequency of micronuclei in bone marrow cells assessed 48 hours after dosing (Kevekordes et al. 1996).  

Dietary administration of parathion to male mice for 7 weeks at levels of 62.5, 125, or 250 ppm followed 

by mating for 8 weeks did not provide evidence of mutagenicity by the dominant lethal procedure (EPA 

1977a).  Females were sacrificed at midterm of pregnancy and were scored for early and late fetal deaths 

and for living fetuses.  In this study, the maximum tolerated dose was defined as the dietary level that 

may produce up to 20% weight loss, mild but transient clinical signs, no inhibition of breeding 

performance, and no mortality.  In another study, male mice were given a single intraperitoneal injection 

of 10 mg parathion/kg and were then mated with untreated females for 7 consecutive weeks (Degraeve 

and Moutschen 1984).  Pregnant females were sacrificed on day 14 of pregnancy and the numbers of 
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Table 3-4.  Genotoxicity of Parathion In Vivo 

Species (test system) End point Results Reference 
Mammalian cells:
 

Mouse spermatogonial cells Chromosomal aberrations – Degraeve and Moutschen 1984
 

Eukaryotic organisms:
 
Male mice Dominant lethal – EPA 1977a
 

Mouse bone marrow cells Chromosomal aberrations – Degraeve and Moutschen 1984
 

Mouse bone marrow cells Micronuclei – Kevekordes et al. 1996
 

Male mice Dominant lethal – Degraeve and Moutschen 1984
 

– = negative results 
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corpora lutea, implants, live embryos, and dead fetuses were recorded.  The results showed no significant 

effects of parathion on the end points monitored.  However, administration of 0.3 mg paraoxon/kg 

resulted in a low number of live embryos per litter with females mated during the first and seventh week 

after dosing; the former case appeared to be associated with a higher number of pre-implantation loss and 

the latter case with a lower number of corpora lutea. The differences with control values were not 

statistically significant.  Without specifying, Degraeve and Moutschen (1984) noted that the doses of 

parathion and paraoxon used, 10 and 0.3 mg/kg, respectively, induced obvious signs of intoxication, but 

little or no mortality.  The data available in animal studies indicate that exposure to environmentally 

relevant levels of parathion is unlikely to represent a genotoxic hazard.  No useful data in humans were 

found. 

Studies of the genotoxic potential of parathion in vitro have yielded negative results, with one exception 

(Table 3-5).  Parathion did not induce mutations in Salmonella typhimurium, Escherichia coli, or Serratia 

marcescens (Fahrig 1974; Mohn 1973; Simmon et al. 1976).  Parathion also did not induce mitotic 

recombination, mitotic gene conversions, or forward mutations in yeast (Fahrig 1974; Gilot-Delhalle et al. 

1983; Simmon et al. 1976).  Only Gilot-Delhalle et al. (1983) conducted their test of forward mutation in 

Schizosaccharomyces pombe both with and without metabolic activation.  In studies with mammalian 

cells in vitro, Nishio and Uyeki (1981) reported the only positive data for an increase frequency of sister 

chromatid exchanges in cultures of Chinese hamster ovary cells in the presence of parathion and in the 

absence of an activating system; no tests were conducted with metabolic activation.  Tests conducted with 

equimolar concentrations of paraoxon also yielded positive results, and there was no significant difference 

in sister chromatid exchange frequencies induced by parathion and paraoxon (Nishio and Uyeki 1981).  

However, incubation of human lymphocytes with parathion for up to 48 hours did not result in an 

increase in the frequency of sister chromatid exchanges relative to controls (Kevekordes et al. 1996). The 

difference between the results of Nishio and Uyeki (1981) and Kevekordes et al. (1996) may be due, in 

part, to the different test systems used (Chinese hamster ovary cells vs. human lymphocytes) and the 

difference in the concentrations of parathion tested (mM range vs. µM range, respectively).  The studies 

available suggest that parathion is not a mutagenic compound. 
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Table 3-5.  Genotoxicity of Parathion In Vitro 

Results 
With Without 

Species (test system) End point activation activation Reference 
Prokaryotic organisms: 

Salmonella typhimurium 
TA98, TA100, TA1535, 
TA1537, TA1538 

Reverse mutation – No data Simmon et al. 1976 

Escherichia coli K-12 Forward mutation No data – Fahrig 1974 
E. coli K-12 Forward mutation No data – Mohn 1973 
Serratia marcescens Reverse mutation No data – Fahrig 1974 

Eukaryotic organisms: 
Saccharomyces cerevisiae Mitotic recombination – No data Simmon et al. 1976 
S. cerevisiae Mitotic gene 

conversion 
No data – Fahrig 1974 

Schizosaccharomyces 
pombe 

Forward mutation – – Gilot-Delhalle et al. 
1983 

Mammalian cells: 
Cultured human Sister chromatid – – Kevekordes et al. 
lymphocytes exchanges 1996 
Chinese hamster ovary 
cells 

Sister chromatid 
exchanges 

No data + Nishio and Uyeki 
1981 

+ = positive results; – = negative results 
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3.4  TOXICOKINETICS 

Data on the absorption of parathion after inhalation and oral exposure are very limited, and do not allow 

for the estimation of absorption rates or fractional uptake by these exposure routes.  However, volunteer 

studies and poisoning incidents confirm that parathion is absorbed through both the respiratory and 

gastrointestinal tracts.  The dermal uptake of parathion has been well-studied in a variety of systems and 

has been shown to be highly variable, ranging from 9 up to 100%, depending on anatomical site, in one 

study of volunteers.  Dermal uptake is also affected by parathion formulation, ambient temperature, 

relative humidity, skin condition, and airflow across the exposed skin. 

Few data on the distribution of parathion in body tissues are available; these data are limited to oral and 

intravenous or intraperitoneal exposure routes. Available in vivo data show high affinity of parathion for 

adipose tissue and the liver, with lower levels seen in the kidney, muscles, lung, and brain of animals 

exposed in vivo. Transplacental transfer of the parathion or its metabolite(s) has been demonstrated in 

sheep.  In blood, as much as 94–99% of parathion is bound to proteins, particularly albumin. 

The metabolism of parathion is important in assessing its toxicity, as bioactivation to the paraoxon 

metabolite is a key step in the toxicity associated with AChE inhibition.  Metabolism of parathion reflects 

complex interactions among a number of cytochrome P450 isozymes capable of both bioactivation and 

detoxification, as well as detoxification by carboxylesterases and A-esterases, and elimination facilitated 

by UDP-glucuronosyltransferase, glutathione transferase, and other conjugating enzymes.  The 

involvement of numerous bioactivating and detoxifying enzymes suggests that polymorphisms in the 

genes encoding these enzymes might lead to substantial interindividual variability; in addition, sex, age, 

and pregnancy status have been shown to change the metabolism of parathion in animals. 

Parathion is eliminated primarily through metabolism and subsequent excretion of metabolites in urine; a 

small proportion of metabolites is eliminated through the feces.  Excretion of metabolites in urine has 

been shown to continue for days after exposure has concluded. 

3.4.1 Absorption 

There are few data on the absorption of parathion after inhalation and oral exposure.  Available 

information on inhalation exposure is limited to early volunteer studies in humans, in which the exposure 

levels were not measured; these studies indicate only that parathion can be absorbed via the respiratory 

tract.  Likewise, an occupational study, volunteer studies, and case reports of poisonings in which AChE 



   
 

    
 
 

 
 
 
 
 

  

  

 

  

 

  

  

 

  
 

    

 

 

    

    

     

  

     

  

 

 

 

   
 

  

     

   

   

  

   

   

   

   

  

 

81 PARATHION 

3. HEALTH EFFECTS 

inhibition or parathion metabolites were detected confirm the oral absorption of parathion, but do not 

indicate the rate or degree of absorption.  The oral bioavailability of parathion in dogs has been estimated 

to range from 1 to 29%.  The dermal uptake of parathion has been extensively studied in humans, 

animals, and in vitro; the data indicate large variability in dermal absorption rates, which depend on 

ambient temperature, relative humidity, anatomical area of skin exposed, and skin condition (Gosselin et 

al. 2005).  Depending on the anatomical region, between 9 and 100% of the applied dose was absorbed 

across the skin of volunteers in a study by Maibach et al. (1971). 

3.4.1.1  Inhalation Exposure 

The parathion metabolite, p-nitrophenol, was detected in a volunteer exposed to parathion via inhalation 

of vapors for 5 consecutive days (Hartwell et al. 1964).  The exposure concentrations were not measured 

or estimated, but were generated by spreading fresh technical parathion over 36 square inches of area and 

heating to 105–150°F. The authors also measured decreases in cholinesterase activity in erythrocytes and 

plasma in volunteers exposed to parathion as vapor or dust, or from a chamber sprayed with an insecticide 

sprayer (exposure concentrations were neither measured nor estimated). These data indicate that 

parathion vapor and dust are absorbed across the respiratory tract, but do not provide enough information 

to estimate the fractions absorbed.  An occupational study determined a maximum concentration of 

parathion in air of 0.8 mg/m3 and an estimated average of about 0.2 or 0.3 mg/m3 (Brown and Bush 

1950).  This level of exposure appeared to be associated with reduced levels of both plasma and 

erythrocyte cholinesterase activities. 

3.4.1.2  Oral Exposure 

Case reports of humans accidentally or intentionally poisoned by ingestion of parathion (i.e., Eyer et al. 

2003 and others in Section 3.2.2) provide evidence of gastrointestinal absorption, but do not include 

measurements of parathion intake.  For example, the concentration of parathion in plasma was 318 ng/mL 

in a 72-year old man hospitalized after ingesting an unknown amount of parathion in a suicide attempt 

(Hoffman and Papendorf 2006).  Morgan et al. (1977) measured metabolites of parathion in the urine of 

volunteers who ingested 1 or 2 mg/day of parathion in corn oil for 5 consecutive days, also providing 

evidence for oral absorption.  Blood samples were not collected.  Urine samples were not collected during 

the 5-day exposure period (collected only during the 2-day post-dosing period); in addition, the average 

cumulative excretion of metabolites was not reported. Thus, these data do not provide a reliable estimate 

of oral absorption. 
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Braeckman et al. (1983) estimated the oral bioavailability of parathion to be between 1 and 29% in seven 

mongrel dogs given 10 mg/kg 14C parathion via gavage.  Bioavailability was estimated based on the ratios 

of the areas under the serum concentration-time curves after oral and intravenous administration. The 

peak serum concentrations in the seven treated dogs varied from 0.01 to 0.41 μg/mL, and time to peak 

ranged from 30 minutes to 5 hours, indicating substantial interindividual variability.  Urinary excretion of 

radioactivity was similar after oral and intravenous administration of parathion to two dogs; the oral 

absorption estimates were 57 and 98% based on the ratios of the percentages of dose excreted after the 

two exposures. 

Puga and Rodrigues (1996) estimated LD50 values in order to evaluate the effect of different solvents on 

the oral absorption of parathion in rats.  Administration of 2% parathion (w/v) in arol vehicle yielded a 

slightly higher oral LD50 (130 mg/kg; 95% CI 98–152) than administration in xylene (LD50 of 102 mg/kg; 

95% CI 78–121), suggesting greater oral absorption from xylene than from arol; however, the difference 

was small and the CIs overlapped. 

3.4.1.3  Dermal Exposure 

Evidence of dermal absorption of parathion is available from poisoning incidents in the general 

population (Eitzman and Wolfson 1967; Lores et al. 1978) and among agricultural workers (Grob et al. 

1950; Milby et al. 1964; Quinby and Lemmon 1958).  Lores et al. (1978) reported that the concentration 

of parathion in the whole blood was 0.034 ppm in a 13-year-old boy who died from organophosphate 

poisoning via dermal contact with treated tobacco; the only metabolite detected was diethyl 

phosphorothioate (0.26 ppm).  In agricultural workers, Milby et al. (1964) estimated that a picker 

exhibiting cholinergic signs was exposed to a total of <4 mg/day and that dermal exposure contributed the 

highest amount, approximately 3.2 mg. 

Available data indicate wide variability in the rates and fractional absorption of parathion across human 

skin.  Dermal absorption rates vary depending on the form of parathion in contact with skin (e.g., vapor or 

dust), the temperature and relative humidity of the ambient air, the anatomical location of the exposed 

skin, and the condition of the exposed skin (Hayes et al. 1964; Maibach et al. 1971; Gosselin et al. 2005). 

Measurement of urinary metabolites has suggested that dermal exposure may yield higher absorbed doses 

than respiratory exposure during parathion spraying activities.  Durham et al. (1972) estimated the dermal 

and respiratory exposure of workers engaged in spraying parathion in orchards, and measured urinary 
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excretion to estimate absorption.  The average dermal exposure, extrapolated from measurements of 

parathion on pads worn by the workers on clothing near bare skin, was 137.9 mg.  Based on total urinary 

excretion of p-nitrophenol (other metabolites were not measured), average dermal absorption was 

estimated to be 1.23% after subtracting the estimated respiratory exposure of 0.24 mg.  The study authors 

also conducted controlled experiments to assess respiratory and dermal exposure separately with workers 

wearing either protective clothing or a respirator during exposure to an airblast spray machine.  In these 

experiments, dermal exposure proved to be much greater (0.497–0.666 mg absorbed dose based on 

excretion of p-nitrophenol) than respiratory exposure (0.006–0.088 mg). 

Higher ambient temperature is associated with higher dermal penetration of parathion in humans.  

Funckes et al. (1963) and Hayes et al. (1964) conducted a series of experiments investigating dermal 

absorption of parathion in various forms and at different ambient temperatures.  Funckes et al. (1963) 

observed temperature-related increases in the urinary excretion of p-nitrophenol after dermal exposure to 

2% parathion dust on one hand and forearm of each of four volunteers.  Peak rates of p-nitrophenol 

excretion, occurring 5–6 hours after exposure, averaged 9.7, 25, 21.9, and 88.6 μg/hour at 58, 70, 82, and 

105°F (respectively), indicating temperature-dependent increases in dermal penetration.  Likewise, 

experiments by Hayes et al. (1964) showed markedly increased urinary excretion of p-nitrophenol at 

higher temperatures after 3 hours of exposure to filter paper pads containing 46–51 g of parathion.  The 

total excretion of parathion over the 3 days after exposure was ~3- and 5-fold higher at 80 and 104°F, 

respectively, compared with similar exposure at 52°F. 

Maibach et al. (1971) observed substantial variation in the absorption of parathion across skin from 

different anatomical regions of volunteers.  In each experiment, six volunteers received a topical 

application of 4 μg/cm2 14C-parathion, and urine was collected for 5 days after dosing.  Based on total 

urinary excretion of radioactivity (and corrected for incomplete urinary recovery) the highest absorption 

estimates, ~100 and ~64% of the applied dose, were observed when the dose was applied to scrotal and 

axillary skin, respectively; the lowest absorption estimates, ~9 and 12% of applied dose, were across the 

skin of the forearm and palm, respectively.  Areas of the face and scalp exhibited relatively high 

absorption (about 30–40%); the study authors suggested that the presence of follicles in these areas 

enhanced penetration. 

Experiments with animal skin tested in vitro also demonstrate the dependence of dermal uptake on 

ambient temperature and relative humidity.  Chang and Riviere (1991) showed that increased humidity 

enhanced the penetration of parathion across porcine skin in vitro; the mean absorption efficiency 
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increased more than 2-fold when relative humidity was increased from 60 to 90% in 8-hour experiments 

using doses from 4 to 400 μg/cm2.  Higher penetration was also observed when the air or perfusate 

temperature was increased from 37 to 42°C (Chang and Riviere 1991). 

Knaak et al. (1984) evaluated dermal absorption of 14C-parathion applied to the clipped backs of male and 

female rats. Male rats received 44 μg/cm2 parathion over 13.7 cm2 of skin, while females received 

48 μg/cm2 parathion over 12.5 cm2 of skin.  Recovery of radioactivity from excreta, plasma, liver, kidney, 

heart, and remaining carcass indicated that 59.2 and 57% of the applied dose was absorbed by males and 

females, respectively.  The authors estimated permeability rates of 0.33 and 0.49 μg/hour/cm2 for males 

and females, respectively, based on elimination from plasma; permeability constants (Kp) were estimated 

as 7.5x10-3 cm/hour for males and 1x10-2 cm/hour for females. 

Based on quantification of radioactivity in plasma and excreta, Qiao and Riviere (1995) estimated the 

mean systemic bioavailability of parathion (40 μg/cm2) applied to the back and abdomen of weanling pigs 

to be 14.7–19.7 and 8.9–9.2%, respectively. 

Puga and Rodrigues (1996) estimated dermal LD50 values in order to evaluate the effects of different 

solvents on the percutaneous absorption of parathion in rats.  Parathion (2% w/v) in arol or xylene vehicle 

was applied to the shaved back of rats over a 16 cm2 area.  As was seen with the oral study by these 

authors, administration in arol yielded a slightly higher LD50 (310 mg/kg; 95% CI 298–359) than 

administration in xylene (LD50 of 242 mg/kg; 95% CI 220–276), suggesting greater dermal absorption 

from xylene than from arol.  However, plasma cholinesterase activity did not differ significantly in the 

rats treated with the different vehicles; thus, it is not clear that absorption differences were entirely 

responsible for the different lethality estimates. 

Nabb et al. (1966) measured AChE inhibition to estimate dermal absorption of parathion by male albino 

rabbits. Technical parathion was applied to the animals’ clipped sides while the rabbits were lightly 

anaesthetized; the parathion was left in place until symptoms of poisoning appeared between 5 and 

8 hours later.  Comparison of AChE inhibition rates after dermal exposure with rates observed with 

intravenous exposure yielded absorption rate estimates of 0.021–0.39 μg/minute/cm2 (Nabb et al. 1966). 

The flux of 14C-parathion across freshly harvested skin flaps from weanling Yorkshire pigs peaked at 

about 4 hours after the end of dosing, reaching a peak rate of almost 0.01% of the dose/minute (Williams 

et al. 1990).  The flux rate declined to about half the peak rate by 10 hours post-exposure (Williams et al. 

http:0.021�0.39
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1990).  A 5 cm2 area of the skin flap was treated with 40 μg/cm2 parathion for 8 hours.  The authors 

estimated the fraction of dose that would be absorbed through 6 days post-dosing to be 0.066, which 

compared favorably with the fraction of dose absorbed by whole animals exposed by topical application 

of 40 μg/cm2 parathion on the abdomen (0.064, calculated from total excretion of radioactivity over 

6 days). 

In vitro estimates of parathion permeability across skin are shown in Table 3-6.  Available in vitro data 

(Chang and Riviere 1993; Miller and Kasting 2010; Moody et al. 2007; Wester and Maibach 1985) 

suggest that the mass of parathion absorbed across the skin increases in proportion to applied dose up to 

doses as high as 3,200 μg/cm2. Van der Merwe et al. (2006) measured the flux of parathion across 

porcine skin over the course of a 480-minute exposure at six different applied doses (6.3, 11.1, 22.5, 43.3, 

106.9, and 209.1 μg/cm2).  The peak flux rate, as measured in percent of dose per hour, occurred at 

180 minutes after the beginning of exposure; the rate remained the same for the remainder of the exposure 

time. 

Qiao et al. (1996) studied how the interactions between two different solvents, dimethyl sulfoxide 

(DMSO) and acetone, the surfactant sodium lauryl sulfate (SLS), the rubefacient methyl nicotinate 

(MNA), and the reducing agent stannous chloride (SnCl2) affected the absorption of radiolabeled 

parathion through isolated perfused porcine skin.  The investigators used a full 2x4 factorial design to 

study treatment effects and potential interactions. The results showed that more radiolabeled parathion 

was absorbed with DMSO than with acetone. SLS increased absorption of parathion in both DMSO and 

acetone vehicles, while MNA reduced absorption rates in DMSO and acetone without significantly 

changing total absorption.  Stannous chloride blocked absorption of parathion and increased residue level 

on the skin surface and in the stratum corneum.  Overall, the study showed interactive effects at multiple 

levels that need to be considered when studying dermal absorption of a chemical in a mixture. 

3.4.2 Distribution 

Few data on the distribution of parathion in body tissues are available; only oral, intravenous, or 

intraperitoneal exposure routes were used in the available studies.  Available in vivo data show high 

affinity of parathion for adipose tissue and the liver (García-Repetto et al. 1995; Poore and Neal 1972) 

that is also seen in in vitro studies (Jepson et al. 1994; Sultatos 1990).  Lower levels of parathion and/or 

paraoxon have been detected in the kidney, muscles, lung, and brain of animals exposed in vivo (Nielsen 

et al. 1991; Poore and Neal 1972).  Radioactivity has been detected in ovine fetal blood and amniotic fluid 
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Table 3-6. In Vitro Estimates of Parathion Dermal Permeability 

Basis for Percent 

Reference 
Applied 
dose Duration 

absorption/ 
permeability 
estimate 

absorption 
of applied 
dose 

Permeability 
coefficient 
(Kp; cm/hour) Conditions 

Wester et 
al. 2000 

4 μg/cm2 96 hours Receptor 
liquid only 

1.78±0.41 1.89x10-4 Permeability of 
14C-parathion through 
human skin samples 
(1 cm2 and 500 μm thick) 
measured in flow-through 
skin diffusion cells 

0.29±0.17 2.04x10-5 As above with dry 
uniform material covering 

0.65±0.16 6.16x10-5 As above with wet 
uniform material covering 

Miller and 
Kasting 
2010 

0.4 μg/cm2 

4 μg/cm2 

41 μg/cm2 

117 μg/cm2 

76 hours Receptor 
liquid + 
dermis 

29.9±4.2 
31.8±4.1 
32.1±4.4 
24.3±4.9 

Not reported Permeability of 
14C-parathion through 
human skin samples 
(400 μm thick) 
measured in modified 
Franz skin diffusion 
cells; unoccluded 

0.4 μg/cm2 

4 μg/cm2 

41 μg/cm2 

117 μg/cm2 

57.2±8.5 
60.0±5.3 
53.0±4.2 
35.2±3.6 

Not reported As above, but occluded 

Boudry et 
al. 2008 

15 μg/cm2 24 hours Receptor 
liquid only 
receptor 
liquid + skin 
+ stratum 
corneum 

7.5±7.3 

23.4±10.6 

Not reported Permeability of 
14C-parathion in ethanol 
through human 
abdominal skin samples 
(0.84 cm2 and 420– 
550 μm thick) measured 
in dynamic glass 
diffusion cells; 
unoccluded 

Shehata-
Karam et 
al. 1988 

38 μg/cm2 48 hours 78.64 Not reported Permeability of 
14C-parathion through 
fresh human newborn full 
thickness (882– 
1,093 μm) foreskin 
samples measured in 
modified static diffusion 
cell system 
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Table 3-6. In Vitro Estimates of Parathion Dermal Permeability 

Basis for Percent 

Reference 
Applied 
dose Duration 

absorption/ 
permeability 
estimate 

absorption 
of applied 
dose 

Permeability 
coefficient 
(Kp; cm/hour) Conditions 

Chang and 
Riviere 
1991 

4 μg/cm2 

40 μg/cm2 

400 μg/cm2 

8 hours Receptor 
liquid only 

7.69 
1.91 
0.46 

Not reported Permeability of 
14C-parathion through 
weanling pig skin 
(0.32 cm2 and 500 μm 
thick) samples 
measured in Bronaugh 
flow-through Teflon 
diffusion cells at 60% 
relative humidity 

4 μg/cm2 

40 μg/cm2 

400 μg/cm2 

16.91 
5.25 
1.18 

Not reported As above, but 90% 
relative humidity 
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after maternal intravenous exposure to 14C-parathion, indicating transplacental transfer of the compound 

or its metabolite(s) (Villaneuve et al. 1971).  In blood, parathion is largely bound to proteins, particularly 

albumin; a number of studies have suggested that 94–99% of parathion is protein-bound at equilibrium 

(Braeckman et al. 1983; Foxenberg et al. 2011; Nielsen et al. 1991). 

3.4.2.1  Inhalation Exposure 

No data on the distribution of parathion after inhalation exposure were located in the available literature. 

3.4.2.2  Oral Exposure 

García-Repetto et al. (1995) measured the tissue concentrations of parathion at intervals between 4 hours 

and 20 days after dosing male Wistar rats via gavage with parathion in olive oil at 1/3 the oral LD50. 

Parathion and paraoxon in various tissues were analyzed by gas chromatography.  Parathion was 

detectable in adipose tissue and muscle 4 hours after dosing, and in these tissues as well as the liver and 

brain 4 days post-dosing.  Tissue:blood partitioning coefficients estimated for seven different time 

intervals showed increasing distribution to all four tissues; the highest partition coefficients (4.11–20.76) 

were in the liver at ≥12 days post-dosing.  Paraoxon appeared in the blood and adipose tissue within 

4 hours of dosing and in the liver 8 days after dosing.  When paraoxon was administered orally, only the 

liver showed tissue:blood partition coefficients >1 (ranging up to ~23 at 12–14 days post-dosing). 

Poore and Neal (1972) measured bound 35S in the tissues of rats given an oral dose of 29 mg/kg 35S 

parathion and sacrificed 35 minutes later; the results are shown in Table 3-7.  The highest concentrations 

of 35S were (in descending order) in the liver, intestine, kidney, muscles, lung, and brain. 

3.4.2.3  Dermal Exposure 

No data on the distribution of parathion after dermal exposure were located in the available literature. 

3.4.2.4  Other Routes of Exposure 

When piglets of different ages were administered 0.5 mg/kg 14C-radiolabelled (ring-2,6) parathion 

intravenously, radioactivity was detected in the plasma as well as the kidney, liver, lung, brain, heart, and 

muscle tissues (Nielsen et al. 1991).  Age-related differences in tissue distribution were observed; newborn 

piglets (1–2 days) exhibited much higher concentrations in all tissues than 1- or 8-week-old piglets.  Mean 

http:4.11�20.76
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Table 3-7.  Concentration of Bound 35S in Tissues of Male Sprague-Dawley Rats 
35 Minutes After a Single Dose of 29 mg/kg 35S Parathion Orally 

Tissue Tissue concentration (pmol 35S bound/mg precipitate) 
Liver 31.97±4.25 
Intestine 13.75±6.41 
Kidney 7.51±1.36 
Intercostal muscle 5.44±0.26 
Lung 3.99±1.02 
Leg muscle 1.73±0.54 
Brain 1.04±0.36 
Heart 0.93±0.40 
Diaphragm 0.70±0.09 

Source:  Poore and Neal 1972 
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tissue concentrations are shown in Table 3-8 for all three age groups, as are tissue:plasma concentration 

ratios; concentrations of parathion and its metabolites in plasma, liver, and kidney are shown in Table 3-9.  

Braeckman et al. (1983) estimated the hepatic extraction ratio as the percentage difference in parathion 

concentration (parent compound, measured by gas chromatography) in the femoral artery (as a surrogate 

for the portal vein concentration) compared with the hepatic vein.  In anaesthetized dogs given intravenous 

administration of parathion in a foreleg vein, the hepatic extraction ratio was estimated to be 82–97%. 

In vitro estimates of parathion partitioning to various tissues confirm the high partitioning to adipose 

tissue and liver (Jepson et al. 1994; Sultatos 1990); the available values are listed in Table 3-10. 

Studies of pregnant animals demonstrate changes in toxicokinetics associated with physiological changes 

during gestation, and also show that parathion can cross the placenta.  The distribution of parathion from 

blood to liver after intraperitoneal injection of 5 mg/kg was lower in pregnant mice (liver:blood ratio of 

1.42) than in virgin mice (liver:blood ratio of 15.35) (Weitman et al. 1986).  The authors postulated that 

the higher blood concentrations of parathion in pregnant mice would be available for extrahepatic 

activation and result in the higher toxicity of this compound in pregnant animals.  Villeneuve et al. (1971) 

showed that 14C-parathion administered intravenously at a dose of 1 mg/kg to pregnant sheep resulted in 

transfer of radioactivity to the fetal blood and amniotic fluid. 

In the blood at equilibrium, 94–99% of parathion is bound to proteins, while only 60% of paraoxon is 

bound. Available information suggests that the degree of binding does not vary at parathion or paraoxon 

concentrations up to 50 μM.  Nielsen et al. (1991) reported that 97% of parathion administered 

intravenously to piglets was bound to plasma proteins.  The fraction protein-bound did not differ by age 

(newborn and 1- and 8-week-old piglets were tested) or plasma concentration of parathion (ranging from 

10 to 250 ng/mL).  Foxenberg et al. (2011) evaluated parathion (25 or 50 μM) and paraoxon (10, 25, or 

50 μM) binding to human serum albumin using the equilibrium dialysis method.  Equilibrium was 

reached at about 60 minutes for both compounds; at this time, about 94% of parathion was bound to 

albumin and about 6% remained free at both concentrations, while about 60% of paraoxon was bound and 

40% was free (at all concentrations).  Sultatos et al. (1984) also used the equilibrium dialysis method to 

assess binding of parathion to fatty acid-free bovine serum albumin; the authors reported an apparent Kd 

value of 11.1 μM.  Braeckman et al. (1983) obtained similar results (protein binding of 99%) in both 

human and dog serum treated with parathion in vitro; the fraction bound did not vary with parathion 

concentration in the range tested (0.2–30 μg/mL).  When human albumin solution containing a typical 
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Table 3-8.  Tissue Distribution of 14C in Piglets 3 Hours After a Single Dose of 
0.5 mg/kg 14C-Parathion Intravenously 

Tissue concentration (ng/g or mL) Tissue:plasma ratio 
Tissue Newborn 1 Week old 8 Weeks old Newborn 1 Week old 8 Weeks old 
Plasma 262±145 120±24 69±11 – – – 
Kidney 1,360±546 746±129 509±83 5.2±0.6 6.5±2.3 7.4±0.8 
Liver 1,254±638 156±10 46±8 5.4±2.1 1.3±0.3 0.67±0.04 
Lung 421±92 78±9 47±5 1.6±0.3 0.66±0.10 0.71±0.18 
Brain 215±76 38±10 16±4 0.8±0.3 0.33±0.15 0.25±0.10 
Heart 302±85 53±3 22±2 1.1±0.3 0.50±0.19 0.32±0.07 
Muscle 484±92 110±38 13±2 1.8±0.3 0.95±0.43 0.19±0.04 

Source:  Nielsen et al. 1991 
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Table 3-9.  Concentrations of Parathion and its Metabolites in Piglets 3 Hours After 
a Single Dose of 0.5 mg/kg 14C-Parathion Intravenously 

Tissue concentration (ng/g or mL) 
Tissue Newborn 1 Week old 8 Weeks old 
Total 14C 

Plasma 262±145 120±24 69±11 
Kidney 1,360±546 746±129 509±83 
Liver 1,254±638 156±10 46±8 

Parathion 
Plasma 83±47 11±5 3±1 
Kidney 272±122 37±15 5±3 
Liver 840±426 17±28 1±1 

Paraoxon 
Plasma 2±0.8 0.06±0.11 0.14±0.06 
Kidney Not detected Not detected Not detected 
Liver 6±5 0.2±0.5 Not detected 

p-Nitrophenol 
Plasma 14±4 4±0.5 3±0.7 
Kidney 762±136 433±127 81±15 
Liver 100±50 12±9 1±1 

Source:  Nielsen et al. 1991 
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Table 3-10. Partition Coefficients for Parathion in Mice and Rats 

Tissue Mouse Rat Method Reference 
Blood:saline 54.2 High pressure ultrafiltration Jepson et al. 1994 
Fat: saline 5,365 High pressure ultrafiltration 
Muscle:saline 136 High pressure ultrafiltration 
Liver:saline 270 High pressure ultrafiltration 
Skin: saline 160–180 High pressure ultrafiltration 
Liver: blood 6.56 Equilibrium dialysis Sultatos 1990 
Lung: blood 2.55 Equilibrium dialysis 
Brain: blood 3.51 Equilibrium dialysis 
Diaphragm: blood 1.37 Equilibrium dialysis 
Fat: blood 11.84 Equilibrium dialysis 
Rapidly perfused tissue:blood 6.56 Equilibrium dialysis 
Slowly perfused tissue:blood 4.51 Equilibrium dialysis 
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albumin concentration was used instead of human serum, the measured protein binding fraction was also 

high (98%), indicating that parathion is largely bound to albumin in serum (Braeckman et al. 1983). 

3.4.3 Metabolism 

The metabolism of parathion is important in assessing its toxicity, as bioactivation to the paraoxon 

metabolite is a key step in the toxicity associated with AChE inhibition.  Figure 3-3 outlines the metabolic 

pathways for parathion.  Metabolism of parathion reflects complex interactions among a number of 

cytochrome P450 isozymes capable of both bioactivation and detoxification, as well as detoxification by 

carboxylesterases and A-esterases, and elimination facilitated by UDP-glucuronosyltransferase, 

glutathione transferase, and other conjugating enzymes.  The complexity of these metabolic pathways is 

increased by the potential for both induction of P450 enzymes and inhibition of P450 enzymes by a sulfur 

radical produced when parathion is metabolized.  The involvement of numerous bioactivating and 

detoxifying enzymes suggests that polymorphisms in the genes encoding these enzymes might lead to 

substantial interindividual variability; this variability has been seen in studies of paraoxon formation after 

incubation of human liver microsomes from a number of donors with parathion (Mutch and Williams 

2006; Mutch et al. 2003).  Sex, age, and pregnancy status have been shown to change the metabolism of 

parathion in animals.  Pregnancy has been shown to alter the metabolism of parathion, possibly by 

increasing the systemic availability of parathion for extrahepatic metabolism (Weitman et al. 1983).  In 

addition, an age-related decline in parathion toxicity was postulated to occur via enhancement of 

detoxification by A-esterases (Benke and Murphy 1974).  Enhanced toxicity in female rats was associated 

with decreased detoxification of parathion (Benke and Murphy 1974). 

The bioactivation of parathion is generally well-understood, and is similar to other phosphorothionates.  

The initial step in bioactivation of parathion is desulfuration by cytochrome P450, yielding a theoretical 

unstable intermediate compound (phosphoxythiiran) that decomposes to paraoxon and a sulfur (S:) atom. 

Paraoxon may react with AChE to form the bound oxon and free p-nitrophenol, or it may be detoxified by 

A-esterase (also known as paraoxonase) to diethylphosphoric acid and p-nitrophenol.  The bound oxon 

has two potential fates: irreversible binding to AChE, leading to “aging” of inhibited AChE (irreversible 

inhibition; see Section 3.5 for further details) or reversible binding with the release of free AChE and 

diethylphosphoric acid (Gosselin et al. 2005). 

Cytochrome P450 isozymes are also responsible for detoxification of parathion via dearylation.  This 

process, which may represent an alternative fate for the putative phosphoxythiiran intermediate (Tang et 
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Figure 3-3.  Metabolism of Parathion 

Sources: Buratti et al. 2003; Gosselin et al. 2004; El-Masri et al. 2004; Mutch et al. 2003 
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al. 2006), yields diethylphosphorothioic acid and p-nitrophenol.  Diethylphosphorothioic acid may 

undergo desulfuration to diethylphosphoric acid.  p-Nitrophenol may be eliminated as is or conjugated 

with glycine, glutathione, glucuronic acid, or sulfuric acid for excretion in urine.  Paraoxon, 

diethylphosphorothioic acid, and diethylphosphoric acid were also shown to be formed non-enzymatically 

by a homogeneous preparation of rabbit liver cytochrome P450 (Kamataki et al. 1976). The three 

metabolites appeared to have been formed by breakdown by different pathways of a common 

enzymatically formed intermediate thought to be a sulfine derivative of parathion. 

Neal (1967) first suggested that different cytochromes are involved in the formation of paraoxon and 

diethylphosphorothionate by showing that some enzyme inhibitors inhibited the formation of one 

parathion metabolite but not the other.  For example, p-chloromercuribenzoate, Cu2+, and 8-hydroxy­

quinoline inhibited the formation of diethylphosphorothionate more than the formation of paraoxon.  A 

number of investigators have attempted to identify the primary cytochrome isoforms involved in 

bioactivation and detoxification of parathion using recombinant human cytochromes (Buratti et al. 2003; 

Foxenberg et al. 2007; Mutch et al. 2002, 2003) and human liver microsomes (Mutch and Williams 2006; 

Mutch et al. 2003).  Estimates of Km, Vmax, and in some cases, intrinsic clearance rate (Vmax/Km) for 

individual cytochrome enzymes have been calculated by Foxenberg et al. (2007), Mutch et al. (2006), and 

Buratti et al. (2002).  Example estimates from Foxenberg et al. (2007) are shown in Table 3-11.  Other 

studies have examined correlations between paraoxon formation and cytochrome-specific enzyme 

reactions, enzyme activities, or other cytochrome-specific markers (Buratti et al. 2002; Mutch et al. 1999) 

or by measuring the change in paraoxon formation that occurs when specific cytochromes are inhibited 

(Buratti et al. 2003; Butler and Murray 1997; Huhr et al. 2000).  Taken together, the available data 

suggest that CYP1A2, CYP2B6, CYP2C19, and CYP2C8 may be important producers of paraoxon at low 

parathion exposures, and CYP2C9, CYP2D6, and CYP3A4/5 become more important at higher parathion 

exposures. 

The initial step in bioactivation of parathion is desulfuration by cytochrome P450, yielding a theoretical 

unstable intermediate compound (phosphoxythiiran) that decomposes to paraoxon and a sulfur (S:) atom.  

While paraoxon is the active inhibitor of AChE, the free sulfur atom, S, is reactive, and can damage 

nearby proteins including the cytochromes (Tang et al. 2006). 

The primary urinary metabolites identified in humans and animals exposed to parathion are p-nitrophenol, 

diethylphosphoric acid, and diethylphosphorothioic acid.  Morgan et al. (1977) quantified levels of 

p-nitrophenol, diethylphosphoric acid, and diethylthiophosphate in the urine of four volunteers who 



   
 

    
 
 

 
 
 
 
 

 

 
 

       
    

    
    
    

    
    
    
    

    
    
    
    

    
    
    
    

 
 

 

97 PARATHION 

3. HEALTH EFFECTS 

Table 3-11.  CYP-Specific Metabolism of Parathion by Recombinant Human P450s 

Parameters Vmax (pmol/minute/nmol P450) Km (μM) Vmax/Km (Clint) 
Paraoxon formation 

CYP1A2 6,131±90.1 1.63±0.13 3.755 
CYP2B6 4,827±134 0.61±0.08 7.875 
CYP2C9 1,140±47.7 9.78±1.63 0.117 
CYP2C19 4,879±73.7 0.56±0.04 8.705 
CYP3A4 14,009±767 65.5±6.83 0.214 
CYP3A5 2,020±540 43.2±27.1 0.047 
CYP3A7 – – – 

p-Nitrophenol formation 
CYP1A2 5,656±83.9 2.15±0.16 2.637 
CYP2B6 1,804±46.4 0.74±0.10 2.447 
CYP2C9 742±63.3 12.1±4.01 0.061 
CYP2C19 2,338±65.4 0.60±0.09 3.872 
CYP3A4 15,738±488 31.2±2.40 0.504 
CYP3A5 1,175±1,039 68.2±121 0.017 
CYP3A7 1,739±201 37.3±10.6 0.047 

Source:  Foxenberg et al. 2007 
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ingested 1 or 2 mg/day parathion in corn oil for 5 consecutive days.  Urinary excretion of 

diethylphosphoric acid represented between 3 and 13% of the daily dose of parathion during the first 

24 hours post-dosing and between 3 and 9% during the second 24 hours; p-nitrophenol and 

diethylthiophosphoric acid excretion represented 2–8 and 1–3% of the administered dose, respectively, 

during the first 24 hours and were not detected during day 2 (Morgan et al. 1977). 

Urinary metabolites of parathion in male Sprague-Dawley rats given three consecutive daily gavage doses 

of 3.73 or 37.3 mg parathion/rat/day in peanut oil included diethylphosphoric acid, diethylphosphoro­

thioic acid, and p-nitrophenol.  The study authors estimated that diethylphosphoric acid and diethyl­

phosphorothioic acid excretion represented 39.6 and 41.2% of the low and high administered doses, 

respectively, while p-nitrophenol excretion represented 37.3 and 11.8%, respectively, of the administered 

doses (Bradway et al. 1977). 

Conjugates of p-nitrophenol have also been detected in the urine of humans exposed to parathion.  Oneto 

et al. (1995) detected the sulfate and glucuronide conjugates of p-nitrophenol in the urine of a 20-year-old 

woman who died of parathion ingestion. p-Nitrophenol glucuronide, p-nitrophenol sulfate, and free 

p-nitrophenol constituted approximately 7, 80, and 13%, respectively, of the total urinary p-nitrophenol. 

Nielsen et al. (1991) measured urinary metabolites in newborn, 1-week-old, and 8-week-old piglets given 

a single dose of 0.5 mg/kg 14C-parathion intravenously.  The primary metabolites identified in urine were 

p-nitrophenyl-glucuronide (85% of the excreted radioactivity), p-nitrophenyl-sulfate (6%), and free 

p-nitrophenol (1%).  The structural location of the radioactive label was not reported, but is presumed to 

be on the ring based on the detected urinary metabolites, which did not include diethylphosphoric acid or 

diethylthiophosphoric acid.  Hollingworth et al. (1973) identified the glutathione conjugate of 

p-nitrophenol when rat or mouse liver soluble fraction was incubated with paraoxon. 

Parathion is bioactivated primarily in the liver, but also in extrahepatic tissues including the lung and 

brain.  Norman and Neal (1976) observed metabolism of parathion to paraoxon and diethylphosphoric 

acid in rat lung microsomes incubated with 14C-parathion (5x10-5 M) in the presence of an NADPH-

generating system in vitro, and this metabolism was inhibited by cytochrome inhibitors SKF-525A and 

piperonyl butoxide.  The authors also detected paraoxon and diethylphosphoric acid when the 250,000 g 

centrifugal precipitate from rat brain was incubated with 15x10-5 M parathion.  Poore and Neal (1972) 

detected radioactivity in the liver, lung, and brain of rats given an intraperitoneal dose of 35S, 
32P-parathion (18 mg/kg).  In addition, the authors measured 35S in a number of tissues after oral 
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administration of 29 mg/kg 35S-parathion to adult male rats; radioactivity was detected in the liver, 

intestine, kidney, intercostal muscle, lung, leg muscle, brain, heart, and diaphragm.  While it is possible 

that metabolites were formed in the liver and subsequently transported to other tissues, the authors 

postulated that this was unlikely given the reactivity of the sulfur formed by metabolism of parathion.  

Neal (1967) incubated microsomes with the 9000 g supernatant from four tissues with 0.35 μM parathion 

and measured the metabolites formed by each using thin-layer chromatography.  The highest rate of 

metabolism was in the liver (98, 417, and 353 μmol/hour/g tissue formation of paraoxon, diethyl­

phosphorothionate, and diethylphosphate, respectively) followed by kidney (32, 13, and 3 μmol/hour/g 

tissue), lung (13, 9, and 3 μmol/hour/g tissue), and brain (4, 9, and 2 μmol/hour/g tissue). 

There is some evidence for dose-dependence of parathion metabolism to p-nitrophenol.  Bradway et al. 

(1977) reported that the fractional urinary excretion of p-nitrophenol was lower (11.8% of administered 

dose) in male rats given 37.3 mg parathion/day for 3 days than in those given 3.73 mg/day for 3 days 

(37.3% of administered dose).  The fractional excretion of diethylphosphoric acid and diethylphospho­

thioic acid (combined) was similar (~40%) at both doses (Bradway et al. 1977). 

Physiological changes during pregnancy may alter the metabolism of parathion.  Weitman et al. (1986) 

observed no differences between pregnant (gestation day 19) and nonpregnant mice in the levels of 

parathion, paraoxon, or p-nitrophenol measured in liver perfusate after 45 minutes of perfusion, 

suggesting that pregnancy does not alter the total hepatic metabolism of parathion.  However, Weitman et 

a l. (1983) observed higher concentrations of both parathion and paraoxon in the blood and brain of 

pregnant (gestation day 19) mice given a single intraperitoneal dose of 5 mg parathion/kg compared with 

virgin mice given the same treatment; the higher levels of paraoxon correlated with significantly greater 

inhibition of plasma and brain cholinesterase and with greater cholinergic toxicity in the pregnant mice.  

The authors suggested the possibility that extrahepatic metabolism of parathion might be a partial 

explanation for the enhanced toxicity in pregnant animals (Weitman et al. 1983). 

Benke and Murphy (1975) observed an age-related decline in parathion toxicity (intraperitoneal LD50) in 

rats tested at 1, 12–13, 23–24, and 35–40 days of age; no additional decline occurred in those 56–63 days 

of age.  In addition, there was a sex difference in LD50 values; females were more sensitive.  The authors 

attempted to correlate the changes in toxicity with changes in enzyme activities for bioactivation and 

detoxification.  The age changes in toxicity were not explained by variation in cholinesterase inhibition or 

in oxidative bioactivation in the liver; however, the increasing LD50 values did correlate with increasing 

A-esterase activity in the rat liver and plasma, suggesting greater detoxification potential in older rats 
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(Benke and Murphy 1975).  The soluble liver fractions from adult male and female rats exhibited 

significant differences in GSH-dependent dearylation of parathion, with significantly (p<0.005) less 

dearylation in females; this correlated with increased toxicity in female rats. 

3.4.4 Elimination and Excretion 

Parathion is eliminated primarily through metabolism and subsequent excretion of metabolites in urine; a 

small proportion of metabolites is eliminated through the feces.  Excretion of metabolites in urine has 

been shown to continue for days after exposure has concluded.  Parathion elimination from the blood of a 

poisoned patient was estimated to exhibit a biphasic pattern, with a half-life of 3.1 hours for the early 

phase and 17.2 hours for the later phase.  For the later phase; however, these elimination kinetics were 

likely substantially altered by the patient’s treatment with gastric lavage and activated charcoal. 

3.4.4.1  Inhalation Exposure 

Urinary excretion of p-nitrophenol was measured in a volunteer exposed for 30 minutes each day for 

4 days, followed by a 10-minute exposure on the fifth day (Hartwell et al. 1964).  The exposure was 

reported as 1 mL of fresh technical parathion spread over 36 square inches of area and heated to 105– 

115°F (the first 4 days) or 5 mL spread over 80 square inches and heated to 150°F (day 5; exposure was 

terminated at 10 minutes due to illness of the volunteer).  Daily urinary excretion of p-nitrophenol 

reached a peak of 3,517 μg/day on the fifth day of exposure and then declined to 300.5 μg/day 2 days 

later.  When excretion of p-nitrophenol was highest, plasma and erythrocyte cholinesterase activities were 

2 and 17% of pre-exposure values, respectively. 

3.4.4.2  Oral Exposure 

The concentration of parathion in plasma dropped rapidly (from 318 to <50 ng/mL) in the first 10 hours 

after a 72-year-old man was hospitalized after ingesting an unknown amount of parathion in a suicide 

attempt (Hoffman and Papendorf 2006).  Blood levels declined more gradually thereafter.  The study 

authors estimated a half-life of 3.1 hours for the early phase and 17.2 hours for the later phase.  The 

elimination kinetics were likely altered by the patient’s treatment with gastric lavage and activated 

charcoal, and do not represent elimination kinetics in the absence of treatment. 

Morgan et al. (1977) measured metabolites of parathion in the urine of four volunteers (age and sex not 

specified) who ingested 1 or 2 mg/day of parathion in corn oil for 5 consecutive days.  The same 
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volunteers were exposed to both doses, separated by 4 undosed days; these volunteers had also been 

exposed to methyl parathion over two 5-day treatment periods prior to the experiments with parathion.  

Daily 24-hour urine samples were collected for analysis; mean levels of the three metabolites quantified 

in urine are provided in Table 3-12.  Urinary excretion of diethyl phosphate peaked between 4 and 

8 hours post-dosing, and remained at detectable levels through the 2-day post-dosing observation period. 

The study authors estimated that urinary excretion of diethyl phosphate represented between 3 and 13% 

of the daily dose of parathion during the first 24 hours post-dosing and between 3 and 9% during the 

second 24 hours.  p-Nitrophenol excretion was highest during the first 4 hours after dosing and declined 

rapidly thereafter to negligible levels by 24 hours post-dosing.  Diethylthiophosphate followed a similar 

pattern.  The authors estimated that p-nitrophenol and diethylthiophosphate excretion represented 2–8 and 

1–3% of the administered dose, respectively, during the first 24 hours; these metabolites were not 

detected during day 2. 

3.4.4.3  Dermal Exposure 

Hayes et al. (1964) assessed the time course of urinary excretion of p-nitrophenol over five consecutive 

daily 2-hour exposures to of 2% parathion dust (5 g) applied to the right hand and forearm of volunteers.  

The hourly rate of excretion of p-nitrophenol peaked (at ~60–80 μg/hour) 4–10 hours after each exposure 

and dropped rapidly thereafter. 

The rate of urinary p-nitrophenol excretion in an individual with whole-body exposure (apart from the 

head) to parathion dust (2%) for 7 hours was 247.1 μg/hour in the first 24 hours after the start of exposure 

and dropped to 58.7 and 21.3 μg/hour in the subsequent 2 days (Hayes et al. 1986).  No estimate of the 

total dermal dose was made. 

3.4.4.4  Other Routes of Exposure 

The total clearance of parathion from the body was age-dependent in piglets given 0.5 mg/kg 
14C-parathion intravenously; clearance rates of 7, 35, and 121 mL/minute/kg were estimated for newborn, 

1-week-old, and 8-week-old piglets, respectively (Nielsen et al. 1991). The study authors estimated 

elimination rate constants (ke) of 0.0038, 0.0265, and 0.0771 minute-1, respectively, for elimination from 

the central compartment.  Urinary excretion of radioactivity within the first 3 hours after dosing 

accounted for 18, 48, and 82% of the administered dose in the newborn, 1-week-old, and 8-week old 

piglets; all three groups excreted a small amount of radioactivity (0.1–0.2%) in the bile (Nielsen et al. 

1991). 
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Table 3-12.  Urinary Excretion of Parathion Metabolites in Volunteers Exposed
 
Via Ingestion
 

Urine concentration Creatinine-adjusted 
(mg/L) 24-Hour excretion (mg) excretion (mg/g) 

Metabolite 1 mg/day 2 mg/day 1 mg/day 2 mg/day 1 mg/day 2 mg/day 
p-Nitrophenol 0.06 0.17 0.13 0.30 0.07 0.18 
Diethyl phosphate 0.07 0.17 0.16 0.30 0.09 0.18 
Diethylthiophosphate 0.03 0.07 0.06 0.12 0.03 0.07 

Source:  Morgan et al. 1977 
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3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points. 

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species. The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters. The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.  

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems. If the uptake and disposition of the chemical substance(s) are 
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adequately described, however, this simplification is desirable because data are often unavailable for 

many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty. The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994).  

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species. 

Figure 3-4 shows a conceptualized representation of a PBPK model. 

If PBPK models for parathion exist, the overall results and individual models are discussed in this section 

in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species extrapolations. 

PBPK models for parathion have been developed for a variety of purposes (El-Masri et al. 2004; 

Foxenberg et al. 2011; Gearhart et al. 1994; Gentry et al. 2002; Gosselin et al. 2005; Qiao et al. 1994; 

Sultatos 1990; van der Merwe et al. 2006).  However, these models are inadequate for purposes of 

quantitative risk assessment. 

Sultatos (1990) developed a PBPK model for parathion in the mouse based on parameters determined in 

vitro. The model included eight compartments (gastrointestinal tract, lungs, brain, diaphragm, fat, rapidly 

perfused tissue, slowly perfused tissues, and liver).  Previous results from in vitro studies using mouse 

hepatic microsomes were used to estimate tissue/blood distribution coefficients (Kp) by equilibrium 

dialysis and calculate Michaelis-Menten kinetic constants Vmax and Km used in the model (Sultatos 1986). 

Sources for physiological parameters used for the mouse were not specified in the study report.  

Application of the PBPK model to the calculation of a hepatic extraction ratio of parathion in the mouse 

yielded a value in agreement with that obtained from parathion-perfused mouse livers in situ.  The 

development of the Sultatos (1990) PBPK model for parathion demonstrates the usefulness of in vitro 

data. 

Gearhart et al. (1994) developed a PBPK model for the inhibition of AChE by organophosphate esters. 

The model was developed for diisopropylfluorophosphate pharmacokinetics and AChE inhibition in rats, 

mice, and humans, but included an adaptation for modeling parathion and its toxic metabolite, paraoxon.  
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Figure 3-4.  Conceptual Representation of a Physiologically Based
 
Pharmacokinetic (PBPK) Model for a 


Hypothetical Chemical Substance
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Note:  This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 

Source:  Krishnan and Andersen 1994 
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The model included eight compartments (lungs, brain, liver, kidney, rapidly perfused tissue, fat, slowly 

perfused tissue, and diaphragm).  Major determinants of parathion and paraoxon disposition in the model 

were metabolism of parathion to paraoxon, hydrolysis of paraoxon by esterases, binding of paraoxon to 

esterases, and tissue solubility of parathion and paraoxon; parameters for these determinants were based 

on in vivo and in vitro results from rodent studies (Chemnitius et al. 1983; Maxwell et al. 1987; Pla and 

Johnson 1989; Wallace and Dargan 1987).  Metabolism of parathion to paraoxon was described in the 

model to occur in the liver and kidney via Michaelis-Menten kinetics.  Initial Km and Vmax were based on 

intrinsic metabolic clearance of parathion and paraoxon from livers of rodents (Wallace and Dargan 

1987).  Partitioning estimates in the rat brain were based on measured concentrations of parathion and 

paraoxon following intravenous injection of parathion (Eigenberg et al. 1983); partitioning to other tissues 

was estimated in vitro by equilibrium dialysis (Jepson et al. 1992).  Simulations of parathion and 

paraoxon kinetics in brain, liver, and blood after intravenous injection generally reflected the measured 

concentrations of Eigenberg et al. (1983).  The simulation of fat tissue required the addition of diffusion 

limitation to achieve agreement with experimental data.  Sources for physiological parameters used for 

rats, mice, and humans were not specified. 

Gentry et al. (2002) used the PBPK model for parathion and paraoxon developed by Gearhart et al. (1994) 

in combination with Monte Carlo analysis to incorporate information on polymorphisms in the PON1 

gene into the analysis of variability in tissue dose of paraoxon.  The results of the analyses suggested that 

polymorphisms in the PON1 gene make only a minor contribution to the overall variability in paraoxon 

tissue dose. Sensitivity analysis showed that the estimation of the area under the curve (AUC) was most 

sensitive to changes related to the polymorphism of paraoxonase.  Other parameters with the greatest 

impact on the arterial AUC were the Vmax and Km for paraoxonase in the blood compartments.  However, 

many other parameters also had a significant impact on the AUC, reducing the impact of the 

polymorphism on the total variability. Overall, the results were consistent with in vivo studies in animals, 

which suggest that PON1 polymorphism has little impact on the differences in paraoxon toxicity (see 

Costa et al. 2013 for review). 

El-Masri et al. (2004) developed PBPK rat models for parathion and paraoxon to estimate blood 

concentrations of paraoxon.  These models were used in conjunction with PBPK models for chlorpyrifos 

and its desulfuration metabolite (chlorpyrifos-oxon) and linked to an AChE kinetics model to produce an 

overall PBPK model intended to describe interactions between parathion and chlorpyrifos in the rat.  The 

parathion and paraoxon PBPK models each include eight compartments (lung, rapidly perfused tissue, 

slowly perfused tissue, fat-diffusion limited, diaphragm, brain, kidney, and liver).  Physiological 
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parameters and tissue/blood coefficients for parathion and paraoxon were obtained from the report of 

Gearhart et al. (1994).  Metabolic and biochemical reaction parameters for parathion were based on 

parameters reported in earlier reports (Gearhart et al. 1994; Ma and Chambers 1994).  Hydrolysis of 

parathion by esterases was assumed to occur in all compartments except for fat, slowly perfused tissue, 

and diaphragm.  The overall model was designed to evaluate interactions between chlorpyrifos and 

parathion in AChE inhibition in rats. 

Gosselin et al. (2005) developed a multi-compartment model to describe the kinetics of parathion and its 

urinary metabolites, p-nitrophenol and alkyl phosphates, in order to assess worker exposure and health 

risks. The model was designed to estimate the dose of parathion absorbed under dermal, oral, or 

inhalation exposure routes under various temporal exposure scenarios.  Model compartments represent 

body burdens and excreta of parathion and its metabolites. Model parameter values were determined 

from statistical fits to published in vivo human kinetic data. The model was developed for the purpose of 

biological monitoring. 

Foxenberg et al. (2011) converted an existing PBPK/PD model for chlorpyrifos that used metabolism 

parameters from rat liver into human cytochrome-based/age-specific models for chlorpyrifos using 

chemical-specific recombinant human cytochrome kinetic parameters (Vmax, Km), hepatic cytochrome 

content, and plasma binding measurements to estimate AChE and butyrylcholinesterase inhibition.  These 

models were used to simulate single oral exposures of adults and infants to chlorpyrifos (0.1, 1.0, and 

10 mg/kg) or parathion (0.005, 0.025, and 0.1 mg/kg). 

Van der Merwe et al. (2006) developed a PBPK model to simulate the absorption of organophosphate 

pesticides, including parathion, through porcine skin with flow-through cells.  Parameters related to the 

structure of the stratum corneum and solvent evaporation rates were independently estimated.  Solvent 

evaporation rate, diffusivity, and mass transfer factor parameters were optimized based on experimental 

dermal absorption data.  Diffusion cell studies were conducted to validate the model under a range of 

parathion doses (6.3–106.9 µg/cm2), a variety of solvents (ethanol, 2-propanol, acetone), different solvent 

volumes, occlusion versus nonoccluded administration, and corneocyte removal. 

Qiao et al. (1994) developed a pharmacokinetic model to quantify disposition of parathion and its major 

metabolites following dermal or intravenous administration to weanling pigs.  The model quantitates 

evaporative loss, dosing device binding, percutaneous absorption, first-pass metabolism, and distribution 

and excretion of parent compound and its metabolites. 
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3.5  MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

As discussed in detail in Section 3.4 (Toxicokinetics), parathion is absorbed following inhalation, oral, or 

dermal exposure.  No studies were located in which mechanisms of parathion absorption were evaluated. 

It is expected that absorption occurs via passive diffusion.  In blood, parathion binds reversibly to plasma 

proteins and can subsequently be distributed throughout the body (Foxenberg et al. 2011).  Parathion is 

lipophilic, and thus has a higher affinity for adipose tissue compared with blood or saline solution (Jepson 

et al. 1994; Sultatos 1990).  In addition, depending on exposure route, a large fraction of parathion may 

distribute to the liver (Braeckman et al. 1983), where it is bioactivated to paraoxon.  The bioactivation of 

parathion to its active metabolite paraoxon may vary widely among individuals due to variations in P450 

isozymes and their activities.  When human liver microsomes from 27 individuals were incubated with 

200 μM parathion, there was an 18-fold range (0.038–0.683 nmol/minute/mg protein) in formation of 

paraoxon and a 90-fold range in formation of p-nitrophenol (0.023–2.10 nmol/minute/mg protein; Mutch 

and Williams 2006; Mutch et al. 1999, 2003).  No information was located regarding mechanisms of 

elimination and excretion of parent compound or metabolites of parathion. 

3.5.2 Mechanisms of Toxicity 

Effects Mediated by AChE Inhibition. The most salient systemic effects of exposure to parathion are 

related to its direct effect on the nervous system and the secondary effects that result from it.  Parathion is 

known to exert direct systemic effects through inhibition of cholinesterase, specifically AChE in the 

central and peripheral nervous systems.  Inhibition of AChE is common to all organophosphorus 

pesticides (OPs), but there are other mechanisms of toxicity of OPs that should be kept in mind when 

addressing toxic effects.  AChE is also present in erythrocytes. Thus, inhibition of erythrocyte AChE is 

commonly used as a surrogate indicator of the extent of inhibition of neural AChE.  In addition, 

cholinesterases can be found in plasma.  In humans, plasma cholinesterase is almost exclusively 

composed of butyrylcholinesterase.  Although butyrylcholinesterase is capable of hydrolyzing 

acetylcholine and butyrylcholine in vitro, the in vivo substrate of plasma cholinesterase is unknown. 

Parathion is bioactivated in vivo and in vitro to its oxygen analog form, paraoxon (e.g., Buratti et al. 2003; 

Forsyth et al. 1989; Lessire et al. 1996; Mutch et al. 1999; Sultatos and Minor 1986; Zhang et al. 1991). 

Paraoxon phosphorylates a hydroxyl group on serine at the active site of AChE.  Under normal 

circumstances, AChE rapidly and efficiently degrades the neurotransmitter, acetylcholine, following its 

http:0.023�2.10
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release at the nerve synapse or at a neuromuscular junction; however, the phosphorylated AChE enzyme 

cannot degrade acetylcholine and the neurotransmitter accumulates at the ending of cholinergic nerves, 

resulting in repetitive firing of postsynaptic fibers (Abou-Donia 1995; Bajgar 2004; Costa 2008). 

Cholinergic terminals play an important role in the normal function of the neuromuscular, central 

nervous, endocrine, immunological, and respiratory systems (Carrier and Brunet 1999).  Thus, the 

inhibition of the enzyme AChE by paraoxon may have profound and wide-ranging systemic effects. 

Acetylcholine can be found in the autonomic, somatic motor, and central nervous systems. In the 

autonomic nervous system, accumulation of acetylcholine leads to the overstimulation of the muscarinic 

receptors of the parasympathetic nervous system, which can lead to effects on the exocrine glands 

(increased salivation, perspiration, lacrimation), eyes (miosis, blurred vision), gastrointestinal tract 

(nausea, vomiting, diarrhea), respiratory system (excessive bronchial secretions, wheezing, tightness of 

chest), and cardiovascular system (bradycardia, decrease in blood pressure) (Abou-Donia 1995; Bajgar 

2004; Costa 2008). 

Stimulation of the nicotinic receptors in the parasympathetic or sympathetic nervous system may also 

cause adverse effects on the cardiovascular system such as tachycardia, pallor, and increased blood 

pressure.  In the somatic nervous system, nerve fibers innervate the skeletal muscles fibers at the motor 

end-plate region. Accumulation of acetylcholine in the somatic nervous system may be manifested as 

muscle fasciculations, cramps, paralysis, and flaccid or rigid tone, among other signs and symptoms. 

Overstimulation of the nerves in the central nervous system, specifically the acetylcholine receptors of the 

brain, by the accumulation of acetylcholine may result in lethargy, drowsiness, and mental confusion 

among other effects. More severe effects on the central nervous system include a state of coma without 

reflexes, depression of the respiratory centers, and cyanosis (Abou-Donia 1995; Bajgar 2004; Costa 

2008).  It has been recognized that, after repeated exposures to organophosphate insecticides, humans and 

other animal species may develop a tolerance to the appearance of cholinergic signs (Costa et al. 1982). It 

has been proposed that this tolerance to the effect of excess acetylcholine develops by the down-

regulation of postsynaptic cholinergic receptors. This reduces the apparent cholinergic symptoms even in 

the presence of marked reductions in erythrocyte AChE activity (Sultatos 1994). 

Which effects may dominate depends on the sensitivity of the target enzyme at various synapses and the 

level of the ultimate toxic molecule, paraoxon, which may be produced at or near the nerve from 

parathion or transported from the site of parathion activation such as the liver, lung, or kidney.  While 
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distribution of paraoxon is poorly understood, it undoubtedly depends on the route of exposure to 

parathion. 

Phosphorylated AChE may be reactivated or irreversibly inhibited through a process known as ‘aging”.  

The bond between AChE and the phosphorous atom is very stable, but may be hydrolyzed by water over 

the course of hours or days (Abou-Donia 1995; Bajgar 2004; Costa 2008).  Some hydroxylamine 

derivatives known as oximes facilitate AChE dephosphorylation and are used to treat poisoning with 

organophosphates such as parathion.  Phosphorylated AChE may not be reactivated if “aging” of the 

inhibited enzyme occurs; “aging” refers to the hydrolysis of one of the two alkyl groups of the 

organophosphate (Costa 2008), leading to irreversible inhibition of AChE. 

Recent studies have demonstrated that plasma AChE levels in animals treated with organophosphate 

compounds may not only return to pretreatment levels, but may also increase to as much as 250% over 

pretreatment levels (Duysen and Lockridge 2011).  Plasma AChE levels were 150% of pretreatment 

levels in male mice 3 days after a single subcutaneous dose of 12.5 mg parathion/kg (Duysen and 

Lockridge 2011).  The study authors postulated that organophosphate treatment induces apoptosis, which 

then triggers induction of AChE leading to plasma levels that exceed pretreatment levels. 

Effects Mediated by Mechanisms Other Than AChE Inhibition. As described in Section 3.2.4, a series 

of studies by Slotkin and coworkers have shown that exposure to parathion and other organophosphate 

pesticides can affect the nervous system via mechanisms not directly related to inhibition of AChE 

(Slotkin 2011; Slotkin et al. 2006a, 2006b, 2008, 2009a). In these studies, neonatal rats received 

subcutaneous injections of parathion and were evaluated at later times up to adulthood.  Administration of 

parathion affected the development of neurotransmitter systems involved in critical functions such as 

learning and memory (cholinergic) and in the expression of emotion, appetite, and sleep patterns 

(serotoninergic), and induced behavioral alterations (Levin et al. 2010; Timofeeva et al. 2008). These 

effects occurred with doses of parathion that did not induce significant inhibition of AChE.  In addition, 

the fact that the effects of parathion differed from those of other organophosphate pesticides regarding 

brain areas targeted and sex selectivity supported the view that the mechanism(s) involved, although not 

elucidated, was not directly related to AChE inhibition. Additional studies showed that early-life 

exposure to parathion caused a metabolic dysregulation in adult rats that was consistent with a pre­

diabetic state (Lassiter et al. 2008). The mechanism for the metabolic effects appeared to involve 

disruption of adenylyl cyclase signaling in peripheral tissues, particularly in the liver (Adigun et al. 2010).  

Adenylyl cyclase is the enzyme that synthesizes cAMP from ATP.  Interestingly, some of the effects of 
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early parathion exposure were ameliorated or reversed by a high-fat diet, including effects on lipid 

peroxidation associated with synaptic activity (Slotkin et al. 2009b, 2009c). This was presumably due to 

global changes in the composition of synaptic membrane lipids.  The fact that effects on lipids interacted 

with deficits in synaptic function suggested that the former may contribute to impaired behavioral 

performance (Lassiter et al. 2010; Slotkin 2011). 

3.5.3 Animal-to-Human Extrapolations 

While there are clear parallels between the toxicokinetics (and toxicity) of parathion in animals and 

humans, little is known about how well the toxicokinetics of parathion in animals predicts its behavior in 

humans due to the lack of studies examining humans (or human tissues) and animals under the same 

conditions.  Recent work suggests that the desulfuration of parathion to paraoxon in human liver is 

mediated by a large number of cytochromes (CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, 

CYP2D6, and CYP3A4/5), which show different affinities for the substrate (see Section 3.4.3). 

Significant variations in the activities of these cytochromes among humans and laboratory animal species 

would be expected to result in differences in parathion metabolism. 

In addition, there are four esterase enzymes in rodent blood (carboxylesterase, butyrylcholinesterase, 

AChE, and paraoxonase-1) that can detoxify organophosphate compounds, while human blood contains 

only three, lacking carboxylesterase (Duysen et al. 2012).  Carboxylesterase has been shown to exert a 

protective effect against the toxicity of parathion in rats and mice.  Karanth and Pope (2000) showed that 

the enhanced sensitivity of neonatal, juvenile, and aged rats (relative to adult) to the acute lethality of 

parathion was correlated with plasma carboxylesterase activity in these different age groups.  Duysen et 

al. (2012) observed significantly enhanced inhibition of plasma AChE in carboxylesterase knockout mice 

(73.1% inhibited), compared with their wild type counterparts (56% inhibited), after subcutaneous 

administration of 12.5 mg/kg parathion, but not after subcutaneous administration of 0.2 mg/kg paraoxon. 

The efficiency of the parathion detoxification by serum paraoxonase (PON1) varies in laboratory animals.  

For example, PON1 knockout mice are no more sensitive to parathion toxicity (as measured by 

cholinesterase inhibition) than their wild type counterparts, while injection of rabbit PON1 into rats 

protects against paraoxon toxicity (Furlong et al. 2000).  Furlong et al. (2000) surmised that these 

disparate findings suggest that rabbit PON1 has a higher catalytic efficiency for paraoxon hydrolysis than 

mouse PON1.  Furlong et al. (2000) also performed in vitro measurements of paraoxon hydrolysis 

products after incubation of paraoxon with human serum from individuals with polymorphic PON1 
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genotypes (PON1192QQ and PON1192RR).  These experiments revealed variations in human PON1 Km 

(0.36 and 0.42 mM for QQ and RR genotypes, respectively) and Vmax (284 and 1,400 units/L, 

respectively), and showed that the QQ PON1 form is kinetically similar to the mouse PON1 (Km of 

0.34 mM and Km of 300 units/L), while the RR form is more similar to the rabbit PON1 (Km of 0.23 mM 

and Km of 2,372 units/L). 

There are indications that the response of the human nervous system to paraoxon exposure may differ 

from that in animals.  Van den Beukel et al. (1998) observed greater sensitivity of the human nicotinic 

ACh receptor of SH-SY5Y neuroblastoma cells to blockage by paraoxon (as measured via membrane 

currents) than the nACh receptor of either mouse neuroblastoma cells or locust thoracic ganglion cells. 

Ecobichon and Comeau (1973) measured the in vitro inhibition of plasma cholinesterases by paraoxon in 

11 different mammalian species; IC50 values (concentration necessary to achieve 50% enzyme inhibition) 

ranged from 0.2x10-7 M in hamster to 7.9x10-7 M in swine.  IC50 values in humans, male rats, female rats, 

and mice were relatively similar, at 1.1x10-7, 1.4x10-7, 1.8x10-7, and 1.3x10-7 M, respectively (Ecobichon 

and Comeau, 1973).  

3.6  TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to 

develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors.  In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 
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(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

The effects of parathion on the uptake and metabolism of [3H]-testosterone in the prostate from mice were 

studied (Thomas and Schein 1974).  Gavage administration of up to 5.3 mg parathion/kg/day for 5 days 

did not significantly affect the uptake of labeled testosterone or the ability of the prostate to transform the 

androgen into its main metabolites.  In addition, the in vitro metabolism of testosterone by hepatic 

microsomes from mice treated with parathion was not significantly affected, except for an increase in the 

polar metabolite, androstanediol.  Furthermore, hepatic testosterone hydroxylase activity was not affected 

by treatment with parathion, as judged by unchanged amounts of 6-, 7-, and 16-hydroxytestosterone 

derivatives. 

Several studies have examined potential interactions of parathion with the estrogen receptor (ER) and 

androgen receptor (AR) in vitro. The AR antagonistic activity of parathion was examined in vitro in 

HepG2 human hepatoma cells transfected with human AR plus an androgen-responsive luciferase 

reported gene, MMTV-luc (Tamura et al. 2003).  Dose-shift experiments were conducted by adding set 

concentrations of parathion across a complete dose-response range of the natural ligand 

dihydrotestosterone (DHT).  The results showed that parathion lacked sufficient AR antagonistic activity 

to determine potency in the dose-shift experiments. Parathion was reported to have weak anti-androgenic 

effects in a reporter gene assay in Chinese hamster ovary cells (CHO-K1) relative to DHT alone (Kojima 

et al. 2004).  The concentration of parathion showing 20% inhibition on the androgenic activity induced 

by 10-10 M DHT was 2.2x10-6 M.  In the same study, parathion did not exhibit androgenic transcriptional 

activity or agonism or antagonism to the two human estrogen receptor subtypes, hERα and hERβ.  In yet 

another in vitro study, parathion exhibited anti-androgenic activity when tested using a human AR 

reporter gene assay in an African monkey kidney cell line CV-1 transiently transfected with the 

constructed reporter gene plasmid pMMTV-chloramphenicol acetyltransferase (CAT) and the human AR 
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expression plasmid AR/pcDNA3.1 (Xu et al. 2008).  The anti-androgenic activity was assessed by 

measuring the ability of parathion to inhibit the induction of the CAT product by DHT.  At concentrations 

≥10-7 M, parathion significantly inhibited DHT-induced CAT activity in a concentration-related manner. 

The concentration of parathion that induced 50% inhibition was approximately 2x10-7 M.  In the same 

study, parathion did not exhibit androgenic activity, which is consistent with the results of Kojima et al. 

(2004). 

Parathion was a potent activator of the constitutive androgen receptor (CAR) in HepG2 cells in vitro with 

an EC50 of 1.43 µM (Mota et al. 2010).  CAR is a transcription factor that regulates several detoxification 

enzymes.  Cells were cotransfected with a mCAR expression plasmid and a luciferase reporter plasmid 

containing the CYP2B6 PBREM and then were cotreated with the inverse agonist, dihydroandrosterone 

(DHA) plus parathion.  In studies in vivo with wild type (WT) and CAR-null mice, administration of a 

dose of 5 mg parathion/kg did not activate CAR in hepatic microsomes of either strain (Mota et al. 2010).  

However, parathion was significantly more toxic to CAR-null mice than to WT mice, suggesting that 

CAR has a protective role against parathion toxicity.  According to the investigators, the lack of CAR 

activation in hepatic microsomes by parathion may have been due to its short half-life possibly preventing 

reaching the required hepatic concentration to activate CAR (Mota et al. 2010). 

The potential role of parathion in human breast cancer has been studied by Calaf and coworkers using 

human breast epithelial cells in vitro. The investigators reported that parathion alone and in combination 

with 17β-estradiol (E2) induced malignant transformation of an immortalized human breast cell line, 

MCF-10F (Calaf and Roy 2007a); E2 alone did not induce malignant transformation. Malignancy was 

confirmed by increased anchorage independent growth and invasive capabilities. It was also shown that 

parathion increased the expression of a few proteins associated with signaling pathways and mutant p53 

proteins. Of particular interest was the increase in epidermal growth factor receptor (EGFR) since growth 

factors and their receptors are functionally related to cell proliferation. Studies of gene expression using 

an array-based approach to monitor genes involved in a wide range of functions including apoptosis, cell 

cycle, cell growth and differentiation, signal transduction pathway, and other cancer-related genes showed 

that a significant number of genes were altered by either parathion, E2, or the combination of both (Calaf 

and Roy 2007b, 2008a, 2008b; Calaf et al. 2009).  These results suggested that E2 and parathion can 

induce changes in gene expression in breast epithelial cells influencing the process of carcinogenesis. In 

a related publication, Calaf and Roy (2007c) showed that the parathion-induced effects could be 

significantly diminished by the muscarinic acetylcholine antagonist atropine.  However, how parathion 

could alter gene expression by a cholinergic mechanism was not discussed. 



   
 

    
 
 

 
 
 
 
 

 

   
 

 

      

 

   

    

 

     

    

  

 

   

  

    

   

    

   

    

   

  

  

  

 

    

 

  

 

      

   

 

PARATHION 115 

3. HEALTH EFFECTS 

3.7  CHILDREN’S SUSCEPTIBILITY 

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when most biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 

susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life when a 

particular structure or function will be most sensitive to disruption. Damage may not be evident until a 

later stage of development.  There are often differences in pharmacokinetics and metabolism between 

children and adults.  For example, absorption may be different in neonates because of the immaturity of 

their gastrointestinal tract and their larger skin surface area in proportion to body weight (Morselli et al. 

1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants and young children (Ziegler 

et al. 1978).  Distribution of xenobiotics may be different; for example, infants have a larger proportion of 

their bodies as extracellular water, and their brains and livers are proportionately larger (Altman and 

Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 1966; Widdowson and Dickerson 

1964).  Physiological transport systems of the blood-brain barrier are more active in the developing 

fetus/infant than an adult.  The fetus/infant blood-brain barrier was previously described in past literature 

as being leaky and poorly intact (Costa et al. 2004).  However, current evidence suggests that the blood-

brain barrier is anatomically and physically intact at this stage of development, and the restrictive 

intracellular junctions that exist at the blood-central nervous system interface are fully formed, intact, and 

functionally effective (Saunders et al. 2008, 2012). 
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However, during development of the blood-brain barrier, there are differences between fetuses/infants and 

adults which are toxicologically important. These differences mainly involve variations in physiological 

transport systems that form during development (Ek et al. 2012).  These transport mechanisms (influx and 

efflux) play an important role in the movement of amino acids and other vital substances across the 

blood-brain barrier in the developing brain; these transport mechanisms are far more active in the 

developing brain than in the adult.  Because many drugs or potential toxins may be transported into the 

brain using these same transport mechanisms—the developing brain may be rendered more vulnerable 

than the adult.  Thus, concern regarding possible involvement of the blood-brain barrier with enhanced 

susceptibility of the developing brain to toxins is valid.  It is important to note however, that this potential 

selective vulnerability of the developing brain is associated with essential normal physiological 

mechanisms; and not because of an absence or deficiency of anatomical/physical barrier mechanisms. 

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing; as 

it raises a very important toxicological question as to whether these mechanisms provide protection for 

the developing brain or do they render it more vulnerable to toxic injury.  Each case of chemical exposure 

should be assessed on a case-by-case basis.  Research continues into the function and structure of the 

blood-brain barrier in early life (Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002). 

Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of 

growth and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 
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alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

Acute parathion exposure affects children in the same manner as it affects adults. Regardless of the route 

of exposure, children exposed to high amounts of parathion exhibit the typical cholinergic signs and 

symptoms described in previous sections.  Some examples are provided below. 

Eitzman and Wolfson (1967) reported 30 deaths that occurred in children in the state of Florida from 

1959 through 1964. The average age was 2.9 years and deaths occurred within hours of poisoning.  

Exposure occurred through ingestion of parathion from improper containers, through ingestion of 

parathion from the floor or windowsills where it was placed to kill roaches, or due to inhalation or skin 

contact. There also have been numerous cases of children poisoned though ingestion of contaminated 

food.  For example, Wishahi et al. (1958) reported that 200 people were accidentally poisoned in Cairo, 

Egypt, following ingestion of contaminated flour; 22 of them were children.  There were eight fatalities 

and all were children.  Signs and symptoms included abdominal pain, vomiting, and convulsions. All 

fatal cases fell into a deep coma accompanied by shock in six cases and hypertension in two cases. 

Death, which occurred 4–9 hours after the onset of symptoms, was due to respiratory failure. Postmortem 

examination of five cases selected at random showed cyanosis of the lips, conjunctiva, and face, and 

miosis of the pupils. The heart was enlarged and the lungs showed variable degrees of acute edema; some 

congestion and edema was reported in the brain.  Diggory et al. (1977) reported that 79 cases of poisoning 

occurred in Jamaica due to ingestion of contaminated flour and involved an unspecified number of 

children.  Illness began 10 minutes to 4 hours after a meal and the first symptoms were nausea, cramps 

and vomiting.  Severe cases showed sialorrhea, diplopia, pinpoint pupils, “giddiness,” muscle 

fasciculation, dyspnea, bradycardia, coma, and convulsions. Deaths generally occurred within 6 hours as 

a result of respiratory arrest.  Although the number of children involved was not specified, the 

investigators noted that case-fatality ratios (40%) were highest in children ≤4 years of age.  Etzel et al. 

(1987) reported similar episodes in Sierra Leone that involved children eating bread baked with 

parathion-contaminated flour.  Signs and symptoms included loss of consciousness, shortness of breath, 

excess sweating, frothing of the mouth, wheezing, excess tearing, excess salivation, muscle twitching, 

convulsions, diarrhea, vomiting, increased urination, chest pains, and abdominal cramps.  Children 

between the ages of 1 and 10 years had the highest rates of illness; however, this may have been due to 

higher consumption of bread than adults rather than increased susceptibility. 
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A study of women living in an agricultural community in California did not find a significant association 

between exposure to parathion and adverse developmental effects in the offspring including length of 

gestation, birth weight, length, head circumference, and ponderal index (Eskenazi et al. 2004).  However, 

it should be noted that exposure to parathion was assessed by measuring urinary p-nitrophenol, which can 

also be produced as a result of exposure to substances other than parathion. 

Gestational exposure of rats to up to 1 mg parathion/kg or of rabbits to up to 0.3 mg parathion/kg did not 

cause embryotoxicity or teratogenicity (Renhof 1984, 1985).  However, another study in which rats were 

exposed to parathion during gestation and lactation reported that pups showed EKG alterations, even at 

the lowest dose of parathion tested, 0.01 mg/kg/day (Deskin et al. 1979). 

Numerous studies in rats have demonstrated that younger animals are more sensitive to the effects of 

parathion than mature animals.  This difference is likely due to age-related differences in toxicokinetics. 

It should be noted, however, that in all of these studies, the rats were administered parathion by either 

subcutaneous or intraperitoneal injection, both non-relevant routes of exposure. For example, Gagné and 

Brodeur (1972) showed that weanling rats given parathion intravenously are more susceptible to 

parathion than adult rats mainly because of deficient mechanisms of degradation of parathion and 

paraoxon.  In addition, the brain from adult male rats appeared to be less sensitive to paraoxon than the 

brain from weanling rats. Another study in male rats of various ages (1–80 days old) given parathion 

intraperitoneally reported that the specific activities of AChE in cerebral cortex and of liver aliesterases 

increased with age, thus providing significantly more protection against parathion toxicity (Atterberry et 

al. 1997).  The increase in specific activity of brain AChE occurred without developmental changes in 

sensitivity of the enzyme to paraoxon, but liver aliesterase sensitivity to inhibition by paraoxon decreased 

with age.  Benke and Murphy (1975) examined how the rates of several alternate metabolic pathways 

affected the toxicity of parathion in rats of five ages.  The pathways studied included oxidative activation 

and cleavage, hydrolysis by A-esterases, glutathione-S-alkyl-, and -S-aryl-transfer, and binding of 

paraoxon to tissue constituents.  It was found that, in general, increasing LD50 values with age obtained 

after intraperitoneal injection of parathion correlated better with changes in rates of reactions that 

represented detoxification pathways for paraoxon than for reactions that represented direct metabolism of 

parathion.  The LD50 values were about 6 and 3 times higher in adult males and females than in the 

neonatal male and female rats, respectively. This suggests that the use of an uncertainty factor of 10 to 

protect susceptible populations, such as the young, is probably adequate, at least in rats.  Benke and 

Murphy (1975) also found that age differences in susceptibility were not related to differences in 

sensitivity of cholinesterase to inhibition by paraoxon in vitro. Similar findings were reported by Pope et 
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al. (1991) who found that neonatal rats were more sensitive than adults to the acute toxicity of parathion.  

However, the maximal brain AChE inhibition was similar in both age groups (>78%).  In a subsequent 

paper, Pope and Chakraborti (1992) reported that ED50 estimates of brain AChE and plasma ChE (dose 

that inhibits 50% of enzyme activity) were highly correlated with maximal tolerated doses in neonates 

and adults.  In their study of male rats of varying ages, Atterberry et al. (1997) also reported a progressive 

increase in activities of P 450-mediated activation (desulfuration, 6–14-fold) and detoxification 

(dearylation, 2–4-fold) as well as concentrations of P450 (7-fold) and protein (2-fold) between neonate 

and adult hepatic microsomes.  It was also reported that microsomal pentoxyresorufin (PROD) activity 

increased 16-fold between neonates and adults, whereas ethoxyresorufin (EROD) activity increased 

16-fold until 21 days of age and then decreased in adulthood to a 10-fold increase over neonate levels.  

Atterberry et al. (1997) noted that their results suggested that the lower levels of hepatic aliesterase­

mediated protection and P450-mediated dearylation contribute significantly to the greater sensitivity of 

young rats to parathion toxicity.  Karanth and Pope (2000) conducted a similar study but included an aged 

group of rats (24 months old).  The maximum tolerated dose (i.e., the dose that caused 0% mortality 

7 days after a subcutaneous injection of parathion) was 2.1, 4.8, 18, and 6 mg/kg in neonatal, juvenile, 

adult, and aged rats, respectively.  The levels of carboxylesterases and A-esterases in liver, plasma, and 

lung from neonatal and juvenile rats were significantly lower than in adults.  Aged rats had levels of 

A-esterases in tissues and plasma similar to adults and carboxylesterase levels in liver and lung similar to 

adults, but had significantly lower carboxylesterase levels than adults in plasma.  The authors concluded 

that carboxylesterase activity may play a more critical role in the differential sensitivity to parathion. 

Harbison (1985) determined an intraperitoneal LD50 of 8.8 mg/kg for parathion in adult male rats vs. 

1.8 mg/kg in newborn rats.  Pretreatment of the newborns with the microsomal inducer phenobarbital 

increased the LD50 to 4.8 mg/kg.  Since microsomal enzymes cannot only activate parathion to paraoxon, 

but can also detoxify parathion to p-nitrophenol and diethylphosphorothioic acid (DEPTA), the results 

suggested that inducing the metabolism of parathion in the newborn enhanced detoxification rather than 

bioactivation.  A study in newborn pigs showed age-related distribution of parathion and metabolites in 

tissues (Nielsen et al. 1991).  Three hours after an intravenous injection of 0.5 mg/kg 14C-parathion to 

newborn, 1-week-old, and 8-week-old piglets, tissues and plasma from newborns had significantly more 
14C than 1-week-old piglets, which in turn had more 14C than 8-week-old animals.  This could be 

explained by differences in body clearance (7, 35, and 121 mL/minute/kg with increasing age) and 

urinary excretion (18, 42, and 82% of the dose with increasing age) rather than by age-related differential 

affinity between parathion and the tissues. 
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As previously mentioned, a series of studies in which neonatal rats were administered subcutaneous doses 

of parathion that did not induce significant inhibition of AChE reported alterations in the development of 

neurotransmitter systems and metabolic dysregulation that were evident at later times up to adulthood (see 

Section 3.2.4, Other Routes of Exposure for references).  Since the various organophosphorus pesticides 

tested seemed to induce effects of opposing direction, the investigators suggested that organophosphorus 

pesticides can affect the developing nervous system via mechanisms not directly related to AChE 

inhibition. 

3.8  BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

The National Report on Human Exposure to Environmental Chemicals provides an ongoing assessment 

of the exposure of the U.S. population to environmental chemicals using biomonitoring.  This report is 

available at http://www.cdc.gov/exposurereport/.  The biomonitoring data for parathion from this report 

are discussed in Section 6.5.  A biomarker of exposure is a xenobiotic substance or its metabolite(s) or the 

product of an interaction between a xenobiotic agent and some target molecule(s) or cell(s) that is 

measured within a compartment of an organism (NAS/NRC 1989).  The preferred biomarkers of exposure 

are generally the substance itself, substance-specific metabolites in readily obtainable body fluid(s), or 

excreta.  However, several factors can confound the use and interpretation of biomarkers of exposure. 

The body burden of a substance may be the result of exposures from more than one source. The 

substance being measured may be a metabolite of another xenobiotic substance (e.g., high urinary levels 

of phenol can result from exposure to several different aromatic compounds).  Depending on the 

properties of the substance (e.g., biologic half-life) and environmental conditions (e.g., duration and route 

of exposure), the substance and all of its metabolites may have left the body by the time samples can be 

taken.  It may be difficult to identify individuals exposed to hazardous substances that are commonly 

found in body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, and selenium).  

Biomarkers of exposure to parathion are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of 

http://www.cdc.gov/exposurereport
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tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific. They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by parathion are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are 

discussed in Section 3.10, Populations That Are Unusually Susceptible. 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Parathion 

The most specific biomarkers for exposure to parathion are the parent compound itself and its metabolites 

in tissues and body fluids. Diethylphosphoric acid, diethylthiophosphoric acid, and p-nitrophenol are 

metabolic products of the in vivo degradation of parathion and have been detected in urine of humans 

under field and experimental conditions after oral, dermal, or otherwise unspecified exposure.  For 

instance, Morgan et al. (1977) detected these metabolites in the urine of volunteers as early as 4 hours 

after they ingested 1 or 2 mg parathion/kg.  Diethylphosphoric acid and diethylthiophosphoric acid can be 

detected after exposure to other organophosphate insecticides.  Due to its rapid appearance in urine, 

p-nitrophenol was suggested early on as a biomarker for parathion (Arterberry et al. 1961; Denga et al. 

1995; Wolfe et al. 1970) and remains in use for this purpose today (Arcury et al. 2007; Kissel et al. 2005).  

However, it should be noted that p-nitrophenol can also be derived from exposure to methyl parathion, 

O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN), and other non-pesticide chemicals. Davies et al. 

(1967) reported urinary p-nitrophenol concentrations in 14 fatal and 9 nonfatal cases of parathion 

poisonings in Dade County, Florida during the years 1962–1965; a number of these cases were children. 

The mean concentration of p-nitrophenol in the fatal cases was 40.3 ppm (range 2.4–122 ppm), while the 

concentration in nonfatal cases averaged 10.79 ppm (range 0.7–22 ppm).  In a recent study, Arcury et al. 

(2007) analyzed first morning void urine samples from 60 Latino children of farm workers for pesticide 

metabolites, including p-nitrophenol.  P-nitrophenol was present in 90% of the urine samples at a mean 

creatinine-adjusted concentration of 1.25 μg/g.  Kissel et al. (2005) measured organophosphate 

metabolites in urine samples from 13 children in Washington State who had been identified as having 

potentially elevated organophosphate exposure.  Urine samples were collected before bed, during first 
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morning void, after lunch, and before dinner in two seasons.  A total of 96% of the samples contained 

p-nitrophenol, suggesting possible parathion exposure.  The authors reported that the first morning void 

samples were the best predictors of the volume-weighted daily average (Kissel et al. 2005). 

Noort et al. (2009) described a liquid chromatography-tandem mass spectrometry method for analyzing 

organophosphorothioate pesticides bound to albumin in blood.  The method was able to detect covalent 

binding of parathion and other compounds to albumin at concentrations that did not inhibit butyryl­

cholinesterase.  The study authors suggested that measurement of protein adducts in blood might provide 

a better indication of chronic, low-level exposure than urinary metabolites because the adducts 

accumulate over time.  Further evaluation and application of this method are needed to firmly establish its 

utility and reliability. 

In humans, inhibition of cholinesterases in erythrocytes and plasma may be a useful marker of higher 

levels of exposure.  However, Arterberry et al. (1961) detected significant quantities of urinary 

p-nitrophenol in individuals with occupational parathion exposure, in whom plasma and erythrocyte ChE 

levels were normal, suggesting that urinary p-nitrophenol is a more sensitive indicator of exposure than 

plasma or erythrocyte AChE activity. In general, plasma cholinesterase can be used to assess the extent 

of liver disease, toxicity from organophosphorus or carbamate insecticides, and genetic polymorphisms of 

the enzyme (Sullivan and Krieger 2001). 

3.8.2 Biomarkers Used to Characterize Effects Caused by Parathion 

Diagnosis of organophosphate poisoning, including parathion, can be made by the presence of 

characteristic clinical signs and measurements of serum (plasma) cholinesterase and red blood cell AChE 

activities.  Enzyme inhibition, however, is not specific for organophosphates since exposure to carbamate 

insecticides also results in cholinesterase inhibition.  Nonspecific cholinesterase (pseudocholinesterase, 

butyrylcholinesterase) is present in myelin, liver, and plasma, whereas AChE is present in the central and 

peripheral nervous systems and in red blood cells.  Plasma cholinesterase activity can be inhibited by 20– 

25% without significant physiological consequences (Abou-Donia 1995).  Parathion is a stronger 

inhibitor of plasma cholinesterase than of red blood cell AChE (Maroni et al. 2000).  Plasma 

cholinesterase regenerates at a more rapid rate than red blood cell AChE, about 25% regeneration occurs 

in the first 7–10 days, and is regenerated by the liver in about 2 weeks (Abou-Donia 1995).  After severe 

poisoning, plasma cholinesterase activity remains depressed for up to 30 days, which corresponds to the 

time that it takes the liver to synthesize new enzymes.  Although a more sensitive indicator of exposure to 

organophosphates than red blood cell AChE, plasma cholinesterase is less specific since the levels may 
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also be suppressed due to genetic factors and a variety of conditions and diseases (Abou-Donia 1995; 

Tafuri and Roberts 1987).  The rate of decrease of red blood cell AChE correlates better with appearance 

of symptoms than the absolute value reached after exposure (Maroni et al. 2000).  Reduction of red blood 

cell AChE after severe exposure lasts up to 100 days, reflecting the time of production of new cells. Red 

blood cell AChE levels are representative of AChE levels in the nervous system and, therefore, may be a 

more accurate biomarker of the neurological effects of chronic, low-level exposure of humans to 

parathion (Midtling et al. 1985).  Tafuri and Roberts (1987) proposed a classification of organophosphate 

poisoning as follows.  Clinical signs and symptoms of intoxication may occur when plasma cholinesterase 

levels drop to below 50% of the normal value.  Mild poisoning, with the patient still ambulatory, may 

occur when plasma cholinesterase levels are 20–50% of normal; moderate poisoning with inability to 

walk may occur at levels 10–20% of normal; and severe poisoning with respiratory distress and 

unconsciousness may occur with levels <10% of normal. 

Several methods for measuring red blood cell AChE and plasma cholinesterase are available (see 

Chapter 7).  Baseline data are often collected for workers, preferably three values, but these data would 

not be available for environmentally exposed people.  Inferences made by comparing values of exposed 

subjects with a reference population may be erroneous since values at the upper limit of the normal range 

may be 200% higher than those at the lowest one (Maroni et al. 2000).  Therefore, it is useful to conduct a 

long-term, sequential determination of cholinesterase activity to confirm enzyme inhibition (Coye et al. 

1987).  Plasma cholinesterase is preferred over red blood cell AChE to assess exposure and extent of 

absorption (i.e., to establish reentry intervals to treated areas) since it recovers more quickly and an 

increase in activity is more likely to occur over shorter observation periods (Abou-Donia 1995). 

3.9  INTERACTIONS WITH OTHER CHEMICALS 

Numerous studies in animals have examined how co-exposure to parathion and other substances, 

particularly other pesticides, affect the toxicity of parathion.  Of particular interest has been the study of 

substances that affect the metabolism of parathion, as this plays a crucial role in the toxicity of parathion. 

Some examples are summarized below.  Overall, the data suggest that results from in vivo studies do not 

always parallel the results from in vitro studies, so that caution should be exercised when extrapolating 

from in vitro to in vivo situations.  Worth noting also is that the sequence of exposure can influence the 

toxic outcome of the interaction. 
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In mice, administration of three daily doses of DDT followed 24 hours later by a single dose of parathion 

reduced parathion’s 24-hour LD50 from 10 to 7.2 mg/kg (Chapman and Leibman 1971).  Four pre-doses 

of 3-methylcholanthrene (3-MC) increased the LD50 to 15 mg/kg, whereas pre-dosing with chlordane 

increased the LD50 to 35 mg/kg.  Examination of the metabolism of parathion in vitro in mice pre-treated 

with DDT, 3-MC, or chlordane showed that DDT treatment preferentially enhanced the formation of 

DEPTA (parathion’s detoxification pathway), 3-MC decreased DEPTA production, and chlordane 

enhanced both the activation and detoxification pathways.  Since the in vivo results did not parallel the 

changes in the microsomal metabolism of parathion, the investigators suggested that factors other than 

metabolism, possibly tissues and plasma binding of parathion, contribute to the toxicity of parathion 

(Chapman and Leibman 1971).  In a similar study, pretreatment of mice with DDT protected against 

parathion-induced lethality and inhibition of plasma, whole-blood, and brain cholinesterase; however, no 

protection was afforded against paraoxon toxicity (Bass et al. 1971).  In vitro experiments showed that, 

contrary to what was expected from the in vivo results, pre-treatment with DDT increased the activation 

of parathion, as shown by a greater inhibition of cholinesterase, but did not significantly affect the 

detoxification of paraoxon (Bass et al. 1971). These seemingly inconsistent results could be explained by 

an increased rate of conversion of parathion to DEPTA by DDT pre-treatment, although this was not 

tested in the study. 

Srivastava et al. (1976) studied the effect of di(2-ethylhexyl) phthalate (DEHP) on the toxicity of 

parathion.  A single oral dose of parathion was given to rats 18 hours after receiving a single 

intraperitoneal dose of DEHP.  Brain and whole-blood cholinesterase activities were assayed 30 minutes 

after parathion administration. The results showed that DEHP significantly decreased the parathion-

induced inhibition of the two enzymes.  Since the administration of DEHP followed by paraoxon did not 

affect the paraoxon-induced enzyme inhibition, the results suggested that DEHP increased the rate of 

conversion of parathion to paraoxon.  Yasoshima and Masuda (1986) reported that carbon disulfide (CS2) 

administered to mice 1 hour before a single parathion dose significantly potentiated the inhibitory effect 

of parathion on plasma cholinesterase activity, suggesting that CS2 increased activation of parathion to 

paraoxon. This was consistent with the results of an experiment in which liver microsomes from mice 

treated with CS2 incubated with parathion showed decreased p-nitrophenol production.  However, in that 

experiment, cholinesterase inhibition was reduced, suggesting that although paraoxon formation may 

have been increased by pretreatment with CS2, a greater stimulation of the detoxification pathway may 

have also occurred in vitro.  Studies by Kuntz et al. (1990) and Chaturvedi et al. (1991) showed that 

mixtures of toxaphene and parathion and 2,4-dichlorophenoxyacetic acid (2,4-D) reduced the parathion-

induced decrease in serum cholinesterase activity in mice possibly by increasing the release of enzyme 
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from the liver.  In addition, the results suggested that toxaphene had the potential to reduce the toxicity of 

parathion and paraoxon by increasing the NADP-dependent metabolism of these substances to poor 

binders of acetylcholine esterase.  Triolo and Coon (1966) showed that administration of aldrin to mice 

resulted in increased toxicity of parathion 1 hour after aldrin dosing, but it protected against parathion 

toxicity from 16 hours to 12 days after aldrin dosing.  The investigators suggested that the initial effect of 

aldrin may have been due to inhibition of parathion detoxification, although this was not investigated.  

The second phase could be explained in part by a 38% increase in A-esterase activity in the liver and 24% 

increase in B-esterase in plasma, but it appeared that other factors, possibly involving the central nervous 

system, played a role in aldrin’s protective effect against parathion poisoning. 

In an intermediate-duration study, treatment of male rats with parathion plus lindane for 90 days resulted 

in more severe testicular toxicity than in a group treated with parathion alone, but no quantitative data 

were provided (Dikshith et al. 1978).  Measurements of enzyme activities showed that parathion alone 

induced a 50% decrease in brain cholinesterase activity, whereas the parathion/lindane combination 

induced a 79.5% decrease; lindane did not significantly affect the parathion-induced inhibition of blood 

cholinesterase (about 80% in both cases) (Dikshith et al. 1978). 

In a more recent study, Karanth et al. (2001) showed that the interactive toxicity of parathion and 

chlorpyrifos can be influenced by the sequence of exposure.  Gavage administration of chlorpyrifos to rats 

followed by parathion 4 hours later resulted in significantly more cholinergic toxicity than if the sequence 

was reversed. This suggested that in the former case, more inhibitor (the respective oxons) was allowed 

to reach the target tissues. Studies in vitro suggested a differential role of carboxylesterases and 

A-esterases in the detoxification of chlorpyrifos oxon and paraoxon.  Carboxylesterases were found to 

detoxify both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon.  In 

liver from rats pretreated with parathion, A-esterases still detoxified chlorpyrifos oxon, while the liver 

from rats pretreated with chlorpyrifos had little apparent effect on paraoxon.  Similar findings were 

reported in a later study in neonatal rats (Kacham et al. 2006). 

El-Masri et al. (2004) developed a PBPK model to estimate an interaction threshold for the joint toxicity 

between parathion and chlorpyrifos in the rat.  The investigators first developed PBPK models for each 

chemical to estimate the blood concentration of their respective metabolites, paraoxon and chlorpyrifos 

oxon. The estimated levels of metabolites were then linked to a model for AChE kinetics describing 

enzyme synthesis, degradation, binding to the metabolites of both chemicals, and aging after binding.  

The resulting overall PBPK model described interactions between parathion and chlorpyrifos at the levels 
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of the P450 enzymatic activation site and at AChE binding sites.  Calibration of the model was performed 

using interaction data from published studies.  The results of the modeling showed that less-than-additive 

and additive interactions occurred at different dose ranges.  The overall model simulations indicated that 

additivity is obtained at oral doses <0.8 mg/kg of each chemical, the interaction threshold. 

3.10  POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to parathion than will most persons 

exposed to the same level of parathion in the environment.  Reasons may include genetic makeup, age, 

health and nutritional status, and exposure to other toxic substances (e.g., cigarette smoke).  These 

parameters result in reduced detoxification or excretion of parathion, or compromised function of organs 

affected by parathion.  Populations who are at greater risk due to their unusually high exposure to 

parathion are discussed in Section 6.7, Populations with Potentially High Exposures. 

Although no studies were found in humans regarding the role that diet plays in the toxicity of parathion, 

several studies in animals have examined this issue. The issue is relevant as it may impact people living 

in developing countries where both malnutrition and the use of certain pesticides, including parathion, are 

widespread.  For example, in an early study, Boyd (1969) showed that reducing the amount of dietary 

casein from 26 to 3.5% during 28 days to male Wistar rats increased the acute oral toxicity of parathion 

by about 7 times. In a similar study, Casterline and Williams (1971) reported that exposure of protein-

deprived Osborne-Mendel rats to parathion for 28 days resulted in much greater inhibition of serum and 

brain cholinesterase and serum and liver triacetinesterase than in rats exposed to parathion alone.  The 

investigators speculated that reduced dietary protein resulted in reduced detoxifying enzymes.  In another 

study in rats, food restriction simultaneous with daily parathion intake for 28 days increased the inhibition 

of plasma cholinesterase and plasma and liver carboxylesterase by parathion compared to rats fed a 

normal diet (Villenueve et al. 1978).  Bulusu and Chakravarty (1986, 1987) studied the effects of a low-

protein diet on the activities of liver β-glucuronidase and acid and alkaline phosphatases. Male rats were 

kept on normal or low-protein diets for 3 weeks and were given daily doses of parathion at the same time.  

Parathion increased β-glucuronidase and acid phosphatase activities and decreased alkaline phosphatase 

activity in rats on the normal protein diet. Maintaining the rats on a low-protein diet aggravated the effect 

of parathion on the enzyme’s activities. The investigators speculated that the effects of parathion on 

β-glucuronidase and acid phosphatase may be due to parathion-induced damage to lysosome membranes 

leading to enzyme leakage into the cytoplasm.  The decrease in alkaline phosphatase was attributed to a 

possible action at the cell membrane level affecting transport mechanisms involving phosphate. 
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A more recent study provided evidence suggesting that people who consume excessive amounts of sugar 

may increase their risk of parathion-related health effects (Olivier et al. 2001). The investigators provided 

rats with tap water or 15% glucose in tap water for up to 21 days.  On day 7, the rats received a single 

subcutaneous injection of parathion or paraoxon, and signs of toxicity were recorded for the next 13 days.  

Exposure to high glucose resulted in a significant decrease in food intake (50%) and increase in total 

caloric consumption (20%).  Rats exposed to glucose showed more severe and long-lasting signs of 

toxicity due to parathion than rats drinking tap water only.  However, the excess glucose had no apparent 

effect on the toxicity induced by paraoxon.  Glucose feeding also increased the magnitude and duration of 

the inhibition of brain and plasma cholinesterase by parathion, but not by paraoxon.  Also, glucose 

feeding did not affect the biotransformation of parathion or paraoxon.  Finally, while parathion exposure 

down-regulated total muscarinic receptor binding in the cortex of control and glucose-fed rats, a much 

greater reduction (43%) was noted in glucose-fed rats.  The investigators suggested that the glucose-

induced reduction in food intake, particularly of amino acids, may limit the de novo synthesis of AChE 

and consequent recovery of synaptic transmission.  Liu et al. (2005) conducted a similar study in adult 

and juvenile rats provided with either tap water or 15% high fructose corn syrup (HFCS) in drinking 

water. The results showed that the cholinergic toxicity of parathion was significantly enhanced by 

feeding HFCS in both adults and juvenile rats.  However, consumption of HFCS had no significant effect 

on parathion-induced AChE inhibition in the frontal cortex or the diaphragm.  The latter suggested that 

differences in enzyme inhibition may not account for the greater parathion toxicity observed in sugar-fed 

rats than in water-only rats.  Since feeding HFCS significantly reduced food intake in rats, the effects of 

parathion were examined in a pair-fed group of rats.  The results showed that food restriction alone did 

not exacerbate parathion toxicity.  In a later study, Liu et al. (2007) reported that the exacerbation of 

parathion toxicity by glucose feeding was associated with significant increases in nitric oxide and 

reductions in high-energy phosphates/metabolites in the brain. According to the investigators, these 

biochemical responses may be involved in the modulation of parathion toxicity by glucose feeding, but 

the precise contribution remains unclear. The investigators noted that their results may be particularly 

important in children because children often consume relatively higher proportions of sugar in their diets. 

Paraoxonase (PON1), the A-esterase that hydrolyzes paraoxon, the active metabolite of parathion, is 

polymorphically distributed in humans, suggesting that there might be a genetically based differential 

susceptibility to the toxicity of parathion and similar organophosphorus pesticides.  The information 

below has been extracted from a recent review of the topic by Costa et al. (2013).  The reader is referred 

to references cited therein for more detailed information.  Human PON1 displays two polymorphisms in 
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the coding region, Q192R and L55M.  A significant additional polymorphism found in the non-coding 

regions of the PON1 gene is that at position –108, with the 108C allele providing levels of PON1 about 

twice as high as those seen with the 108T allele.  While the Q192R polymorphism significantly affects the 

catalytic efficiency of PON1 and is substrate-dependent, the L/M polymorphism at position 55 has been 

associated with plasma PON1 protein levels, with PON1M55 being associated with low plasma PON1. 

The latter appears to be related to linkage with the low efficiency –108T allele of the –108 promoter 

region polymorphism.  Both the Q192R and the –108 (C/T) polymorphisms contribute to determine an 

individual’s PON1 “status”. For adequately predicting risk of organophosphate toxicity, it is important to 

know the two variables of PON1 (192 genotype and level), as high catalytic efficiency and high 

concentrations of PON1 are the two determinants of PON1 protection.  Plasma PON1 activity can vary up 

to 40-fold in a given population, and differences in PON1 protein levels up to 13-fold are also present 

within a single PON1192 genotype in adults. Human studies have shown that PON1 activity is very low at 

birth and increases over time reaching a plateau between 6 months and a few years of age. There are also 

data indicating that PON1 activity may be even lower before birth as determined in premature babies 

compared to term babies.  While this suggests that fetuses and young children may be at higher risk of 

organophosphate toxicity, it may not be the case regarding parathion based on data from studies with rat 

liver microsomes and human liver microsomes that have suggested that PON1 is not functionally 

important at the toxicologically relevant concentrations of paraoxon (Chambers et al. 1994; Mutch et al. 

1999). 

Studies in animals have shown that administration of rabbit PON1 (high PON1 activity) afforded 

significant protection against the cholinergic effects of oxons, including paraoxon.  However, knockout 

(PON1 -/-) mice, which have no paraoxonase activity in plasma and liver, unexpectedly showed no 

increased sensitivity to paraoxon.  Moreover, intravenous injection of purified human PON1Q192 or 

PON1R192 to PON1 -/- mice did not afford protection against paraoxon toxicity.  These results were 

explained by the fact that with paraoxon, the PON1R192 alloform is much more efficient than the PON1Q192 

alloform, but its overall catalytic efficiency is too low to protect against paraoxon toxicity. This strongly 

suggested that PON1 may not degrade paraoxon efficiently in vivo and as such, it does not play an 

important role in modulating sensitivity to paraoxon toxicity.  This is consistent with results of studies 

that examined the association between Parkinson’s disease and parathion and the influence of functional 

polymorphisms at position 55 in the coding region of the PON1 gene (PON1-55) (Manthripragada et al. 

2010) and also the single nucleotide polymorphisms PON1Q192R and PON1C-108T impact (Lee et al. 2013) 

(see Section 3.2.3.4).  The results showed no increased risk of Parkinson’s disease for people exposed to 
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parathion, and risk did not increase in carriers of the variant MM PON1-55 genotype or the variant 

genotypes PON1Q192R or PON1C-108T. 

The results of a series of studies in which neonatal rats were administered subcutaneous doses of 

parathion that did not induce significant inhibition of AChE suggested that young organisms may be 

especially sensitive to the effects of organophosphorus pesticides, parathion included (see Section 3.2.4 

for references).  These studies reported alterations in the development of neurotransmitter systems and 

metabolic dysregulation that were evident at later times up to adulthood.  Since the various 

organophosphorus pesticides tested seemed to induce effects of opposing direction, the investigators 

suggested that organophosphorus pesticides can affect the developing nervous system via mechanisms not 

directly related to AChE inhibition. 

A few studies suggest that female rats are more susceptible to the acute effects of parathion than males. 

For example, Gaines (1960) reported oral LD50 values of 13 and 3.6 mg/kg in male and female Sherman 

rats, respectively.  To determine whether LD50 values underwent seasonal variations, Gaines and Linder 

(1986) conducted bimonthly determinations in male and female Sherman rats over a period of 1 year.  

The LD50 values ranged from 6.9 to 11.0 mg/kg in males and from 3.0 to 3.4 mg/kg in females.  Pasquet 

et al. (1976) reported 10-day LD50 values of 16 and 6 mg/kg for technical parathion in male and female 

CD rats, respectively. Whether this reflects sex-related differences in toxicokinetics is unknown.  Making 

inferences to possible sex-related differences in humans based on these limited data would be 

inappropriate. 

Studies have shown that many cytochromes are involved in the hepatic metabolism of parathion and that 

glutathione S-transferases also participate in the elimination of parathion.  Since the metabolism of 

parathion plays a key role in its toxicity, genetic polymorphisms may influence health outcomes and place 

certain individuals at a higher risk of parathion exposure.  Studies have suggested that cytochrome 

CYP3A4 is the main human cytochrome involved in the metabolism of parathion (Butler and Murray 

1997; Mutch et al. 1999).  Although there is growing evidence for functional polymorphisms in CYP3A4, 

evidence is too preliminary to predict with certainty the extent to which polymorphism might impact 

parathion metabolism (Haber et al. 2002). 

See also Section 3.7, Children’s Susceptibility for related information regarding susceptibility of younger 

organisms to parathion toxicity. 



   
 

    
 
 

 
 
 
 
 

   
 

 

  

  

  

  

    

     

 

     
  

 
 

  
    

   
 

    
  

 
  

 

  

   

 

 

 

   

     

  

    

   

   

 

    

      

PARATHION 130 

3. HEALTH EFFECTS 

3.11  METHODS FOR REDUCING TOXIC EFFECTS 

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to parathion.  However, because some of the treatments discussed may be experimental and 

unproven, this section should not be used as a guide for treatment of exposures to parathion.  When 

specific exposures have occurred, consultation with medical specialists with expertise and experience 

treating patients with exposure to parathion would be prudent (i.e., poison control center physicians, 

medical toxicologists, occupational and environmental medicine physicians, etc.). The following texts 

provide specific information about treatment following exposures to organophosphate pesticides: 

Aaron CK.  2007.  Organophosphates and carbamates. In: Shannon MW, Borron SW, Burns MJ, eds.  
Haddad and Winchester's clinical management of poisoning and drug overdose.  Philadelphia, PA: 
Saunders Elsevier, 1171-1184. 

Eddleston M.  2015.  Insecticides:  Organic phosphorus compounds and carbamates.  In: Hoffman RS, 
Howland MA, Lewin NA, eds.  Goldfrank's toxicologic emergencies. 10th ed.  New York, NY:  McGraw-
Hill Education, 1409–1424. 

Erdman AR.  2004. Pesticides.  In: Dart RC, ed.  Medical toxicology.  3rd ed.  Philadelphia, PA: 
Lippincott Williams & Wilkins, 1475-1496. 

3.11.1  Reducing Peak Absorption Following Exposure 

The following information was extracted from the books listed above; specific chapters were written by 

Aaron (2007), Eddleston (2015), and Erdman (2004). It is recommended, however, that this information 

be used along with consultation with a medical specialist with expertise and experience treating/managing 

patients with parathion poisoning. 

The first priority following parathion intoxication should be airway management with frequent suctioning 

of secretions and respiratory support.  Intubation may be required to facilitate control of secretions and for 

ventilator support if respiratory failure occurs.  Patients with liquid contamination of skin and clothing 

may pose a skin contact risk, so health care personnel should wear neoprene or nitrile gloves.  To prevent 

further dermal absorption, the patient should be disrobed as soon as possible and the skin should be 

washed thoroughly with alkali soap and water.  The eyes should be irrigated copiously with water or 

saline.  The removal of clothing should eliminate 85–90% of a contamination hazard.  Although 

hypochlorite solutions deactivate organophosphate pesticides in vitro, their use on human tissues is not 

recommended because it may cause corneal burns and other toxicity.  Agents such as soil, flour, or talcum 

powder may be applied to the skin followed by mechanical removal.  Cutaneous absorption can also 
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occur as a result of contact with vomitus or diarrhea.  Eddleston (2015) notes that evacuation of the 

stomach contents by lavage using a nasogastric tube may be appropriate in cases of severe, life-

threatening, oral poisoning, providing that emesis has not occurred and the patient is seen within 1 hour. 

Coma, seizures, and paralysis can develop rapidly; therefore, airway protection is necessary to perform 

the procedure safely.  If the patient is alert and asymptomatic, a single dose of activated charcoal is 

recommended (usually 1 g/kg) because ileus may develop during atropine therapy. Erdman (2004) points 

out that Ipecac should not be used for organophosphate poisoning because of the potential for rapid 

development of coma or seizures.  

3.11.2 Reducing Body Burden 

No information was located regarding reducing the body burden of parathion, or organophosphates, 

following exposure.  As mentioned in Section 3.4, parathion is eliminated relatively rapidly, such that 

short-term exposures will not result in accumulation of the pesticide. 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects 

The information below was extracted from the books listed above; specific chapters were written by 

Aaron (2007), Eddleston (2015), and Erdman (2004). As indicated above, it is recommended that this 

information be used along with consultation with a medical specialist with expertise and experience 

treating/managing patients with parathion poisoning. 

Seizure activity should be rapidly controlled with intravenous diazepam, midazolam, or lorazepam.  

Initial recommendations include the use of at least 10 mg intravenous diazepam or 5–10 mg intramuscular 

midozalam in adults (pediatric dose is 0.1–0.2 mg/kg intravenous diazepam or 0.1–0.3 mg/kg 

intramuscular midozalam).  After stabilization of the patient and decontamination, the next priority should 

be to control excessive muscarinic activity with atropine.  Atropine is a competitive antagonist at 

muscarinic receptor sites and since it crosses the blood-brain barrier, it also treats the central nervous 

system effects.  Glycopyrrolate, a quaternary ammonium compound, has been suggested as an alternative 

to atropine.  Unlike atropine, glycopyrrolate does not cross the blood-brain barrier and, therefore, has 

fewer central nervous system effects.  Intravenous doses of atropine should begin at 1–5 mg in 

adolescents and adults and at 0.05 mg/kg in children up to adult doses, and should be repeated every 2– 

3 minutes until atropinization occurs. The latter is achieved when the patient exhibits dry skin and 

mucous membranes, decreased or absent bowel sounds, tachycardia, reduced secretions, no 

bronchospasm, and usually mydriasis.  Patients with severe toxicity may require 75–100 mg atropine.  
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Direct ocular exposure to parathion may respond only to topical ophthalmic atropine.  Because atropine 

treatment can slow intestinal motility, use of a cathartic should be considered in treated patients to 

enhance intestinal transit and elimination of any organophosphorus agent.  Atropine does not antagonize 

nicotinic effects; therefore, pralidoxime (2-PAM) is needed for treatment of muscle weakness and 

respiratory depression.  2-PAM is a quaternary amine oxime that can reverse the phosphorylation of 

AChE and thereby restore activity.  It may also prevent continued toxicity by detoxifying the 

organophosphate molecule and has an anticholinergic effect.  2-PAM and other oximes function by 

nucleophilic attack on the phosphorylated enzyme; the oxime-phosphonate is then split off, leaving the 

regenerated enzyme. Because the oximes become ineffective after aging of the organophosphorus-AChE 

complex, 2-PAM should be administered as soon as possible after an exposure, preferably within 24– 

48 hours. The initial dose is 1–2 g for adults and 25–50 mg/kg for children administered intravenously 

over 30–60 minutes. The dose can be repeated in 1 hour and then every 8–12 hours until clinical signs 

have diminished and the patient does not require atropine.  Some patients may require multiple doses, as 

enzyme regeneration depends on plasma levels of the organophosphate.  A 2-PAM serum level of 4 mg/L 

is suggested as the minimum therapeutic threshold.  2-PAM is considered a very safe drug with few side 

effects.  In addition to 2-PAM, obidoxime has been used successfully to treat parathion poisoning (Eyer et 

al. 2003).  Treatment consisted of an initial 250 mg intravenous bolus followed by continuous infusion at 

750 mg/24 hours.  This resulted in plasma obidoxime concentrations between 10 and 20 µmol/L. 

Although the emergency medicine textbooks cited above do not specifically mention the use of 

substances to antagonize the nicotinic effects induced by organophosphotus pesticides, studies in animals 

provide some information.  For example, Mehrani et al. (2008) reported that in rats treated 

intraperitoneally with paraoxon, simultaneous administration of atropine plus the nicotinic receptor 

antagonist, mecamylamine, resulted in less signs of toxicity (involuntary movements) than in rats treated 

with paraoxon and only atropine. Studies in animals also provide information regarding other types of 

treatments to interfere with parathion toxicity.  Petrikovics et al. (1999) showed that intravenous injection 

of recombinant phosphotriesterase encapsulated in sterically stabilized liposomes into mice 1 hour prior 

to a subcutaneous injection of paraoxon significantly increased the 24-hour LD50 from 0.9 to 125 mg/kg.  

Combining the phosphodiesterase treatment with either atropine or 2-PAM further increased the LD50 to 

540–550 mg/kg.  An even higher LD50 of 920 mg/kg was obtained when the mice were pretreated with 

phosphotriesterase plus atropine and 2-PAM.  Evron et al. (2007) reported that mice injected with the 

human AChE variant, AChE-R, exhibited reduced toxicity to a lethal dose of paraoxon than control mice.  

AChE-R was produced from plant-optimized cDNA in Nicotiana benthamiana plants and showed the 

same affinity for paraoxon as the mammalian cell culture-derived AChE.  Yet another potentially useful 
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mitigating agent was studied by Bird et al. (2008). These investigators reported that a single intravenous 

injection of a recombinant bacterial organophosphate hydrolase (OpdA), cloned from Agrobacterium 

radiobacter, to rats immediately or 10 minutes after an oral dose of parathion did not prevent lethality.  

However, repeated doses at 45 and 90 minutes after poisoning significantly improved survival to 62.5%.  

Administration of a single dose of OpdA in combination with 2-PAM therapy improved survival to 75%.  

Time-course experiments showed that OpdA maintained clinically relevant enzymatic activity in vivo for 

several hours. A recent study showed that menadione (vitamin K3), which inhibits CYP-mediated 

chemical reactions by a mechanism involving redox cycling, ameliorated the effects of parathion in rats 

when injected intraperitoneally 20 minutes after a high dose of parathion (Jan et al. 2015). Menadione 

induced a significant increase in parathion levels in blood without changing parathion’s levels in the liver, 

indicating diminished conversion of parathion to paraoxon.  This was consistent with menadione also 

significantly reducing the paraoxon-induced inhibition of brain acetylcholinesterase from near 90% in 

controls to <20% in menadione-treated rats. 

3.12  ADEQUACY OF THE DATABASE 

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of parathion is available. Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of parathion. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of Parathion 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

parathion are summarized in Figure 3-5.  The purpose of this figure is to illustrate the existing information 

concerning the health effects of parathion.  Each dot in the figure indicates that one or more studies 

provide information associated with that particular effect.  The dot does not necessarily imply anything 
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Figure 3-5.  Existing Information on Health Effects of Parathion 
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about the quality of the study or studies, nor should missing information in this figure be interpreted as a 

“data need”.  A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific 

Data Needs Related to Toxicological Profiles (ATSDR 1989), is substance-specific information necessary 

to conduct comprehensive public health assessments. Generally, ATSDR defines a data gap more broadly 

as any substance-specific information missing from the scientific literature. 

Most of the literature reviewed concerning the health effects of parathion in humans described case 

reports and case series of occupational exposure and accidental or intentional ingestion of parathion.  

There are also a few studies of the general population and of controlled exposure in volunteers. The cases 

of occupational exposure to parathion concerned exposures of acute, intermediate, and chronic durations.  

The predominant route of exposure in the occupational case reports/series was believed to be dermal, but 

the possibility of some degree of inhalation exposure could not be ruled out.  The information on current 

human exposure in the United States is limited because production and all uses of parathion in the United 

States were cancelled in 2003.  The precise duration and level of exposure to parathion in the human 

studies available generally cannot be quantified from the information presented in the reports. 

There is more information in the open literature regarding the health effects of parathion following acute 

and intermediate oral exposure in experimental animals than regarding chronic exposure.  Also, as can be 

seen in Figure 3-5, considerably less information is available on the effects of inhalation and dermal 

exposure to parathion in animals.  There is no evidence suggesting that the toxicity of parathion is route-

specific.  However, ingested parathion should reach the liver sooner. 

People living near hazardous waste sites may be exposed to parathion primarily via dermal contact with, 

or through ingestion of, contaminated soils since parathion is found bound to soil particles.  Another 

possible mechanism for oral exposure to parathion is the ingestion of pesticide-laden dust from a waste 

site.  Ingestion of contaminated water is not expected to be a significant route of exposure since parathion 

is poorly soluble in water and is generally not found in groundwater.  Likewise, inhalation exposure to 

parathion is not a major route of exposure due to its low volatility. Before the use of parathion was 

banned, the primary route of exposure to parathion for the general population was probably via ingestion 

of low-level residues on contaminated foods. However, exposure to small amounts of parathion may still 

occur from consuming produce grown in countries that allow it to be used on crops or allow it to be 

shipped along with foods. 
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Recommendations made below regarding conducting additional studies where data gaps exist need to be 

balanced by the fact that the current risks of exposure have diminished significantly since all uses and 

production of parathion were cancelled in the United States over a decade ago. 

3.12.2 Identification of Data Needs 

Acute-Duration Exposure. Information is available regarding the effects of acute-duration exposure 

in humans following inhalation (Hartwell et al. 1964), oral (De Bleecker et al. 1992; De Jager et al. 1981; 

Diggory et al. 1977; Eitzman and Wolfson 1967; Etzel et al. 1987; Eyer et al. 2003; Hayes et al. 1964; He 

et al. 1998; Hoffman and Papendorf 2006; Morgan et al. 1977; Tsachalinas et al. 1971; Wishahi et al. 

1958), and dermal exposure (Grob et al. 1950; Hayes et al. 1964; Milby et al. 1964; Quinby and Lemmon 

1958).  Parathion may be lethal to humans and animals by all routes of exposure studied, depending on 

the dose (Diggory et al. 1977; Eitzman and Wolfson 1967; EPA 1978; Etzel et al. 1977; Gaines 1960; 

Gaines and Linder 1986; Lores et al. 1978; NIOSH 1974; Pasquet et al. 1976; Wishahi et al. 1958).  The 

main target of toxicity in humans and animals following acute, high-level exposure by any route is the 

nervous system (Diggory et al. 1977; Eitzman and Wolfson 1967; EPA 1978; Etzel et al. 1977; Gaines 

1960; Gaines and Linder 1986; Lores et al. 1978; NIOSH 1974; Pasquet et al. 1976; Wishahi et al. 1958). 

Adverse systemic effects (respiratory, cardiovascular, and gastrointestinal) reported in most cases of acute 

exposure to high amounts of parathion in humans and in animals are likely to be secondary to the serious 

neurological effects (i.e., tremors, seizures).  Acute oral exposure to parathion also induced 

neurobehavioral alterations in animals at doses higher than those that inhibited cholinesterase activity 

(Moser 1995; Reiter et al. 1973, 1975).  Acute-duration oral studies in mice also showed that parathion 

can affect immune function by inhibiting the production of antibodies and increase the sensitivity to 

allergens (Casale et al. 1983, 1984; Fukuyama et al. 2010, 2011, 2012; Kim et al. 2005; Wiltrout et al. 

1978).  In some studies, this was observed in mice treated with relatively low doses, comparable to doses 

that inhibited AChE activity (Fukuyama et al. 2011, 2012).  It would be helpful to try to replicate these 

findings to add confidence to the results.  An acute-duration study also reported that parathion altered the 

microscopic appearance of the skin of guinea pigs when applied directly onto the skin for 5 days 

(Dikshith and Datta 1972).  As discussed in Section 2.3, studies of cholinesterase inhibition have shown 

that it takes approximately 21–28 days for inhibition of cholinesterase activity to reach a steady state and 

that values obtained in single-dose or short-duration studies carry great uncertainty.  For this reason, and 

also based on data collected on enzyme inhibition for a great number of organophosphate pesticides (EPA 

2006), acute-duration inhalation MRLs were not derived for parathion.  However, as explained in 

Section 2.3, the intermediate-duration MRLs are protective of acute effects. 
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Intermediate-Duration Exposure. No intermediate-inhalation studies in humans were located. 

Only one intermediate-duration inhalation study in animals was located, and it provided information on 

neurological effects in rats and dogs during whole-body, intermittent exposure to parathion aerosol for 

6 weeks (NIOSH 1974).  An intermediate-duration inhalation MRL was derived for parathion from data 

regarding changes in red blood cell AChE in rats in the NIOSH (1974) study.  Information is available 

regarding the effects of intermediate-duration exposure in humans in two studies that evaluated changes 

in blood cholinesterase levels in humans during controlled oral exposure to parathion (Edson 1964; Rider 

et al. 1969).  Studies in animals provided information regarding death (Barnes and Denz 1951), systemic 

effects (hepatic, renal, and body weight) (Atkinson et al. 1994; Dikshith et al. 1978; NCI 1979; NIOSH 

1974), neurological effects (Barnes and Denz 1951; Dikshith et al. 1978; Frawley and Fuyat 1957; Ivens 

et al. 1998; NCI 1979; NIOSH 1974; Reischchl et al. 1975), reproductive effects (Dikshith et al. 1978), 

and developmental effects (Deskin et al. 1979).  The data from Rider et al. (1969) regarding changes in 

red blood cell AChE activity in volunteers exposed to parathion in a capsule for 30 days were used to 

derive an intermediate-duration oral MRL for parathion.  It should be mentioned that in the 

developmental study in rats by Deskin et al. (1979), the lowest dose tested, 0.01 mg parathion/kg/day, 

administered to pregnant rats during gestation and lactation induced alterations in EKGs in 25-day-old 

pups.  Since this is not a developmental end point routinely tested in guideline developmental studies, it 

would be helpful to try to replicate these results.  An acute-duration study also reported that parathion 

altered the microscopic appearance of the skin of guinea pigs when applied directly onto the skin for 

15 days (Dikshith and Datta 1972).  Additional intermediate-duration studies do not seem necessary at 

this time. 

Chronic-Duration Exposure and Cancer. One study was located that provided information 

regarding changes in plasma cholinesterase and red blood cell AChE activity in workers at an industrial 

plant that manufactured the concentrated material and dusts containing various concentrations of 

parathion (Brown and Bush 1950).  Uncertainties regarding exposure data and the extent of the changes in 

red blood cell AChE activity precluded the use of this study for derivation of a chronic-duration 

inhalation MRL for parathion.  No chronic-duration inhalation studies in animals were found.  Also, no 

chronic-duration oral data in humans were located.  Two chronic-duration oral studies were located in the 

open literature (Barnes and Denz 1951; NCI 1979).  Barnes and Denz (1951) reported that dietary 

exposure of rats to up to approximately 1.7 mg parathion/kg/day did not induce adverse clinical signs or 

gross or microscopic changes in organs or tissues. The NCI (1979) study reported that exposure of rats to 

up to 4.4 mg parathion/kg/day or mice to up to 27.6 mg parathion/kg/day did not cause gross or 
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microscopic alterations in organs and tissues.  However, the investigators noted that during the first half 

of the second year, clinical signs among dosed rats were noted at a low or moderate incidence, and during 

the second half of the year, they increased, but no quantitative data were presented.  In addition, by 

week 60 of the study, all high-dose male mice were showing signs of hyperexcitability, but no data were 

provided.  However, because these studies did not monitor red blood cell AChE activity and there is 

uncertainty in the NCI (1979) study regarding the incidence of clinical signs in rats and mice during the 

second year of exposure, they are inadequate for derivation of a chronic-duration oral MRL for parathion.  

A chronic-duration oral study with interim determinations of plasma, red blood cell, and brain 

cholinesterase activity would be valuable to confirm that enzyme activities reach a steady state and do not 

continue to decrease during long-term exposure to low-to-moderate doses of parathion.  Data regarding 

chronic dermal exposure to parathion were provided in the AHS. The AHS provided information 

regarding respiratory effects (Hoppin et al. 2006, 2009), hearing loss (MacCrawford et al. 2008), 

behavioral function (Starks et al. 2012a), peripheral nervous system function (Starks et al. 2012b), and 

cancer (Dennis et al. 2010).  A study of Chinese workers exposed to parathion provided information 

regarding reproductive effects (Padungtod et al. 2000).  Studies of the general population provided data 

regarding Parkinson’s disease (Firestone et al. 2005; Manthripragada et al. 2010) and developmental 

effects (Eskenazi et al. 2004). 

Very limited information is available regarding exposure to parathion and cancer.  Dennis et al. (2010) 

examined the potential association between exposure to 50 agricultural pesticides, parathion among them, 

and the incidence of cutaneous melanoma in the AHS cohort of pesticide applicators along with ever-use 

of older pesticides that contain arsenic.  The study found no association between melanoma incidence and 

organophosphate insecticides as a class.  However, there was a significant association between melanoma 

and parathion (≥56 days of exposure; OR=2.4; 95% CI 1.3–4.4; p=0.003) based on 11 cases.  The study 

also found a higher OR of 7.3 (95% CI 1.5–34.6) among those who had used arsenical pesticides. A 

limitation of the study was the small number of subjects who used parathion for at least 56 days and had 

melanoma (n=11).  Since the AHS is a prospective study, continuous monitoring of the cohort will 

provide useful information.  The carcinogenicity of parathion has been studied in a chronic oral bioassay 

using rats and mice (NCI 1979).  That study concluded that parathion was carcinogenic to rats based on 

an increased incidence of combined adrenal cortical adenomas and carcinomas in males and females. 

Parathion was not carcinogenic in mice.  No further information was located in the open literature.  

Additional studies do not seem necessary at this time. 
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Genotoxicity. No reliable data on humans exist to indicate whether parathion may act by a genotoxic 

mechanism.  The results from available in vivo animal studies and in vitro studies showed that parathion 

is not a mutagenic or clastogenic agent (Degraeve and Moutschen 1984; EPA 1977a; Fahrig 1974; Gilot-

Delhalle et al. 1983; Kevekordes et al. 1996; Simmon et al. 1976).  Additional studies do not seem 

necessary at this time. 

Reproductive Toxicity. No studies were located regarding reproductive effects in humans after oral 

or inhalation exposure to parathion.  A small study of Chinese workers exposed to parathion and 

methamidophos reported that the workers (n=20) had a modestly lower sperm count, lower sperm 

concentration, and lower percentage of motile sperm than an unexposed control group (n=23) (Padungtod 

et al. 2000).  While the results were suggestive, the role of parathion, if any, remained unclear.  

Evaluation of participants in the AHS could provide valuable information regarding a possible association 

between exposure to parathion and reproductive effects.  Since the AHS includes evaluation of pesticide 

applicators and their spouses, information could be collected regarding possible effects in males and 

females exposed to parathion in the past.  No information was located regarding reproductive effects in 

animals following inhalation or dermal exposure to parathion and very limited data were available 

regarding oral exposure.  Parathion induced histological alterations in the testes of rats in an intermediate-

duration oral study (Dikshith et al. 1978).  However, chronic-duration oral studies in rats and mice did not 

find gross or microscopic alterations in the reproductive organs from male or female animals treated with 

higher doses of parathion than in the intermediate-duration study.  It would be useful to try to replicate the 

findings of the intermediate-duration study of Dikshith et al. (1978).  In addition, a 2-generation study in 

rats would provide valuable information. 

Developmental Toxicity. No information was located regarding developmental effects in humans 

following inhalation or oral exposure to parathion.  A study of Latina women living in an agricultural 

community in California did not find significant associations between several measures of in utero 

exposure to parathion and fetal growth (Eskenazi et al. 2004). However, as mentioned before, exposure 

to parathion was assessed by measuring urinary p-nitrophenol, which can also be produced as a result of 

exposure to substances other than parathion. It should be mentioned that studies of other pesticides with 

mechanisms of action similar to parathion (i.e., chlorpyrifos, diazinon) have reported neurodevelopmental 

alterations in children following maternal environmental exposure (for references, see Bouchard et al. 

2011; Eskenazi et al. 2007; Rauh et al. 2011). Therefore evaluation of women participants in the AHS or 

other similarly exposed cohorts could provide important information regarding possible effects of 

exposure to parathion on various developmental end points.  No studies were located regarding 
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developmental effects in animal following inhalation or dermal exposure to parathion.  In developmental 

studies in rats exposed orally to up to 1 mg parathion/kg on gestation days 6–5 and rabbits exposed to up 

to 0.3 mg parathion/kg on gestation days 6–18, there was no evidence of embryotoxicity or teratogenicity 

(Renhof 10984, 1985).  In another study, 25-day-old pups from rats exposed to relatively low doses of 

0.01 mg parathion/kg/day during gestation and lactation showed alterations in the EKGs (Deskin et al. 

1979). Since this is not an end point routinely evaluated in standard developmental studies, it would be 

useful to conduct developmental studies to evaluate traditional end points in addition to examining the 

pups for possible cardiotoxicity. 

Immunotoxicity. No information was located regarding immunological and lymphoreticular effects in 

humans following dermal exposure to parathion, except for the report of a significant association between 

exposure to parathion and allergic asthma in participants in the AHS (Hoppin et al. 2009).  No 

information was located on immunotoxic effects in animals exposed to parathion by inhalation or 

dermally.  Several studies in mice reported that acute oral exposure to parathion suppressed the antibody 

response to immunization with SRBC and increased the response to allergens (Casale et al. 1984; 

Fukuyama et al. 2010, 2012; Kim et al. 2005; Wiltrout et al. 1978).  The study by Fukuyama et al. (2012) 

reported that significant suppression occurred with doses of 1.5 mg parathion/kg/day, but not 0.15 mg 

parathion/kg/day, for 5 days.  In the Casale et al. (1984) study, significant suppression was observed with 

a single dose of 16 mg parathion/kg, but not 4 mg/kg, suggesting that repeated dosing may be necessary 

to induce immune suppression.  Casale et al. (1984) also showed that cholinergic stimulation played a 

major role in the parathion-induced effect; further studies that examine the mechanism(s) involved would 

be valuable. Increased response to allergens also occurred in mice following exposure to 0.15 mg 

parathion/kg/day for 6 weeks (Nishino et al. 2013). It would also be useful to determine whether the 

parathion-induced immune suppression leads to increased susceptibility to infection by microorganisms. 

In addition, the possibility that immune suppression occurs also in longer-term studies may need to be 

examined. 

Neurotoxicity. Information in both humans and animals indicates that the nervous system is the main 

target of parathion-induced toxicity following acute exposure by any route.  This is particularly evident 

after exposure to high doses of parathion, as has occurred, for example, in cases of accidental or 

intentional ingestion of parathion formulations (Diggory et al. 1977; Eitzman and Wolfson 1967; Etzel et 

al. 1987; Eyer et al. 2003; He et al. 1998; Hoffman and Papendorf 2006; Tsachalinas et al. 1971; Wishahi 

et al. 1958) or in cases of high occupational exposure in workers involved in the manufacture or use of 

parathion (Diggory et al. 1977; Eitzman and Wolfson 1967; Etzel et al. 1987; Eyer et al. 2003; Grob et al. 
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1950; He et al. 1998; Hoffman and Papendorf 2006; Milby et al. 1964; Quinby and Lemmon 1958; 

Tsachalinas et al. 1971; Wishahi et al. 1958).  As an organophosphate pesticide, parathion inhibits the 

activity of the enzyme, AChE, as well as that of plasma cholinesterase. The inhibition of AChE at 

various levels within the nervous system produces a characteristic set of signs and symptoms, including 

respiratory distress, bradycardia, increased bronchial secretions, excessive salivation, lacrimation, 

pupillary constriction, fasciculations, abdominal cramps, and diarrhea (Abou-Donia 1995; Ecobichon 

1994). Most of these signs and symptoms have been observed in the cases listed above.  A few cases of 

intermediate syndrome and induced delayed neuropathy have also been reported following exposure to 

parathion (Besser et al. 1993; De Bleecker et al. 1992; De Jager et al. 1981; He et al. 1998; Nisse et al. 

1998).  Information is also available regarding behavioral function in humans exposed to parathion.  

Starks et al. (2012a) evaluated 701 male participants in the AHS with a series of neurobehavioral tests and 

found that parathion exposure was associated with better verbal learning and memory and better 

performance on a test of sustained attention.  A possible explanation was that given the large number of 

statistical tests performed, the results may have been due to chance.  Follow-up evaluations of this cohort 

may provide valuable information.  Additional evaluation of the individuals examined by Starks et al. 

(2012a) did not show significant associations between ever-use of parathion and altered peripheral 

nervous system function (Starks et al. 2012b), but exposure to parathion was found to be associated with 

depression in the AHS (Beard et al. 2014). A study of controlled administration of parathion in capsules 

to volunteers identified NOAEL and LOAEL values for inhibition of red blood cell AChE of 0.06 and 

0.11 mg/kg/day, respectively (Rider et al. 1969).  This study confirmed the findings of an earlier study in 

volunteers (Edson 1964) and was used to derive an intermediate-duration oral MRL for parathion.  

Information is lacking on long-term effects of acute high exposure to parathion.  This information can 

only be obtained from evaluation of cohorts exposed only to parathion, but data from subjects exposed to 

a few organophosphates would also be helpful. 

Studies in animals support the findings in humans.  In addition to measurements of cholinesterase activity 

and monitoring clinical signs, a few oral studies have examined the effects of parathion on 

neurobehavioral parameters and showed that effects occurred at dose levels that induced significant 

depression of blood cholinesterase activity and/or induced clinical signs (Moser 1995; Reiter et al. 1973, 

1975).  Should additional chronic studies be conducted, it would be valuable to monitor long-term 

changes in red blood cell and brain AChE activities.  Also, a subgroup of animals could be tested for 

possible subtle neurobehavioral alterations of long-term, low-level exposure.  Finally, pilot studies should 

be designed to evaluate possible neurodevelopmental effects of gestational and lactational exposure to 

parathion. It should be noted that studies have been conducted that examined neurodevelopmental 
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endpoints in rats treated as neonates with parathion by subcutaneous injection, see Section 3.2.4, Other 

Routes of Exposure for a summary of the findings. 

Epidemiological and Human Dosimetry Studies. Most of the literature reviewed concerning the 

health effects of parathion in humans described case reports of occupational exposure, accidental or 

intentional ingestion of parathion, or accidental dermal exposure to the pesticide (Diggory et al. 1977; 

Eitzman and Wolfson 1967; Etzel et al. 1987; Eyer et al. 2003; He et al. 1998; Hoffman and Papendorf 

2006; Tsachalinas et al. 1971; Wishahi et al. 1958), studies of workers involved in the manufacture of 

parathion (Brown and Bush 1950; Grob et al. 1950; Padungtod et al. 2000), studies of agricultural 

workers (MacCrawford et al. 2008; Dennis et al. 2010; Hoppin et al. 2006, 2009; Milby et al. 1964; 

Quinby and Lemmon 1958; Starks et al. 2012a, 2012b), members of the general population (Eskenazi et 

al. 2004; Firestone et al. 2005; Manthripragada et al. 2010), and a few controlled exposure studies with 

volunteers (Edson 1964; Hartwell et al. 1964; Hayes et al. 1964; Morgan et al. 1977; Rider et al. 1969). 

The predominant route of exposure in the occupational studies is believed to be dermal exposure (workers 

involved in pesticide manufacture, formulation, and application).  Some studies of agricultural workers 

examined possible associations between exposure to parathion (and additional pesticides) and health 

outcomes such as respiratory effects (Hoppin et al. 2006, 2009), hearing loss (MacCrawford et al. 2008), 

behavioral function (Starks et al. 2012a), peripheral nervous system function (Starks et al. 2012b), and 

cutaneous melanoma (Dennis et al. 2010), and diabetes (Starling et al. 2014).  The information from 

occupational studies is limited because of the possibility of concurrent exposure to other pesticides or 

other toxic substances, and the duration and level of exposure to parathion generally were not quantified.  

Likewise, exposure levels in cases of acute intentional or accidental exposure to high amounts of 

parathion were generally not available.  Because all production and uses of parathion were cancelled in 

the United States (EPA 2000, 2007), it is difficult to identify a subpopulation currently at risk of 

significant exposure to parathion. 

Biomarkers of Exposure and Effect. 

Exposure. Available data indicate that urinary levels of p-nitrophenol may serve as biomarkers of 

ongoing exposure to parathion.  Further research on biomarkers of low-level exposure to parathion is 

needed.  Noort et al. (2009) described a method for measuring organophosphorothioate pesticides bound 

to albumin, and proposed that this method might be suited to evaluation of chronic, low-level exposure; 

however, further testing and application of this method is needed to establish its suitability to this 

purpose. 
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Effect. There are no biomarkers of effect specific for parathion.  As an organophosphate pesticide, 

parathion, in sufficient amounts, produces typical signs and symptoms of cholinergic stimulation.  Plasma 

and red blood cell cholinesterase levels are widely used as biomarkers of exposure to organophosphates, 

but alone, their levels do not predict whether adverse health effects will occur, except in cases of 

significant inhibition (Maroni 2000).  Because baseline data for plasma and red blood cell cholinesterase 

are not usually available for non-occupationally exposed individuals, additional studies of normal values 

by age and sex would be valuable for assessing potential adverse effects, if useful for other pesticides. 

Absorption, Distribution, Metabolism, and Excretion. Little is known about absorption after 

oral or inhalation exposure and the distribution of parathion and its metabolites throughout the body; 

these areas represent significant data gaps in the toxicokinetics of parathion.  Data on the dermal 

absorption, metabolism, and excretion of parathion are generally adequate to describe these elements of 

the toxicokinetics of this compound in humans.  Additional information on the role of specific 

cytochromes on bioactivation and detoxification of parathion in in vivo systems exposed to a range of 

parathion doses and exposure routes would be useful to better predict the interindividual variability in 

parathion toxicity and/or identify new strategies for therapeutic intervention.  Available studies focusing 

on the role of specific cytochrome isozymes have given varying results (e.g., Buratti et al. 2003; 

Foxenberg et al. 2007; Mutch and Williams 2006; Mutch et al. 2002, 2003). 

Comparative Toxicokinetics. No studies were located that directly evaluated the comparative 

toxicokinetics of parathion in animals and humans.  Because human blood lacks the carboxylesterase 

enzyme found in rodent blood, and this enzyme is capable of detoxifying parathion, further information 

on the importance of this enzyme in predicting parathion toxicity would serve to inform the relevance of 

rodent models to human toxicokinetics. 

Recent work suggests that the desulfuration of parathion to paraoxon in human liver is mediated by a 

large number of cytochromes (CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and 

CYP3A4/5), which show different affinities for the substrate (see Section 3.4.3).  Significant variations in 

the activities of these cytochromes among humans and laboratory animal species would be expected to 

result in differences in parathion metabolism; additional information is needed to inform this question. 

Methods for Reducing Toxic Effects. There is good information on the procedures used to limit 

absorption and to interfere with the mechanism of action of organophosphates, including parathion, after 
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acute exposures (Aaron 2007; Eddleston 2015; Erdman 2004).  Case reports of acute poisoning with 

parathion involved the use of various drugs in different combinations and sequences as the specific 

situations required. The effectiveness of these drugs varied from case to case and probably depended on 

the time elapsed between poisoning and initiation of treatment and on the amount of parathion taken.  

Publishing treatments that have proven to be effective in randomized controlled trials in medical journals 

could help decrease the number of fatalities resulting from parathion poisoning, particularly in countries 

where it is still widely used.  Research leading to the development of more efficient oximes should be 

encouraged.  Studies in animals showed that treatment with phosphotriesterase encapsulated in liposomes, 

a bacterial organophosphorus hydrolase, plant-derived AChE-R, or vitamin K3 reduced the acute toxicity 

of parathion or paraoxon (Bird et al. 2008; Evron et al. 2007; Jan et al. 2015; Petrikovics et al. 1999).  

Further research on these and similar strategies would provide valuable information.  No information is 

available on dealing with long-term, low-level exposures to parathion. This may be due, in part, to the 

limited information on toxic effects associated with such exposures.  If additional information becomes 

available indicating adverse health effects of long-term exposures, then studies examining methods for 

mitigating the effects of such exposures would become a data need. 

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

Information on the effects of parathion in children is derived mainly from case reports of accidental 

ingestion or dermal contact with commercial formulations (i.e., Diggory et al. 1977; Eitzman and 

Wolfson 1967; Etzel et al. 1987; Wishahi et al. 1958).  In all of these cases, exposure to parathion resulted 

in the characteristic signs and symptoms of organophosphate poisoning: increased salivation and 

lacrimation, miosis, nausea, vomiting, abdominal cramps and diarrhea, excessive bronchial secretions and 

dyspnea, bradycardia and low blood pressure, and muscle fasciculations. These case reports do not 

provide enough information to determine whether or not children are more susceptible to parathion 

exposure than adults.  However, studies in animals have shown that young animals are more susceptible 

to the toxicity of high doses of parathion and that this is related to the metabolism and disposition of 

parathion and paraoxon rather than to differences in sensitivity to AChE inhibition (Atterberry et al. 1997; 

Benke and Murphy 1975; Gagné and Brodeur 1972; Harbison 1985; Karanth and Pope 2000; Nielsen et 

al. 1991). 
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Limited information is available regarding developmental effects of parathion in humans.  A study of 

Latina women living in an agricultural community in California did not find an association between 

exposure to parathion and fetal growth and gestational length (Eskenazi et al. 2004).  Evaluation of 

pregnancy outcomes in women participants in the AHS could provide valuable information regarding 

exposure to organophosphate pesticides and possible developmental effects.  Conventional developmental 

studies in which female rats and rabbits were exposed during gestation showed that parathion was not 

embryotoxic or teratogenic (Renhof 1984, 1985). In a study in rats, 25-day-old pups from rats exposed to 

relatively low doses of 0.01 mg parathion/kg/day during gestation and lactation showed alterations in the 

EKGs (Deskin et al. 1979).  Since this is not an end point routinely evaluated in standard developmental 

studies, it would be useful to try to replicate the results. Cross-foster studies in animals could provide 

information regarding differential transfer of parathion and/or metabolites through the placenta and the 

mother’s milk. 

There are no adequate data to evaluate whether pharmacokinetics of parathion in children are different 

from adults.  However, to the extent that various cytochromes P450 that are involved in the metabolism of 

parathion in humans (Buratti et al. 2003; Foxenberg et al. 2007; Mutch and Williams 2006) are 

developmentally regulated (Tateishi et al. 1997), the metabolism of parathion in neonates and infants will 

likely differ from adults.  Whether or not this would result in increased susceptibility of the young is not 

totally clear because cytochromes participate in both activation (desulfatation) and detoxification 

(dearylation) of parathion.  No information was located regarding levels of parathion (or metabolites) in 

human milk. There is indirect evidence in animals that parathion (or its metabolites) can be transferred 

across the placenta and/or via breast milk to the offspring (Deskin et al. 1979; Villeneuve et al. 1972). 

Further information on the dynamics of parathion and metabolites during pregnancy and lactation would 

be useful. 

Biomarkers of exposure need to be further studied in order to better estimate human exposure at all age 

levels following acute or chronic exposure to parathion.  There are no data on the interaction of parathion 

with other chemicals in children.  Studies in animals have suggested that malnutrition, as may occur 

among some sectors of the general population, may exacerbate the toxicity of parathion (Boyd 1969; 

Bulusu and Chakravarty 1986, 1987; Casterline and Williams 1971; Villenueve et al. 1978).  Further 

studies on children from malnourished populations should be conducted to explore this issue.  The 

information available indicates that methods to reduce peak absorption of parathion and to interfere with 

the mechanism of action used for intoxication in adults are applicable to children. 



   
 

    
 
 

 
 
 
 
 

     

 

 

    
 

   

PARATHION 146 

3. HEALTH EFFECTS 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs: 

Exposures of Children. 

3.12.3 Ongoing Studies 

Information regarding ongoing research regarding parathion is presented in Table 3-13. 
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Table 3-13. Ongoing Studies on Parathion 

Principal 
Investigator Study topic Institution Sponsor 
Baldwin, W	 Role of CYP2B in the 

metabolism, fate, and toxicity 
of parathion using a CYP2B­
knockdown mouse model; 
determine whether individuals 
with low CYP2B are sensitive 
to parathion 

Bird, SB	 Determine the physiologic and 
electromyographic efficacy of 
the nicotinic receptor 
antagonist, pancuronium, in 
preserving function and 
architecture of the 
neuromuscular junction in 
parathion poisoning 

Bird, SB	 Test the safety and efficacy of 
a novel organophosphorus 
pesticide degrading enzyme, 
OpdA, in a nonhuman primate 
model 

Cerasoli, DM	 Define, characterize, and 
develop a drug formulation 
that will afford post-exposure 
protection to victims of 
organophosphorus poisoning; 
the drug formulation will 
include a catalytic scavenger 
enzyme 

Chambers JE	 Identify and characterize novel 
oximes that can protect 
against neurological effects 
caused by nerve agents and 
organophosphate pesticides, 
parathion included 

Delorenzo, RJ	 Develop a rat model to 
evaluate parathion toxicity and 
use this model to investigate 
mechanisms of toxicity that 
can be targeted to develop 
agent s to reverse these 
mechanisms and prevent 
morbidity and mortality 

Clemson University, 
Clemson, South Carolina 

University of 
Massachusetts, 
Worcester, 
Massachusetts 

Harvard University, 
Boston, Massachusetts 

U.S. Army Medical 
Research Institute for 
Chemical Defense, 
Aberdeen Proving 
Ground, Maryland 

Mississippi State 
University, Mississippi 

Virginia Commonwealth 
University, Richmond, 
Virginia 

National Institute of 
Environmental Health 
Sciences 

National Institute of 
Neurological Disorders and 
Stroke 

National Center for Research 
Resources 

National Institute of 
Neurological Disorders and 
Stroke 

National Institute of 
Neurological Disorders and 
Stroke 

National Institute of 
Neurological Disorders and 
Stroke 
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Table 3-13. Ongoing Studies on Parathion 

Principal 
Investigator Study topic Institution Sponsor 
Ford, BD	 Evaluate the therapeutic 

benefit of the administration of 
neuroregulin-1, a 
neuroprotective anti-
inflammatory compound alone 
or as a complement to 
standard therapy against 
parathion poisoning 

Fryer, AD	 Test the hypothesis that 
organophosphorus-induced 
airway hyper-reactivity in 
sensitized animals is mediated 
by the compounds affecting 
chemotactic factors and 
adhesion molecules that 
enhance eosinophil 
recruitment or nerves, and 
also compound-induced 
eosinophil activation 

Garcia, GE	 Evaluate novel sugar-linked 
reactivators of 
acetylcholinesterase with 
broader specificity, improved 
pharmacokinetics, and 
potential to cross the blood 
brain barrier; initial in vitro 
testing will be followed by 
testing in rodent species 

Laskin, JD	 Identify the precise site of 
action of a novel low-toxicity 
drug in the cytochrome P-450 
system and test its efficacy in 
mitigating parathion toxicity in 
a rodent model 

Lein, PJ	 Elucidate the mechanism(s) by 
which organophosphorus 
compounds induce airway 
hyper-reactivity using 
physiological measurements in 
vivo and primary nerve cell 
cultures 

Lein, PJ	 Test the hypothesis that AMPA 
receptor antagonists and/or 
inhibitors of soluble epoxide 
hydrolases will significantly 
improve outcome following 
acute parathion poisoning 

Morehouse School of 
Medicine, Atlanta, 
Georgia 

Oregon Health and 
Science University, 
Portland, Oregon 

U.S. Army Medical 
Research Institute for 
Chemical Defense, 
Aberdeen Proving 
Ground, Maryland 

University of Medicine 
and Dentistry of New 
Jersey, Piscataway, New 
Jersey 

University of California, 
Davis, California 

University of California, 
Davis, California 

National Institute of 
Neurological Disorders and 
Stroke 

National Institute of 
Environmental Health 
Sciences 

National Institute of 
Neurological Disorders and 
Stroke 

National Institute of 
Neurological Disorders and 
Stroke 

National Institute of 
Environmental Health 
Sciences 

National Institute of 
Neurological Disorders and 
Stroke 
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Table 3-13. Ongoing Studies on Parathion 

Principal 
Investigator Study topic Institution Sponsor 
Lein, PJ Develop in vivo rodent models 

for assessing persistent 
neurological damage after 
seizures induced by parathion; 
identify effective therapeutic 
strategies for mitigating 
neurological damage 

University of California, 
Davis, California 

National Institute of 
Neurological Disorders and 
Stroke 

Linney, EA Examine how exposure of the 
developing nervous system to 
parathion can affect learning 
and/or behavior later in life; 
develop and use model 
vertebrate systems to examine 
possible mechanisms 

Duke University, 
Durham, North Carolina 

National Institute of 
Environmental Health 
Sciences 

Pope, CH Evaluate the role of 
endocannabinoid signaling in 
the expression of 
anticholinesterase toxicity of 
organophosphorus 
compounds and determine 
whether its differential 

Oklahoma State 
University, Stillwater, 
Oklahoma 

National Institute of 
Environmental Health 
Sciences 

modulation participates in 
selective toxicity 

Reddy DS Investigate the efficacy and 
safety of the synthetic 
neurosteroid ganaxolone and 
its analogs as broad-spectrum 
medical countermeasures for 

Texas A&M University 
Science Center, college 
Station, Texas 

National Institute of 
Neurological Disorders and 
Stroke 

nerve agents and pesticide 
intoxication 

Wulff, H Synthesize, characterize, test, 
and optimize the 
pharmacokinetic properties 
and central nervous system 
penetration of two distinct 
classes of therapeutic agents, 
sEH inhibitors and K-Ca 

University of California, 
Davis, California 

National Institute of 
Neurological Disorders and 
Stroke 

channel activators 

Source:  RePORTER 2013, 2015 
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3. HEALTH EFFECTS 
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4. CHEMICAL AND PHYSICAL INFORMATION 

4.1  CHEMICAL IDENTITY 

Information regarding the chemical identity of parathion is located in Table 4-1. 

In the United States, parathion was sold in the form of emulsion concentrates, wettable powders, granules, 

dusts, aerosols, and oil sprays (Farm Chemicals Handbook 1987).  In 1991, parathion became a restricted 

use pesticide and was formulated as Parathion EC and Ethyl Methyl Parathion 6-3, which were liquid, 

emulsifiable concentrates and applied using aerial equipment.  Manufacture of parathion for 

manufacturing use products was discontinued as of September 2000, and manufacture of all end use 

products were discontinued effective December 31, 2002 (EPA 2000).  Internationally, parathion may be 

formulated as an aerosol, capsule suspension, dustable powder, emulsifiable concentrate, granule, and 

wettable powder.  Formulations range from a 1% dust to an 83.5% concentrate.  The technical-grade 

material is 98% pure (FAO 1997). 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

Information regarding the physical and chemical properties of parathion is located in Table 4-2. 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-1. Chemical Identity of Parathion 

Characteristic Information Reference 
Chemical name O,O-Diethyl O-(4-nitrophenyl) HSDB 2013 

phosphorothioate 
Synonyms(s) O,O-Diethyl-O-4-nitrophenyl phos- HSDB 2013 

phorothioate; O,O-diethyl O-p-nitrophenyl 
thiophosphate; parathion, ethyl parathion; 
others 

Registered trade name(s) Alkron, Aileron, Aphamite, Bladen, FAO 1997 
Corothion, Etilon, Folidol, E-605, Fostox E, 
Geofos, Kriss, Niram, Orthophos, Panthion, 
Paramar, Paraphos, Parathene, Parawet, 
Penncap-E, Phoskil, Rhodiatox, SNP, 
Soprathion, Stathion, Thiophos, Vitrex, 
others 
PESTANAL® Sigma Aldrich 2014 

Chemical formula C10H14NO5PS HSDB 2013 
Chemical structure S CH3 

PhysProp 2013 

O P O 
N O O 

O CH3 

Identification numbers: 
CAS registry 56-38-2 HSDB 2013 
NIOSH RTECS TF 4550000 NIOSH 2009 
EPA hazardous waste P089 HSDB 2013 
OHM/TADS No data 
DOT/UN/NA/IMCO shipping UN 2783 Organophosphorus pesticides; HSDB 2013 

IM06.1 Organophosphorus pesticides; solid 
HSDB 197 HSDB 2013 
NCI C00226 NCI 1979 

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 
America/Intergovernmental Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 
RTECS=Registry of Toxic Effects of Chemical Substances 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-2. Physical and Chemical Properties of Parathion 

Property Information Reference 
Molecular weight 291.26 HSDB 2013 
Color Pale yellow (pure); dark brown (technical FAO 1997; IPCS 2005 

grade liquid generally in an organic 
solvent); colorless to white (formulated 
solid) 

Physical state Liquid (pure); solid (formulated) HSDB 2013; IPCS 2005 
Melting point 6.1°C Tomlin 2010 
Boiling point 375°C at 760 mm Hg O’Neil et al. 2013 
Density: 

at 25°C/4°C 1.26 HSDB 2013 
Odor Garlic-like HSDB 2013 

Phenol-like 
Odor threshold: HSDB 2013 

Water 4.00x10-2 mg/L 
Air 0.470 mg/m3 

Taste threshold No data 
Solubility: 

Water at 20°C 11 mg/L Tomlin 2010 
Organic solvent(s) Miscible in alcohols, esters, ethers, HSDB 2013 

ketones, aromatic hydrocarbons, and 
animal and vegetable oils; 
practically insoluble in petroleum ether, 
kerosene, and usual spray oils 

Partition coefficients: 
Log Kow 3.83 Tomlin 2010 
Log Koc Eight soil types, 2.48–2.69; four soil types, Gerstl and Mingelgrin 1984; 

2.98–3.23; average for four soils, 4.019 Sharom et al. 1980 
Vapor pressure 

at 20°C 6.68x10-6 mm Hg HSDB 2013 
Henry's law constant 2.98x10-7 atm-m3/mol PhysProp 2013 
Autoignition temperature No data HSDB 2013 
Flashpoint 120–160°C until flammable impurities HSDB 2013 

removed 
Flammability limits Not highly flammable HSDB 2013 
Explosive limits Decomposes upon heating and residues HSDB 2013 

can explode 

FAO = Food and Agriculture Organization; HSDB = Hazardous Substances Data Bank; NIOSH = National Institute 
for Occupational Safety and Health 
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4.  CHEMICAL AND PHYSICAL INFORMATION 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.1  PRODUCTION 

Parathion is an organophosphorus insecticide produced commercially by the reaction of diethyl 

phosphorothionchloridate with sodium p-nitrophenate (HSDB 2013).  Parathion is a liquid or wettable 

powder that was often dissolved in a hydrocarbon solvent before use (ATSDR 2011).  In 1991, all of the 

technical parathion sold in the United States was produced by Cheminova Agro A/S, formulated at one 

location and sold under the Cheminova label. Two formulations were sold:  parathion and ethyl methyl 

parathion emulsifiable concentrates (EPA 2000).  Prior to 1991, parathion was also sold in the form of 

emulsion concentrates, wettable powders, granules, dusts, aerosols, and oil sprays (Farm Chemicals 

Handbook 1987). 

Recent production estimates for parathion are not available, as this substance is no longer produced in the 

United States.  As of 1991, parathion was registered as a restricted use insecticide and had been limited to 

use on nine crops.  Due to the toxicity of this chemical, the production of manufacturing use products was 

cancelled effective as of September 2000. The production of most end use products was terminated as of 

December 31, 2002, with the last legal use of most of this chemical and its products effective on October 

31, 2003 (EPA 2000).  Even though the Drexel Chemical Company was no longer manufacturing or using 

parathion, it still had four products actively registered under the Federal Insecticide, Fungicide, and 

Rodenticide Act (FIFRA).  On March 16, 2005, Drexel requested the cancellation of these four remaining 

products and this became effective on December 13, 2006 (EPA 2006b).  

Beginning on January 1, 1995, parathion was listed as one of the newly added chemicals that 

manufacturing and processing facilities would be required to report under Title III of the Superfund 

Amendments and Reauthorization Act of 1986 (SARA) (EPA 2006).  Table 5-1 lists the production year, 

number of facilities, the state where each facility is located, and the range (in pounds) for the company 

that reported the presence of bulk parathion in 2014 (TRI14 2015).  Although manufacturers are required 

to report Toxics Release Inventory (TRI) data to satisfy EPA requirements, parathion has not been 

manufactured in the United States since 2002. The TRI data should be used with caution since only 

certain types of facilities are required to report (EPA 2005); however, this is expected to be an exhaustive 

list regarding parathion. 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1. Facilities that Processed Parathion in 2014 

Statea 

TX 

Number of 
facilities 
2 

Minimum 
amount on site 
in poundsb 

1,000 

Maximum 
amount on site 
in poundsb 

99,999 
Activities and usesc 

8, 12 

aPost office state abbreviations used. 
bAmounts on site reported by facilities in each state. 
cActivities/Uses: 
1.  Produce 
2.  Import 
3.  Onsite use/processing 
4.  Sale/Distribution 
5.  Byproduct 

6.  Impurity 
7.  Reactant 
8.  Formulation Component 
9.  Article Component 
10.  Repackaging 

11.  Chemical Processing Aid 
12.  Manufacturing Aid 
13.  Ancillary/Other Uses 
14.  Process Impurity 

Source:  TRI14 2015 (Data are from 2014) 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.2  IMPORT/EXPORT 

The import of technical parathion in the United States was prohibited as of September 2000 (EPA 2000).  

Internationally, parathion is subject to the Rotterdam Convention on Prior Informed Consent (PIC) 

procedure, which states that the export of this chemical can only take place with the prior informed 

consent of the importing party.  This applies to all formulations of parathion, including aerosols, dustable 

powder, emulsifiable concentrate, granules, and wettable powders, with the only exception being capsule 

suspensions (WHO 2005). 

5.3  USE 

Parathion was first registered as a pesticide in 1948 (EPA 2000).  It was used as a non-systemic 

insecticide to control sucking and chewing insects and mites in a wide variety of crops (Tomlin 2010).  It 

was often repeatedly applied by fan or boom sprayers or by aircraft on a wide variety of orchard, row, and 

field crops (CDFA 1988).  In 1991, due to emerging health and ecological concern posed by parathion, 

use sites were limited, and application and post-application practices were restricted in order to mitigate 

risk to workers exposed during and after application.  Since 1991, parathion was a restricted use 

organophosphate insecticide and miticide limited to nine crops:  alfalfa, barley, canola (rapeseed), corn, 

cotton, sorghum, soybeans, sunflowers, and wheat.  In September 2000, some manufacturers began 

voluntarily cancelling parathion products registered under Section 3 of FIFRA.  This started the 

termination of registration of most end use products effective December 31, 2002, with the last legal use 

of most of those products ending on October 31, 2003 (EPA 2000). The Drexel Chemical Company was 

authorized to manufacture parathion through 2003 and had four products actively registered under FIFRA 

through 2006.  On March 16, 2005, Drexel requested the cancellation of these four remaining products 

and this became effective on December 13, 2006 (EPA 2006b). 

U.S. Consumption of parathion in 1978 was reported to be 7.2 million pounds.  This number increased to 

8.6 million pounds in 1982 (HSDB 2013).  No recent use estimates are available for parathion, as this 

substance can no longer be legally used in the United States without an EPA exemption. The State of 

California reported some parathion use since at least 2002, with annual quantities totaling 196, 25, <1, 

and 22 pounds for respective years 2011 through 2014, with the last use being for landscape maintenance 

and greenhouse and outdoor plants in containers.  However, included in these reports was the disclaimer 

that statements of parathion use could be due to continued inaccurate annual reporting (CalEPA 2015). 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.4  DISPOSAL 

Parathion is currently considered a toxic chemical under Section 313 of the Emergency Planning and 

Community Right-To-Know Act (EPA 2006).  Since parathion is toxic and containers with parathion 

residue can explode upon heating, any containers or products containing parathion must be disposed of in 

accordance with State and Federal law (EPA 2000). 

Parathion is a potential candidate for rotary kiln incineration, using a temperature range of 820–1,600°C 

and a residence time of seconds.  It is also a potential candidate for fluidized bed incineration, with a 450– 

980°C temperature range, and liquid injection incineration with a temperature range of 650–1,600°C.  

Reverse osmosis has been investigated as a waste water treatment technology for the removal of parathion 

(HSDB 2013). 

An aqueous solution of parathion was found to completely decompose during a 5-hour exposure to 

granular zero valence iron (Fjordboge et al. 2013), indicating that this method might be suitable for in situ 

environmental remediation. 

Dilute waste parathion solutions may be disposed of by chemical or biological treatment, incineration, or 

in soil pits.  Because of the large volume of water involved, incineration is not a preferred method.  

Adsorption of parathion onto media such as activated charcoal, as well as chemical and biological 

treatment methods, are feasible, but they require frequent monitoring and maintenance.  Soil pits have the 

advantage of less maintenance, less cost, and the ability to reduce the volume of waste by water 

evaporation (Sanders and Seiber 1984). 

No information was found on the past and present volumes of parathion or parathion-contaminated wastes 

disposed of by each disposal method. 
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6. POTENTIAL FOR HUMAN EXPOSURE 

6.1  OVERVIEW 

Parathion has been identified in at least 20 of the 1,832 hazardous waste sites that have been proposed for
 

inclusion on the EPA National Priorities List (NPL) (ATSDR 2015b).  However, the number of sites
 

evaluated for parathion is not known.  The frequency of these sites can be seen in Figure 6-1.  


Detections of parathion in environmental media at NPL sites are summarized in Table 6-1.
 

6.2  RELEASES TO THE ENVIRONMENT 

Parathion has not been manufactured, processed, or used in the U.S. mainly since 2000; so, it is likely that 

no significant releases to the environment have occurred in several years. The state of California reported 

that small quantities of parathion were used by a few growers each year from 2002 to 2014.  Reported 

parathion usage was reduced from a high of 1,542 pounds applied to 713 acres in 2006 to 22 pounds 

applied to 1 acres in 2014. The latest use was for landscape maintenance, plants in containers, and 

structural pest control.  The reports noted that the pesticide might actually have been another pesticide, 

but misreported each year as parathion (CalEPA 2015). Parathion was also formerly released into the 

atmosphere by human activities associated with its production and use as an insecticide for agricultural 

purposes. 

The Toxics Release Inventory (TRI) data should be used with caution because only certain types of 

facilities are required to report (EPA 2005).  This is not an exhaustive list.  Manufacturing and processing 

facilities are required to report information to the TRI only if they employ 10 or more full-time 

employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 1011, 

1081, and 1094), 12 (except 1241), 20–39, 4911 (limited to facilities that combust coal and/or oil for the 

purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that combust 

coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 (limited to 

facilities that combust coal and/or oil for the purpose of generating electricity for distribution in 

commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et seq.), 

5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities 

primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces, 

imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI 

chemical in a calendar year (EPA 2005). 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Figure 6-1. Frequency of NPL Sites with Parathion Contamination 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-1. Parathion Levels in Water, Soil, and Air of National Priorities List 
(NPL) Sites 

Geometric standard Number of quantitative 
Medium Mediana Geometric meana deviation measurements NPL sites 
Water (ppm) 0.0004 0.00147 9.57 3 2 
Soil (ppm) 18.5 24 104 14 6 
Air (µg/m3) No data No data No data No data No data 

aConcentrations found in Agency for Toxic Substances and Disease Registry (ATSDR) site documents from 1981 to 
2015 for 1,832 NPL sites (ATSDR 2015). Maximum concentrations were abstracted for types of environmental 
media for which exposure is likely. The number of concentrations approximates the number of pathways the 
contaminant was found in. Pathways do not necessarily involve exposure or levels of concern. 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

During its use as a broad spectrum insecticide in the United States, parathion directly entered the 

environment from point sources.  These are associated with specific points of release, and from nonpoint 

sources, which are diffuse and widely dispersed, such as runoff to streams, seepage to groundwater, and 

deposition of pesticides from the atmosphere (USGS 2007).  In order to reduce exposure to children and 

others, a 1991 agreement began that made parathion a restricted use organophosphate insecticide.  In 

September 2000, most manufacturers agreed to cancel the registration of manufacturing use products.  

This was followed by the termination of registration of those end use products effective December 31, 

2002. Most legal use of parathion products was cancelled as of October 31, 2003 (EPA 2000).  

The Drexel Chemical Company was still authorized to continue manufacturing parathion through 2003 

and still had four products actively registered under FIFRA.  On March 16, 2005, Drexel requested the 

cancellation of these four remaining products and this became effective on December 13, 2006 (EPA 

2006b). There are no known natural sources of parathion. 

6.2.1 Air 

Estimated releases of 5 pounds (~1.36×10-3 metric tons) of parathion to the atmosphere from two 

domestic manufacturing and processing facilities in 2014 (TRI14 2015).  These releases are shown in 

Table 6-2. The two facilities identified in the TRI are hazardous waste incinerators and it is likely that 

these reportings occurred as a result of incinerating old unused stockpiles of product. 

Parathion was also formerly released into the atmosphere by human activities associated with its 

production and use as an insecticide for agricultural purposes.  One study assessed the rate at which 

parathion applied to soil or mixed with water (simulating wet agricultural soil and a retention pond, 

respectively) would volatilize to the surrounding air. The measured rates were low and similar to those 

predicted from the Henry’s law constant, and were 0.8% d-1 for wet surface soil and 0.003 hr-1 of the 

surface water surface water concentration (Sanders and Seiber 1984). These values might overestimate 

what would occur in the environment where degradation and uptake by biota are in competition. 

6.2.2 Water 

No release of parathion to surface water or publically owned treatment works (POTWs) from 

two domestic manufacturing and processing facility in 2014 was reported from facilities required to report 

to the TRI (TRI14 2015).  These releases are listed in Table 6-2. 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-2.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Parathiona
 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
TX 2 5 0 0 0 No data 5 No data 5 
Total 2 5 0 0 0 0 5 0 5 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used.
 
dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility.
 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal
 
and metal compounds).
 
gClass I wells, Class II-V wells, and underground injection.
 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 

impoundments, other land disposal, other landfills.
 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for
 
disposal, unknown
 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells.
 
kTotal amount of chemical transferred off-site, including to POTWs.
 

RF = reporting facilities; UI = underground injection 

Source:  TRI14 2015 (Data are from 2014) 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Parathion was formerly released into water directly from point source discharges, from drift during 

pesticide applications, and from nonpoint-source runoff from agricultural areas. 

6.2.3 Soil 

No releases of parathion to soils from two domestic manufacturing and processing facilities in 2014 were 

reported to the TRI (TRI14 2015). These releases are summarized in Table 6-2. 

Parathion was formerly released into soils primarily from its registered use on various agricultural crops. 

In agricultural areas, parathion may also have been transferred to aquatic sediments (Wan et al. 1994). 

Since parathion undergoes various reduction and degradation reactions in the course of time ranging from 

hours to months, these loadings to soils and sediments were temporary phenomena. 

6.3  ENVIRONMENTAL FATE 

Parathion can move into various environmental compartments, but there does not appear to be a major 

reservoir or sink for this chemical in any specific environmental compartment primarily because of its 

relatively rapid degradation in each environmental medium.  

6.3.1 Transport and Partitioning 

Based on the vapor pressure of parathion (see Table 4-2) and the organic liquids with which it typically is 

mixed, parathion released to the atmosphere via agricultural spraying would be expected to exist in both 

the vapor and particulate phases (Eisenreich et al. 1981). 

Parathion released to water from both point and nonpoint sources may be sorbed to soils and sediments, 

or accumulated in aquatic organisms.  While volatilization of parathion may not be expected to be 

significant based upon the Henry’s law constant (see Table 4-2), it can be an important transport process 

from water surfaces.  Sanders and Seiber (1984) measured a volatilization rate of 30x10-4/hour from water 

for parathion, corresponding to a half-life of 9.6 days.  A laboratory experiment determined that the 

volatilization half-life for parathion from water 4.5 cm deep was 14 and 9.3 days from unstirred and 

stirred solutions, respectively, at 24°C.  This is equivalent to 311 and 206 days, respectively, from water 

1 meter deep (Chiou et al. 1980).  In another laboratory experiment designed to simulate an evaporation 

pond, 0.3% of parathion volatilized after 1 day (Sanders and Seiber 1983).  Parathion released to water 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

may also be adsorbed highly by soils and sediments based on its organic carbon partition coefficient (log 

Koc) values measured to range from 2.50 to 4.20 for varying types of soil and sediment (Mingelgrin and 

Gerstl 1983). 

The adsorption of parathion to soils and sediment attenuates the rate of volatilization and its mobility.  

Adsorption to suspended solids and sediment in the water column also affects its susceptibility to 

photolysis, its bioavailability for aquatic organisms, and its biodegradation (Schuurmann et al. 2006). 

Parathion does not significantly bioaccumulate in aquatic organisms.  A compilation of bioconcentration 

factors (BCFs) obtained for various freshwater fish and other species is presented in Table 6-3.  The BCF 

values range from 63 to 462.  Tadpoles, which are generally resistant to cholinesterase inhibitors such as 

parathion and are therefore suspected that they might accumulate the pesticide, had a reported BCF that 

averaged 64 (Hall and Kolbe 1980). This residue level in tadpoles is consistent with BCFs for vertebrate 

species. 

Parathion may be metabolized in fish and other aquatic species after prolonged exposure.  Some 

biotransformation pathways have been recognized.  Sheepshead minnows (Cyprinidon variegatus) 

metabolized parathion to paraoxon, a toxic product, through catalysis by P450-dependent 

monooxygenation (James 1994).  Parathion may be metabolized in fish and other aquatic species after 

prolonged exposure. Some biotransformation pathways have been recognized, such as metabolism of 

parathion to aminoparathion, with subsequent transformation to p-nitrophenol by fish microbes; see 

Figure 6-2 (EPA 1977b). Sheepshead minnows (Cyprinidon variegatus) metabolized parathion to 

paraoxon, a toxic product, through catalysis by P450-dependent monooxygenation (James 1994).  

Hydrolysis of parathion has been demonstrated in several shrimp and crayfish species (James 1994). 

Parathion released to soil partitions to the atmosphere through volatilization, to surface water via runoff, 

and to groundwater as a result of leaching.  Volatilization of parathion from moist and dry soils is not 

expected to be a significant transport process based upon the Henry’s law constant and vapor pressure 

(see Table 4-2).  The vapor loss rate of technical-grade parathion from a non-absorbing glass surface is 

0.210 μg/cm2/hour (Spencer et al. 1979).  Vapor losses from parathion-incorporated soil are expected to 

be much lower due to binding by the soil.  Simulations of parathion losses from dry soil resulted in only 

0.1–0.3% losses in 30 days when incorporated into 10 cm of soil (Jury et al. 1984).  Volatilization in a 

laboratory environmental chamber designed to simulate a soil pit resulted in 0.8% volatilization in 1 day 

from wet soil and approximately an order of magnitude less from dry soil (Sanders and Seiber 1984). 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-3.  Bioconcentration Data for Parathion 

Species common name/ Exposure Exposure Duration 
scientific name type concentration (μg/L) (days) BCF Reference 
Freshwater fish 

Bluegill/Lepomis macrochirus F 510 0.5 63 HSDB 2013 
Bluegill/L. macrochirus F 640 3 462 HSDB 2013 
Brook trout/Salvelinus fontinalis F 3,180 0.33 68 HSDB 2013 
Brook trout/S. fontinalis F 270 5.83 344 HSDB 2013 
Killifish/Oryzias latipes F – 1–3 98a Tsuda et al. 1995 

Tadpoles I 64 Hall and Kolbe 
1980 

aAverage BCF value reported in the cited reference.
 

BCF = bioconcentration factor; F = flow-through exposure system; I = immersion
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Figure 6-2.  Degradation Pathways for Parathion 
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Source: EPA (1977b) 
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The mobility of parathion in soils and sediments is expected to be low based on measured Koc values. 

Parathion was reported to have average Koc values of 674 and 1538 in Israeli soils (0.11–5.82% organic 

matter) and sediments (3.08–7.85 organic matter), respectively (Gerstl and Mingelgrin 1984).  In four 

soils with an organic carbon range of 0.087–0.65%, parathion had an average Koc of 10,454 ppm 

(Hamaker and Thompson 1972).  Mingelgrin and Gerstl (1983) reported a Koc range of 314–15,860 for 

parathion for an unspecified number of soils with an organic content ranging from 0.2 to 6.1%.  In four 

soil types with organic carbon content ranging from 0.41 to 43.7%, parathion had Koc values ranging from 

965 to 1,700 (Sharom et al. 1980).  In five sterilized Iowa soils (organic matter content 0.88–31.65%), 

parathion had Koc values ranging from 602 to 805 (Felsot and Dahm 1979).  Chu and Chan (2000) 

reported a Koc value of 10,700 mL/g for parathion.  A log Koc of 3.20 (Koc of 1,585) was reported by 

Sabljic et al. (1995).  Adsorption patterns indicated that parathion has an initial fast adsorption reaction 

occurring within 4 hours.  Adsorption was almost complete 1 hour after application (~86% of added 

parathion) and equilibrium (88% of added parathion) was reached within 4 hours (Saffih-Hdadi et al. 

2003). 

Because this insecticide is highly adsorbed by soils, leaching into groundwater is expected to be minimal.  

Additional parameters influencing the leaching potential of this chemical include the soil type (e.g., clay 

versus sand), amount of rainfall, depth of the groundwater, and the extent of degradation (Kenaga 1980). 

Sorption of parathion is positively correlated with organic matter content of the soil (Felsot and Dahm 

1979).  Parathion had a mobility of 0.01 compared to that of water in a French soil (Moreale and Van 

Bladel 1983) and ranked 36 and 40 in a ranking of 41 pesticides by attenuation factor and retardation 

factor, respectively, in two sandy soils (Rao et al. 1985).  The fraction of parathion leached from soil by 

10 successive 200-mL applications of water to a soil column was 1.24 and 4.36% for an organic soil and 

sand, respectively (Sharom et al. 1980).  Only a small fraction (10%) of parathion adsorbed to a sterile 

sandy loam was found to undergo diffusion (the diffusion constant in soil with highest moisture content 

was 0.03 cm2/day) (Gerstl et al. 1979). In soil columns of Nacogdoches clay subsoil, parathion leached to 

60 inches when 230 inches of rainfall was simulated, while in Houston Black clay surface soil, 

1,725 inches of rain were required to produce leaching to 60 inches.  Parathion movement in those soils 

under saturated conditions was slow, with parathion dissolving slightly in the liquid phase while its 

downward movement was retarded primarily by adsorption. The authors considered that, under normal 

unsaturated flow field conditions, the downward flow of parathion in water would be offset by its upward 

movement in water vapor (Swoboda and Thomas 1968).  Parathion applied at 0.1 lbs/acre, followed by 

flooding and a subsequent application of 0.2 lbs/acre, was degraded before reaching drainage tiles 6 feet 

http:0.88�31.65
http:0.087�0.65
http:3.08�7.85
http:0.11�5.82
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below the soil surface (EPA 1977b).  In field studies, little leaching occurred in a sandy loam soil in 16 

years after four annual applications of parathion despite 42 inches of precipitation per year (Stewart et al. 

1971).  Little parathion was found below 9 inches, 6 years after 30,000–95,000 ppm was applied to the 

soil (Wolfe et al. 1973).  In a 15-year study of residues in a light sand soil, no parathion was found to 

have leached below 8 inches (EPA 1977b).  In an 8-month persistence test under experimental conditions 

with 20 cm of simulated rain, no parathion was found below 1 inch.  In cases where small amounts of 

parathion penetrated into the soil, it was believed to be the result of the movement of particulate or 

microparticulate matter containing sorbed parathion rather than by leaching (EPA 1977b).  In a field study 

involving the application of parathion to a peach orchard providing watershed for a 2.7-acre pond, no 

residue was found below 6 inches and there appeared to be little desorption of the insecticide from the 

bottom sediment of the pond (Faust and Suffet 1966). 

6.3.2 Transformation and Degradation 

Parathion is subject to a variety of abiotic and biotic degradation processes in all environmental 

compartments.  The adsorption of parathion to suspended solids and sediments in the water column may 

affect its rate of volatilization, photolysis, biodegradation, and its bioavailability to aquatic organisms 

(Schuurmann et al. 2006).  It follows two major fate pathways:  degradation to less toxic compounds or 

oxidative conversion to the toxic bioactive product, paraoxon (CDFA 1988).  The extent of conversion to 

paraoxon is dependent upon the amount of sunlight, atmospheric oxidants present, and type of 

formulation applied (CDFA 1988). 

6.3.2.1  Air 

Parathion in the atmosphere may be subject to direct photolysis since it absorbs light in the spectra above 

290 nm.  Under atmospheric conditions, oxidation especially influences the transformation rates of 

parathion to its degradation product, paraoxon (Mansour et al. 1983).  Parathion conversion to paraoxon 

occurs rapidly in air, is promoted by sunlight, and takes place largely in the vapor phase (Seiber and 

Woodrow 1984).  The presence of ozone catalyzes the conversion of parathion to paraoxon.  While at 

normal ozone levels (30 ppb), paraoxon production was quite low (approximately 2.1–4.1% in 8 hours), 

at ozone levels found under smog conditions (300 ppb), 10–65% conversion was found in 8 hours (HSDB 

2013).  The photolysis half-life of parathion as determined in a laboratory photoreactor was 41 minutes.  

This half-life was reduced to 23 minutes in the presence of >1 ppm ozone (Woodrow et al. 1978, 1983).  

Field experiments performed by releasing parathion as an emulsifiable concentrate and sampling 

downwind resulted in a half-life of 5 minutes at 4 PM (early June), and 131 minutes after sunset 
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(Woodrow et al. 1978, 1983).  The half-life (first-order kinetics) for the vapor-phase reaction of parathion 

with hydroxyl radicals in the atmosphere is estimated to be 4.2 hours, assuming an atmosphere containing 

5x105 hydroxyl radicals/m3 at 25°C (Meylan and Howard 1993). 

6.3.2.2  Water 

Parathion released to water may be subject to both abiotic degradation (i.e., hydrolysis and photolysis) 

and biotic degradation by microorganisms.  Microbial metabolism is the major means of parathion 

detoxification in soil and aquatic environments (Sethunathan et al. 1977). 

Parathion slowly undergoes hydrolysis to form toxic products, paraoxon and p-nitrophenol, which are 

much more soluble than the parent compound.  At pH 7 and 20°C, the hydrolysis half-life of parathion 

was reported as 130 days (EPA 2002).  A hydrolysis half-life of 62 days was reported for parathion in 

dilute solutions at pH 6.3 and 20°C.  It was also reported to hydrolyze at 1% in river water at pH 7.2, with 

a half-life of 60 days (Mansour et al. 1999).  In a natural aqueous medium, approximately 70% of 

parathion was hydrolyzed in 4 weeks and 72% was hydrolyzed in 6 weeks (EPA 1977b). 

The fate of parathion in water is dependent upon physical factors such as temperature, pH, and microbial 

composition.  Parathion is relatively stable in neutral or acidic pH range, but is hydrolyzed rapidly in 

alkaline conditions (Sethunathan et al. 1977).  Chapman and Cole (1982) reported the half-lives of 

parathion in sterile aqueous buffer solutions to be 39, 43, 33, 24, and 15 weeks at pH levels of 4.5, 5, 6, 7, 

and 8, respectively.  Fisher and Lohner (1987) studied factors affecting the stability of parathion in the 

aquatic environment, with emphasis on pH.  In water of aquatic microcosms adjusted to pH 4, 6, and 8, 

pH was found to be insignificant in controlling levels of parathion.  After 7 days, parathion accounted for 

29.7, 28.7, and 36.6% of total radioactivity in the water of microcosms held at pH 4, 6, and 8, 

respectively.  In abiotic water, however, no parathion breakdown was observed in 40 days at any of the 

pH levels, demonstrating the importance of biotic factors, particularly microorganisms, in degrading 

parathion (Fisher and Lohner 1987).  A half-life of 8.77 days was reported for parathion in an experiment 

using samples of non-filtered Limon River water that was exposed to sunlight and in contact with the 

atmosphere (Medina et al. 1999).  

Temperature has been shown to be an important factor in the degradation of parathion through elevation 

of the rate of hydrolysis.  An increase in temperature from 20 to 37.5°C (pH 7.4) resulted in a decrease in 

the half-life of parathion from 130 to 27 days in an aqueous system (Freed et al. 1979). 



   
 

  
 
 

 
 
 
 
 

 

   

    

 

     

    

  

 

 

 

    

      

  

   

 

  

  

  

    

  

  

 

    

  

   

  

  

    

   

   

 

    

    

PARATHION 171 

6.  POTENTIAL FOR HUMAN EXPOSURE 

The presence of metal ions can have a catalytic effect on hydrolysis as was shown by the decrease in half-

life of formulation parathion sprays in the presence of copper ions and in other experiments done in the 

presence of copper and calcium ions (Plastourgou and Hoffmann 1984).  However, it was not clear how 

much of an effect the presence of metal ions will have in natural waters. The half-life for chemical 

hydrolysis in sterile seawater was reported to be approximately 1 year at 4°C and pH between 7.8 and 8.8, 

showing that the pH was not a demonstrable factor in degradation (Wade 1979).  It was reported, 

however, that divalent cations may have catalyzed the hydrolysis. 

The rate of aqueous photolysis is dependent upon the intensity and wavelength distribution of sunlight, 

which varies by the time of day and season of the year.  The presence of natural photosensitizers, such as 

humic and fulvic acid also affects the potential rate of photolysis of parathion in natural waters. 

Measured photodegradation half-lives for parathion in lake water, river water, marine water, groundwater, 

and distilled water were 17.8, 23.7, 18.9, 21.6, and 19.6 days, respectively.  Paraoxon was found to be the 

primary degradation product by this process, while small amounts of p-nitrophenol, aminoparathion, and 

triethyl phosphothioate were also observed (Sakellarides et al. 2003).  Half-lives of 120 and 86 days were 

observed when parathion was incubated in pH 7.3 river water in darkness at 6 and 22°C, respectively; the 

half-life decreased to 8 days when parathion was incubated in sunlight in pH 7.3 river water (Lartiges and 

Garrigues 1995).  Half-lives of 542 and 44 days were observed when parathion was incubated in pH 8.1 

seawater in darkness at 6 and 22°C, respectively; a half-life of 18 days was observed when parathion was 

incubated in seawater in sunlight (Lartiges and Garrigues 1995).  Irradiation for 10 hours in aerated 

distilled water resulted in 88% degradation attributed to photolysis (Mansour et al. 1983). 

Photosensitizers that are present in eutrophic natural waters accelerate photolysis.  In river water, 

parathion had a photolysis half-life of 1.2 days, and this half-life was reduced to 0.69 days in the presence 

of the photosensitizer, riboflavin (Zhao and Hwang 2009).  While 20% of parathion in distilled water was 

lost by photolysis in 18 hours, the same loss occurred in only 2 hours in Okeefenokee Swamp water 

(Zepp and Baughman 1978).  The presence of hydrogen peroxide at concentrations that occur naturally in 

agricultural irrigation water and other surface water has been shown to increase the rate of 

photodegradation.  The addition of hydrogen peroxide to distilled water reduced parathion remaining in 

solution from 65 to 28% when exposed to October sunlight for 245 hours (Draper and Crosby 1984). 

Parathion has been shown to biodegrade in acclimated natural waters within several weeks.  Parathion 

(5 ppm) completely degraded within 2 weeks in acclimated water from Holland Marsh, a vegetable 
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growing area in Ontario, being almost quantitatively converted to aminoparathion, while only 10% 

degradation occurred in 16 weeks when the water was sterilized (Sharom et al. 1980).  In the waters of the 

Little Miami River, Ohio, a small stream that receives domestic and industrial waste as well as farm 

runoff, 50% of parathion (10 ppb) degraded in 1 week and none could be detected after 4 weeks 

(Eichelberger and Lichtenberg 1971).  

In non-acclimated seawater, marine plankton were responsible for both chemical and biological 

degradation of parathion.  Surface water of varying salinity (0–28 ppt) collected from the Mississippi 

Sound estuary system degraded parathion with a 45-day half-life at 30°C and was shown to be 

independent of salinity (HSDB 2013). The half-life of parathion in sterile seawater was reported as 

approximately 1 year, but was reduced to 56 days under nonsterile conditions (Wade 1979).  After 

30 days of incubation in non-sterile coastal river water (24 ppt salinity), only 21, 14, and 6% of parathion 

remained at pH values of 6, 7, and 8.16, respectively, while in sterile coastal river water, 64, 57, and 49% 

of the initial parathion remained at pH 6, 7, and 8.16, respectively (Wang and Hoffman 1991).  In an 

experimental study performed by Carvalho et al. (1998), the persistence half-life of parathion dissolved in 

marine water at 32°C was 9–46 days, depending on the salinity of the water.  

Parathion has been shown to degrade in activated sludge treatment plants.  With adequate aeration, high 

levels of parathion wastes were destroyed within 7–10 days in a treatment plant (Sethunathan et al. 1977). 

6.3.2.3  Sediment and Soil 

Once released to soils and sediments, parathion can be degraded by hydrolysis, photolysis, and 

biodegradation by several genera of microorganisms. In an experiment studying the relative 

decomposition rates of 14C-labeled parathion in sterilized and non-sterilized soil, degradation was 

principally of biological origin based on measurements of cumulative 14CO2 released. At 7 days after 

application, <3% of abiotic degradation was observed for parathion in sterilized soil compared with 18% 

in non-sterilized soil.  After 56 days of incubation, the respective values were relatively much closer (34% 

and 55%), indicating that there was less parathion available for biological activity and that the 

biodegradation pathway may be cometabolic.  Parathion may be transformed by reduction to 

aminoparathion, which is then hydrolyzed to 4-aminophenol, or by oxidative desulfurization to paraoxon, 

which is hydrolyzed to p-nitrophenol, depending on the type of soil and, therefore, the type of microbial 

biomass (Saffih-Hdadi et al. 2003). 
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Moisture content of soil and initial concentration of parathion can have an effect on the rate of 

degradation and evaporation, both of which contribute to removing parathion. The elimination of 

parathion in soil with three different moisture contents increased with initial concentration (1.4–28 ppm) 

and moisture content (Gerstl et al. 1979). The percentage of parathion eliminated after 11 days of 

incubation ranged from 96% at high initial concentrations and moisture content to 20% at low 

concentrations and moisture levels. 

Based on several degradation studies using sterile and nonsterile samples and isolated cultures of 

microorganisms, it has been shown that microbial metabolism is the major means of parathion 

detoxification in soil and aquatic environments (Sethunathan et al. 1977).  After 8 weeks of incubation in 

an organic and a mineral soil, <2 and 6% of the 1 ppm parathion applied remained, respectively, while 

80 and 95% remained in sterilized controls, respectively (Chapman et al. 1981).  Miles et al. (1979) 

reported the half-lives of parathion (10 ppm) in a sandy loam and organic soil to be <1 and 1.5 weeks, 

respectively, with only 5% remaining after 3 and 10 weeks, respectively.  During three composting trials 

in 1979, 1982, and 1983 consisting of 56–75-day composting periods, composting of organic wastes was 

characterized by very high biological activity (Vogtmann et al. 1983). 

Parathion has also been shown to degrade under anaerobic conditions with reduction of parathion to 

aminoparathion as the main degradation pathway.  When parathion (500 ppm) was incubated in flooded 

anaerobic alluvial soil, 43 and 0.09% remained after 6 and 12 days, respectively, with degradation 

occurring by reduction to aminoparathion (Adhya et al. 1981a).  In a parallel experiments in which 

parathion was incubated for 30 minutes in soil suspensions of five 30-day flooded (anaerobic) soils and 

aerobic soils that had been previously reduced, no degradation occurred in the aerobic soils, while 35– 

68% degradation occurred in the anaerobic soils (Adhya et al. 1981b).  The most reduced soils produced 

the most rapid degradation. The effect of sulfur content of the soils was also investigated in the study.  In 

anoxic sulfur-containing environments such as flooded acid sulfate soils, hydrogen sulfide evolved as the 

end product of anaerobic metabolism of sulfate, readily reacted with the aminoparathion degradation 

product to form desethyl aminoparathion (Adhya et al. 1981b).  After repeated application of parathion to 

flooded soils, the degradation pathway shifted from reduction to hydrolysis (Adhya et al. 1981c). 

Two microorganisms isolated from flood soils also were found to hydrolyze parathion (Adhya et al. 

1981c).  Parathion was rapidly hydrolyzed within 24 hours by both Flavobacterium sp. and Pseudomonas 

sp.  A hydrolysis product of parathion, p-nitrophenol, was not metabolized further by the Flavobacterium 

sp., while the Pseudomonas sp. readily metabolized p-nitrophenol to yield nitrate (Adhya et al. 1981c). 
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Studies with sterile soils and clay minerals have shown that parathion may undergo slow chemical 

hydrolysis in soil systems.  During 130 days of incubation in gamma irradiated soils (30 kGy) of differing 

organic matter and clay mineralogy at room temperature, 3–23% of parathion was hydrolyzed in air-dried 

soil and <10% was hydrolyzed in moist soils.  Among the soil constituents, clay and organic matter 

(kaolinite > montmorillonite > organic matter) were the most important in catalyzing the chemical 

hydrolysis of parathion in sterile soils.  However, adsorption follows the reverse order, indicating that 

catalysis occurs at active absorption sites at the soil surface (Sethunathan et al. 1977).  In 14 soil studies, 

3–33% of the initial parathion was degraded after 130 days of incubation in dry soil (Yaron 1975).  For 

most of the soils, the presence of water hindered degradation, presumably by blocking active sites on the 

soil (Yaron 1975).  Parathion degradation decreased as moisture content of various kaolinite clays 

increased until a moisture content equivalent to the upper limit of bound water was reached (Saltzman and 

Mingelgrin 1984).  As moisture content was increased beyond this point (e.g., in flooded conditions) the 

hydrolysis rate of the parathion sharply increased (Saltzman and Mingelgrin 1984).  

Although the treatment of crops with pesticides such as parathion often resulted in significant 

contamination of the adjacent soils, photolysis is only an important environmental fate process for 

contaminated surface soils since sunlight is rapidly attenuated and does not penetrate much beyond the 

soil surface. Measured photodegradation half-lives for parathion in sandy clay loam (0.90% organic 

matter), clay loam (1.94% organic matter), and sandy loam (3.52% organic matter) were 21.3, 15.6, and 

20.8 days, respectively (Sakellarides et al. 2003).  No correlation was observed between the percentage of 

organic matter present in the soil and the rate of photodegradation. 

6.3.2.4  Other Media 

Thin films of parathion that may be formed on leaves and other surfaces after spraying have a 

photodegradation half-life of 88 hours (Chen et al. 1984).  Conversion products on leaf surfaces and dry 

dust particles in field tests are paraoxon and p-nitrophenol (Crosby 1979).  In a photodegradation study, 

parathion applied to epicuticular leaf and fruit wax of a tomato degraded 16.3 and 20.7% after 8 hours of 

exposure, respectively.  The presence of the wax interacts with parathion at the nitro group that 

participated in the photoreduction, leading to the formation of the azo derivative 4,4’-bis(di-ethoxy­

phosphinothioyloxy)azobenzene (Fukushima and Katagi 2006). 
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6.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT 

Reliable evaluation of the potential for human exposure to parathion, which has not been used in the 

United States for several years, depends in part on the limits of detection of supporting analytical data and 

appropriate sampling of environmental media and biological specimens.  Concentrations of parathion in 

unpolluted atmospheres and in pristine surface waters are often so low as to be near the limits of current 

analytical methods.  In reviewing data on parathion levels monitored or estimated in the environment, it 

should also be noted that the amount of chemical identified analytically is not necessarily equivalent to 

the amount that is bioavailable. The analytical methods available for monitoring parathion in a variety of 

environmental media are detailed in Chapter 7. 

Care should be taken when assessing analytical results for which a limit of detection (LOD) or similar 

sensitivity value is not provided for the substance of interest, and the study reports not having detected 

that substance; failing to detect a substance does not mean that it is not present. 

Most information on parathion concentrations in various environmental media derived from large-scale 

US monitoring networks dates from before the mid-1990s and likely no longer reflects current conditions.  

There is a noticeable lack of national monitoring studies that would allow meaningful estimation of 

current parathion concentrations associated with various environmental media.  Reliable evaluation of the 

potential for human exposure to parathion depends, in part, on the LOD of supporting analytical data and 

appropriate sampling of environmental media and biological specimens. 

6.4.1 Air 

When parathion was still being used as a registered pesticide in the United States, a range of ambient air 

concentrations of 0.017–0.089 μg/m3 was reported (CDFA 1988).  Ambient air concentrations of 

parathion and its oxidation product, paraoxon, converted to parathion were measured by the Air 

Resources Board in the San Joaquin Valley, California from January 6 to February 14, 1986 and in the 

Imperial Valley, California from September 23 to October 22, 1986.  In this study, the highest individual 

24-hour values measured in the northern San Joaquin Valley for parathion and for combined parathion 

plus converted paraoxon were 0.834 and 1.423 μg/m3, respectively, with means of 0.141 and 

0.170 μg/m3for all samples collected from the six sites sampled over the 23-day study period.  In the 

southern San Joaquin Valley and in the Imperial Valley, respectively, the peak amounts of parathion 

(excluding converted paraoxon) in the air were considerably lower; the highest measured individual 

24-hour values were 0.089 and 0.150 μg/m3 with means of 0.023 and 0.025 μg/m3 for each area.  The low 
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values in the southern San Joaquin Valley were potentially the result of the wet, foggy weather prevailing 

during the winter months.  In the Imperial Valley, the low ambient levels of parathion could have been the 

result of increased volatility during the very warm weather of the fall months (CDFA 1988).  Ambient 

parathion concentrations were measured under foggy atmospheric conditions in and around the Central 

Valley of California (Parlier, California), which is a prime agricultural area dominated by fruit, nut, and 

citrus orchards (Glotfelty et al. 1990; Seiber et al. 1993; Zabik and Seiber 1993).  Parathion was detected 

in air samples collected from Parlier, California on January 12, 1986 under foggy atmospheric conditions 

at a total concentration of 9.4 ng/m3, with 78.5% existing in the vapor phase (Glotfelty et al. 1990).  Zabik 

and Seiber (1993) studied the atmospheric transport of parathion from California's Central Valley to the 

Sierra Nevada Mountains.  Air samples collected from January through February 1991 represented the 

simultaneous collection of both vapor and particulate phases.  Concentrations of parathion and paraoxon 

were 26–13,000 pg/m3 (0.026–13 ng/m3) and 8–3,800 pg/m3 (0.008–3.8 ng/m3), respectively, for samples 

collected at the 114-m elevation and below the LOD and 71 pg/m3 (<LOD–0.071 ng/m3) and 

<LOD–220 pg/m3 (<LOD–0.22 ng/m3), respectively, at the 533-m elevation.  The pesticide 

concentrations in air samples decreased with distance and elevation moving east from the Central Valley 

into the higher elevations of the Sierra Nevada Mountains.  At times, air concentrations of parathion at the 

114-m elevation were 1,000 times greater than concentrations detected at the 533-m elevation.  

Concentrations at the 1,920-m elevation were typically below the limit of quantification for parathion, but 

paraoxon was detected at concentrations of up to 10 pg/m3. The higher paraoxon than parathion 

concentrations at higher elevations indicate that the oxygenation process occurs during atmospheric 

transport resulting in increasing conversion of parathion to paraoxon as residence time in the atmosphere 

increases.  Wet deposition samples (rain and snow) collected at the 114-m elevation contained up to 

7,600 pg/mL parathion and 8,300 pg/mL paraoxon.  Seiber et al. (1993) reported an average parathion 

concentration of 63.5 ng/m3 in 24-hour ambient air samples collected near dormant orchards in the 

northern San Joaquin Valley, California during 17 days in January 1989, the most intensive period of 

dormant orchard spraying.  The average day- and night-time concentrations were 52.0 and 119.6 ng/m3, 

respectively.  Those values are significantly lower that reported by the California Department of Food and 

Agriculture (CDFA) for the same location and time frame (CDFA 1988). 

In a study of rain and air samples collected from agricultural and urban sites in Mississippi during April 

to September 1995, parathion was not detected (method reporting level of 24 pg/m3) in urban air or rain 

and agricultural air.  It was detected once in agricultural rain samples (Coupe et al. 2000; Foreman et al. 

2000). 

http:LOD�0.22
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Parathion was included in the National Air Pesticide Monitoring Program from 1970 to 1972 at selected 

sites in 14–16 states.  In 1970, 3.2% of 787 samples tested positive at a mean concentration of 64.2 ng/m3 

and a maximum concentration of 834 ng/m3. In 1971, 2.3% of 667 samples tested positive at a mean 

concentration of 9.3 ng/m3 and a maximum concentration 109 ng/m3. In 1972, parathion was not detected 

in 1,025 samples (Kutz et al. 1976); however, the LOD was not provided.  Stanley et al. (1971) reported 

the results of a pilot study of atmospheric contamination of pesticides, in which air was sampled at nine 

localities in the United States, representing both urban and agricultural areas.  Parathion was detected in 

only one location (Orlando, Florida) at a maximum concentration of 465 ng/m3 (37% samples positive).  

In a study of pesticide levels in ambient suburban air, parathion was detected in Miami, Florida (60% 

positive, 2.8 ng/m3 mean, 12.1 ng/m3 maximum), but not in Jackson, Michigan or Fort Collins, Colorado 

(Kutz et al. 1976); the LOD appears to be <0.4 mg/m3 since that value, for Pennsylvania, was the lowest 

positive result reported in the study.  

In addition to its presence in the ambient atmosphere, parathion has also been monitored in both outdoor 

and indoor air associated with its use in occupational exposure situations. The highest levels of parathion 

measured when it was still registered for use in the United States were reported in the wash down area for 

crop-dusting aircraft (320 μg/m3) and in the cockpits of those aircraft during application (179 μg/m3).  

These levels were followed by air levels of 48 and 43 μg/m3 measured in the truck cab and tractor towing 

spray-rigs, respectively (CDFA 1988).  Lewis and Lee (1976) reported concentrations of parathion in a 

formulating plant and storage shed in South Florida to be 557 and 48.9 ng/m3, respectively.  Mean air 

concentrations in open and closed tractors with an oscillating boom during spray application of parathion 

on citrus trees ranged from 4 to 93 μg/m3 (Carman et al. 1982). 

Reported levels of parathion in the air at a site of application ranged from 2 to 18 μg/m3 within a day of 

application and decreased to a range of not detected (LOD not stated) to 0.005 μg/m3 21 days after 

application.  Reported off-site downwind levels ranged from 34 μg/m3, 40 yards from the sprayed field 

during application, to 0.002 μg/m3 100 yards from the field 6 days after application (CDFA 1988).  The 

highest parathion concentration found by one study within an orchard during spraying and dusting 

operations was 0.74 mg/m3.  Other studies found parathion concentrations as high as 15 mg/m3 during 

spraying and dusting (Wolfe 1976).  Concentrations of parathion in the air of a plum orchard were 

3,500 ng/m3 immediately after spraying and 4,100, 394, 149, 21, and 16 ng/m3 1, 2, 5, 14, and 21 days 

after spraying, respectively (Seiber and Woodrow 1984).  Downwind 100 m from the plum orchard, 

parathion concentrations of 35, 9, 1.6, and 0.9 ng/m3 were detected 2, 3, 6, and 21 days after spraying, 

respectively. 
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The Colorado Community Pesticide Sampling Programs detected parathion in monthly air samples taken 

inside and outside the homes of 12 men who were occupationally exposed to parathion either as 

formulators or farmers.  The higher levels were found for formulators, with indoor exceeding outdoor 

levels for both groups (Tessari and Spencer 1971). 

In the Canadian Atmospheric Network for Currently Used Pesticides, a nationwide air surveillance study 

of pesticides in agricultural regions in Canada, the highest concentrations of parathion were found at 

Vineland where the peak concentrations were 784 pg/m3 in 2004 and 81.5 pg/m3 in 2005 (Yao et al. 

2008).  Parathion may be found in environmental media in agricultural regions of other countries that still 

use parathion, indicating that it could be brought into the United States (e.g., on produce). 

6.4.2 Water 

Spray drift, runoff, and erosion flux may result in the contamination of streams and adjacent water bodies 

in locations where pesticides are applied.  Leaching from the soil surface may also contaminate 

groundwater; however, streams and other surface waters appear to be more vulnerable to contamination 

than groundwater in most hydrologic settings (USGS 2007).  During Iowa’s Ambient Surface Water 

Monitoring program that included about 80 sampling sites between 1999 and 2001, only one detection of 

parathion occurred and the concentration was low (in the 0.05 ppb range) (EPA 2002).  In a USGS 

program for monitoring pesticides in the streams of the western United States for the period of October 

1968 to September 1971 in which parathion was tested for quarterly at 20 stations, it was detected at 

40 ppt in two samples from the Gila River, Arizona and at 40 and 160 ppt in two samples from the 

Sacramento River, Verna, California (Schulze et al. 1973).  Parathion was not detected in any water 

samples collected from July to September 1984 from Little Miami River, Ohio above or below a 

municipal waste water outfall, although the LOD was not reported (HSDB 2013).  No parathion was 

detected in water or particulate matter samples collected from Lake Superior or Lake Huron at 

quantification limits of 5 ppt and 100 pg, respectively (Glooschenko et al. 1976).  In the Erie River Basin, 

parathion was not detected (LOD not reported) in the over 100 samples collected before 1974 (Waldron 

1974).  Parathion (LOD not reported) was detected in 1 of 174 sampling stations across the nation’s rivers 

collected prior to 1985 during a USGS water supply study (HSDB 2013).  In a monitoring program by the 

California Department of Water Resources, the highest concentration of parathion detected in 

Sacramento-San Joaquin Delta Water was 0.035 μg/L (Lam et al. 1994).  Parathion (LOD not reported) 

was not detected in any surface water samples collected during 1999–2000 as part of the USGS National 
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Water-Quality Assessment (NAWQA) Program in which samples were collected from 34 sites located 

throughout the Yakima River Basin, Washington (Ebbert and Embrey 2001).  Parathion was detected in 

1 of 215 surface water samples (Cherry Creek, Denver, Colorado) at a concentration of 0.014 μg/L during 

a study monitoring eight urban streams in the United States from 1993 to 1994 (Hoffman et al. 2000). 

Parathion was detected in ditch water draining cranberry bogs that had been treated with parathion in the 

Lower Fraser Valley of British Colombia, Canada, at concentrations ranging from not detected to 21 μg/L 

(Wan et al. 1995).  In farm ditch water collected from seven locations in the Lower Fraser Valley, British 

Columbia in 1991, parathion was detected at mean concentrations of 0.13 and 0.20 μg/L at Westham 

Island and Colverdale, respectively (Wan et al. 1994). 

Water samples collected from 15 lakes and 2 creeks on the Sparta, Illinois National Guard Armory, which 

is surrounded primarily by agricultural land, in the winter of 2003 contained a mean parathion 

concentration of 17 ng/L (4 of 39 samples).  Parathion (LOD not reported) was not detected in 42, 41, and 

33 samples collected in the spring, summer, and fall 2003, respectively (Ownby et al. 2004).  Parathion 

was not detected in water samples collected from tributaries in Sothern and Central Ontario (LOD = 4.6– 

15.5 ng/L) during sampling conducted from 2003 to 2008 by Environment Canada (de Solla 2012a, 

2012b).  

Parathion has been included in several state monitoring programs.  In a groundwater quality study 

conducted in a rural region of Baltimore County by the Maryland Geological Survey, parathion was 

detected above the minimum reporting limit (0.004 μg/L) in 1 out of 112 samples, at a concentration of 

0.022 μg/L (EPA 2002).  Parathion (LOC not reported) was not detected in ground water from five 

shallow monitoring wells, where the insecticide was used within 300 feet of the wells, sampled in North 

Carolina between 1991 and 1995 (EPA 2002).  In a groundwater monitoring program run by the North 

Dakota Department of Health that collected approximately 2,700 samples from 1,465 wells between 1992 

and 2001, parathion was detected in 3 samples from 2 wells at concentrations of 0.274, 0.322, and 

1.833 μg/L (EPA 2002). 

No parathion was detected (LOD 0.5 ppb) in 36 drinking water wells sampled in Hawaii in March, 2001 

(EPA 2002).  In Iowa’s Statewide Rural Well-Water Study (LOD not reported) that included 686 private 

wells sampled once during 1988–1989, with 10% of the wells repeat-sampled during 1990 and 1991, no 

parathion was detected (EPA 2002).  No parathion was detected in drinking water (LOD not reported) in 

the FDA Total Diet Study for infants and toddlers conducted between 1980 and 1982 and the FDA Total 
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Diet Study for adult groups conducted from 1980 to 1982 (Gartrell et al. 1986a,1986b).  No parathion was 

detected in 54 monitored wells (primarily municipal) (LOD not reported) in selected California 

communities in the early 1980s (Maddy et al. 1982).  A parathion concentration of 4.6 ppb was measured 

in a California drinking water well sample in 1979 (Burmaster 1982).  Parathion was not detected in 

Ottawa tap water (LOD <1 ppt) in the late 1970s (Lebel et al. 1979). 

Parathion concentrations were measured under foggy atmospheric conditions in and around the Central 

Valley of California, which is a prime agricultural area dominated by fruit, nut, and citrus orchards 

Parathion was detected in atmospheric fog water collected from agricultural areas Parlier, Corcoran, and 

Lodi, California in 1985 at concentrations of 9,000, 950, and 184,000 ng/L, respectively (Glotfelty et al. 

1987).  It was also detected in fog samples collected near Parlier, California in January 1986 at 

concentrations of 3.6, 31, 30, 2.7, 39, and 23 μg/L (Glotfelty et al. 1990).  Seiber et al. (1993) reported 

parathion concentrations ranging from 4.3 to 19.0 ppb in fog water samples collected from the San 

Joaquin Valley, California in January 1989 during the spraying of near dormant orchards.  

6.4.3 Sediment and Soil 

Parathion has not been the focus of many national soil or sediment monitoring programs in the United 

State, but has been monitored in regional studies associated with agricultural applications in both the 

United States and Canada. Parathion has also been reported in the growing soil of crops such as chili 

peppers and tomatoes imported from other countries (e.g., China, India, and Mexico) into the United 

States (Diggory et al. 1977; Liu et al. 2016; Mamta et al. 2015a, 2015b; Reiler et al. 2015; Steiniger et al. 

2010; Velasco et al. 2014). In the 1972 National Soils Monitoring Program, which included 

1,246 samples of cropland soil in 37 states, parathion was detected in 0.6% of the samples at mean and 

maximum concentrations of <0.01 and 19 ppm, respectively (Carey et al. 1979a).  Parathion (LOD not 

reported) was not detected in the 1971 Urban Soils Monitoring Program that sampled soils from five U.S. 

cities (Carey et al. 1979b).  In a 1972 survey of rice growing soils (99 samples) in five states, parathion 

was detected in Arkansas (4.2% of samples) and California (10% of samples) at mean concentrations of 

0.01 and <0.01 ppm (dry weight), respectively, and maximum concentrations of 12 and 0.01 ppm, 

respectively (Carey et al. 1980). Velasco et al. (2014) evaluated organochlorine pesticides in agricultural 

soil in Mexico and reported finding parathion in 62% of samples with an average concentration of 

47 µg/kg. 
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Parathion was detected in the organic soil of 12 of 28 farms in six vegetable growing regions of 

southwestern Ontario in 1976 at concentrations ranging from 6 to 2,500 ppb (Miles and Harris 1978).  In 

Southern Ontario orchard soil, parathion was detected in 5% of the apple orchards sampled at a mean 

concentration of 5 ppb (Carey et al. 1980).  Frank et al. (1976) reported that trace amounts of parathion 

residues (<0.001 ppm mean concentration, 0.021 ppm maximum concentration) were found in the upper 

15 cm of soils from 31 apple and 16 sweet cherry orchards in Southern Ontario collected between 1972 

and 1975.  No parathion was detected in subsurface (15–30 cm) soils (LOD not reported).  In soil samples 

collected from an evaporation pit in California between May and September 1985, parathion was detected 

at concentrations of 1,064–1,972 ppm at 0–7.5 cm surface soils, 51–60 ppm at 7.5–15 cm below the soil 

surface, 37 ppm at 22.5–30 cm below the surface, and 18 ppm at 60–67.5 cm below the soil surface 

(Winterlin et al. 1989).  Parathion was detected in crop soils collected from the Lower Fraser Valley, 

British Columbia, Canada, between July and December 1991 at mean concentrations of 10, 19, 15, and 

1,419 μg/kg in Westham Island, Ladner, Burnaby, and Cloverdale, respectively (Wan et al. 1994).  

Krapac et al. (1995) reported that parathion was detected in 4 of 822 soil samples collected from 

49 agrichemical facilities located throughout Illinois at concentrations ranging from 69 to 5,540 μg/kg 

and a median value of 805 μg/kg. 

Parathion was under the LOD of 0.1 ppb at industrial and agricultural locations in 11 sediment samples 

taken from the Delaware River estuary during a 1980–1981 USGS study (Hochreiter 1982).  It was also 

not detected in any sediment samples collected from Lake Superior or Lake Huron during the summer of 

1974 with a quantitation limit of 20 ppb (Glooschenko et al. 1976).  Parathion was detected in bed 

sediments and suspended sediments collected from three locations in the Windrush River catchment, 

Oxforshire, United Kingdom in 1992 at concentrations of 0.3, 0.6, and 1.0 μg/kg and 13, 3.3, and 

8.8 μg/kg, respectively (House et al. 1992).  

Parathion (LOD not reported) was not detected in sediment in irrigation water collected from lagoons 

sampled from corn and sorghum fields in Kansas in 1974 (Kadoum and Mock 1978).  Parathion was 

detected in sediments in a ditch draining cranberry bogs that had been treated with parathion in the Lower 

Fraser Valley of British Colombia, Canada, at concentrations ranging from not detected to 515 μg/kg 

(Wan et al. 1995).  In farm ditch sediments collected from seven locations in the Lower Fraser Valley, 

British Columbia in 1991, parathion was detected at a concentration of 8 μg/kg (Wan et al. 1994). 
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6.4.4 Other Environmental Media 

Parathion (LOD not reported) was not detected in fish fillets collected from 15 lakes and 2 creeks on the 

Sparta, Illinois National Guard Armory, which is surrounded primarily by agricultural land, in 2003 

(Ownby et al. 2004).  IARC (1983) reported that fish collected from 144 estuaries throughout the United 

States contained mean parathion levels of 10–75 ppb.  Fish and shellfish specimens collected in May 

1973 in the United States contained 10–40 ppb (IARC 1983).  Clam, rainbow trout, and oyster samples 

collected from Massachusetts contained parathion concentrations of 20–30, 15–17, and 38–41 ppb, 

respectively (IARC 1983).  In a nationwide estuarine fish monitoring program conducted from 1972 to 

1976, 1,524 samples from 144 primary and secondary estuaries in 19 coastal states, parathion was 

detected in 1 of 39 samples from Connecticut, 1 of 251 samples from North Carolina, and 3 of 51 samples 

from Texas at mean concentrations of 10, 12, and 75 ppb, respectively (Butler and Schutzmann 1978).  

Parathion was detected at a concentration of 10 ng/g in oysters from Waikane Stream in Kaneohe Bay, 

Hawaii (Hunter et al. 1995).  Parathion was detected in 2 of 20 samples of rodent muscle (40–110 ppb), 

3 of 19 whole lizards (10–100 ppb), and 6 of 19 samples of bird muscle (10–210 ppb) obtained from an 

unspecified location within the state of Texas (HSDB 2013). 

In the EPA’s Revised Organophosphate Pesticides Cumulative Risk Assessment, a summary of residue 

monitoring data on organophosphate pesticides in food for the years 1994–2000 was reported (EPA 

2002).  The detection of parathion in these various foods and its concentration are presented in Table 6-4.  

The report also included a summary of FDA Total Diet Study analyses on organophosphate pesticides on 

meats for the years 1991–1999.  No parathion residue (LOD not reported) was found in any of the tested 

meats (EPA 2002).  Parathion was detected in 53 of 234 ready-to-eat foods tested repetitively for 

10 years, 1982–1991, through the U.S. FDA’s Revised Market Basket Survey at an average concentration 

of 0.0043 μg/g (HSDB 2013).  In a survey of U.S. produce conducted from 1989 to 1991, parathion was 

detected in 13 of 6,970 produce samples, including apples (1 of 335), grapefruit (1 of 106), lemons (2 of 

139), limes (1 of 78), oranges (6 of 220), peaches (1 of 84), and strawberries (1 of 76) (Schattenberg and 

Hsu 1992).  It was also detected in 39 (2%) Total Diet Study foods between 1984 and 1986 (Gunderson 

1995).  

In the U.S. FDA pesticide residue monitoring study conducted from October 1993 to September 1994, 

which analyzed 11,348 domestic and import food samples from commodity groups, parathion was 

detected in unspecified foods (FDA 1995).  In 1993–1994, the U.S. FDA conducted a study of pesticide 

residues in domestic and imported fresh apples and processed rice (LODs not reported).  For apples, 
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Table 6-4.  Parathion Residues in Various Foods from 1994 to 2000 

Number Number of Average Maximum 
Food item analyzed detections concentration (ppm)a concentration (ppm) 
Apple juice 1,344 0 0 0 
Apples 2,263 5 8.1x10-5 0.14 
Apples (single serving) 377 0 0 0 
Bananas 1,036 0 0 0 
Broccoli 635 0 0 0 
Cantaloupe 1,100 1 5.0x10-6 0.005 
Carrots 1,823 30 1.59x10-4 0.044 
Celery 143 0 0 0 
Cherries 275 0 0 0 
Corn syrup 430 0 0 0 
Cucumbers 1,288 0 0 0 
Grape juice 1,114 2 1.1x10-5 0.007 
Grapes 2,487 16 7.4x10-5 0.043 
Green beans (canned) 730 0 0 0 
Green beans (fresh) 1,758 1 2.0x10-6 0.003 
Green beans (frozen) 639 0 0 0 
Lettuce 1,580 1 1.2x10-5 0.019 
Milk 1,364 0 0 0 
Nectarines 345 0 0 0 
Oats (bran) 45 0 0 0 
Oats (rolled) 287 0 0 0 
Orange juice 1,212 0 0 0 
Oranges 2,460 1 1.0x10-6 0.003 
Peaches (canned) 654 0 0 0 
Peaches (fresh) 1,512 2 1.7x10-5 0.022 
Peaches (single 534 1 2.1x10-5 0.011 
serving) 
Peanut butter 716 0 0 0 
Pears (canned) 647 0 0 0 
Pears (fresh) 1,505 4 2.47x10-4 0.31 
Pears (single serving) 570 0 0 0 
Pineapples 364 0 0 0 
Potatoes 1,746 0 0 0 
Poultry (adipose tissue) 476 0 0 0 
Poultry (liver) 479 0 0 0 
Poultry (muscle) 145 0 0 0 
Rice 178 0 0 0 
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Table 6-4.  Parathion Residues in Various Foods from 1994 to 2000 

Number Number of Average Maximum 
Food item analyzed detections concentration (ppm)a concentration (ppm) 
Soybean grain 748 0 0 0 
Spinach (canned) 749 12 3.035x10-3 1.6 
Spinach (fresh) 1,385 0 0 0 
Spinach (frozen) 715 1 2.4x10-5 0.017 
Strawberries (fresh) 1,768 0 0 0 
Strawberries (frozen) 155 0 0 0 
Sweet bell peppers 1,468 0 0 0 
Sweet corn (canned) 652 0 0 0 
Sweet corn (fresh) 19 0 0 0 
Sweet corn (frozen) 635 0 0 0 
Sweet peas (canned) 746 0 0 0 
Sweet peas (fresh) 9 0 0 0 
Sweet peas (frozen) 703 1 4.0x10-6 0.003 
Sweet potatoes 1,487 0 0 0 
Tomatoes (canned) 737 0 0 0 
Tomatoes (fresh) 1,766 5 2.9x10-5 0.012 
Wheat 1,563 1 1.4x10-5 0.022 
Winter squash (fresh) 1,078 5 3.2x10-5 0.007 
Winter squash (frozen) 343 2 4.1x10-5 0.007 

aNondetects were counted as zero in calculating the average. 

Source:  EPA 2002 
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769 domestic and 1,062 imported samples were collected and for rice, 598 domestic and 612 imported 

samples were collected.  Parathion was detected in one domestic apple sample at a concentration of 

0.02 ppm and was not detected in any imported apple samples.  Parathion was not detected in any rice 

samples (Roy et al. 1997).  In an FDA survey of domestic and imported pears and tomatoes conducted 

between 1992 and 1993, parathion was detected in 1 out of 710 domestic and 2 out of 949 imported pears 

at maximum concentrations of 0.02 and 0.04 ppm, respectively, and in 2 out of 1,219 domestic tomatoes 

at a maximum concentration of 0.01 ppm, while it was not detected in 144 imported tomato samples (Roy 

et al. 1995).  During a 5-year period from 1982 to 1986 in which the FDA Los Angeles District analyzed 

19,851 samples of domestic and imported food and feed commodities, parathion was detected on 

119 various agricultural commodities at concentrations ranging from 0.05 to 2 ppm (Luke et al. 1988). 

Parathion was not detected in 6,090 samples of fruits and vegetables tested in 2014 from the U.S. 

Department of Agriculture Pesticide Data Program (USDA PDP), which collects and tests domestic and 

imported foods for the presence of pesticide residues (USDA 2016). 

In whole pasteurized milk collected monthly during 1990–1991 from 63 sampling stations located in 

large metropolitan areas throughout the United States, parathion was detected in 1 out of 2,739 samples at 

a concentration of 0.06 ppm (Yess et al. 1993). 

6.5  GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

Quantitative information from the TRI program for 2014 reports minor releases of parathion from 

hazardous waste treatment and disposal facilities in the United States (TRI14 2015).  Inhalation exposure 

to parathion as a liquid or a dust at a hazardous waste treatment or disposal facility is unlikely due to its 

low vapor pressure, its degradation in the environment, and its high adsorption to soils.  In order to 

mitigate the exposure and risk to the general population, especially children, the EPA terminated the 

production of most end use products as of December 31, 2002 (EPA 2000), and terminated the last 

registration for parathion products effective on December 31, 2006 (EPA 2006b).  Because of these 

actions and environmental degradation processes, it is likely that neither the general population nor 

workers are exposed to parathion in the United States. 

Parathion and its degradation products may be transported in the atmosphere and deposited to surface 

soils.  Run off and erosion of soils containing parathion or other pesticides may contaminate nearby 

surface water bodies or leach into groundwater.  Human exposure may result from contaminated surface 

or groundwater that is used in private wells or for a public water supply.  Since parathion has not been 
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able to be legally used in the United States since 2003, the likelihood of parathion concentrations 

exceeding a human health benchmark in a public supply well or domestic well is considered non-existent 

(EPA 2006b; USGS 2007). 

The general public may have been exposed to parathion by dermal and inhalation exposure from spray 

drift onto adjacent area or by ingesting food containing parathion residues (HSDB 2013) during the time 

when parathion was used as a registered insecticide. 

Given its cancellation of registered uses, the potential for human exposure to parathion through the diet 

and or drinking water is low (CDC 2009).  During its use, intakes from diet and drinking water were 

reported to be below recommended limits.  In 1982-84, a national U.S. FDA Total Diet Study was 

performed that showed the average daily intakes of parathion in the United States were 1.5, 1.4, and 

2.0 ng/kg body weight/day, respectively, for females 14–16, 25–30, and 60–65 years of age and 1.2, 1.1, 

and 1.8 ng/kg body weight/day, respectively, for males 14–16, 25–30, and 60–65 years of age (Gunderson 

1988).  In the FDA Total Diet Study performed between July 1986 and April 1991, the average daily 

intakes of parathion in the United States were 0.0008, 0.0009, and 0.0016 μg/kg body weight/day, 

respectively, for males 14–16, 25–30, and 60–65 years of age and 0.0011, 0.0011, and 0.0018 μg/kg body 

weight/day, respectively, for females 14–16, 25–30, and 60–65 years of age (Gunderson 1995). ). These 

studies used raw and commercially prepared foods, likely from both domestic and foreign sources where 

parathion was used, and purchased from retail suppliers in various regions of the country. 

When it was in use, pesticide workers may have had much higher levels of parathion exposure following 

pesticide application compared to the general population.  Exposure was often estimated by measuring the 

urinary metabolite p-nitrophenol; however, this substance is not unique to parathion as it is also a 

metabolite of methyl parathion and nitrobenzene.  In a study of workers who handled parathion, end-of­

shift urinary metabolite p-nitrophenol levels ranged from 190 to 410 μg/g of creatinine, a range of values 

approximately 2 orders of magnitude higher than levels found since 1999 in the U.S. general population 

(CDC 2015).  Urinary levels of the metabolite p-nitrophenol ranged from <1 to 63 ppb (median <1 ppb; 

41% detection in 974 samples) during the NHANES III study assessing exposure to a subset of general 

population adults from 1988 to 1994 (Needham et al. 2000).  For survey years 1999–2000 and 2001– 

2002, no geometric mean urinary concentration of the p-nitrophenol could be calculated because the 

proportion of results below the detection limit was too high to provide a valid result (CDC 2009).  The 

95th percentile concentrations of p-nitrophenol in urine were 5.00 and 3.71 ppb in survey years 1999– 

2000 (sample size 1,989) and 2001–2002 (sample size 2,477), respectively.  For survey years 2007–2008, 
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the geometric mean urinary concentration of p-nitrophenol was 0.782 ppb for males (1,282 samples) and 

0.582 ppb for females (1,282 samples) (CDC 2015).  These levels decreased to 0.524 (1,342 samples) and 

0.396 ppb (1,402 samples) for survey years 2009–2010 for males and females, respectively.  Statistical 

results for survey years 1999–2000, 2001–2002, 2007–2008, and 2009–2010 are captured in Tables 6-5 

and 6-6. 

Workers historically were exposed to parathion primarily during field application and formulation of the 

insecticide before its use was banned.  The dermal route is considered to be the most important route of 

entry during field applications, in formulation plants, and in other work situations where airborne 

pesticide drift is evolved, because of the disproportionately high levels of parathion which may drift onto 

exposed skin areas compared to the amount taken in during respiratory exposure.  Dermal contact with 

treated surfaces such as leaves of sprayed crops is also an important route of exposure.  Inhalation is the 

second most common route, especially when fine mists are formed as from concentrated spray (Wolfe 

1976). 

Workers of cotton fields were exposed to parathion at inhalation levels from 0.09 to 1.06 μg/30 minutes at 

0–72 hours after application (Ware et al. 1973).  Cab operators were exposed to average air 

concentrations of parathion ranging from 4 to 93 μg/cm3 during the spraying of citrus crops (Carman et al. 

1982). Mean dermal and respiratory exposure levels to parathion of various categories of workers were 

(category, dermal mg/hour, respiratory mg/hour):  air blast operator, 18, 0.03; tractor driver hauling 

portable tower hand gun power sprayer during application, 12, 0.03; high pressure power hand gun 

spraying from tower position, 11, 0.03; high pressure power hand gun spraying from ground position, 47, 

0.09; pilot dusting orchard, 13, 0.02; flagging for airplane spraying, 84, 0.02; operating tractor drawn 

boom ground duster, 8, 0.16; and operating tractor drawn boom ground sprayer, 4.7, <0.01 (Wolfe et al. 

1967). 

Dermal exposure through hand contact represented the greatest route of occupational exposure to 

pesticide applicators and field workers. It is estimated that a worker can absorb 6.0 mg of parathion from 

cotton 24 hours post-treatment with parathion and 3.0 mg 48 hours post-treatment during an actual 5-hour 

work day field exposure (Ware et al. 1973).  Mean parathion residues extracted from the hands, shirts, 

and pants of four workers following a 5-hour field exposure in cotton fields 24 hours after application 

were 0.25, 6.1, and 9.8 mg, respectively, while estimated respiratory exposure during that time was 

19.2 μg (mean air concentration of 3.2 ng/L) (Ware et al. 1974).  Carman et al. (1982) reported mean 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-5.  Geometric Mean and Selected Percentiles of Urine Concentrations of 
Urinary p-Nitrophenol (in μg/L) for the U.S. Population from the National Health 

and Nutrition Examination Survey (NHANES IV)a,b 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean (95% 
CI) 50th 75th 90th 95th 

Sample 
size 

Total 1999–2000 * <LOD <LOD 2.50 (1.40– 5.00 (2.90– 1,989 
4.50) 11.0) 

2001–2002 * <LOD 1.33 (1.20– 2.69 (2.39– 3.72 (3.46– 2,975 
1.46) 3.01) 4.15) 

2007–2008 0.673 (0.595– 0.740 (0.660– 1.49 (1.32– 2.77 (2.19– 4.50 (3.50– 2,564 
0.761) 0.830) 1.66) 3.45) 5.42) 

2009–2010 0.454 (0.407– 0.510 (0.440– 1.09 (1.00– 2.18 (1.99– 3.14 (2.85– 2,744 
0.506) 0.580) 1.19) 2.34) 3.55) 

Age group 
6–11 years 1999–2000 * <LOD 0.940 (<LOD– 2.67 (1.70– 4.30 (2.70– 479 

2.40) 3.80) 6.40) 
2001–2002 * 0.790 (<LOD– 1.49 (1.36– 2.89 (2.22– 4.10 (3.01– 565 

0.910) 1.61) 3.58) 4.74) 
2007–2008 0.803 (0.678– 0.890 (0.760– 1.66 (1.26– 2.85 (2.10– 4.37 (2.91– 383 

0.952) 1.01) 1.99) 3.94) 6.75) 
2009–2010 0.506 (0.426– 0.600 (0.500– 1.20 (0.980– 2.21 (1.74– 2.85 (2.28– 386 

0.601) 0.720) 1.43) 2.73) 3.81) 
12–19 years 1999–2000 * <LOD <LOD 3.40 (1.60– 5.70 (2.60– 680 

5.70) 19.0) 
2001–2002 * 0.730 (<LOD– 1.45 (1.32– 2.66 (2.15– 3.34 (3.11– 813 

0.910) 1.61) 3.11) 4.01) 
2007–2008 0.769 (0.614– 0.850 (0.680– 1.49 (1.28– 2.79 (1.94– 3.47 (2.97– 387 

0.962) 1.02) 1.74) 3.45) 4.48) 
2009–2010 0.430 (0.375– 0.520 (0.460– 0.950 (0.870– 1.84 (1.43– 2.37 (1.84– 401 

0.493) 0.590) 1.09) 2.03) 2.98) 
20–59 years 1999–2000 * <LOD <LOD 2.30 (1.20– 4.50 (2.30– 830 

5.70) 16.0) 
2001–2002 * <LOD 1.28 (1.09– 2.69 (2.32– 3.72 (3.37– 1,099 

1.47) 3.10) 4.24) 
2007–2008 0.658 (0.574– 0.720 (0.640– 1.49 (1.31– 2.77 (2.10– 4.68 (3.37– 1,173 

0.754) 0.840) 1.65) 3.70) 5.56) 
2009–2010 0.452 (0.400– 0.510 (0.420– 1.12 (1.00– 2.16 (1.91– 3.27 (2.84– 1,308 

0.511) 0.590) 1.24) 2.39) 3.58) 
≥60 years 2001–2002 * <LOD 1.29 (1.07– 2.66 (2.11– 4.01 (3.17– 498 

1.49) 3.39) 7.19) 
2007–2008 0.607 (0.512– 0.610 (0.550– 1.41 (1.14– 2.81 (2.19– 4.70 (2.90– 621 

0.720) 0.710) 1.76) 3.90) 6.91) 
2009–2010 0.453 (0.386– 0.460 (0.380– 1.06 (0.970– 2.42 (1.87– 3.65 (3.00– 649 

0.530) 0.580) 1.33) 3.00) 4.36) 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-5.  Geometric Mean and Selected Percentiles of Urine Concentrations of 
Urinary p-Nitrophenol (in μg/L) for the U.S. Population from the National Health 

and Nutrition Examination Survey (NHANES IV)a,b 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean (95% 
CI) 50th 75th 90th 95th 

Sample 
size 

Gender 
Males 1999–2000 * <LOD <LOD 2.50 (1.40– 4.50 (2.50– 971 

4.50) 14.0) 
2001–2002 * 0.760 (0.450– 1.49 (1.32– 3.01 (2.66– 4.13 (3.61– 1,395 

0.880) 1.63) 3.33) 4.92) 
2007–2008 0.782 (0.690– 0.850 (0.740– 1.59 (1.43– 2.85 (2.19– 4.52 (3.47– 1,282 

0.887) 0.980) 1.73) 3.53) 5.01) 
2009–2010 0.524 (0.472– 0.590 (0.490– 1.30 (1.14– 2.29 (2.07– 3.29 (2.90– 1,342 

0.581) 0.670) 1.42) 2.54) 3.73) 
Females 1999–2000 * <LOD <LOD 2.50 (1.30– 5.70 (2.90– 1,018 

5.70) 9.50) 
2001–2002 * <LOD 1.18 (1.01– 2.29 (1.95– 3.52 (3.16– 1,580 

1.37) 2.69) 3.77) 
2007–2008 0.582 (0.510– 0.640 (0.550– 1.32 (1.10– 2.72 (2.16– 4.37 (3.09– 1,282 

0.664) 0.720) 1.59) 3.35) 5.64) 
2009–2010 0.396 (0.352– 0.440 (0.380– 0.960 (0.860– 2.01 (1.70– 3.07 (2.62– 1,402 

0.446) 0.510) 1.06) 2.26) 3.55) 
Race/ethnicity 

Mexican 1999–2000 * <LOD 1.70 (<LOD– 5.80 (2.60– 22.0 (3.60– 695 
Americans 3.50) 24.0) 36.0) 

2001–2002 * 0.680 (<LOD– 1.33 (1.08– 2.61 (1.91– 3.64 (2.70– 744 
0.840) 1.58) 3.41) 5.73) 

2007–2008 0.624 (0.542– 0.700 (0.560– 1.37 (1.16– 2.58 (2.03– 4.46 (2.79– 494 
0.720) 0.810) 1.52) 3.33) 6.91) 

2009–2010 0.484 (0.392– 0.560 (0.440– 1.30 (1.03– 2.21 (1.78– 3.07 (2.39– 602 
0.599) 0.710) 1.46) 2.46) 3.73) 

Non– 1999–2000 * <LOD 1.20 (<LOD– 2.90 (1.70– 4.80 (2.50– 518 
Hispanic 2.60) 6.00) 9.20) 
blacks 2001–2002 * 0.850 (<LOD– 1.76 (1.36– 3.13 (2.47– 4.92 (3.75– 752 

1.10) 2.15) 4.26) 6.36) 
2007–2008 0.826 (0.716– 0.860 (0.760– 1.71 (1.45– 3.15 (2.56– 4.72 (3.91– 568 

0.952) 1.01) 1.92) 3.90) 5.68) 
2009–2010 0.505 (0.381– 0.570 (0.400– 1.30 (1.01– 2.19 (1.80– 3.49 (2.57– 504 

0.670) 0.820) 1.50) 2.63) 4.28) 
Non– 1999–2000 * <LOD <LOD 2.10 (<LOD– 4.20 (2.10– 603 
Hispanic 6.33) 11.0) 
whites 2001–2002 * <LOD 1.29 (1.14– 2.70 (2.38– 3.71 (3.38– 1,259 

1.42) 3.10) 4.00) 
2007–2008 0.623 (0.531– 0.690 (0.610– 1.36 (1.19– 2.51 (1.89– 3.63 (2.82– 1,075 

0.730) 0.790) 1.59) 3.08) 5.48) 
2009–2010 0.440 (0.388– 0.490 (0.410– 1.03 (0.930– 2.18 (1.89– 3.14 (2.67– 1,197 

0.499) 0.580) 1.12) 2.48) 3.62) 

ap-Nitrophenol is not unique to parathion as it is also a metabolite of methyl parathion and nitrobenzene.
 
bNote that p-nitrophenol is also a metabolite of methyl parathion and nitrobenzene.
 

CI = confidence interval; LOD = limit of detection
 

Source:  CDC 2015
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-6.  Geometric Mean and Selected Percentiles of Urine Concentrations of 
Urinary p-Nitrophenol (Creatinine Corrected) (in μg/g) for the U.S. Population 

from the National Health and Nutrition Examination Survey (NHANES IV)a 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean (95% 
CI) 50th 75th 90th 95th 

Sample 
size 

Total 1999–2000 * <LOD <LOD 2.08 (1.33– 4.25 (2.15– 1,989 
3.91) 10.2) 

2001–2002 * <LOD 0.987 (0.868– 1.97 (1.86– 2.98 (2.60– 2,973 
1.10) 2.13) 3.33) 

2007–2008 0.692 (0.632– 0.673 (0.624– 1.28 (1.15– 2.38 (2.11– 3.57 (2.94– 2,562 
0.757) 0.737) 1.40) 2.66) 4.39) 

2009–2010 0.473 (0.430– 0.490 (0.438– 0.923 (0.851– 1.87 (1.60– 2.62 (2.32– 2,744 
0.521) 0.531) 1.01) 2.06) 2.91) 

Age group 
6–11 years 1999–2000 * <LOD 0.938 (<LOD– 2.80 (1.94– 4.20 (3.33– 479 

1.95) 4.00) 6.70) 
2001–2002 * 0.715 (<LOD– 1.60 (1.30– 2.78 (2.31– 3.67 (3.11– 565 

0.870) 1.82) 3.11) 4.61) 
2007–2008 1.02 (0.892– 1.02 (0.920– 1.67 (1.46– 3.13 (2.51– 3.76 (3.31– 383 

1.17) 1.12) 1.90) 3.64) 4.89) 
2009–2010 0.684 (0.598– 0.717 (0.650– 1.30 (1.10– 2.19 (2.00– 3.16 (2.33– 386 

0.784) 0.826) 1.54) 2.59) 3.67) 
12–19 years 1999–2000 * <LOD <LOD 1.80 (1.08– 4.00 (1.57– 680 

3.04) 7.29) 
2001–2002 * 0.373 (<LOD– 0.840 (0.790– 1.59 (1.37– 2.10 (1.78– 812 

0.503) 0.951) 1.78) 2.43) 
2007–2008 0.597 (0.511– 0.581 (0.497– 1.02 (0.891– 1.64 (1.29– 2.92 (1.55– 385 

0.698) 0.697) 1.14) 2.17) 4.54) 
2009–2010 0.368 (0.319– 0.413 (0.350– 0.684 (0.615– 1.09 (0.930– 1.73 (1.47– 401 

0.426) 0.488) 0.732) 1.48) 2.09) 
20–59 years 1999–2000 * <LOD <LOD 2.00 (1.17– 4.29 (2.13– 830 

4.25) 12.3) 
2001–2002 * <LOD 0.875 (0.693– 1.79 (1.56– 2.89 (2.35– 1,099 

1.07) 2.05) 3.33) 
2007–2008 0.656 (0.595– 0.635 (0.585– 1.22 (1.09– 2.19 (1.94– 3.04 (2.56– 1,173 

0.724) 0.706) 1.34) 2.51) 4.07) 
2009–2010 0.452 (0.410– 0.453 (0.405– 0.868 (0.805– 1.61 (1.48– 2.34 (2.08– 1,308 

0.498) 0.521) 0.981) 1.87) 2.67) 
≥60 years 2001–2002 * <LOD 1.21 (.920– 2.29 (1.99– 4.29 (2.51– 497 

1.56) 2.83) 5.67) 
2007–2008 3.26 (2.46– 0.763 (0.638– 1.59 (1.40– 0.755 (0.643– 5.43 (3.33– 621 

4.47) 0.909) 1.73) 0.886) 7.09) 
2009–2010 0.537 (0.450– 0.520 (0.451– 1.15 (.899– 2.53 (2.03– 4.27 (2.98– 649 

0.641) 0.636) 1.59) 3.39) 5.26) 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-6.  Geometric Mean and Selected Percentiles of Urine Concentrations of 
Urinary p-Nitrophenol (Creatinine Corrected) (in μg/g) for the U.S. Population 

from the National Health and Nutrition Examination Survey (NHANES IV)a 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean (95% 
CI) 50th 75th 90th 95th 

Sample 
size 

Gender 
Males 1999–2000 * <LOD <LOD 1.90 (1.01– 3.39 (1.77– 971 

3.39) 7.55) 
2001–2002 * 0.984 (0.869– 1.89 (1.66– 0.433 (0.333– 2.98 (2.29– 1,395 

1.07) 2.09) 0.534) 3.57) 
2007–2008 0.650 (0.595– 0.641 (0.594– 1.20 (1.08– 2.11 (1.63– 3.02 (2.51– 1,281 

0.712) 0.697) 1.33) 2.49) 3.71) 
2009–2010 0.466 (0.424– 0.495 (0.432– 0.922 (0.843– 1.84 (1.48– 2.36 (2.21– 1,342 

0.512) 0.538) 0.985) 2.05) 2.68) 
Females 1999–2000 * <LOD <LOD 2.26 (1.48– 6.92 (2.76– 1,018 

4.88) 14.1) 
2001–2002 * <LOD 0.995 (0.801– 2.08 (1.85– 3.04 (2.58– 1,578 

1.23) 2.32) 3.44) 
2007–2008 0.735 (0.660– 0.707 (0.644– 1.37 (1.21– 2.67 (2.20– 4.11 (3.11– 1,281 

0.818) 0.779) 1.63) 3.25) 5.06) 
2009–2010 0.480 (0.430– 0.488 (0.426– 0.923 (0.824– 1.93 (1.62– 2.72 (2.32– 1,402 

0.536) 0.538) 1.08) 2.17) 3.46) 
Race/ethnicity 

Mexican 1999–2000 * <LOD 1.55 (<LOD– 4.86 (2.21– 17.4 (3.94– 695 
Americans 3.17) 21.9) 47.7) 

2001–2002 * 0.389 (<LOD– 0.935 (0.716– 1.89 (1.43– 3.23 (2.49– 744 
0.546) 1.22) 2.63) 3.84) 

2007–2008 0.638 (0.538– 0.604 (0.554– 1.14 (0.938– 2.03 (1.45– 3.63 (2.05– 493 
0.757) 0.708) 1.40) 3.57) 4.71) 

2009–2010 0.506 (0.419– 0.541 (0.480– 1.02 (0.854– 1.73 (1.39– 2.35 (1.84– 602 
0.612) 0.621) 1.19) 2.15) 3.02) 

Non– 1999–2000 * <LOD 0.683 (<LOD– 2.07 (1.33– 3.71 (1.98– 518 
Hispanic 1.79) 3.71) 7.20) 
blacks 2001–2002 * 0.438 (<LOD– 1.04 (0.847– 1.84 (1.59– 2.81 (2.14– 751 

0.640) 1.27) 2.30) 4.30) 
2007–2008 0.633 (0.565– 0.634 (0.553– 1.07 (0.973– 2.04 (1.64– 2.66 (2.11– 567 

0.708) 0.743) 1.23) 2.32) 3.54) 
2009–2010 0.382 (0.289– 0.431 (0.312– 0.785 (0.671– 1.36 (1.03– 2.52 (1.73– 504 

0.505) 0.554) 0.874) 1.99) 3.22) 
Non– 1999–2000 * <LOD <LOD 1.97 (<LOD– 3.83 (1.97– 603 
Hispanic 4.29) 10.2) 
whites 2001–2002 * <LOD 0.984 (0.827– 2.06 (1.89– 3.11 (2.49– 1,258 

1.16) 2.29) 3.57) 
2007–2008 0.677 (0.604– 0.664 (0.604– 1.25 (1.10– 2.28 (2.00– 3.23 (2.60– 1,075 

0.759) 0.761) 1.38) 2.56) 4.00) 
2009–2010 0.479 (0.433– 0.490 (0.433– 0.923 (0.849– 1.92 (1.60– 2.62 (2.24– 1,197 

0.530) 0.538) 1.03) 2.13) 3.04) 

ap-Nitrophenol is not unique to parathion as it is also a metabolite of methyl parathion and nitrobenzene. 

CI = confidence interval; LOD = limit of detection 

Source:  CDC 2015 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

levels of parathion ranging from <0.01 to 7.5 μg/cm2/hour deposited on test patches on the bodies of 

workers while using airblast spray equipment and different formulations of parathion to spray citrus trees. 

Before the use of parathion was banned, it was found to be transported into homes by translocation of 

vapors and by track-in from outdoors on shoes and clothing from workers.  There have been studies 

showing that the air inside and outside the homes of workers that used parathion contained measurable 

amounts of parathion, with inside air containing higher concentrations (IARC 1983), which would be a 

source of exposure to family members.  The Colorado Community Pesticide Sampling Programs detected 

parathion in monthly air samples taken inside and outside the homes of men occupationally exposed to 

parathion, with 64 of 94 and 44 of 87 samples testing positive, respectively (Tessari and Spencer 1971). 

NIOSH recommends that the occupational exposure level not exceed 0.05 mg/m3 for a 10-hour TWA 

workday (NIOSH 2013).  In addition, the American Conference of Governmental Industrial Hygienists 

has recommended a time-weighted average threshold limit value (TWA-TLV) of 0.05 mg/m3 with an 

inhalable, vapor, skin notation for occupational exposure to parathion (NIOSH 2013). 

The National Occupational Hazard Survey (NOHS) conducted by NIOSH in 1974 estimated that 

302 workers employed at 43 facilities were potentially exposed to parathion in the United States (NIOSH 

2013).  The NOHS survey did not contain information on the frequency, concentration, or duration of 

exposure; the survey provided only estimates of workers potentially exposed to chemicals in the 

workplace.  Since parathion is no longer registered for use in the United States, there is no updated 

information in regards to worker exposure in this country. 

6.6  EXPOSURES OF CHILDREN 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age:  from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure. Children crawl on the floor, put things in their mouths, 
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sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

Children can be exposed to pesticides from multiple sources and pathways.  In addition to the standard 

pathways of diet and drinking water, children in agricultural communities may be exposed through farm 

proximity and parental take-home from agricultural use (Fenske et al. 2000). 

Children are not likely to be exposed to parathion and its residues in the foods that they eat since 

parathion has not been made or used substantially in the United States for several years.  A good indicator 

of general public exposure to a substance is the National Report on Human Exposure to Environmental 

Chemicals.  Concentrations of the parathion metabolite, p-nitrophenol, were low in the urine of children 

and all other segments of the population during the initial 1999–2000 and final 2001–2002 sampling 

periods; however, these detections may not be attributed solely to parathion since p-nitrophenol is also a 

metabolite to several other organophosphorus pesticides, including methyl parathion (CDC 2005).  Since 

then, it is likely that the levels of this metabolite in children have decreased. 

In the FDA Total Diet Study for infants and toddlers conducted between 1980 and 1982, the average 

concentration and the calculated average daily intake of parathion in different food groups were 

determined (Gartrell et al. 1986a).  In the infant diet, parathion was only detected in fruit and fruit juices 

at an average concentration (mg/kg) and average daily intake (μg/day) of 0.0002 and 0.0211, respectively, 

while none was detected in the other food groups.  In the toddler diet, the average concentrations (mg/kg) 

and average daily intakes (μg/day) of parathion by food group were 0.0001 and 0.0080 in vegetables and 

0.0002 and 0.0147 in fruit and fruit juices, respectively.  No parathion was detected in drinking water for 

either study groups, although the LOD was not reported.  Data on the weight-adjusted intake of parathion 

by infants and toddlers were determined based on the results of the FDA Total Diet Studies for fiscal 

years 1978–1981/1982 (Gartrell et al. 1986a).  The reported weight-adjusted intakes of parathion ranged 

from 0.002 to 0.005 μg/kg body weight/day for infants and from not detected to 0.003 μg/kg body 

weight/day for toddlers for the study years. 

In 1982–1984, a national U.S. FDA Total Diet Study was performed that showed the average daily 

intakes of parathion in the United States for children 6–11 months of age and 2 years of age were 

11.2 and 5.0 ng/kg body weight/day, respectively (Gunderson 1988).  In the FDA Total Diet Study 

performed between July 1986 and April 1991, the average daily intakes of parathion in the U.S. for 
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children 6–11 months of age and 2 years of age were 0.008 and 0.004 μg/kg body weight/day, 

respectively (Gunderson 1995). 

Children of agricultural families are likely exposed to agricultural chemicals, even if they are not involved 

in farm activities.  Simcox et al. (1995) designed a study to determine whether such children were 

exposed to higher levels of pesticides, including parathion, than children whose parents were not involved 

in agriculture and whose homes were not close to farms.  Household dust and soil samples were collected 

from children’s play areas from 59 residences in eastern Washington State (26 farming, 22 farmworkers, 

and 11 non-farming families) during the 1992 spray season.  The study reported that parathion was 

detected in yard soil samples collected from farm families, a majority living within 200 feet of an 

operating apple or pear orchard, at concentrations ranging from not detected to 932 ng/g, with a mean 

concentration of 46 ng/g, while none was detected in non-farm reference family’s yard soil.  In household 

dust samples, parathion was detected at concentrations ranging from below the limit of quantitation 

(LOQ) to 2,786 ng/g (mean of 365 ng/g) in agricultural families homes and <LOQ to 425 ng/g (mean of 

76 ng/g) in non-farm family homes.  Household dust concentrations were significantly lower in reference 

homes when compared to farmer/farmworker homes, demonstrating that children of agricultural families 

have a higher potential for exposure to parathion than children of non-farm families. 

6.7  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES 

Since parathion has not been used substantially in the United States for several years and parathion 

residues in the environment from historical spraying would be degraded at present, there are likely to be 

no populations in the United States with potentially high exposures to this substance.  According to the 

TRI, small amounts of unused product are occasionally transported for disposal at landfills or hazardous 

waste incinerators, but this represents a small population of workers who may be exposed to low 

quantities of this substance. In the past, pesticide formulators and applicators employed in facilities that 

manufactured parathion, and farmers were exposed to levels greater than the general population.  

6.8  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of parathion is available. Where adequate information is not 

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research 
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designed to determine the health effects (and techniques for developing methods to determine such health 

effects) of parathion. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

6.8.1 Identification of Data Needs 

Physical and Chemical Properties. The physical-chemical properties of parathion are provided in 

Chapter 4.  Important properties such as melting point, boiling point, vapor pressure, solubility, log Kow 

and Henry’s Law constant are available.  No data needs are identified. 

Production, Import/Export, Use, Release, and Disposal. According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA.  The TRI, which contains this 

information for 2014, became available in February of 2015.  This database is updated yearly and should 

provide a list of industrial production facilities and emissions.  Since parathion is not registered for use 

any longer in the United States, it is unlikely to be produced in any significant quantities.  According to 

data from the TRI, occasionally small quantities of unused stockpiles are transported to hazardous waste 

facilities for disposal. 

Environmental Fate. The environmental fate and transport of parathion is understood and no data 

needs are identified.  The mobility of parathion in soils is expected to be low based on measured Koc 

values.  Volatilization is generally considered low.  Hydrolysis, photolysis, and biodegradation account 

for the removal of parathion from the environment.  Sorption of parathion to organic matter in natural 

waters and soils affects its susceptibility for aquatic photolysis, its bioavailability for aquatic organisms, 

and its biodegradation (Schuurmann et al. 2006).  It follows two major fate pathways:  degradation to less 

toxic compounds or oxidative conversion to the toxic bioactive product, paraoxon (CDFA 1988).  

Bioavailability from Environmental Media. Parathion has been detected in aquatic and terrestrial 

organisms (HSDB 2013) and is, therefore, bioavailable to some extent from environmental media.  
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Adsorption to organic matter in soil and sediment reduces its bioavailability (Schuurmann et al. 2006).  

No data needs are identified. 

Food Chain Bioaccumulation. Measured BCFs of parathion in fish suggest that bioaccumulation in 

aquatic organisms is not high.  A better understanding of the biochemical and physiological basis of the 

processes of parathion uptake, biotransformation, and excretion is needed in order to fully understand 

species differences in parathion metabolism in fish and shellfish. The use of molecular biology in 

obtaining further knowledge about the enzymes and transport proteins important in pesticide metabolism 

should provide further advances in this field.  This will be useful for predicting the likelihood that 

parathion residue will remain in edible parts of food-producing fish and shellfish (James 1994) if the 

future use of parathion is authorized or if it is used in countries other than the United States. 

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of parathion in 

contaminated media at hazardous waste sites are needed so that the information obtained on levels of 

parathion in the environment can be used in combination with any known body burden of parathion to 

assess the potential risk of adverse health effects in populations living in the vicinity of those hazardous 

waste sites. 

Exposure Levels in Humans. When parathion was used, humans were exposed to it by inhalation 

of air and intake from food and drinking water.  Since parathion is no longer used substantially in the 

United States, exposure to humans is expected to be low.  Future research to assess the potential for 

parathion exposure due to contaminated hazardous waste sites would be useful since it has been detected 

in 20 NPL sites (ATSDR 2015). 

This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children. Parathion’s former use in the United States may have led to low levels of 

exposure to children; however, since the last uses of parathion were cancelled more than a decade ago, 

current exposure is considered low.  No data needs are identified. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 
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Exposure Registries. No exposure registries for parathion were located. This substance is not 

currently one of the compounds for which a sub-registry has been established in the National Exposure 

Registry. The substance will be considered in the future when chemical selection is made for sub-

registries to be established.  The information that is amassed in the National Exposure Registry facilitates 

the epidemiological research needed to assess adverse health outcomes that may be related to exposure to 

this substance. 

6.8.2 Ongoing Studies 

Since parathion is no longer produced or used substantially in the United States (EPA 2000), no ongoing 

studies regarding its environmental fate or physical properties are being performed in this country.  

However, foreign studies regarding parathion continue to be published. 
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7. ANALYTICAL METHODS 

The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring parathion, its metabolites, and other biomarkers of exposure and effect to 

parathion.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is to 

identify well-established methods that are used as the standard methods of analysis.  Many of the 

analytical methods used for environmental samples are the methods approved by federal agencies and 

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other 

methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). 

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

7.1  BIOLOGICAL MATERIALS 

Parathion was widely used for agricultural purposes, which may have resulted in human exposure during 

its application, and residues on or in foods can result in exposure to humans by ingestion.  All use of 

parathion has been cancelled in the United States to mitigate the risk of human exposure (EPA 2000).  

Methods for the determination of parathion in biological samples can be used to verify that exposure and 

absorption has occurred.  Table 7-1 lists the applicable analytical methods for determining parathion in 

biological fluids and tissues. 

The principal method used for the detection of parathion or its metabolites in biological samples is gas 

chromatography (GC) using a flame photometric detector (FPD), a mass spectroscopy (MS) detector, or 

an electron capture detector (ECD).  The preparation of samples usually involves variations of solid-phase 

extraction (SPE), and/or liquid/liquid extraction with organic solvents. 

García-Repetto et al. (2001) reported a method for parathion identification and quantification in human 

blood using SPE, GC-nitrogen phosphorus detection (NPD) analysis followed by GC-MS confirmation.  

The average recovery of parathion in blood is 96.1%, which is in the acceptable range established by the 

EPA.  The LOD and LOQ reported in the study are 1.21 and 4.03 μg/L, respectively.  This method has 

improved a previous method that involved liquid-liquid extraction with n-hexane and benzene resulting in 

more complex chromatograms.  Not only is the method more precise, it also eliminates hazardous waste 

emissions and exposure of technicians to toxic solvents. 



   
 

   
 
 

 
 
 
 
 

  
 

 

       
 

   
  

 

  
 

  
 

 
  

 

 
 

 
 

    
 

 
 

  
 

 
 

 

  
  

 
 

  
 

 
 

 
 

  
 

 
 

 

 

   
 

  
 

 
 

 

 

  
 

 
 

 
 

 

 
  

 
 

  
  

 
 

  
 

 

    
 

 
  

   
 

     
     

    
    

   
 

PARATHION 200 
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Table 7-1. Analytical Methods for Determining Parathion and Transformation 

Products in Biological Samples
 

Sample 
Sample Analytical detection Percent 
matrixa Preparation method method limit recovery Reference 
Human blood Addition of 1 mg/L azobenzene, GC/MS 0.02 μg/g Absolute Musshoff et 

0.2 g ammonium sulfate and 2 mL recovery al. 2002 
0.1 M sulfuric acid to a 0.5 mL compared to 
sample of blood.  Mixture is sealed a methanolic 
and heated in a vial.  Samples are solution: 
collected by HS-SPME. 4.7% 

Human blood Extraction with methanol and GC/NPD; 1.21 μg/L 96.1% García­
triphenylphosphate followed by GC/MS (1.29% Repetto et al. 
dilution.  Silica gel SPE with C18 RSD) 2001 
cartridges. 

Human urine 
(p-nitrophenol)b 

Hydrolysis with -glucuronidase, 
solid phase extraction, liquid/liquid 

RP-HPLC­
MS/MS 

0.1 ng/mL 
urine 

106% (1.4% 
RSD) low 

Olsson et al. 
2003 

extraction, and evaporation. dose; 94% 
(2.2% RSD) 
high dose 

Rat urine Acid hydrolysis followed by HPLC/UV 12 ng/mL 89% (<11% Chang et al. 
(p-nitrophenol) extraction with diethyl ether and CV) 1997 

redissolve in methanol. 
Bovine liver, Extraction of homogenized sample GC/FPD 0.01– Rumen Holstege et 
rumen content with methanol-dichloromethane 0.05 μg/g content: al. 1991 
(partially (10–90, v/v) followed by gel using 5 g 99% (2% 
digested grain permeation chromatography and sample RSD) at 
and vegetation silica gel solid phase extraction 0.1 μg/g; 
mixture) clean-up. liver: 103 

(6% RSD) at 
0.05 μg/g 

Animal fat Sweep codistillation, Florisil clean- GC/FPD No data No data Brown et al. 
up elution with methylene chloride­ 1987 
light petroleum-acetonitrite 
(50:48.5:1.5). 

aParathion is the target analytes unless otherwise specified.

bNote that p-nitrophenol is also a metabolite of methyl parathion and nitrobenzene.
 

CV = coefficient of variation; FPD = flame photometric detector; GC = gas chromatography; HPLC = high-performance 

liquid chromatography, HS = head space, MS = mass spectrometry; MS/MS = tandem mass spectrometry,
 
NPD = nitrogen phosphorus detector; RP-HPLC = reverse phase high-performance liquid chromatography,
 
RSD = relative standard deviation; SPE = solid-phase extraction; SPME = solid-phase microextraction;
 
UV = ultraviolet
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A method for the rapid quantification of parathion metabolite, p-nitrophenol, in human urine using liquid 

chromatography/electrospray ionization-tandem mass spectrometry has been published (Olsson et al. 

2003); however, this analyte is not unique to parathion since it is also a metabolite of methyl parathion 

and nitrobenzene. 

Parathion was determined in bovine liver and rumen content by GC/FPD by Holstege et al. (1991) using a 

method with an LOD reported to be 0.01–0.05 μg/g using a 5-g sample.  Recoveries were reported to be 

99% from rumen content and 103% from liver.  Brown et al. (1987) used GC/FPD and sweep 

codistillation to determine parathion in animal fat.  No recovery or LOD information was given. 

7.2  ENVIRONMENTAL SAMPLES 

Table 7-2 lists the methods used for determining parathion and its degradation products in environmental 

samples.  The principal separation and detection methods of parathion and degradation products in 

environmental samples include GC or high performance liquid-chromatography (HPLC), in conjunction 

with MS, NPD, or FPD.  Sample preparation methods vary depending on the sample matrix (Driss et al. 

1993; OSHA 1986; USGS 2002).  The method of Leoni et al. (1992) is applicable to both parathion and 

paraoxon.  The NIOSH (1994) method has been fully validated for use in occupational settings where 

regulatory exposure limits are of concern. 

Many methods were reported for the determination of parathion in water.  Sample preparation methods 

include either some form of liquid/liquid extraction or the use of SPE, usually C18-silica, for isolation of 

parathion residues.  Mattern et al. (1991) reported an LOD for parathion in surface water of 0.005 ppb 

using GC in conjunction with chemical ionization ion trap MS.  An LOD of 0.025 μg/L was reported for 

degradation product paraoxon in water with a recovery of 87% (2% relative standard deviation [RSD]) by 

Seiber et al. (1990).  SPE provides an easy method to isolate residues and can greatly reduce the amounts 

of solvent used in sample preparation.  Driss et al. (1993) preconcentrated parathion from drinking water 

onto C18-silica or polystyrene-divinylbenzene co-polymer with a subsequent backflush onto an HPLC 

column (ultraviolet [UV] detection).  LODs as low as 0.03 μg/L were reported.  Kwakman et al. (1992) 

preconcentrated parathion from drinking water onto C18-SPE disks and eluted the adsorbed compounds 

directly into a GC pre-column.  Detection was by NPD and excellent LODs (20 pg/L) and recoveries 

(>95% with <4% RSD at 200 pg/L) were reported.  Lebel et al. (1979) developed a method using 

macroreticular XAD-2 resin to isolate and concentrate parathion from drinking water at the ng/L level.  

http:0.01�0.05
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Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
matrixa Preparation method 

Analytical 
method 

Sample 
detection 
limit 

Percent 
recovery Reference 

Air Preconcentration of pesticide 
onto OVS-2 tube (13-mm) 
quartz filter, XAD-2, 
270 mg/140 mg.  Elution with 
90% toluene/10% acetone. 

GC/FPD 
(NIOSH 
Method 5600) 

0.0004 mg/m3 

(400 ng/m3) 
for 240 L 
sample 

92% (2.1% 
RSD at 
1.2 μg) 
(0.005 μg/m3, 
240 L 
sample) 

NIOSH 1994 

Air Air is drawn through a glass 
tube with a glass fiber filter and 
XAD-2 adsorbent.  The 

GC/FPD 3.1 μg/m3 96.7% (2.9% 
CV) 

OSHA 1986 

samples are desorbed with 
toluene. 

Drinking 
water 

Extraction with Amberlite 
XAD-2 resin from 100 L water. 
Elution with 15% acetone/85% 
hexane. 

GC/NPD; 
GC/MS (SIM) 

1 ng/L (ppt) 95% (±2% 
RSD at 
100 ng/L); 
102% (±1% 
RSD at 

Lebel et al. 
1979 

10 ng/L) 
Drinking 
water 

Preconcentration onto 5 μm 
C18-silica or 7 μm polystyrene­
divinyl benzene co-polymer 
with subsequent backflush onto 
analytical HPLC column. 

Reverse-
phase-
HPLC/UV 
(254 nm) 

0.03– 
0.06 μg/L 
(ppb) 

91% (±10% 
RSD) at 
sample 
volumes up 
to 300 mL 

Driss et al. 
1993 

Drinking 
water 

Preconcentration of 2.5 mL 
water onto C18 extraction disks, 

GC/NPD 20 pg/mL >95% (<4% 
RSD at 

Kwakman et 
al. 1992 

rinsing with additional 1 mL and 
purging disk with gas to remove 
residual water.  Elution with 

200 ppt) 

ethyl acetate directly onto GC 
pre-column with solvent 
venting. 

Surface 
water 

Adsorption of pesticides from 
2 L of water onto XAD-2 and 
XAD-7 resins. Elution with 
methylene chloride, water 
removal, and use of K-D to 

GC/chemical 
ionization ion 
trap MS 

0.005 μg/L 109.3% 
(3.4% CV) at 
1 ppb level 

Mattern et al. 
1991 

reduce volume. 
Water Filtration using glass-fiber filters 

followed by SPE. Elution of dry 
SPE columns with ethyl acetate 
then evaporation. 

GC/FPD 
(Method 
O-1402-01) 

0.012 μg/L 81% 
(14% RSD at 
0.02 ppb) 

USGS 2002a 

Water Extraction with methylene 
chloride for 6 hours. 
Evaporation of solvent followed 
by solvent exchange to ethyl 

cap. GC/FPD 
(Method 
O-3402-03) 

0.015 μg/L 77% 
(15% RSD at 
0.02 ppb) 

USGS 2002b 

acetate. 
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Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
matrixa Preparation method 

Analytical 
method 

Sample 
detection 
limit 

Percent 
recovery Reference 

Water 
(paraoxon) 

Filtration of 1 L of water 
followed by extraction 3 times 
with 100 mL methylene chloride 
after addition of 20 g sodium 
sulfate.  Concentration using 
K-D and solvent exchange to 
benzene.  Concentrations done 

GC/ECD 
(HECD-N 
mode) 

0.025 μg/L 87% 
(2% RSD) 

Seiber et al. 
1990 

under nitrogen.  Fractionation 
by HPLC. 

Water SPME of filtered water sample; 
thermal desorption of diazinon 
from SPME fiber. 

GC/AED 1 μg/L with 
carbon line 
(193 nm); 
3 μg/L with 
S line 

No data 
(precision 8– 
12 RSD) 

Eisert et al. 
1994 

(181 nm) 
Water Extraction of analytes from 

water using SPE; elution with 
ethyl acetate (108 μL) directly 
onto retention gap with solvent 
venting. 

GC/AED 1 ng/L 
(100 mL 
sample) with 
P channel 

92% 
(7% RSD) at 
5 μg/L 

Hankemeier 
et al. 1995 

Water UV activation of 1 mL water 
containing 5 μg of antiparathion 
polyclonal antibody (APA). 
UV-assisted absorption of APA 
onto QCM. Mix parathion 
solution with BSA solution to 

QCM 4 ppb No data Funari et al. 
2013 

form a complex that will interact 
with the antibody. 

Industrial 
and 
municipal 
waste water 

Extraction of 1 L of sample with 
60 mL methylene chloride 
3 times. Water removal from 
extract and solvent exchange 
to hexane during K-D 
concentration. 

GC/FPD or 
thermionic 
detection 
(P-mode); 
GC/MS for 
qualitative 
identifications 

10 ng/L 61–121% 
(10% RSD) 

EPA 1993a 

recom­
mended. 
(Method 
1657) 
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Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
matrixa Preparation method 

Analytical 
method 

Sample 
detection 
limit 

Percent 
recovery Reference 

GC/FPD Waste water Extraction of 1 L of water with 0.012 μg/L 102% EPA 1993b 
(P-mode) or 15% methylene chloride in (4.1% RSD) 
GC/ hexane using a separatory 
thermionic funnel.  Concentration using 
detection. K-D.  Cleanup (if needed) by 
GC/MS for Florisil fractionation or 
qualitative acetonitrile partition. 
compound 
identification 
recom­
mended. 
(Method 614) 
GC/FPD Bed Extraction with Soxhlet 0.951 ppb 76% USGS 2002c 

sediment 
(lake and 
stream), 
aqueous 
suspended 

apparatus of minimum 25-g 
equivalent dry-weight samples 
using 350 mL dichloromethane 
and 25 mL methanol (93:7). 
Concentration and filtration of 

(5% RSD) 

SFC/NPD 

sediment 
and soil 

Cucumber, 

extract.  Elution with dichloro­
methane through chromato­
graphic column.  Concentration 
and resolution in ethyl acetate. 
Chopping of produce and No data No data Zegers et al. 

lettuce, 
grapes 

extraction with acetone/ 
methylene chloride/petroleum 
ether (1:1:1). Evaporation to 

1994 

GC/MS Green 

dryness and redissolution in 
acetone and concentration. 
Homogenization of produce 0.05 μg/g 93% (21% Liao et al. 

beans, with acetonitrile.  Addition of (parathion); RSD) 1991 
lettuce, NaCl to affect phase 0.15 μg/g (parathion); 
carrot, bell separation, removal of (paraoxon) 91% 
pepper acetonitrile, water removal (17% RSD) 
(parathion; 
paraoxon) 

volume reduction, addition of 
deuterated internal standards. 

(paraoxon) 

GC Kale, Extraction of crops with ethyl No data for No data AOAC 1990a 
thermionic endive, acetate and granular sodium GC 
detector carrots, sulfate, filtration, concentration 

lettuce, 
apples, 
potatoes, 
strawberries 

with K-D. Sweep co-distillation 
cleanup for GC. 
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Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
Sample Analytical detection Percent 
matrixa Preparation method method limit recovery Reference 
Numerous 
non-fatty 
crops 

Soybeans 
and rice 

Strawberries 
and cherries 

Various 
fruits and 
vegetables 

Various 
produce 

Extraction with acetonitrile and 
partition into petroleum ether. 
Concentration using K-D and 
purification using Florisil 
column chromatography. 

Grinding of 25-g samples and 
extraction with 150 mL of 
2:1 acetone: methanol; filtration 
and reduction of volume to 
100 mL.  Addition of water, 
NaCl followed by extraction 
with methylene chloride 
(2 times); solvent evaporation 
and redissolution in methylene 
chloride:cyclohexane (1:1) and 
fractionation on Bio-Bead S-X3. 
Evaporation under N2 stream 
and redissolution in 2 mL 
hexane. 
Spike samples were sliced and 
homogenized. 

Homogenization of sample 
(adding water if needed) and 
adsorption on activated Florisil 
to produce a free-flowing 
powder.  Elution with ethyl 
acetate or methylene chloride. 
Homogenization of sample and 
extraction with acetonitrile, 
filtration, addition of salt and 
solvent evaporation. 
Redissolution of residue in 
acetone for analysis. 

GC/KCl 
thermionic 
detector; 
identifications 
by combin­
ations of gas, 
thin layer, and 
paper 
chroma­
tography; 
polarographic 
confirmatory 
method 
GC/NPD or 
GC/MS (SIM) 

HS-SPME 

GC/NPD or 
FPD 

GC/FPD or 
alkali FID 

Polarographic 
method: 
0.2 ppm 
based on 1 g 
crop in 1 mL 
cell 

Rice: 
0.007 ppm 
soybeans: 
0.04 ppm 

8.9 ppb in 
strawberries; 
12.3 ppb in 
cherries 

5 ppb 

0.1 ppm 

>80% 

Rice: 86.8% 
(1.2% RSD) 
at 1 ppm 
soybeans: 
91.3% 
(1.2% RSD) 
at 1 ppm 

Strawberries: 
81–86% (9– 
12% RSD); 
cherries: 77– 
79% (9–10% 
RSD) 
96–103% at 
0.05 mg/kg 

No data 

AOAC 1990a, 
1990b, 1990c 

Hong et al. 
1993 

Lambropoulou 
and Albanis 
2003 

Kadenczki et 
al. 1992 

Hsu et al. 
1991 
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
matrixa Preparation method 

Analytical 
method 

Sample 
detection 
limit 

Percent 
recovery Reference 

Various 
prepared 
foods 

Blending of sample with 
acetone, filtration and transfer 
to Hydromatrix column.  Elution 
with methylene chloride and 
concentration. 

GC/FPD No data 94% at 
300 ppb 

Hopper 1988 

Apples, 
whole milk, 

Blending of samples with 
acetone and extraction with 

GC/FPD 0.26 ng Apples: 71%; 
whole milk: 

Leoni et al. 
1992 

olive oil, dichloromethane and acetone, 85%; olive 
eggs water removal and volume 

reduction.  Cleanup using 
carbon-celite (apples), 
Extrelut-3 minicolumns with 

oil:  98%; 
eggs: 80% 

hexane (whole milk; olive oil), 
or C18 SPE (eggs). 

Apples, 
whole milk, 

Blending of samples with 
acetone and extraction with 

GC/FPD 0.15 ng Apples: 97%; 
whole milk: 

Leoni et al. 
1992 

olive oil dichloromethane and acetone, 89%; olive 
(paraoxon) water removal and volume 

reduction.  Cleanup using 
carbon-celite (apples), or 
Extrelut-3 minicolumns with 

oil:  90% 

hexane (whole milk; olive oil). 
Cow’s milk Extraction of milk 3 times with 

70% acetonitrile in water, 
filtration, removal of fat by zinc 
acetate addition, and 

GC/FPD 
(P-mode) 

10 ppb 92.9% 
(2.9% RSD) 
at 100 ppb 

Toyoda et al. 
1990 

partitioning with methylene 
chloride. Reduction of volume 
after drying. 
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Parathion and Transformation 

Products in Environmental Samples
 

Sample 
Sample Analytical detection Percent 
matrixa Preparation method method limit recovery Reference 
Cow’s milk Homogenization of milk, GC/FPD No data 92.7% (5% Di Muccio et 

acetonitrile and ethanol (0.016 MDL) RSD) at al. 1996 
followed by equilibration with a 0.8 μg/mL 
mixture of light petroleum-
acetonitrile-ethanol and 
separation of the upper phase 
and elution through a solid 
matrix cartridge.  Concentration 
and drying of the eluates to a 
residue that is dissolved. 

Milk 5 g of homogenized sample GC/FPD 0.002 mg/kg 56.8–69.3% Yang et al. 
extracted using acetone and 2012 
methylene chloride (1+1, v/v), 
dried, reconstituted with 
cyclohexane + ethyl acetate 
(1+1, v/v) and cleanup using 
GPC 

Eggs 2 g of homogenized sample GC/FPD 0.002 mg/kg 67.1–95% Yang et al. 
extracted using acetone and 2012 
methylene chloride (1+1, v/v), 
dried, reconstituted with 
cyclohexane + ethyl acetate 
(1+1, v/v) and cleanup using 
GPC 

Fish 5 g of homogenized sample GC/FPD 0.002 mg/kg 70–89.2% Yang et al. 
extracted using acetone and 2012 
methylene chloride (1+1, v/v), 
dried, reconstituted with 
cyclohexane + ethyl acetate 
(1+1, v/v) and cleanup using 
GPC 

aUnless otherwise stated, parathion was determined. 

AED = atomic emission detection; AOAC = Association of Official Analytical Chemists; BSA = bovine serum albumin;
 
CV= coefficient of variation; ECD = Ni electron capture detector; EPA = U.S. Environmental Protection Agency;
 
FID = flame ionization detector; FPD = flame photometric detector; GC = gas chromatography; GPC = gel
 
permeation chromatography; HECD = Hall Electrolytic Conductivity Detector; HPLC = high-performance liquid 

chromatography; HS = head space, KCl = potassium chloride; K-D = Kuderna-Danish; MDL = method detection limit;
 
MS = mass spectrometry; NaCl = sodium chloride; NIOSH = National Institute for Occupational Safety and Health;
 
NPD = nitrogen phosphorus detector; OSHA = Occupational Safety and Health Administration; QCM = quartz crystal
 
microbalance; RSD = relative standard deviation; SFC = supercritical fluid chromatography; SIM = selected ion 

monitoring; SPE = solid phase extraction; SPME = solid-phase microextraction; USGS = U.S. Geological Survey;
 
UV = ultraviolet absorbance detection
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7. ANALYTICAL METHODS 

An LOD of 1 ng/L was reported using GC with a nitrogen-phosphorus selective detector and by GC/MS 

using selected ion monitoring (SIM).  Funari et al. (2013) describe the use of a photonic immobilization 

technique (PIT) to produce UV-activated antibodies that interact with quartz crystal microbalance (QCM) 

electrodes to develop an immunosensor for the detection of parathion in water, with a LOD of <4 ppb.  

Anti-parathion polyclonal antibodies are adsorbed to a gold electrode and activated with UV light using a 

custom-built femtosecond laser having a highly tunable pulse rate.  The ultrashort UV (258 nm) pulses 

disrupt disulfide bridges of the antibody solution allowing free thiol groups to adsorb to the gold surface, 

causing the antibody to orient in a manner that increases antigen-antibody specific binding, thus 

increasing sensitivity of the immunosensor (Funari et al. 2013). 

Supercritical fluid extraction (SFE) is also used in sample preparation methods.  A supercritical fluid 

chromatography (SFC)-based method for cucumber, lettuce, and grapes (Zegers et al. 1994) was 

published, but did not specify the LOD or recovery. 

Three standardized methods were found in the Official Methods of Analysis of the Association of Official 

Analytical Chemists (AOAC 1990a, 1990b, 1990c). The first of these methods is based on the extraction 

of crops (kale, endive, carrots, lettuce, apples, potatoes, and strawberries) with ethyl acetate and isolation 

of the residue followed by a sweep codistillation cleanup prior to GC/thermionic detection (Method 

968.24).  In the second method (Method 970.52), the sample is extracted with acetonitrile and the residue 

is partitioned into petroleum ether followed by Florisil clean-up and GC/potassium chloride (KCl) 

thermionic detection.  Chemical identifications are based on combinations of gas, thin-layer, and paper 

chromatography.  The recovery for parathion in this method is stated to be >80%; no data on LODs were 

given.  The third method utilizes the same extraction and clean-up techniques as the second and then 

GC/FPD for detection (Method 970.53). 

Some methods employ the homogenization of the plant material with aqueous acetonitrile (Hsu et al. 

1991) or other polar organic solvents such as acetone/methanol mixtures (Hong et al. 1993).  Phase 

separation is brought about with the addition of a salt.  The acetonitrile approach is preferred by the 

California Department of Food and Agriculture because of the possible higher recoveries (see Table 7-2) 

(Lee et al. 1991).  The advantage of acetonitrile is found in its ability to more readily solvate residues and 

in the ease with which the phase separation can be accomplished through the addition of salt (Lee et al. 

1991).  Reported LODs for parathion were typically 10–50 ppb.  One of the methods eliminated any 

clean-up steps after the initial extraction (Hsu et al. 1991) to provide a method with a faster turnaround 

time with some loss in sensitivity (LOD approximately 0.1 ppm) relative to the purified samples. 



   
 

   
 
 

 
 
 
 
 

 

   

     

      

    

 

   

   

 

  
 

  

   

     

   

 

 

   

 

 

  

   

 

    
 

     
 

   

  

   

      

     

    

   

PARATHION 209 

7. ANALYTICAL METHODS 

Methods found for the determination of parathion in animal products also used homogenization with a 

polar organic solvent as the first step in residue recovery.  Toyoda et al. (1990) isolated parathion from 

cow’s milk via partition into methylene chloride after extraction of the milk with 70% acetonitrile in 

water.  Based on GC/FPD, an LOD of 10 ppb and a recovery of 92.9% (2.9% RSD) at 100 ppb were 

reported.  Parathion residues in eggs were studied (Leoni et al. 1992) after blending the eggs with acetone 

and partitioning into dichloromethane and acetone followed by C18-silica SPE.  Based on GC/FPD 

analysis, an LOD of 0.26 ng and a recovery of 80% at 13 ppb were reported. 

7.3  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of parathion is available. Where adequate information is not 

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research 

designed to determine the health effects (and techniques for developing methods to determine such health 

effects) of parathion. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. 

Exposure.  Section 3.8.1 provided information on biomarkers used to identify or quantify exposure to 

parathion.  Some methods for the detection of the parent compound in biological samples were described 

above.  The parent chemical is quickly metabolized so the determination of metabolites can also serve as 

biomarkers of exposure.  The use of GC coupled with MS has been reported for the elucidation and 

confirmation of parathion in biological samples (Musshoff et al. 2002). The most specific biomarkers 

will be those metabolites related to p-nitrophenol.  Methods for the detection of this compound in human 

urine have been reported (Olsson et al. 2003).  A method for p-nitrophenol in rat urine has been described 
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7. ANALYTICAL METHODS 

by Chang et al. (1997) with reported sensitivities in the sub-ppm range.  Further studies designed to refine 

the identification of metabolites specific to parathion and provide dosimetric data would be useful in the 

search for a more dependable biomarker of parathion exposure. 

Effect.  Significant decreases in plasma cholinesterase and erythrocyte (red blood cell) activities indicate 

possible exposure to insecticidal organophosphorus compounds (see Chapter 3).  Rapid, simple, and 

specific methods should be sought to make assays readily available to the clinician. Nonspecific 

biomarkers of effect exist, but future studies to determine specific biomarkers of effect would be useful. 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media. Human exposure to parathion may have occurred via inhalation of ambient air; ingestion of 

contaminated food and water; and dermal uptake through occupational and non-occupational contact with 

contaminated soils, surface water, and commercial preparations.  Methods have been reported for the 

measurement of parathion in various foods, soils, sediment, waste water, drinking water, and air.  The 

method of OSHA (1986) (LOD 3.1 μg/m3) and NIOSH (1994) (LOD 400 ng/m3) are adequate for the 

determination of parathion in air.  If a 70-kg individual is assumed, method LODs of 0.007 mg/L (7 ppb) 

and 0.007 mg/kg (7 ppb) in water and foods, respectively, are required for the method to be adequate at 

the oral intermediate MRL.  All of the methods for detection of parathion in water shown in Table 7-2 are 

adequate.  With regard to foods, the methods of Kadenczki et al. (1992) and Leoni et al. (1992) for 

detection of parathion are adequate.  Methods for other non-fatty crops would need to be validated or 

developed if routine use were desired.  Di Muccio et al. (1996) describe a quick and simple method for 

the determination of parathion in cow’s milk; however, no data were provided on LODs.  Additional 

methods for detection of parathion in fatty foods are needed to permit the evaluation of the residues in 

those fatty media. 

There are also methods for the analysis of parathion degradation products in water and food.  Seiber et al. 

(1990) reported a method for parathion and its oxon in water.  Several methods were reported for the 

determination of parathion and paraoxon in various food products, including produce, whole milk, olive 

oil, and eggs (Leoni et al. 1993; Liao et al. 1991).  Additional methods are needed for the quantitative 

analysis of parathion transformation products in environmental matrices.  It would also be important to 

establish MRLs for the transformation products to put the analytical requirements into perspective.  
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7.3.2 Ongoing Studies 

No ongoing studies regarding parathion detection by analytical methods were located. 
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8. REGULATIONS, ADVISORIES, AND GUIDELINES
 

MRLs are substance specific estimates, which are intended to serve as screening levels, are used by 

ATSDR health assessors and other responders to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites. 

ATSDR has derived an intermediate-duration inhalation MRL of 20 ng/m3 for parathion based on a 

NOAEL of 0.01 mg/m3 for neurological effects in rats (NIOSH 1974).  The MRL was derived by dividing 

the duration-adjusted NOAEL by an uncertainty factor of 100 (10 for animal to human extrapolation and 

10 for human variability).  

ATSDR has derived an intermediate-duration oral MRL of 0.009 mg/kg/day for parathion based on a 

NOAEL of 0.09 mg/kg/day for neurological effects in humans (Rider et al. 1969).  The MRL was derived 

by dividing the NOAEL by an uncertainty factor of 10 (for human variability).  

IARC has classified parathion as a Group 3 carcinogen (not classifiable as to its carcinogenicity to 

humans) (IARC 2013). The World Health Organization (WHO) has not established any air quality 

guidelines for parathion (WHO 2010).  A water quality guideline value was not established for parathion 

because it occurs in drinking water at concentrations well below those of health concern (WHO 2011). 

OSHA has established an enforceable permissible exposure limit (PEL) of 0.1 mg/m3 for parathion 

(OSHA 2013b).  OSHA has required employers of workers who are occupationally exposed to parathion 

to institute engineering controls and work practices to reduce and maintain employee exposure at or 

below the PEL.  NIOSH has established a recommended exposure limit (REL) of 0.05 mg/m3 and an 

immediately dangerous to life or health (IDLH) value of 10 mg/m3 (NIOSH 2013).  The American 

Conference of Governmental Industrial Hygienists (ACGIH) has recommended a threshold limit value 

(TLV) of 0.05 mg/m3 for an 8-hour workday (ACGIH 2012). 

The Department of Energy (DOE) has established protective action criteria (PAC-1, -2, and -3) values of 

0.15, 1.5, and 2.0 mg/m3, respectively, for airborne parathion when responding to potential releases for 

use in community emergency planning (DOE 2016b). These values represent increasing severity of 

effects (mild, irreversible, and life-threatening) for a 1-hour exposure. 
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EPA has classified parathion as a Group C carcinogen (possible human carcinogen) (IRIS 2003) and 

ACGIH (2012) has classified parathion as an A4 carcinogen (not classified as to human carcinogenicity). 

The National Toxicology Program (NTP) has not classified parathion as a human carcinogen (NTP 2011). 

EPA has not derived an oral reference dose (RfD) or a chronic inhalation reference concentration (RfC) 

for parathion (IRIS 2003). 

EPA has designated parathion as a hazardous air pollutant (HAP) under the Clean Air Act (CAA) (EPA 

2013b).  Parathion is on the list of chemicals appearing in “Toxic Chemicals Subject to Section 313 of the 

Emergency Planning and Community Right-to-Know Act of 1986” and has been assigned a reportable 

quantity (RQ) limit of 10 pounds (EPA 2012f).  Parathion is also considered to be an extremely hazardous 

substance (EPA 2012g).  The RQ represents the amount of a designated hazardous substance which, when 

released to the environment, must be reported to the appropriate authority. 

The international and national regulations, advisories, and guidelines regarding parathion in air, water, 

and other media are summarized in Table 8-1. 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1. Regulations, Advisories, and Guidelines Applicable to Parathion 

Agency Description Information Reference 
INTERNATIONAL 
Guidelines: 

IARC Carcinogenicity classification Group 3a IARC 2013 
WHO Air quality guidelines 

Drinking water quality guidelines 
No data 
No datab 

WHO 2010 
WHO 2011 

NATIONAL 
Regulations and 
Guidelines: 
a. Air 

ACGIH TLV (8-hour TWA)c,d 0.05 mg/m3 ACGIH 2012 
AIHA ERPG-1, -2, -3 No data AIHA 2011 
DOE 

EPA 

PAC-1e 

PAC-2 
PAC-3 
AEGL-1f 

0.15 mg/m3 

1.5 mg/m3 

2.0 mg/m3 

Not recommended due 
to insufficient data 

DOE 2016b 

EPA 2013a 

AEGL-2 
10-minutes 
30-minutes 
60-minutes 
4-hours 
8-hours 

2.8 mg/m3 

1.9 mg/m3 

1.5 mg/m3 

0.96 mg/m3 

0.48 mg/m3 

AEGL-3 
10-minutes 
30-minutes 
60-minutes 
4-hours 
8-hours 

3.6 mg/m3 

2.5 mg/m3 

2.0 mg/m3 

1.3 mg/m3 

0.63 mg/m3 

Hazardous air pollutant Yes EPA 2013b 
42 USC 7412 

NAAQS No data EPA 2013e 
NIOSH 

OSHA 

REL (10-hour TWA)g 

IDLH 
PEL (8-hour TWA) for general industryh 

0.05 mg/m3 

10 mg/m3 

0.1 mg/m3 

NIOSH 2011 

OSHA 2013b 
29 CFR 1910.1000, 
Table Z-1 

Highly hazardous chemicals No data OSHA 2013a 
29 CFR 1910.119, 
Appendix A 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1. Regulations, Advisories, and Guidelines Applicable to Parathion 

Agency Description Information Reference 
NATIONAL (cont.) 
b. Water 

EPA Designated as hazardous substances in 
accordance with Section 311(b)(2)(A) of 
the Clean Water Act 

Yes EPA 2012a 
40 CFR 116.4 

EPA Drinking water contaminant candidate 
list 

No data EPA 2009a 
74 FR 51850 

Drinking water standards and health 
advisories 

No data EPA 2012b 

National primary drinking water 
standards 

No data EPA 2009b 

National recommended water quality 
criteria for freshwater 

EPA 2009c 

Criteria maximum concentration 
(acute) 

0.065 μg/L 

Criterion continuous concentration 
(chronic) 

0.013 μg/L 

Reportable quantities of hazardous 
substances designated pursuant to 
Section 311 of the Clean Water Act 

10 pounds EPA 2012d 
40 CFR 117.3 

c. Food 
FDA EAFUSi No FDA 2013 

d. Other 
ACGIH Carcinogenicity classification A4j ACGIH 2012 

BEI 
Total p-nitrophenol in urine (end of 
shift end) 

0.5 mg/g creatinine 

Cholinesterase activity in red blood 
cells (discretionary) 

70% of individual’s 
baseline 

EPA Carcinogenicity classification Group Ck IRIS 2003 
RfC No data 
RfD No data 
Identification and listing of hazardous 
waste 

P089 EPA 2012c 
40 CFR 261, 
Appendix VIII 

Inert pesticide ingredients in pesticide 
products approved for nonfood use only 

No data EPA 2013c 

Master Testing List No data EPA 2013d 
RCRA waste minimization PBT priority 
chemical list 

No data EPA 1998 
63 FR 60332 

Standards for owners and operators of 
hazardous waste TSD facilities; 
groundwater monitoring list 

Yes EPA 2012e 
40 CFR 264, 
Appendix IX 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Parathion 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA Superfund, emergency planning, and 
community right-to-know 

Designated CERCLA hazardous 10 pounds EPA 2012f 
substance and reportable quantity 40 CFR 302.4 
pursuant to Section 311(b)(2) of the 
Clean Water Act, Section 112 of the 
Clean Air Act, and Section 3001 of 
RCRA 
Effective date of toxic chemical 01/01/1987 EPA 2012h 
release reporting 40 CFR 372.65 
Extremely hazardous substances EPA 2012g 
and its threshold planning quantity 40 CFR 355, 

Reportable quantity 10 pounds Appendix A 

Threshold planning quantity 100 pounds 
TSCA chemical lists and reporting No data EPA 2012i 
periods 40 CFR 712.30 
TSCA health and safety data reporting No data EPA 2012j 

40 CFR 716.120 
NTP Carcinogenicity classification No data NTP 2011 

aGroup 3: Unclassifiable as to carcinogenicity to humans.
 
bA guideline value was not established for parathion because it occurs in drinking-water at concentrations well below
 
those of health concern (WHO 2011).
 
cInhalable fraction and vapor; material exerts sufficient vapor pressure such that it may be present in both particles
 
and vapor phases, with each contributing a significant portion of the dose at the TLV-TWA concentration (ACGIH
 
2012).
 
dSkin designation: refers to the potential significant contribution to the overall exposure by the cutaneous route,
 
including mucous membranes and the eyes, by contact with vapors, liquids, and solids (ACGIH 2012).
 
ePAC-1: mild, transient health effects; PAC-2: irreversible or other serious health effects that could impair the ability to 

take protective action; PAC-3: life-threatening health effects (DOE 2016a).
 
fAEGL-1: the airborne concentration of a substance above which it is predicted that the general population, including 

susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects;
 
however, these effects are not disabling and are transient and reversible upon cessation of exposure; AEGL-2: the 

airborne concentration of a substance above which it is predicted that the general population, including susceptible
 
individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to 

escape; AEGL-3: is the airborne concentration of a substance above which it is predicted that the general population,
 
including susceptible individuals, could experience life-threatening adverse health effects or death (EPA 2013a).
 
gSkin designation indicates the potential for dermal absorption; skin exposure should be prevented as necessary
 
through the use of good work practices, gloves, coveralls, goggles, and other appropriate equipment (NIOSH 2011).
 
hSkin designation.
 
iThe EAFUS list of substances contains ingredients added directly to food that FDA has either approved as food 

additives or listed or affirmed as GRAS.
 
jA4: Not classified as a human carcinogen.
 
kGroup C: possible human carcinogen.
 

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline levels;
 
AIHA = American Industrial Hygiene Association; BEI = biological exposure indices; CERCLA = Comprehensive 

Environmental Response, Compensation, and Liability Act; CFR = Code of Federal Regulations; DOE = Department
 
of Energy; EAFUS = Everything Added to Food in the United States; EPA = Environmental Protection Agency;
 
ERPG = emergency response planning guidelines; FDA = Food and Drug Administration; FR = Federal Register;
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Parathion 

Agency Description Information Reference 
GRAS = generally recognized as safe; IARC = International Agency for Research on Cancer; IDLH = immediately
 
dangerous to life or health; IRIS = Integrated Risk Information System; NAAQS = National Ambient Air Quality
 
Standards; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program;
 
OSHA = Occupational Safety and Health Administration; PAC = protective action criteria; PBT = persistent,
 
bioaccumulative, and toxic; PEL = permissible exposure limit; RCRA = Resource Conservation and Recovery Act;
 
REL = recommended exposure limit; RfC = inhalation reference concentration; RfD = oral reference dose;
 
TLV = threshold limit values; TSCA = Toxic Substances Control Act; TSD = treatment, storage, and disposal;
 
TWA = time-weighted average; USC = United States Code; WHO = World Health Organization
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Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study—A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 
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Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs. The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.  

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
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Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(LO) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 



   
 

  
 
 

 
 
 
 
 

 
  

   
 

   
  

 
   

 
 

   
   

    
  

 
 

 
 

  
  

     
      

 
 

 
 

 
  

 
   

  
 

     
    

  
 

  
 

  
  

    
 

 
     

   
   

 
 

  
    

PARATHION 254 

10.  GLOSSARY 

Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor).  An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows. These models require a 
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variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually μg/L for water, mg/kg/day for food, and 
μg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical. The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 
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Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic that is associated with an increased occurrence of disease or other health-related 
event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually.  No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods.  The daily Threshold Limit Value-Time Weighted Average (TLV-TWA) may 
not be exceeded. 

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect. 
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 

Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any chemical that is foreign to the biological system. 
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APPENDIX A. ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects. These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 

MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 
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are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive. Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL 

Workgroup reviews, with participation from other federal agencies and comments from the public.  They 

are subject to change as new information becomes available concomitant with updating the toxicological 

profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published levels. 

For additional information regarding MRLs, please contact the Division of Toxicology and Human 

Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop 

F-57, Atlanta, Georgia 30329-4027. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Parathion 
CAS Numbers: 56-38-2 
Date: January 2017 
Profile Status: Final 
Route: [X] Inhalation   [ ] Oral 
Duration: [ ] Acute [X] Intermediate   [ ] Chronic 
Graph Key: 9 
Species: Rat 

Minimal Risk Level:  20  [ ] mg/kg/day  [X] ng/m3 

Reference: NIOSH.  1974. Inhalation and oral toxicity 13 studies of ethyl parathion administered acutely 
and subacutely to the rat and dog.  National Institute of Occupational Safety and Health Report No. 
00134578.  Aberdeen Proving Ground, MD:  Edgewood Arsenal, Toxicology Division. 

Experimental design:  Groups of male rats (20/group) were exposed whole-body to 0, 0.01, 0.1, or 
0.74 mg parathion aerosol/m3 7 hours/day, 5 days/week for 6 weeks.  It should be noted that since the rats 
were not prevented from grooming themselves, ingestion of some amount of parathion may have 
occurred. Blood samples obtained from 71 rats were assayed for red blood cell and plasma cholinesterase 
and served as baseline controls.  Ten rats per exposure group and control group were sacrificed at various 
times during the exposure period and during a 6-week post-exposure period to collect blood samples.  The 
rats were observed for clinical signs and were weighed before blood sampling and sacrifice. 

Effect noted in study and corresponding doses:  No clinical signs were seen in rats exposed to 0.01 or 
0.1 mg parathion/m3. Some rats in the high-concentration group showed signs of parathion toxicity, 
including tremors and ataxia.  Blood collected from the high-dose group after the last exposure showed no 
significant alteration in hematocrit.  Body weight was not significantly altered by exposure to parathion.  
In the low-exposure group, red blood cell AChE activity was maximally decreased by approximately 30% 
on exposure weeks 4 and 5; no data were available for week 3.  On exposure week 6, red blood cell AChE 
activity in the low-exposure group had recovered to 97.3% of control levels.  In the mid-exposure group, 
the maximum decrease in red blood cell AChE was 43% and occurred on week 1.  During the rest of the 
exposure period, red blood cell cholinesterase activity was 60–70% of pretest levels, suggesting that a 
steady state had been achieved.  Red blood cell AChE activity during the first and second week of the 
post-exposure period was 82 and 84.4% of controls, indicating that recovery was in progress.  In the high-
exposure group, red blood cell AChE activity achieved its maximal depression on week 5 of exposure, 
reaching 15% of controls.  In general, enzyme activities recovered during the 6-week post-dosing period.  
Changes in plasma cholinesterase activity paralleled red blood cell changes, recovered faster and 
exceeded control levels by week 1 or 2 post-exposure. Since the exposure level of 0.1 mg parathion/m3 

induced a level of depression of red blood cell AChE activity that appeared to achieve steady state at 
approximately 60–70% of controls during exposure, and no clinical signs were observed at this exposure 
level, 0.1 mg/m3 constitutes a less serious LOAEL for neurological effects in rats; the exposure 
concentration of 0.01 mg parathion/m3 is a NOAEL. 

Since only means without deviation parameters were reported for red blood cell AChE values, dose-
responses using benchmark dose approaches cannot be constructed to estimate points of departure from 
the rat data.  Therefore, a NOAEL/LOAEL approach will be used and the NOAEL of 0.01 mg 
parathion/m3 for red blood cell AChE in rats is the point of departure for MRL derivation.  
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Exposure concentration and end point used for MRL derivation: 0.01 mg/m3; NOAEL for neurological 
effects (red blood cell AChE inhibition). 

[X] NOAEL   [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ] 10 for use of a LOAEL 
[X]  10 for extrapolation from animals to humans 
[X]  10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose:  A 
human equivalent dose could not be determined because the study did not provide information regarding 
information about particle size. 

Was a conversion used from intermittent to continuous exposure?  Yes (7 hours/24 hours) x 
(5 days/7 days). 

Other additional studies or pertinent information that lend support to this MRL: A 6-week inhalation 
study in dogs also established a NOAEL of 0.01 mg/m3 for red blood cell AChE activity (NIOSH 1974). 
In that study, male beagle dogs (6/group) were exposed to parathion aerosol at concentrations of 0, 0.001, 
0.01, or 0.2 mg/m3 7 hours/day, 5 days/week for 6 weeks and were held for an additional 6-week post-
exposure period.  Blood samples obtained from the dogs at various times during the exposure and post-
exposure periods were assayed for red blood cell AChE and plasma cholinesterase.  Blood samples were 
taken pre-exposure so that each dog served as its own control.  No clinical signs were observed in the 
dogs.  Exposure to parathion did not affect body weight gain in the dogs.  No significant effects on levels 
of red blood cell AChE activity were observed at the low-exposure level.  Exposure to 0.01 mg 
parathion/m3 reduced red blood cell AChE activity by 21% by the end of the second week of exposure, 
but levels recovered to 14% of pre-exposure values by the third week of exposure and to 100% of pretest 
levels during the remaining of the exposure period.  In the high-exposure group, red blood cell AChE 
activity was reduced between 26 and 46% during the first 5 weeks of exposure and inhibition reached a 
maximum of 41% of pre-exposure levels on week 6 of exposure.  Slow recovery was evident during the 
post-exposure period.  Plasma cholinesterase activity was inhibited to a greater extent during the exposure 
period, but seemed to recover faster during the post-exposure period.  Based on the fact that red blood cell 
AChE activity was depressed over 20% (21%) only on week 2 of exposure in the 0.01 mg/m3 group, this 
exposure level is considered a NOAEL for neurological effects in dogs in an intermediate-duration study; 
the LOAEL is 0.2 mg/parathion/m3. 

Agency Contacts (Chemical Managers): Sam Keith 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Parathion 
CAS Numbers: 56-38-2 
Date: January 2017 
Profile Status: Final 
Route: [ ] Inhalation   [X] Oral 
Duration: [ ] Acute [X] Intermediate   [ ] Chronic 
Graph Key: 50 
Species: Human 

Minimal Risk Level:  0.009 [X] mg/kg/day  [ ] mg/m3 

Reference: Rider JA, Moeller HC, Puletti EJ, et al.  1969.  Toxicity of parathion, systox, octamethyl 
pyrophosphoramide, and methyl parathion in man.  Toxicol Appl Pharmacol 14(3):603-611.  

Experimental design: Five male volunteers* were administered 3, 4.5, 6, or 7.5 mg parathion/day in a 
capsule (0.04, 0.06, 0.09, and 0.11 mg/kg/day, assuming 70 kg body weight) for approximately 30 days; 
two additional subjects served as controls.  In a pretest period of 30 days, blood was collected to establish 
baseline levels of plasma cholinesterase and red blood cell AChE.  The subjects were also monitored 
during a post-test period of about 30 days.  At the beginning of the pretest period, routine blood counts, 
urinalysis, and prothrombin time were performed, and these were repeated at the end of each test period.  

Effect noted in study and corresponding doses:  Doses of 0.04 or 0.06 mg parathion/kg/day did not affect 
the levels of either enzyme.  Administration of 0.09 mg parathion/kg/day caused a slight depression of 
plasma cholinesterase (data not provided).  Doses of 0.11 mg parathion/kg/day induced a 27% decrease in 
the plasma enzyme in one subject on day 4.  On day 9, two subjects showed 36 and 32% inhibition of the 
plasma enzyme.  On day 16, the levels of plasma cholinesterase in these two subjects were 50 and 52% of 
pretest levels and parathion dosing was discontinued. In the other three subjects, plasma cholinesterase 
levels were 97, 82, and 69% of pretest levels.  On day 16, the mean levels of plasma cholinesterase in the 
five exposed subjects was reduced by 28% from the control value. On day 23, plasma cholinesterase 
activity in a third exposed subject was 54% of his pretest level and dosing was also discontinued.  
Therefore, of the five dosed subjects, three had the treatment discontinued by day 23 (two on day 16 and 
one on day 23). In the two subjects who received parathion during 35 days, the lowest plasma 
cholinesterase levels were 86 and 78% of their pretest values. 

Red blood cell AChE activity in the three subjects who discontinued parathion dosing achieved maximal 
inhibition levels of 63, 78, and 86% of pretest levels. In the two subjects who completed the test period, 
there was no significant effect on red blood cell AChE activity.  By the end of the post-test period, both 
enzymes had returned to pretest levels.  No information was provided regarding blood counts, urinalysis, 
or prothrombin test results.  Based on a >20% inhibition of red blood cell AChE activity in two out of five 
subjects for 16 days, the dose of 0.11 mg parathion/kg/day is a LOAEL for neurological effects; the next 
lower dose, 0.09 mg parathion/kg/day, is a NOAEL. 

Benchmark dose analysis cannot be performed because the data were not presented as means plus or 
minus a measure of dispersion.  The intermediate-duration oral MRL for parathion is derived by dividing 
the NOAEL of 0.09 mg parathion/kg/day by an uncertainty factor of 10 (to account for human 
variability); this yields an MRL of 0.009 mg parathion/kg/day (9 µg/kg/day). 
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APPENDIX A 

Dose and end point used for MRL derivation:  0.09 mg/kg/day; NOAEL for neurological effects 
(inhibition of red blood cell AChE activity). 

[X] NOAEL   [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ] 10 for use of a LOAEL
 
[ ] 10 for extrapolation from animals to humans
 
[X]  10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? No. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Was a conversion used from intermittent to continuous exposure? Not applicable. 

Other additional studies or pertinent information that lend support to this MRL: Edson (1964) identified a 
NOAEL of 0.1 mg parathion/kg/day (the highest dose tested) for red blood cell AChE activity in female 
volunteers administered the pesticide orally for 6 weeks. The available intermediate-duration oral studies 
in animals suggest that significant inhibition (>20%) of red blood cell AChE occurs with repeated doses 
≥0.1 mg parathion/kg/day.  In a study in dogs, red blood cell AChE activity was depressed approximately 
25% with doses of 0.047 mg parathion/kg/day for 12 weeks, but appeared to increase to near 90% of 
pretest values on week 16 of exposure (Frawley and Fuyat 1957).  Another study in dogs showed that a 
constant inhibition of the enzyme of >20% could be achieved only with repeated doses of 0.5 mg 
parathion/kg/day (NIOSH 1974).  Two studies in rats dosed for several weeks identified LOAELs of 
0.1 mg parathion/kg/day for red blood cell AChE; the NOAELs were 0.024 and 0.05 mg parathion/kg/day 
(Ivens et al. 1998; NIOSH 1974). 

*Note:  ATSDR endorses the highest ethical standards in conducting human dosing studies.  Thus, it 
should be noted that the Rider et al. (1969) study raises ethical concerns about human subjects’ protection 
and would not be approved today based on the current human subject protection regulations (HHS 2009).  
The participants in the study were prisoners in San Quentin State prison and the California Medical 
Facility in Vacaville, raising questions about their ability to make a truly voluntary and uncoerced 
decision whether or not to participate in the study.  The study report provides no detailed information 
regarding consent procedures other than to state that the participants were volunteers. ATSDR believes 
that the use of the study is consistent with the recommendations by the NRC (2004). 

Recommendation 7-2 states that: “The cholinesterase inhibition studies that already 
have been submitted to EPA, if determined to be scientifically valid and justified for 
EPA’s regulatory purposes, may be considered for use in risk assessment and 
standard setting if they were not unethically conducted (see Recommendation 5-7.)” 

Recommendation 5-7 states that: “EPA should accept scientifically valid studies 
conducted before its new rules are implemented unless there is clear and convincing 
evidence that the conduct of those studies was fundamentally unethical (e.g., the 
studies were intended to seriously harm participants or failed to obtain informed 
consent.)” 
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Although there is limited information about the consent procedures used in this study, the information 
that is provided about the participants being volunteers suggests that there is no clear and convincing 
evidence that the conduct of this study was fundamentally unethical.  

Recommendation 4-1 further states that: “EPA should consider a human dosing study 
intended to reduce the interspecies uncertainty factor (for example, a study of a 
biomarker such as cholinesterase inhibition) as conferring a societal benefit only if it 
was designed and conducted in a manner that would improve the scientific accuracy 
of EPA’s extrapolation from animal to human data.” 

As discussed above, the available intermediate-duration oral studies suggest that in humans, rats, and 
dogs, significant inhibition (>20%) of red blood cell AChE activity occurs with repeated doses ≥0.1 mg 
parathion/kg/day.  The human study by Rider et al. provides a basis for an MRL that improves the 
accuracy of the value based on the animal data alone, and eliminates the interspecies uncertainty factor. 
Any human dosing study must have a useful purpose and convey a benefit to participants and/or society 
(NRC 2004). ATSDR believes that the Rider et al. (1969) study provides a benefit to society in that the 
data provide the basis for a health guidance value (i.e., MRL) that can be used to protect exposed 
populations to parathion. 

Agency Contacts (Chemical Managers): Sam Keith 
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PARATHION	 B-1 

APPENDIX B.  USER'S GUIDE 

Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language. Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern. The 
topics are written in a question and answer format. The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information. This summary is designed to present interpretive, weight­
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2.	 What effects observed in animals are likely to be of concern to humans? 

3.	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance. Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.  

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects. These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario. The LSE tables and figures should always be used in 
conjunction with the text. All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1)	 Route of Exposure.  One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure. Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2)	 Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure. 
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3)	 Health Effect. The major categories of health effects included in LSE tables and figures are 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. 
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4)	 Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5)	 Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6)	 Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies.  In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7)	 System.  This column further defines the systemic effects. These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8)	 NOAEL.  A NOAEL is the highest exposure level at which no harmful effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9)	 LOAEL. A LOAEL is the lowest dose used in the study that caused a harmful health effect.  
LOAELs have been classified into "Less Serious" and "Serious" effects.  These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10)	 Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11)	 CEL.  A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects. The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12)	 Footnotes.  Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13)	 Exposure Period. The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14)	 Health Effect.  These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15)	 Levels of Exposure.  Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16)	 NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17)	 CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18)	 Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19)	 Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 
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1 →	 Table 3-1.  Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Less serious Serious (ppm) Key to 	 frequency/ NOAEL 
(ppm) figurea Species duration System (ppm)	 Reference 

2 

3 

4 

→ INTERMEDIATE EXPOSURE 

5 

→ Systemic ↓ 

18 Rat 
→ 

CHRONIC EXPOSURE 

Cancer 

38 Rat 

39 Rat 

40 Mouse 

6 

↓ 

13 wk 
5 d/wk 
6 hr/d 

18 mo 
5 d/wk 
7 hr/d 

89–104 wk 
5 d/wk 
6 hr/d 

79–103 wk 
5 d/wk 
6 hr/d 

7 8 9 

↓ ↓ ↓ 

Resp 3b 10 (hyperplasia) 

11 

↓ 

20	 (CEL, multiple 
organs) 

10	 (CEL, lung tumors, 
nasal tumors) 

10	 (CEL, lung tumors, 
hemangiosarcomas) 

10 

↓ 

Nitschke et al. 1981 

Wong et al. 1982 

NTP 1982 

NTP 1982 

12 →	 a The number corresponds to entries in Figure 3-1. 
b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-3 ppm; dose adjusted for intermittent exposure and divided 
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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Chronic (≥ 365 days) Intermediate (15-364 days) 
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD/C benchmark dose or benchmark concentration 
BMDX dose that produces a X% change in response rate of an adverse effect 
BMDLX 95% lower confidence limit on the BMDX 

BMDS Benchmark Dose Software 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
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DOT Department of Transportation 
DOT/UN/ Department of Transportation/United Nations/ 

NA/IMDG North America/Intergovernmental Maritime Dangerous Goods Code 
DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank 
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 



   
 

  
 
 

 
 
 
 
 

   
   

  
  

  
  
  

  
  
   

  
  

  
  

   
   

  
   

  
  

  
  

  
  
   

  
   

  
  

  
  
  

  
  

  
  

  
  

  
  

   
   
  

  
  

  
    

  
  

   
   

PARATHION C-3 

APPENDIX C 

MCL maximum contaminant level 
MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 



   
 

  
 
 

 
 
 
 
 

  
  

   
   
  

  
  

  
  
  
  
  

  
  

  
   

  
   
  
  
  

  
   

  
  

  
  

   
  

   
  

  
  

   
  

  
  
   
  

  
   

  
  
  

  
  

   
  
  

 
 

PARATHION C-4 

APPENDIX C 

OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic 
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 



   
 

  
 
 

 
 
 
 
 

  
   
  
  
   
  

  
  
  
  

  
  
  

  
  

  
  

PARATHION C-5 

APPENDIX C 

> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
μm micrometer 
μg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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