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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3: Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies are 
reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting. Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics: Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Section 1.6 How Can (Chemical X) Affect Children? 
Section 1.7 How Can Families Reduce the Risk of Exposure to (Chemical X)? 
Section 3.7 Children’s Susceptibility 
Section 6.6 Exposures of Children 

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center  
Phone: 1-888-42-ATSDR or (404) 498-0110 Fax: (770) 488-4178 
E-mail: atsdric@cdc.gov Internet: http://www.atsdr.cdc.gov 

The following additional material can be ordered through the ATSDR Information Center: 

Case Studies in Environmental Medicine: Taking an Exposure History—The importance of taking an 
exposure history and how to conduct one are described, and an example of a thorough exposure 
history is provided.  Other case studies of interest include Reproductive and Developmental 
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Hazards; Skin Lesions and Environmental Exposures; Cholinesterase-Inhibiting Pesticide 
Toxicity; and numerous chemical-specific case studies. 

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
incident. Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III— 
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

Fact Sheets (ToxFAQs) provide answers to frequently asked questions about toxic substances. 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace. Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, 
GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 200 Independence Avenue, 
SW, Washington, DC 20201 • Phone: 800-356-4674 or NIOSH Technical Information Branch, 
Robert A. Taft Laboratory, Mailstop C-19, 4676 Columbia Parkway, Cincinnati, OH 45226-1998 
• Phone: 800-35-NIOSH. 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

Referrals 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone:  202-347-4976 
• FAX: 202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact: ACOEM, 25 Northwest Point Boulevard, Suite 700, 
Elk Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266. 
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4. 	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and 
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review specified in Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, 
and Liability Act, as amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
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The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content. The responsibility for the content of this profile lies with the ATSDR. 
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1. PUBLIC HEALTH STATEMENT 


This public health statement tells you about carbon tetrachloride and the effects of exposure to it.   

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in 

the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for 

long-term federal clean-up activities.  Carbon tetrachloride has been found in at least 430 of the 

1,662 current or former NPL sites.  Although the total number of NPL sites evaluated for this 

substance is not known, the possibility exists that the number of sites at which carbon 

tetrachloride is found may increase in the future as more sites are evaluated.  This information is 

important because these sites may be sources of exposure and exposure to this substance may 

harm you. 

When a substance is released either from a large area, such as an industrial plant, or from a 

container, such as a drum or bottle, it enters the environment. Such a release does not always 

lead to exposure. You can be exposed to a substance only when you come in contact with it.  

You may be exposed by breathing, eating, or drinking the substance, or by skin contact. 

If you are exposed to carbon tetrachloride, many factors will determine whether you will be 

harmed.  These factors include the dose (how much), the duration (how long), and how you 

come in contact with it.  You must also consider any other chemicals you are exposed to and 

your age, sex, diet, family traits, lifestyle, and state of health. 

1.1 WHAT IS CARBON TETRACHLORIDE? 

Carbon tetrachloride is a clear liquid that evaporates very easily. Most carbon tetrachloride that 

escapes to the environment is therefore found as a gas.  Carbon tetrachloride does not easily 

burn. Carbon tetrachloride has a sweet odor, and most people can begin to smell it in air when 

the concentration reaches 10 parts carbon tetrachloride per million parts of air (ppm).  It is not 
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known whether people can taste it or, if they can, at what level.  Carbon tetrachloride is a 

manufactured chemical and does not occur naturally in the environment, 

Carbon tetrachloride has been produced in large quantities to make refrigeration fluid and 

propellants for aerosol cans.  Since many refrigerants and aerosol propellants have been found to 

affect the earth's ozone layer, the production of these chemicals is being phased out.  

Consequently, the manufacture and use of carbon tetrachloride has declined a great deal. 

In the past, carbon tetrachloride was widely used as a cleaning fluid (in industry and dry cleaning 

establishments as a degreasing agent, and in households as a spot remover for clothing, furniture, 

and carpeting).  Carbon tetrachloride was also used in fire extinguishers and as a fumigant to kill 

insects in grain.  Most of these uses were discontinued in the mid-1960s.  Until recently, carbon 

tetrachloride was used as a pesticide, but this was stopped in 1986.   

Further information on the properties and uses of carbon tetrachloride can be found in 

Chapters 4, 5, and 6. 

1.2 	 WHAT HAPPENS TO CARBON TETRACHLORIDE WHEN IT ENTERS THE 
ENVIRONMENT? 

Because carbon tetrachloride evaporates easily, most of the compound released to the 

environment during its production and use reaches the air, where it is found mainly as a gas.  It 

can remain in air for several years before it is broken down to other chemicals.  Small amounts 

of carbon tetrachloride are found in surface water.  Because it evaporates easily, much of it will 

move from surface water to the air within a few days or weeks.  However, it may be trapped in 

groundwater for longer periods. Carbon tetrachloride is not expected to stick to soil particles.  If 

spilled onto the ground, much of it will evaporate to the air.  Some of it may also go into 

groundwater, where it can remain for months before it is broken down to other chemicals.  It is 

not expected to build up in fish. We do not know if it builds up in plants. 
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Further information on what happens to carbon tetrachloride in the environment may be found in 

Chapters 5 and 6. 

1.3 HOW MIGHT I BE EXPOSED TO CARBON TETRACHLORIDE? 

Very low background levels of carbon tetrachloride are found in air, water, and soil because of 

past and present releases. Concentrations in air of 0.1 part carbon tetrachloride per billion parts 

of air (ppb) are common around the world, with somewhat higher levels often found (0.2– 

0.6 ppb) in cities. Carbon tetrachloride is also found in some drinking water supplies, usually at 

concentrations less than 0.5 ppb. Exposure to levels of carbon tetrachloride higher than these 

typical "background" levels is likely to occur only at specific industrial locations where carbon 

tetrachloride is still used or near chemical waste sites where emissions into air, water, or soil are 

not properly controlled. Exposure at such sites could occur by breathing carbon tetrachloride 

present in the air, by drinking water contaminated with carbon tetrachloride, or by getting soil 

contaminated with carbon tetrachloride on the skin.  Young children may also be exposed if they 

eat soil that contains carbon tetrachloride.  Carbon tetrachloride has been found in water or soil 

at about 26% of the waste sites investigated under Superfund, at concentrations ranging from less 

than 50 to over 1,000 ppb. 

People who work with carbon tetrachloride are likely to receive the greatest exposure to the 

compound.  The National Institute for Occupational Safety and Health (NIOSH) estimates that 

58,208 workers are potentially exposed to carbon tetrachloride in the United States.  The average 

daily intake of carbon tetrachloride for the general population is estimated to be 0.1 microgram 

(µg per kg of body weight). The estimated average daily amount that the general population may 

drink in water is 0.01 µg per kg of body weight. 

Further information on the ways that humans can be exposed to carbon tetrachloride is presented 

in Chapter 6. 
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1.4 HOW CAN CARBON TETRACHLORIDE ENTER AND LEAVE MY BODY? 

Carbon tetrachloride can enter your body through your lungs if you breathe air containing carbon 

tetrachloride, or through your stomach and intestines if you swallow food or water containing 

carbon tetrachloride. Carbon tetrachloride can also pass through the skin into the body.  When 

you inhale carbon tetrachloride, over 30–40% of what you inhale enters your body, where most 

of it temporarily accumulates in body fat.  Some can enter the kidney, liver, brain, lungs, and 

skeletal muscle.  When you drink water contaminated with carbon tetrachloride, about 85–91% 

of it can enter your body. Much of the compound that enters your body when you breathe it or 

drink water contaminated with it leaves your body quickly, and a lot of it can be found in your 

breath within a few hours. Animal studies have shown that under differing conditions, 34–75% 

of carbon tetrachloride leaves the body in expired air, 20–62% leaves the body in feces, and only 

low amounts leave the body in the urine.  Animal studies also suggest that it may take weeks for 

the remainder of the compound in the body to be eliminated, especially that which has entered 

the body fat. Most of the carbon tetrachloride is eliminated from your body unchanged, but 

some of it may be changed to other chemicals before removal from the body (for example, 

chloroform, hexachloroethane, and carbon dioxide).  Chloroform and hexachloroethane may 

themselves cause harmful effects. 

Further information on how carbon tetrachloride enters and leaves the body is presented in 

Chapter 3. 

1.5 HOW CAN CARBON TETRACHLORIDE AFFECT MY HEALTH? 

Scientists use many tests to protect the public from harmful effects of toxic chemicals and to find 

ways for treating persons who have been harmed. 

One way to learn whether a chemical will harm people is to determine how the body absorbs, 

uses, and releases the chemical.  For some chemicals, animal testing may be necessary.  Animal 

testing may also help identify health effects such as cancer or birth defects.  Without laboratory 

animals, scientists would lose a basic method for getting information needed to make wise 
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decisions that protect public health.  Scientists have the responsibility to treat research animals 

with care and compassion.  Scientists must comply with strict animal care guidelines because 

laws today protect the welfare of research animals. 

Most information on the health effects of carbon tetrachloride in humans comes from cases 

where people have been exposed to relatively high levels of carbon tetrachloride, either only 

once or for a short period, for example, by accidental poisoning or by working with the chemical 

in a confined space without ventilation.  Experiments have not been performed on the effects of 

long-term exposure of humans to low levels of carbon tetrachloride, so the human health effects 

of such exposures are not known. 

The liver is especially sensitive to carbon tetrachloride since it contains a large amount of the 

enzymes that change the form of the chemical.  Some of the breakdown products may attack cell 

proteins, interfering with the functions of the liver cells.  Products that attack cell membranes 

may result in the death of the cells.  In mild cases, the liver becomes swollen and tender, and fat 

builds up inside the organ. In severe cases, liver cells may be damaged or destroyed, leading to a 

decrease in liver function. Such effects are usually reversible if exposure is not too high or too 

long. 

The kidney is also sensitive to carbon tetrachloride.  Less urine may be formed, leading to a 

buildup of water in the body (especially in the lungs) and buildup of waste products in the blood.  

Kidney failure often was the main cause of death in people who died after very high exposure to 

carbon tetrachloride. Long-term breathing exposure to carbon tetrachloride worsened 

age-related kidney disease in rats. 

Fortunately, if injuries to the liver and kidney are not too severe, these effects eventually 

disappear after exposure stops.  This is because both organs can repair damaged cells and replace 

dead cells. Function usually returns to normal within a few days or a few weeks after the 

exposure has stopped. 
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After exposure to high levels of carbon tetrachloride, the nervous system, including the brain, is 

affected. Such exposure can be fatal. The immediate effects are usually signs of intoxication, 

including headache, dizziness, and sleepiness perhaps accompanied by nausea and vomiting.  

These effects usually disappear within 1–2 days after exposure stops.  In severe cases, stupor or 

even coma can result, and permanent damage to nerve cells can occur. 

Carbon tetrachloride also causes effects on other tissues of the body, but these are not usually as 

common or important as the effects on the liver, kidney, and brain.   

There have been no studies of the effects of carbon tetrachloride on reproduction in humans, but 

studies in rats showed that long-term inhalation may cause decreased fertility. 

Studies in animals have shown that swallowing or breathing carbon tetrachloride over a period of 

years increases the frequency of liver tumors.  Mice breathing carbon tetrachloride also 

developed tumors of the adrenal gland.  Studies have not been performed to determine whether 

swallowing or breathing carbon tetrachloride causes tumors in humans, but it should be assumed 

that carbon tetrachloride could produce cancer. The Department of Health and Human Services 

(DHHS) has determined that carbon tetrachloride may reasonably be anticipated to be a 

carcinogen (i.e., cause cancer). The International Agency for Research on Cancer (IARC) has 

classified carbon tetrachloride in Group 2B, possibly carcinogenic to humans.  EPA has 

determined that carbon tetrachloride is a probable human carcinogen. 

Many reported cases of carbon tetrachloride toxicity are associated with drinking alcohol.  The 

frequent drinking of alcoholic beverages increases the danger of organ damage from carbon 

tetrachloride exposure. This enhanced effect has been shown in situations in which a group of 

workers were exposed to carbon tetrachloride in air, but only those who were heavy consumers 

of alcohol became ill. 

Further information on the health effects of carbon tetrachloride may be found in Chapter 3. 
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1.6 HOW CAN CARBON TETRACHLORIDE AFFECT CHILDREN? 

This section discusses potential health effects in humans from exposures during the period from 

conception to maturity at 18 years of age.  

Children and adults may be exposed to low levels of carbon tetrachloride in drinking water.  

Small children who live near factories that produce or use carbon tetrachloride could accidentally 

eat some of the chemical by putting dirty hands in their mouths, but the amount of carbon 

tetrachloride in the soil is thought to be too low to be harmful.  Carbon tetrachloride is no longer 

used in consumer products, but children could breathe in vapors if households are still using old 

supplies. 

It is not known if the way in which carbon tetrachloride is absorbed into and eliminated from the 

body is different in children than it is in adults, but the processes are likely to be similar.  

Compared to adults, young children have lower amounts of the enzyme that converts carbon 

tetrachloride to a harmful chemical.  The health effects of carbon tetrachloride have not been 

studied in children, but they are likely to be similar to those seen in adults exposed to the 

chemical.   

There is no direct evidence that maternal exposure to carbon tetrachloride has a harmful effect on 

the fetus in humans.  A few human survey-type studies suggest that maternal drinking water 

exposure to carbon tetrachloride might possibly be related to certain birth defects, such as low 

birthweight and small size at birth.  Information from animal studies indicates that carbon 

tetrachloride may cause early fetal deaths, but does not cause birth defects in babies surviving to 

term.  However, these animal studies did not test for neurological damage in exposed newborn 

babies. 

One study calculated that carbon tetrachloride is likely to pass from the maternal circulation into 

breast milk.  Thus, it is possible that children could be exposed to carbon tetrachloride from 

breast feeding, but the levels of exposure are likely to be low. 
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Further information on the health effects of carbon tetrachloride in children may be found in  

Chapter 3. 

1.7 	 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO CARBON 
TETRACHLORIDE? 

If your doctor finds that you have been exposed to substantial amounts of carbon tetrachloride, 

ask whether your children might also have been exposed.  Your doctor might need to ask your 

state health department to investigate. 

Although most consumer uses of carbon tetrachloride have been banned, children may be 

exposed to carbon tetrachloride in old consumer household cleaning products.  Removing these 

old containers will reduce your family’s risk of exposure to carbon tetrachloride.  Household 

chemicals should be stored out of the reach of children to prevent accidental poisonings and skin 

burns. Always store household chemicals in their original containers.  Never store household 

chemicals in containers that children would find attractive to eat and drink from, such as old soda 

bottles. Keep your poison control center’s number next to your phone. 

Sometimes older children sniff household chemicals in an attempt to get high.  Your children 

may be exposed to carbon tetrachloride by intentionally inhaling products containing it.  Talk 

with your children about the dangers of sniffing chemicals.    

Further information on reducing the risk of exposure to carbon tetrachloride can be found in 

Chapter 3. 

1.8 	 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN 
EXPOSED TO CARBON TETRACHLORIDE? 

Several very sensitive and specific tests can detect carbon tetrachloride in exposed persons.  The 

most convenient way is simply to measure carbon tetrachloride in exhaled air, but carbon 

tetrachloride can also be measured in blood, fat, or other tissues.  Because special equipment is 
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needed, these tests are not routinely performed in doctors' offices, but your doctor can refer you 

to where you can obtain such a test. Although these tests can show that a person has been 

exposed to carbon tetrachloride, the test results cannot be used to reliably predict whether any 

bad health effects might result.  Because carbon tetrachloride leaves the body fairly quickly, 

these methods are best suited to detecting exposures that have occurred within the last several 

days. 

Further information on how carbon tetrachloride can be measured in exposed humans is given in 

Chapter 7. 

1.9 	 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO 
PROTECT HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  

Regulations can be enforced by law. The EPA, the Occupational Safety and Health 

Administration (OSHA), and the Food and Drug Administration (FDA) are some federal 

agencies that develop regulations for toxic substances.  Recommendations provide valuable 

guidelines to protect public health, but cannot be enforced by law.  The Agency for Toxic 

Substances and Disease Registry (ATSDR) and the National Institute for Occupational Safety 

and Health (NIOSH) are two federal organizations that develop recommendations for toxic 

substances. 

Regulations and recommendations can be expressed as “not-to-exceed” levels, that is, levels of a 

toxic substance in air, water, soil, or food that do not exceed a critical value that is usually based 

on levels that affect animals; they are then adjusted to levels that will help protect humans.  

Sometimes these not-to-exceed levels differ among federal organizations because they used 

different exposure times (an 8-hour workday or a 24-hour day), different animal studies, or other 

factors. 

Recommendations and regulations are also updated periodically as more information becomes 

available. For the most current information, check with the federal agency or organization that 
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provides it. Some regulations and recommendations for carbon tetrachloride include the 

following: 

To protect the general public from exposure to carbon tetrachloride, the federal government has 

limited or banned the use of this compound in most common household products and fire 

extinguishers, and has discontinued its use as a pesticide.  To protect workers who use carbon 

tetrachloride while on the job, the OSHA has set a maximum concentration limit in workplace air 

of 10 ppm for an 8-hour workday over a 40-hour work week.  EPA has also set limits on how 

much carbon tetrachloride can be released from an industrial plant into waste water and is 

preparing to set limits on how much carbon tetrachloride can escape from an industrial plant into 

outside air. To ensure that drinking water supplies are safe, EPA has set a Maximum 

Contaminant Level (MCL) for carbon tetrachloride of 5 parts per billion (ppb), based on 

analytical detection limits in drinking water.  Because carbon tetrachloride is possibly 

carcinogenic to humans, a Maximum Contaminant Level Goal (MCLG) of zero has been 

proposed. More detailed information on federal and state regulations regarding carbon 

tetrachloride may be found in Chapter 8. 

1.10 WHERE CAN I GET MORE INFORMATION? 

If you have any more questions or concerns, please contact your community or state health or 

environmental quality department, or contact ATSDR at the address and phone number below. 

ATSDR can also tell you the location of occupational and environmental health clinics.  These 

clinics specialize in recognizing, evaluating, and treating illnesses that result from exposure to 

hazardous substances. 

Toxicological profiles are also available on-line at www.atsdr.cdc.gov and on CD-ROM.  You 

may request a copy of the ATSDR ToxProfilesTM CD-ROM by calling the toll-free information  
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and technical assistance number at 1-888-42ATSDR (1-888-422-8737), by e-mail at 

atsdric@cdc.gov, or by writing to: 

Agency for Toxic Substances and Disease Registry 
  Division of Toxicology 

1600 Clifton Road NE 
  Mailstop F-32 
  Atlanta, GA 30333 
  Fax: 1-770-488-4178 

Organizations for-profit may request copies of final Toxicological Profiles from the following: 

National Technical Information Service (NTIS) 

5285 Port Royal Road 


  Springfield, VA 22161 

  Phone: 1-800-553-6847 or 1-703-605-6000 

  Web site: http://www.ntis.gov/ 
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2.1 	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO CARBON 
TETRACHLORIDE IN THE UNITED STATES  

Carbon tetrachloride is a solvent that has been used in the past as a cleaning fluid or degreasing agent, as 

a grain fumigant, and industrially in the synthesis of refrigeration fluid and propellants for aerosol cans.  

Although most of these uses have been discontinued, the possibility still exists for carbon tetrachloride to 

be released to the environment, primarily through industrial processes or old bottles of cleaning agents 

containing carbon tetrachloride that may still be in the home.  Degradation of carbon tetrachloride occurs 

slowly in the environment, which contributes to the accumulation of the chemical in the atmosphere as 

well as the groundwater. Carbon tetrachloride is widely dispersed and persistent in the environment, but 

is not detected frequently in foods. 

The general population is not likely to be exposed to large amounts of carbon tetrachloride.  Populations 

living within or very near waste sites, or areas of heavy carbon tetrachloride use would have an increased 

risk of exposure from contaminated media (air, water, or soil).  Those likely to receive the highest levels 

of exposure are those who are involved in the production, formulation, handling, and application of 

carbon tetrachloride. Inhalation appears to be the major route of exposure for workers and also for the 

general population, which may be exposed to carbon tetrachloride in ambient air and from volatilization 

of contaminated water during showering or bathing.  Ingestion via contaminated drinking water is an 

important route of exposure for the general population not living in areas where carbon tetrachloride is 

extensively used.  Dermal contact from showering or bathing has not been shown to be a significant route 

of exposure to carbon tetrachloride. 

Most carbon tetrachloride released to the environment is expected to volatilize rapidly due to its high 

vapor pressure. Outdoor measurements in several areas of the United States have reported average 

concentrations of carbon tetrachloride in air between 0.6 and 1.0 µg/m3 (0.1–0.16 ppb).  Typical indoor 

concentrations in homes in several U.S. cities were about 1.0 µg/m3 (0.16 ppb), with some values up to 

9 µg/m3 (1.4 ppb).  Indoor concentrations in indoor air were thought to be higher than in outdoor air 

because of the presence of carbon tetrachloride in building materials or household products.  The majority 

of domestic water supplies contain carbon tetrachloride at concentrations below 0.5 µg/L.  Children are 

expected to be exposed to carbon tetrachloride by the same routes that affect adults.  Since carbon 
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tetrachloride has a low affinity for adsorption onto soil and dust particles, the risk of exposure for small 

children from ingesting soil or dust is likely to be low.  The average daily intake of carbon tetrachloride 

for the general population is estimated as 0.1 µg/kg/day from inhalation exposure and 0.01 µg/kg/day 

from ingesting drinking water containing typical low concentrations of the chemical. 

See Chapter 6 for more detailed information regarding concentrations of carbon tetrachloride in 

environmental media. 

2.2 SUMMARY OF HEALTH EFFECTS  

As a volatile halogenated alkane, carbon tetrachloride has depressant effects on the central nervous 

system that are most significant at high exposure levels.  Carbon tetrachloride also produces irritant 

effects on the gastrointestinal tract. Most other toxic effects of absorbed carbon tetrachloride are related 

to its metabolism by mixed function cytochrome P-450 oxygenases (in humans, primarily CYP2E1, but 

also CYP3A). The liver is the most sensitive target in exposed humans and animals, independent of the 

route of administration, because of the abundance of CYP2E1 and other cytochromes.  The kidneys are 

also sensitive targets in humans and animals. There is no conclusive evidence from epidemiological 

studies of workers or the general population that carbon tetrachloride is carcinogenic in humans.  Carbon 

tetrachloride has been shown to be carcinogenic in animals following chronic inhalation or oral exposure. 

Alcohol consumption is an important risk factor for the development of serious toxicological effects 

following exposure to carbon tetrachloride, since alcohol induces CYP2E1, leading to increased 

production of reactive metabolites.  Several case reports demonstrated that when groups of individuals 

were accidentally exposed to carbon tetrachloride in the workplace, the individuals who were heavy 

consumers of alcohol developed the most serious adverse effects. 

Studies in animals, combined with limited observations in humans, indicate that the principal adverse 

health effects associated with inhalation exposure to carbon tetrachloride are central nervous system 

depression, liver damage, and kidney damage.  Case reports in humans and studies in animals indicate 

that the liver, kidney, and central nervous system are also the primary targets of toxicity following oral 

exposure to carbon tetrachloride; gastrointestinal irritation has been frequently noted following accidental 

ingestion of high doses in humans.  Limited dermal data suggest that carbon tetrachloride absorbed 

through the skin can cause, in addition to skin irritation, gastrointestinal effects such as nausea and 

vomiting and neurological effects such as polyneuritis in humans, and liver damage in animals.  Based on 

the no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) 
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values identified in the animal studies, the liver appears to be the most sensitive target.  Several types of 

liver effects have been observed in humans and laboratory animals.  At lower adverse effect levels, 

hepatocytes accumulate lipids, resulting in cellular vacuolization and fatty degeneration.  At higher 

exposure levels, hepatocellular necrosis (cell death), fibrosis, and cirrhosis are observed.  Hepatic 

carcinogenicity has been observed in laboratory rodents following chronic-duration inhalation or oral 

exposure to carbon tetrachloride.  In animal studies, kidney effects, such as tubular cell degeneration and 

fatty accumulation, are typically observed at higher oral doses than hepatic effects.  However, in rats with 

chronic progressive nephropathy, hepatotoxicity and exacerbation of the severity of renal disease 

occurred at similar effect levels following chronic inhalation exposure.  Human case reports indicate that 

high oral or inhalation exposures sufficient to cause renal failure (progressive uremia and electrolyte 

retention) may cause delayed secondary damage (edema) to the lungs.  Central nervous system effects 

following inhalation or oral exposure include headache, weakness, lethargy, stupor, blurred vision, and 

coma; neurological effects are generally observed at exposure levels higher than the thresholds for hepatic 

or renal toxicity.  High-level inhalation or oral exposure is associated with mild hematological effects, 

primarily anemia in humans and animals, and reduced platelet function (clotting efficiency) in animals.  

Suppression of immune function (reductions in IgM antibody-forming cell activity, T-cell activity, 

lymphocyte counts, or host resistance to bacteria) has been observed in animals exposed short-term to oral 

doses higher than those causing liver effects. 

No studies were located regarding reproductive effects in humans after exposure to carbon tetrachloride 

and the available human data for developmental effects are limited to epidemiological studies of 

pregnancy outcomes in women exposed to carbon tetrachloride and other halogenated hydrocarbons in 

drinking water. These data are inadequate for establishing a causal relationship between carbon 

tetrachloride exposure and developmental toxicity in humans.  In animals exposed by inhalation for 

intermediate durations, reproductive effects included decreased fertility and testicular atrophy.  In 

developmental studies in animals exposed by inhalation or ingestion, no fetal toxicity was observed in the 

absence of maternal toxicity and morphological defects were not observed in offspring. However, oral 

doses that produced clear maternal toxicity increased fetal mortality, in some cases, complete litter loss.  

It is not known whether litter loss is the result of toxicity to the fetus or to the placenta. 

The following sections discuss significant effects resulting from exposure to carbon tetrachloride in 

greater detail: hepatic, renal, neurological, and cancer. 
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Hepatic Effects. Hepatotoxicity is the major effect of exposure to carbon tetrachloride by any route 

in humans and animals and is the basis for all MRLs derived for that compound.  Liver injury is 

detectable by clinical signs (jaundice, swollen and tender liver), biochemical alterations (elevated levels 

of hepatic enzymes in the blood, loss of enzymatic activities in the liver), or histological examination 

(fatty degeneration and necrosis of central hepatocytes, destruction of intracellular organelles, fibrosis, 

cirrhosis). Elevated levels of serum enzymes (alanine aminotransferase [ALT], aspartate aminotrans

ferase [AST], alkaline phosphatase, and gamma glutamyl transferase) may provide evidence of 

hepatocellular injury in the absence of clinical signs, as was observed in workers occupationally exposed 

at intermediate-to-chronic durations at levels between 1.1 and 12 ppm.  Degeneration or necrosis of the 

liver was noted in humans following acute inhalation exposure at 250 ppm or acute oral exposure at 

≥110 mg/kg.  In humans, acute lethal inhalation or oral exposures were associated with massive liver 

necrosis and steatosis. In rats, centrilobular vacuolization was observed at an acute oral dose of 

20 mg/kg/day, whereas necrosis was observed at 80 mg/kg/day.  Hepatic necrosis was also observed in 

guinea pigs following acute dermal exposure at 513 mg/cm2. In chronic studies, significant increases in 

fatty change, fibrosis, and cirrhosis were observed in rats at 25 ppm; in the same study, the major non

neoplastic hepatic lesion in mice was necrosis.  These species differences in hepatic effects may be 

related to the differential involvement of tumor necrosis factor alpha, which may facilitate necrosis, or 

transforming growth factor beta, which is an initiator of fibrosis. 

It is widely agreed that the reason for the special sensitivity of the liver to carbon tetrachloride toxicity is 

the inherently high rate of metabolism of carbon tetrachloride by this tissue, presumed to be associated 

with the high abundance of CYP2E1, particularly concentrated in the centrilobular zone.  This hypothesis 

was verified for mice in a study that administered 1,590 mg carbon tetrachloride/kg body weight by 

intraperitoneal injection to wild-type or CYP2E1 knockout mice (cyp2e1—/—). In wild-type mice 

expressing CYP2E1, hepatotoxicity characterized by elevated serum enzyme levels (ALT and AST) and 

histopathology (centrilobular parenchymal degeneration and perivenular vacuolation) was observed 

24 hours after treatment with carbon tetrachloride.  None of these hepatic lesions were observed in 

CYP2E1 knockout mice treated with the same dose.  In humans, CYP2E1 is also the primary enzyme 

responsible for metabolizing carbon tetrachloride at environmentally relevant concentrations, but others, 

particularly CYP3A, are also involved at higher concentrations.  The reactive metabolites (trichloro

methyl free radicals) generated by the oxidation of carbon tetrachloride are believed to trigger a spectrum 

of hepatocellular damage.  Mechanisms that appear to be involved include direct binding of reactive 

metabolites to cellular proteins, peroxidation of unsaturated membrane lipids, and alterations in 

intracellular calcium levels.  Release of proteolytic enzymes from dying cells has been shown to extend 
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the necrosis of hepatic tissue beyond the initial site exposed to carbon tetrachloride.  The outcome of any 

carbon tetrachloride-induced injury has been demonstrated to depend on several factors, including the 

induction of P-450 enzymes and the presence of antioxidants and interactions with other chemicals. 

Renal Effects.    Injury to the kidney is also observed in many reports of carbon tetrachloride toxicity in 

humans, often at the same exposure levels that cause hepatic injury.  The principal clinical signs in severe 

cases are oliguria or anuria, with resultant azotemia and edema, leading in turn to hypertension and 

pulmonary edema.  Cells of the proximal tubule are most clearly injured by carbon tetrachloride, probably 

because of high content of cytochrome P-450.  Renal injury is observed in animal studies, but usually at 

higher doses with lesser severity than in humans.  In oral exposure studies, the effect levels for kidney 

toxicity are generally higher than for hepatic toxicity.  Some intermediate-duration inhalation bioassays in 

rats reported the adverse effect level for the kidney to be the same as or higher than that for the liver.  In a 

2-year inhalation study in F344 rats, exposure to carbon tetrachloride at hepatotoxic levels increased the 

severity of chronic progressive nephropathy compared to the control group.   

There is some evidence that the susceptibility of the kidney to carbon tetrachloride may increase in 

elderly animals.  Both the liver and the kidney exhibit age-related reductions in CYP-450, which would 

result in relatively lower production of reactive metabolites following exposure, but findings have been 

qualitatively different in the two organs.  Reductions in CYP3A and CYP2E1 activity have been noted in 

the liver of elderly humans and rats.  In the rat kidney, however, one isoform of CYP3A was upregulated 

by 50% in old (25–26-month) rats, resulting in a net 11% increase (not statistically significant) in total 

CYP3A in the kidney, possibly contributing to increased renal vulnerability to carbon tetrachloride.  In 

addition to the possibility that the kidney in the elderly generates relatively more reactive metabolites 

following exposure, reductions in the organ content of antioxidants protecting against reactive metabolites 

may contribute to sensitivity.  Both the liver and the kidney exhibit age-related reductions in glutathione.  

One study in F344 rats (the same strain used in the chronic inhalation assay) reported a significant 

decrease in glutathione peroxidase activity in the kidney, but not the liver of 24-month-old rats compared 

to 6-month-old rats, consistent with a greater sensitivity in the kidney.  Although the findings outlined 

above are suggestive, no study has specifically demonstrated age-related changes in the renal metabolism 

of carbon tetrachloride. 

Neurological Effects.    The primary acute toxicological effect of unmetabolized carbon tetrachloride 

is depression of the central nervous system.  Acute-duration inhalation or oral exposures in humans have 

resulted in neurological effects such as headache, dizziness, and weakness, and, at higher exposures, 
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tremor, blurred vision, drowsiness, seizures, and loss of consciousness.  Immediate fatalities occur from 

suppression of respiratory centers.  Following ingestion of single doses, autopsy findings have included 

neurohistopathology in the cerebellum (demyelination and Purkinje cell damage with widespread 

hemorrhagic infarcts), but survivors appear not to have lasting cerebellar deficits.  Suppression of 

autonomic respiratory centers is also observed in animals exposed by inhalation.  Degeneration of the 

optic nerve has sometimes been noted in humans and repeated inhalation exposure studies in animals, 

sometimes at levels lower than those causing overt signs of central nervous system depression.  It is likely 

that the observed neurohistopathology may be related to the generation of reactive metabolites in the 

neural tissues of exposed animals. 

Cancer. There are a few reports of cancer in people who have been exposed to carbon tetrachloride, 

but these data alone are not sufficient to show that carbon tetrachloride causes cancer in humans.  

Suggestive data in humans comes from occupational case-control studies that found positive associations 

between exposure to carbon tetrachloride and mortality from several types of cancer (lymphosarcoma, 

lymphatic leukemia, non-Hodgkin’s lymphoma, or multiple myeloma).  There is convincing evidence that 

exposure to carbon tetrachloride leads to hepatic tumors in rodents exposed by inhalation or dosed orally. 

The lowest cancer effect levels were observed for mice:  25 ppm by inhalation and 20 mg/kg/day orally.   

Two kinds of processes appear to contribute to the carcinogenicity of carbon tetrachloride.  Genotoxicity, 

primarily covalent binding to DNA in the liver, results from the direct binding of reactive carbon 

tetrachloride metabolites or lipid peroxidation products in animals exposed orally or by intraperitoneal 

injection. High oral doses have resulted in DNA breakage, detectable by electrophoresis.  It is likely that 

DNA breakage following acute exposures at high levels may be secondary to liver necrosis that is 

characterized by the release of nucleases and other enzymes from lysosomes of degenerating hepatocytes.  

There is some evidence that carbon tetrachloride may also cause cancer by a nongenotoxic mechanism 

involving cellular regeneration.  Mild hepatic necrosis stimulates cell division processes; the resulting 

increase in cell proliferation could result in either the replication of unrepaired DNA damage or the 

induction of additional errors during the replication process, both of which can produce heritable 

mutations that may result in an initiated preneoplastic cell.  

The U.S. Department of Health and Human Services has determined that carbon tetrachloride may 

reasonably be anticipated to be a carcinogen.  IARC has classified carbon tetrachloride in Group 2B, 

possibly carcinogenic to humans.  EPA has determined that carbon tetrachloride is a probable human 
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carcinogen and derived an oral slope factor of 1.3x10-1 per (mg/kg/day).  EPA is currently revising the 

carcinogenicity assessment for carbon tetrachloride. 

2.3 MINIMAL RISK LEVELS 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made for carbon 

tetrachloride. An MRL is defined as an estimate of daily human exposure to a substance that is likely to 

be without an appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure.  

MRLs are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the 

most sensitive health effect(s) for a specific duration within a given route of exposure.  MRLs are based 

on noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis. As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 

The liver is the most sensitive target organ for carbon tetrachloride toxicity by the oral and inhalation 

routes. Adverse effects are also observed in the kidney, which is a significant target in humans acutely 

exposed at high levels and in animals following chronic inhalation exposure.  However, all derived MRLs 

for carbon tetrachloride are based on nonneoplastic hepatic effects, which occurred at lower exposure 

levels than effects in other target tissues in studies that quantified exposure.  All derived MRLs are based 

on rat studies since the observed nonneoplastic hepatic effects (fatty degeneration, necrosis, fibrosis, and 

cirrhosis) in this species are similar to the range of histopathology observed in exposed humans.  

Conversely, in exposed mice, the most significant nonneoplastic features of hepatic histopathology are 

fatty degeneration and necrosis, but not fibrosis or cirrhosis.  Thus, studies in rats would appear to be 

preferred as a basis for human health risk assessment for carbon tetrachloride.  The MRLs for carbon 

tetrachloride were based on the lowest available LOAELs or the associated NOAELs (if available) in 

well-designed studies. 
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Inhalation MRLs 

The database for acute-duration inhalation exposure to carbon tetrachloride includes a few studies in 

humans as well as studies in laboratory animals.  No neurological effects were observed in six volunteers 

exposed to 50 ppm carbon tetrachloride for 1–3 hours, but these individuals exhibited a decrease in serum 

iron levels that was not observed at 10 ppm (Stewart et al. 1961); the significance of serum iron to hepatic 

toxicity is not clear.  Single exposures of 200 ppm for ≤3 hours resulted in hepatic effects (increased 

serum bilirubin), renal effects (proteinuria), and gastrointestinal effects (nausea) (Barnes and Jones 1967; 

Norwood et al. 1950). Ethanol consumption increases the severity of carbon tetrachloride toxicity and 

confounds dose-response assessments from case reports.  Whereas two workers experienced only mild 

neurological effects (headache and dizziness) after 4 hours exposure at 250 ppm, a co-worker who was a 

heavy consumer of alcohol died from renal insufficiency six days after a 15-minute exposure (Norwood et 

al. 1950); severe effects in the fatal case were noted in the liver (necrosis), kidney (oliguria, nephrosis), 

and lung (edema secondary to kidney failure).  A NOAEL for hepatic effects was not observed in acute-

duration inhalation studies in animals.  Effects in rats included slight fatty degeneration of the liver at 

10 ppm, increasing in extent and severity at ≥25 ppm, cirrhosis at ≥200 ppm, and parenchymatous 

degeneration of renal tubules in female rats treated at 400 ppm following exposure 7 hours/day for 

13 days in a 17-day period (Adams et al. 1952).  Mild liver effects (altered glycogen distribution, 

hepatocytic steatosis, hydropic degeneration, and necrosis, and elevated serum alanine aminotransferase) 

were observed in rats exposed at 50 ppm for 6 hours/day for 4 days (David et al. 1981).  Hepatic effects 

(fatty degeneration and elevated serum sorbitol dehydrogenase) were also reported in rats exposed to 

100 ppm 8 hours/day, 5 days/week for 2 weeks (Paustenbach et al. 1986a).  Exposure for 15 minutes at 

180 ppm resulted in increased alanine aminotransferase and relative liver weight in rats (Sakata et al. 

1987).  Effects in other organ systems following acute-duration inhalation exposure of rodents include 

hematological effects (increased coagulation time) at 325 ppm (Vazquez et al. 1990), developmental 

effects (decreased fetal body weight and crown-rump length) at 330 ppm (Schwetz et al. 1974), and 

neurological effects (coma, inhibition of response to electrical stimulus) at 180–1,370 ppm (Frantik et al. 

1994; Sakata et al. 1987); dogs exposed to 15,000 ppm for 2–10 hours exhibited depression of the central 

nervous system (Von Oettingen et al. 1949).  No renal effects were observed in rats exposed once or 

repeatedly to 100 ppm (Adams et al. 1952; Paustenbach et al. 1986b).  Hepatotoxicity appears to be the 

critical effect of acute-duration inhalation exposure because it occurs at the lowest LOAELs in laboratory 

animals.  The Adams et al. (1952) study identified the lowest LOAEL of 10 ppm and highest NOAEL of 

5 ppm.  In this study, male or female Wistar rats (2–30 of one sex/group) were exposed to carbon 
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tetrachloride vapor at concentrations of 0, 5, 10, 25, 50, 100, 200, or 400 ppm, 7 hours/day, 5 days/week 

for 173–205 days of exposures.   

No MRL was established for acute-duration inhalation exposure to carbon tetrachloride because a 

derivation based on the most suitable data (the minimal LOAEL of 10 ppm in rats reported by Adams et 

al. 1952) would result in an acute-duration MRL lower than the intermediate-duration MRL.  The 

intermediate-duration inhalation MRL of 0.03 ppm, based on a NOAEL of 5 ppm and a LOAEL of 

10 ppm for liver effects (Adams et al. 1952), is expected to be protective for acute-duration inhalation 

exposure. 

•	 An MRL of 0.03 ppm has been derived for intermediate-duration inhalation exposure to carbon 
tetrachloride. 

Limited human data are available for intermediate-duration inhalation exposure to carbon tetrachloride. 

Effects in humans exposed intermittently included gastrointestinal effects (nausea, dyspepsia) at 20– 

50 ppm, depression at 40 ppm, and narcosis at 80 ppm (Elkins 1942; Heiman and Ford 1941; Kazantzis 

and Bomford 1960).  An occupational study of hepatic effects in workers exposed for <1–>5 years 

indicated that serum levels of hepatic enzymes were significantly elevated only at exposures >1 ppm, but 

the actual durations of exposure were not reported (Tomenson et al. 1995).  Interpretation of this study is 

also limited by the finding that the group estimated to have had the highest exposure did not show the 

highest levels of serum enzymes.  The liver appears to be the most sensitive target in animals exposed for 

intermediate durations.  Fatty degeneration, sometimes with increased liver weight, was observed at a 

LOAEL of 10 ppm in rats, mice, and guinea pigs treated 6–8 hours/day, 5 days/week for 12–36 weeks or 

continuously for 90 days (Adams et al. 1952; DOE 1999; Japan Bioassay Research Center 1998; 

Prendergast et al. 1967), and 50–100 ppm in monkeys (Adams et al. 1952; Smyth et al. 1936).  Increased 

serum enzymes and necrosis were observed in mice at 20 ppm and hamsters at 100 ppm (DOE 1999).  

Exposure to higher concentrations resulted in cirrhosis in guinea pigs (25 ppm) and rats (50–270 ppm) 

(Adams et al. 1952; Japan Bioassay Research Center 1998; Prendergast et al. 1967; Smyth et al. 1936).  

In studies examining other organs, renal effects (tubular degeneration) were noted at 50–200 ppm in rats 

(Adams et al. 1952; Smyth et al. 1936), at 90 ppm in rats and mice (Japan Bioassay Research Center 

1998), and at 200 ppm in monkeys (Smyth et al. 1936).  A neurological effect (injury to sciatic and 

optical nerves) was noted in rats at 50 ppm (Smyth et al. 1936).  Hematological effects (decreased 

erythrocytes, hemoglobin, hematocrit; hemolysis, increased spleen weight) were observed in rats and 

mice exposed to 90–270 ppm (Japan Bioassay Research Center 1998; Smyth et al. 1936).  Reproductive 

toxicity (decreased litters, testicular atrophy) was noted at 200 ppm (Adams et al. 1952; Smyth et al. 
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1936).  Hepatotoxicity is identified as the critical effect of intermediate-duration inhalation exposure to 

carbon tetrachloride since it was noted at the lowest LOAELs. 

The intermediate-duration inhalation MRL for carbon tetrachloride is based on a NOAEL of 5 ppm and a 

LOAEL of 10 ppm for liver effects in rats identified in a study by Adams et al. 1952.  In this study, 

Wistar rats (15/sex/group) were exposed to carbon tetrachloride vapor at concentrations of 0, 5, 10, 25, 

50, 100, 200, or 400 ppm, 7 hours/day, 5 days/week for periods between 173 and 205 days.  Fatty 

degeneration and increased liver weights were evident at concentrations of ≥10 ppm, cirrhosis occurred at 

≥50 ppm, and necrosis at ≥200 ppm.  Renal effects (cloudy swelling of the tubular epithelium) were first 

evident at ≥50 ppm, with increased kidney weights and degeneration of renal tubular epithelium evident 

at ≥200 ppm.  Testicular atrophy was observed at ≥200 ppm.  A human equivalent concentration of the 

identified rat NOAEL of 5 ppm (NOAELHEC) was calculated by multiplying the duration-adjusted rat 

NOAEL (NOAELADJ) by the ratio of the rat and human blood:gas partition coefficients.  The NOAELADJ 

is 0.9 ppm (5 ppm x 7 hours/24 hours x 5 days/7 days) and the blood:gas partition coefficient ratio is 

1.7 (4.52/2.64). Because the ratio was greater than 1, a default value of 1 was applied, resulting in a 

NOAELHEC of 0.9 ppm.  An uncertainty factor of 30 was applied to the NOAELHEC of 0.9 ppm (3 for 

extrapolation from animals to humans using a dosimetric adjustment and 10 for human variability). 

•	 An MRL of 0.03 ppm has been derived for chronic-duration inhalation exposure to carbon 
tetrachloride. 

The chronic-duration inhalation database for carbon tetrachloride includes the occupational study by 

Tomenson et al. (1995) and 2-year bioassays in rats and mice (Japan Bioassay Research Center 1998; 

Nagano et al. 1998). As discussed under the intermediate-duration MRL, elevated hepatic serum 

enzymes were observed in workers who had been exposed to concentrations >1 ppm for <1–5 years, but 

the actual durations of exposure were not reported (Tomenson et al. 1995).  Interpretation of this study is 

also limited by the finding that the group estimated to have had the highest exposure did not show the 

highest levels of serum enzymes.   

In the 2-year bioassays, groups of F344/DuCrj rats and BDF1 mice (50/sex) were treated at 0, 5, 25 or 125 

ppm, 6 hours/day, 5 days/week for 104 weeks (Japan Bioassay Research Center 1998; Nagano et al. 

1998). Male rats exhibited increased hemosiderin deposition in the spleen at 5 ppm and above, but this 

effect was the result of anemia that was observed at 13 weeks, but not 104 weeks.  For most observed 

effects, the lowest concentration of 5 ppm was a NOAEL and 25 ppm was a LOAEL:  hematological 
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(decreased hemoglobin, hematocrit in female rats and increased extramedullary splenic hematopoeisis in 

mice), body weight (reduced body weight gain), renal (altered clinical chemistry values in both species, 

chronic progressive glomerulonephrosis in rats, protein casts in mice), and hepatic (increased liver weight 

and serum enzymes in both species; fibrosis, cirrhosis, severe fatty change and granulation in rats; 

thrombus, necrosis, and, degeneration in mice).  Mice showed increased mortality from hepatic cancer at 

25 ppm, rats at 125 ppm.  The severity of proteinuria, but not renal histopathology, was elevated in male 

and female rats treated at ≥5 ppm compared to controls; this lesion was not used as the basis for MRL 

derivation because the severity in control rats was so high (>90% with scores of 3+ or 4+).  

Hepatotoxicity is selected as the critical effect of chronic-duration inhalation exposure because the 

severity of effects at 25 ppm was greater compared to other end points.  Furthermore, selection of 

hepatotoxicity as the critical effect of chronic exposure is consistent with the database for intermediate-

duration inhalation exposure.  

The chronic-duration inhalation bioassay in rats is selected as the principal study because it provided a 

NOAEL of 5 ppm and a LOAEL of 25 ppm for hepatic effects (increased serum enzyme levels, liver 

weight, and liver histopathology) without increased mortality (Japan Bioassay Research Center 1998; 

Nagano et al. 1998). The duration-adjusted rat NOAEL (NOAELADJ) for hepatic effects was multiplied 

by the ratio of the rat and human blood:gas partition coefficients to derive a human equivalent 

concentration of the identified chronic rat NOAEL of 5 ppm.  The NOAELADJ is 0.9 ppm (5 ppm x 

6 hours/24 hours x 5 days/7 days) and the blood:gas partition coefficient ratio is 1.7 (4.52/2.64).  Using 

standard procedures, a default value of 1 was applied because the ratio was greater than 1, resulting in a 

chronic-duration NOAELHEC of 0.9 ppm.  An uncertainty factor of 30 was applied to the NOAELHEC of 

0.9 ppm (3 for extrapolation from animals to humans using dosimetric adjustment and 10 for human 

variability), resulting in a chronic-duration inhalation MRL of 0.03 ppm.   

Oral MRLs 

•	 An MRL of 0.02 mg/kg/day has been derived for acute-duration oral exposure to carbon 

tetrachloride. 


Limited data in humans and several studies in laboratory animals are available for acute-duration oral 

exposure to carbon tetrachloride.  In humans, hepatic toxicity (fatty accumulation, necrosis) has been 

noted following ingestion of single doses of carbon tetrachloride in the range of 80–180 mg/kg (Docherty 

and Burgess 1922; Docherty and Nicholls 1923; Phelps and Hu 1924).  Single doses of 70 mg/kg had no 

overt neurological effect, but various neurological symptoms indicative of depression of the central 
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nervous system have been reported at doses between 114 and 10,800 mg/kg (Cohen 1957; Hall 1921; 

Leach 1922; Stevens and Forster 1953; Stewart et al. 1963).  Gastrointestinal effects in humans following 

ingestion of single doses include nausea at ≥100 mg/kg (Ruprah et al. 1985) and vomiting and abdominal 

pain at 680–910 mg/kg (Hardin 1954; New et al. 1962; Smetana 1939; Umiker and Pearce 1953; von 

Oettingen 1964). In laboratory animals, mild hepatic effects (cytoplasmic vacuolization and increased 

serum enzymes) have been reported to occur following treatment with single doses of 40–80 mg/kg or 

repeated dosing at 5–20 mg/kg/day (Bruckner et al. 1986; Kim et al. 1990b; Korsrud et al. 1972; 

Smialowicz et al. 1991).  No renal effects or positive results in special tests for immunological function 

were observed in rats following repeated administration at 5–160 mg/kg/day (Bruckner et al. 1986; 

Smialowicz et al. 1991).  Renal effects (fatty degeneration, swelling of convoluted tubules) were observed 

in dogs given single doses of 3,200–6,400 mg/kg (Chandler and Chopra 1926; Gardner et al. 1925).  

Hepatic toxicity is selected as the critical effect of acute-duration oral exposure to carbon tetrachloride 

because effects were observed at the lowest effect level.   

The study of Smialowicz et al. (1991) is selected as the principal study because it provides the lowest 

LOAEL for hepatotoxicity, the critical effect.  In this study, groups of 5–6 male Fischer rats were dosed 

by oral gavage with 0, 5, 10, 20, or 40 mg/kg/day for 10 consecutive days and evaluated for hepatic and 

renal toxicity (organ weight and serum parameters and histology) as well as some immunological end 

points. Another set of animals was exposed at 40, 80, or 160 mg/kg/day and evaluated for additional 

immunological parameters.  Liver toxicity was the most sensitive effect observed in this study and was 

dose related in severity.  Centrilobular vacuolar degeneration was barely detectable in all six animals of 

the 5 mg/kg/day group, whereas no liver effects were observed in any of the six controls.  Hepatocellular 

necrosis was first evident at 10 mg/kg/day.  At higher doses, serum levels of ALT and AST became 

significantly elevated (p<0.01–0.05) (20 and 40 mg/kg/day), as did relative liver weight (40 mg/kg/day). 

No renal effects were observed at the highest dose of 40 mg/kg/day and no immunological effects were 

observed at doses as high as 160 mg/kg/day.  The LOAEL of 5 mg/kg/day is considered to be minimal 

because the type and degree of hepatic histopathology was relatively mild. A total uncertainty factor of 

300 was applied to the minimal LOAEL of 5 mg/kg/day (3 for the use of a minimal LOAEL, 10 for 

extrapolation between animals to humans, and 10 for human variability). 

•	 An MRL of 0.007 mg/kg/day has been derived for intermediate-duration oral exposure to carbon 
tetrachloride. 

The intermediate-duration oral toxicity database for carbon tetrachloride is somewhat limited in that no 

human data are available and many studies in laboratory animals restricted analysis to the liver.  The 
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incidence and severity of hepatic effects were dose-related in animal studies.  A NOAEL of 1 mg/kg and 

a LOAEL of 10 mg/kg was identified for significantly elevated sorbitol dehydrogenase (SDH) and mild 

centrilobular vacuolization in rats exposed 5 days/week for 12 weeks (Bruckner et al. 1986); at 33 mg/kg, 

ALT and ornithine carbamyl transferase activities were increased and cirrhosis was observed.  In mice 

ingesting carbon tetrachloride 5 days/week for 12–13 weeks, no hepatic effects were detected at a dose of 

1.2 mg/kg (Condie et al. 1986).  Significant elevation in some serum enzymes (ALT, aspartate 

aminotransferase [AST], lactate dehydrogenase [LDH]), and mild necrosis were seen in mice at doses of 

12 mg/kg and higher (Condie et al. 1986; Hayes et al. 1986).  More extensive hepatic lesions (fatty 

accumulation, fibrosis, cirrhosis, necrosis) were noted in rats at doses of 20–25 mg/kg and higher (Allis et 

al. 1990; Koporec et al. 1995).  At 100 mg/kg/day, hepatic effects in rats also included cytomegaly and 

various types of hyperplasia, which were perhaps adaptive responses to necrosis (Koporec et al. 1995).  

Effects in other organ systems include reduced body weight gain at doses between 33 and 100 mg/kg/day 

(Bruckner et al. 1986; Koporec et al. 1995) and neurological effects (increased serotonin synthesis) at 

290 mg/kg/day (Bengtsson et al. 1987). No renal effects were observed in rats exposed at 33 mg/kg/day 

(Bruckner et al. 1986) or mice exposed at 1,200 mg/kg/day (Hayes et al. 1986).  Increased mortality was 

observed in rats exposed at 25 mg/kg/day (Koporec et al. 1995).  Cancer (hepatoma) was observed in 

mice treated with 20 mg/kg/day for 120 days and hamsters treated once weekly with 120 mg/kg/day for 

30 weeks (Eschenbrenner and Miller 1946; Della Porta et al. 1961).  Hepatotoxicity was selected as the 

critical effect of intermediate-duration oral exposure to carbon tetrachloride because it occurred at the 

lowest effect level.   

The rat study of Bruckner was selected as the principal study because it provided the lowest LOAEL for 

the critical effect. In this study, male Sprague-Dawley rats (15–16 per group) were administered 0, 1, 10, 

or 33 mg/kg carbon tetrachloride by gavage in corn oil 5 days/week for 12 weeks.  Blood samples were 

taken at biweekly intervals throughout the study for analysis of serum parameters related to liver and 

kidney toxicity and both organs were examined for histopathology at termination.  Slightly elevated blood 

levels of sorbitol dehydrogenase and mild centrilobular vacuolation of the liver were observed at 

10 mg/kg, but not at 1 mg/kg.  Cirrhosis, extensive degenerative hepatic lesions, and significantly 

elevated serum enzyme levels (ornithine carbamyl transferase and alanine aminotransferase) were 

observed at the high dose of 33 mg/kg.  No renal effects were observed at any dose.  The NOAEL of 

1 mg/kg was adjusted for intermittent exposure (5 days/7 days) and divided by a total uncertainty factor 

of 100 (10 for extrapolation between animals to humans and 10 for human variability). 



26 CARBON TETRACHLORIDE 

2. RELEVANCE TO PUBLIC HEALTH 

No data were located on the effects of chronic-duration oral exposure in humans.  Carbon tetrachloride 

was employed as a positive control for hepatic cancer in several chronic oral gavage bioassays in rats and 

mice exposed 5 days/week for 78 weeks (NCI 1976a, 1976b, 1977); serious effects were observed at the 

lowest tested doses.  Exposure at ≥47 mg/kg reduced survival by 46% in rats because of severe 

hepatotoxicity.  Portal cirrhosis, bile duct proliferation, and fatty accumulation were observed in more 

than 55% of treated rats. In the same study, survival in mice treated at doses of ≥1,250 mg/kg was 

reduced by ≥80% compared to controls on account of hepatic carcinogenicity.  Since a no-effect level was 

not identified and ATSDR does not base MRLs on doses at which serious effects occur, a chronic-

duration oral MRL was not derived for carbon tetrachloride. 
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3.1 INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of carbon 

tetrachloride. It contains descriptions and evaluations of toxicological studies and epidemiological 

investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic 

data to public health. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE  

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, 

developmental, genotoxic, and carcinogenic effects).  These data are discussed in terms of three exposure 

periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects.  "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 



28 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

"less serious" and "serious" effects.  The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 

the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health. 

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed. Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of carbon 

tetrachloride are indicated in Tables 3-1 and 3-2 and Figures 3-1 and 3-2.  Because cancer effects could 

occur at lower exposure levels, Figure 3-2 also shows a range for the upper bound of estimated excess 

risks, ranging from a risk of 1 in 10,000 to 1 in 10,000,000 (10-4 to 10-7), as developed by EPA. 

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

3.2.1 Inhalation Exposure 

The highest NOAEL values and all LOAEL values from each reliable study for death, and respiratory, 

cardiovascular, gastrointestinal, hematological, hepatic, renal, dermal, body weight, neurological, 

reproductive, and developmental effects in each species and duration category are recorded in Table 3-1 

and plotted in Figure 3-1. 

3.2.1.1 Death 

In the past, when industrial and household use of carbon tetrachloride was still common, inhalation 

exposure to carbon tetrachloride resulted in a considerable number of deaths in humans (e.g., Forbes  
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation 

a
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Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

ACUTE EXPOSURE 
Death 
1 Human 15 min M 250 (1 alcoholic male died) Norwood et al. 1950 

2 Rat 8-10 hr 3000 (1/50) Adams et al. 1952 

3 Mouse 8 hr 9500 (LC50) Svirbey et al. 1947 

Systemic 
4 Human Up to 

3 hr Hepatic M 200 (increased serum 
bilirubin) 

Barnes and Jones 1967 

Renal M 200 (proteinuria) 

5 Human 15 min Resp M 250 (edema) Norwood et al. 1950 

Gastro M 250 (nausea) 

Hepatic M 250 (severe central necrosis) 

Renal M 250 (oliguria, nephrosis) 

6 Human 70-180 min Cardio M 50 Stewart et al. 1961 

Gastro M 50 

Hepatic M 10 M 50 (decreased serum iron) 

Dermal M 50 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

7 Rat 7 hr Hepatic M 50 M 100 (fatty degeneration) Adams et al. 1952 

Renal M 100 

8 Rat 5-20 d 
7 hr/d 
5d/wk 

Hepatic M 10 (fatty degeneration in 18 
M treated 13 times over 
17 d) 

Adams et al. 1952 

9 Rat 1d-15 wk 
2d/wk 
4hr/d 

Hepatic M 4800 (necrosis, fibrosis, 
cirrhosis, mitogenic and 
anti-mitogenic activities) 

Belyaev et al. 1992 

10 Rat 4 d 
6hr/d Hepatic M 50 (steatosis, hydropic 

degeneration, necrosis, 
2x increased alanine 

David et al 1981 

aminotransferase) 

11 Rat 2 wk 
5d/wk 
8hr/d 
or 

Hepatic 100 (Fatty degeneration, 
increased serum sorbitol 
dehydrogenase) 

Paustenbach et al. 1986b 

11.5hr/d 

Renal 100 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation	 (continued) 

Exposure/ LOAEL

Duration/


Frequency
 NOAEL Less Serious	 Serious Reference 
(Route) 

System (ppm) (ppm)	 (ppm) Chemical Form 

15 min Hepatic 180	 (increases 19x in alanine Sakata et al. 1987 
aminotransferase and 
23% in relative liver 
weight) 

6-10 min/d 
8 d Hemato 325	 (increased coagulation Vazquez et al. 1990 

time) 

15 min 250 (dizziness)	 Norwood et al. 1950 

70-180 min 50	 Stewart et al. 1961 

4 hr M 611 (30% inhibition of Frantik et al. 1994 
response to electrical 
stimulus) 

15 min 180 (coma) Sakata et al. 1987 

2 hr F 1370	 (30% inhibition of Frantik et al. 1994 
response to electrical 
stimulus) 

a
Key to Species 
Figure (Strain) 

12	 Rat 

13	 Rat 

Neurological 
14 Human 

15	 Human 

16	 Rat 
(albino) 

17	 Rat 

18	 Mouse 
(H) 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

Exposure/ LOAEL

Duration/


a

Key to Species Frequency NOAEL Less Serious Serious Reference 
Figure (Strain) (Route) 

System (ppm) (ppm) (ppm) Chemical Form 

19 Dog 2-10 hr 15000 (depression of central Von Oettingen et al. 1949 
nervous system) 

Developmental 
20 Rat 9 d 

Gd 6-15 
7hr/d 

330 (decreased fetal body 
weight and crown to 
rump length) 

Schwetz et al. 1974 

INTERMEDIATE EXPOSURE 
Death 
21 Monkey 6 wk 

5d/wk 80 (1/3) Prendergast et al. 1967 

8hr/d 

22 Rat 173-205 d 
5d/wk 200 (9/15 male, 6/15 female) Adams et al. 1952 

7hr/d 

23 Gn Pig 180-260d 
5d/wk 100 (7/8 males, 4/8 females) Adams et al. 1952 

7hr/d 

24 Gn Pig 6 wk 
5d/wk 80 (3/15) Prendergast et al. 1967 

8hr/d 

25 Gn Pig 90 d 
cont. 10 (3/15) Prendergast et al. 1967 

Systemic 
26 Human 8 hr/d 

intermit. Gastro 20 (nausea) Elkins 1942 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to Species Frequency NOAEL Less Serious Serious 
Figure (Strain) (Route) 

System (ppm) (ppm) (ppm) 

27 Human	 2 mo 
8hr/d Gastro 50 (dyspepsia, nausea)

5d/wk


28 Monkey	 232-277d Resp5d/wk 100 
7hr/d 

Cardio 100


Gastro 100


Hemato 100


Musc/skel 100


Hepatic 50 100 (slight fatty degeneration)


Renal 100


29 Monkey	 10.5 mo 
8hr/d Cardio 200


5d/wk


Hemato 200 

Hepatic 50	 (fatty degeneration) 

Renal 200	 (cloudy swelling of cells

in convoluted tubules and

loop of Henle)


30 Rat	 12 wk 
(Fischer- 344) 6 hr/d Hepatic M 20 M 100 (increased serum ALT,


5 d/wk SDH; hepatic necrosis)


Reference 
Chemical Form 

Kazantzis and Bomford 1960 

Adams et al. 1952 

Smyth et al. 1936 

DOE 1999 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

31 Rat 173-205 d 
5d/wk 
7hr/d 

Resp 200 Adams et al. 1952 

Cardio 200 

Hemato 200 

Hepatic 
b 
5 10 (hepatic fatty 

degeneration and incr 
liver wt) 

50 (cirrhosis) 

Renal 100 200 (degeneration of tubular 
epithelium, elevated 
blood urea nitrogen, and 
increased organ weight) 

32 Rat 
(Fischer- 344) 

13 wk 
6 hr/d 
5 d/wk 

Hemato 30 90 (decreased hemoglobin 
and hematocrit; 
increased spleen wt in F) 

Japan Bioassay Research 
Center 1998 

Hepatic 10 (granulation, fatty 
change; increased liver 
wt) 

270 (fibrosis, cirrhosis; incr 
liver wt, 
serum enzyme incr) 

Renal M 10 (increased kidney weight) 270 (protein casts in M and 
vacuolization of tubules 
in F) 

Bd Wt M 270 M 810 (decreased bd wt) 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to Species Frequency NOAEL Less Serious 
Figure (Strain) (Route) 

System (ppm) (ppm) 

33 Rat 6 wk 
5d/wk Resp 80


8hr/d


Cardio 80


Hemato 80


Hepatic


Renal 80 

34 Rat 90 d Resp 10cont. 

Cardio 10


Hemato 10


Hepatic 1 10 (fatty degeneration)


Renal 10


35 Rat 10.5 mo 
8hr/d Cardio 400


5d/wk


Hemato 50 100	 (hemolysis) 

Hepatic 50 

Renal 50	 (swelling of cells in the

convoluted tubules and

loop of Henle)


Serious Reference


(ppm) Chemical Form


Prendergast et al. 1967 

80	 (fatty infiltration,

cirrhosis)


Prendergast et al. 1967 

Smyth et al. 1936 

100 (cirrhosis) 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

36 Mouse 
(B6C3F1) 

12 wk 
6 hr/d 
5 d/wk 

Hepatic M 5 M 20 (increased serum ALT, 
SDH; necrosis) 

DOE 1999 

37 Mouse 1d-15 wk 
2d/wk 
4hr/d 

Hepatic 4800 (necrosis, fibrosis, 
cirrhosis, mitogenic and 
anti-mitogenic activities) 

Belyaev et al. 1992 

38 Mouse 
BDF1 

13 wk 
6 hr/d 
5 d/wk 

Hemato F 90 F 270 (decr erythrocyte and 
hemoglobin) 

Japan Bioassay Research 
Center 1998 

Hepatic F 10 M 10 (cytological alterations) 30 (hepatic collapse; 
proliferative ducts in F) 

Bd Wt M 10 M 30 

39 Gn Pig 4-9 mo 
5d/wk 
7hr/d 

Hepatic 5 10 (fatty degeneration) 25 (cirrhosis) Adams et al. 1952 

40 Gn Pig 90 d 
cont. Resp 10 Prendergast et al. 1967 

Cardio 10 

Hemato 10 

Hepatic 1 10 (fatty degeneration) 

Renal 10 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

41 Hamster 
(Golden 
Syrian) 

12 wk 
6 hr/d 
5 d/wk 

Hepatic M 20 M 100 (increased serum ALT 
and SDH; necrosis) 

DOE 1999 

Neurological 
42 Human >3 mo 

8hr/d 
5d/wk 

80 (narcosis) Heimann and Ford 1941 

43 Human 2 mo 
8hr/d 
5d/wk 

40 (depression) Kazantzis and Bomford 1960 

44 Monkey 232-277d 
5d/wk 
7hr/d 

100 Adams et al. 1952 

45 Rat 10.5 mo 
8hr/d 
5d/wk 

50 (sciatic and optic nerve 
injury) 

Smyth et al. 1936 

Reproductive 
46 Rat 10.5 mo 

8hr/d 
5d/wk 

100 200 (decreased litters) Smyth et al. 1936 

CHRONIC EXPOSURE 
Death 
47 Rat 

(Fischer- 344) 
104 wk 
6 hr/d 
5 d/wk 

125 (survival decreased by 
86% in M and 97% in F) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

48 Mouse 
(BDF1) 

104 wk 
6 hr/d 
5 d/wk 

25 (survival decreased by 
29% in M and 61% in F) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 

Systemic 
49 Rat 

(Fischer- 344) 
104 wk 
6 hr/d 
5 d/wk 

Hemato F 5 F 25 (decreased hemoglobin, 
hematocrit) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 

Hepatic 
c 
5 25 (increased liver wt, 

fibrosis, cirrhosis and 
deposition of ceroid; 
increased severity of fatty 
change and granulation) 

Renal 5 25 (incr marked chronic 
nephropathy) 

Bd Wt 5 25 (decreased bd wt gain) 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

50 Mouse 
(BDF1) 

104 wk 
6 hr/d 
5 d/wk 

Hemato 5 25 (increased 
extramedullary 
hematopoeisis in spleen) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 

Hepatic 5 F 25 (thrombus, necrosis) 

25 (increased liver wt, 
degeneration, cyst, 
deposit of ceroid, serum 
enzymes, cholesterol, 
bilirubin) 

Renal M 5 25 (decreased pH and 
ketone bodies; 
protein casts, M; 
increased occult 
blood and urobilinogen, 
F) 

Bd Wt 25 (marked decreased bd wt 
gain) 
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Table 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

Cancer 
51 Rat 

(Fischer- 344) 
104 wk 
6 hr/d 
5 d/wk 

125 (CEL: hepatocellular 
adenoma in 21/50 M and 
40/50 F; hepatocellular 
carcinoma in 32/50 M 
and 15/50 F) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 

52 Mouse 
(BDF1) 

104 wk 
6 hr/d 
5 d/wk 

M 25 (CEL: adrenal 
pheochromocytoma in 
16/50 males) 

Japan Bioassay Res. Ctr. 
1998; Nagano et al. 1998 

F 125 (CEL: adrenal 
pheochromocytoma in 
22/49 females) 

25 (CEL: hepatocellular 
adenoma in 27/50 males 
and 17/50 females; 
hepatocellular carcinoma 
in 42/50 males and 33/50 
females. 

a The number corresponds to entries in Figure 3-1. 

b Used to derive an intermediate-duration inhalation MRL of 0.03 ppm; the NOAEL was adjusted for intermittent exposure (7 hours/24 hours x 5 days/7 days).  The duration-adjusted 
NOAEL of 0.9 ppm would be multiplied by the ratio of the rat and human blood:air partition coefficients (4.52/2.64) under EPA (1994) guidelines.  However, as the ratio was greater 
than one, a default value of one was applied, resulting in a NOAEL-HEC of 0.9 ppm. The NOAEL-HEC was divided by an uncertainty factor of 30 (3 for extrapolation between 
animals and humans using a dosimetric adjustment and 10 for human variability). 

c Used to derive a chronic-duration inhalation MRL of 0.03 ppm; the NOAEL was was adjusted for intermittent exposure (6 hours/24 hours x 5 days/7 days).  The duration-adjusted 
NOAEL of 0.9 ppm would be multiplied by the ratio of the rat and human blood:air partition coefficients (4.52/2.64) under EPA (1994) guidelines.  However, as the ratio was greater 
than one, a default value of one was applied, resulting in a NOAEL-HEC of 0.9 ppm. The NOAEL-HEC was divided by an uncertainty factor of 30 (3 for extrapolation between 
animals and humans using a dosimetric adjustment and 10 for human variability). 

d Differences in levels of health effects and cancer effects between male and females are not indicated in Figure 3-1. Where such differences exist, only the levels of effect for the 
most sensitive gender are presented. 

Cardio = cardiovascular; CEL = cancer effect level; cont. = continuous; d = day(s); Derm = dermal; F = female; Gastro = gastrointestinal; gd = gestation day; Gn pig = guinea pig; 
Hemato = hematological; hr = hour(s); incr = increased; intermit. = intermittent; LC50 = lethal concentration, 50% kill; LOAEL = Lowest-observed-adverse-effect level; M = male; min 
= minute(s); mo = month(s); musc/skel = musculoskeletal; NOAEL = no=observed-adverse-effect-level; ppm = parts per million; Resp = respiratory; wk = week(s). 
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Figure 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation 
Acute (≤14 days) 
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Figure 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (Continued) 
Intermediate (15-364 days) 
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Figure 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (Continued) 
Intermediate (15-364 days) 
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Figure 3-1 Levels of Significant Exposure to Carbon Tetrachloride - Inhalation (Continued) 
Chronic (≥365 days) 
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1944; Norwood et al. 1950; Umiker and Pearce 1953).  However, quantitative estimates of the exposure 

levels that caused death are rare; furthermore, cleaning usages often involved concurrent dermal 

exposure. In one case involving inhalation of carbon tetrachloride by an alcoholic, the lethal exposure 

level was estimated at only 250 ppm for 15 minutes (Norwood et al. 1950).  Other workers 

(nonalcoholics) were exposed at the same level for 4 hours with no significant clinical signs other than 

slight headache (Norwood et al. 1950). One of three naval officers who weekly misused a carbon 

tetrachloride fire-extinguishing fluid as a dry cleaning agent over 3 months died of heart failure that was 

secondary to nephrosis-induced pulmonary edema (Forbes 1944); the man who died was a heavy 

consumer of alcohol. The relative exposure by inhalation or through the skin was not known, but about 

3 kg carbon tetrachloride was used during 3 months. 

Lethal inhalation exposure levels in animals depend on exposure duration and species.  In mice, the 

estimated LC50 for an 8-hour exposure is 9,500 ppm, with no deaths in 20 animals exposed to 6,300 ppm 

(Svirbely et al. 1947).  In rats, exposure to 7,300 ppm caused no deaths after 1.5 hours, about 50% 

mortality by 4–6 hours, and 100% mortality by 8 hours (Adams et al. 1952).  Exposure to 3,000 ppm for 

8–10 hours caused death in 1 of 50 animals.  Repeated exposure to 200 ppm 7 hours/day led to increased 

mortality in rats after approximately 190 days (Adams et al. 1952). 

All LOAEL values from each reliable study for death in each species and duration category are recorded 

in Table 3-1 and plotted in Figure 3-1. 

3.2.1.2 Systemic Effects  

No studies were located regarding musculoskeletal or endocrine effects in humans or animals after 

inhalation exposure to carbon tetrachloride.  Studies have been conducted in both humans and animals to 

evaluate the respiratory, cardiovascular, hematological, hepatic, and renal effects of inhalation exposure 

to carbon tetrachloride.  Gastrointestinal and dermal/ocular effects have been studied in humans but not in 

animals.  These effects are discussed below.  The highest NOAEL values and all LOAEL values from 

each reliable study for systemic effects in each species and duration category are recorded in Table 3-1 

and plotted in Figure 3-1. 

Respiratory Effects.    Pulmonary edema is a common finding in humans exposed to lethal levels of 

carbon tetrachloride in air.  Thirteen fatal cases were reported following acute inhalation exposure in 

humans; exposure concentrations were not determined.  Marked hemorrhagic congestion and edema were 
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observed in the lungs of all the victims who had been exposed for 1–6 hours (Umiker and Pearce 1953).  

However, these effects typically did not develop in lung until 8 days after exposure, and appeared to be 

secondary to severe renal injury rather than to a direct action of carbon tetrachloride on the lung.  Lung 

appearance in the carbon tetrachloride victims was found comparable with that in cases of rapidly 

developing uremia occasioned by various causes of renal failure.  Thus, the progressive uremia, 

electrolyte retention, and extracellular fluid build-up that accompanies renal failure is a likely principal 

cause of the observed pulmonary edema.  In one fatal case, pulmonary edema secondary to renal 

malfunction developed following combined inhalation/dermal exposure over 3 months (Forbes 1944). 

Lung injury is usually not as prominent an effect in animals exposed to carbon tetrachloride vapors as it is 

in humans.  For example, lung injury was not observed in rats exposed to concentrations of 3,000– 

19,000 ppm for 7 hours, or in rats and monkeys exposed to 100 ppm for 7 hours/day, 5 days/week for 

205 and 232 days, respectively (Adams et al. 1952).  As it appears that lung injury is secondary to renal 

injury, then the absence of lung effects in animals may be because animals are also less susceptible to the 

renal injury produced by carbon tetrachloride than are humans. 

Cardiovascular Effects.    Most studies of humans exposed to carbon tetrachloride by inhalation have 

not detected significant evidence of cardiovascular injury, even at exposure levels sufficient to markedly 

injure the liver and/or kidney.  Changes in blood pressure, heart rate, or right-sided cardiac dilation have 

sometimes, but not always, been observed (Ashe and Sailer 1942; Guild et al. 1958; Kittleson and Borden 

1956; Stewart et al. 1961; Umiker and Pearce 1953), and are probably secondary either to fluid and 

electrolyte retention resulting from renal toxicity, or to central nervous system effects on the heart or 

blood vessels.  Failure of the left side of the heart was the proximate cause of death in one naval officer 

who had a combined inhalation/dermal exposure over 3 months (Forbes 1944).  The heart effect was 

secondary to the pulmonary edema that had developed from renal toxicity.  Carbon tetrachloride also may 

have the potential to induce cardiac arrhythmias by sensitizing the heart to epinephrine, as has been 

reported for various halogenated hydrocarbon propellants (Reinhardt et al. 1971). 

Similarly, except for what are likely secondary effects following acute lethal exposures, significant 

cardiovascular injury has not accompanied hepato- or nephrotoxic inhalation exposure to carbon 

tetrachloride in a variety of experimental animals (Adams et al. 1952; Prendergast et al. 1967; Smyth 

et al. 1936; von Oettingen et al. 1949). 
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Gastrointestinal Effects.    One of the most common signs of exposure of humans to carbon 

tetrachloride is dyspepsia, with nausea, vomiting, and gastrointestinal pain (Forbes 1944; Stewart and 

Witts 1944). This is often one of the first clinical signs to become apparent following acute exposure 

(Guild et al. 1958; Norwood et al. 1950), but is also common in persons exposed for months to several 

years to concentrations as low as approximately 20 ppm (Elkins 1942; Smyth et al. 1936).  Exposure 

levels of approximately 50 ppm do not cause significant dyspepsia if exposure is brief (Stewart 

et al. 1961), but may lead to nausea if exposure extends for several days (Kazantzis and Bomford 1960). 

Because inhalation exposure is unlikely to be directly irritating to the gastrointestinal tract, it is probable 

that these effects are secondary to effects on the autonomic nervous system (Stewart and Witts 1944). 

Hematological Effects.    Significant effects on the hematological system are not usually observed in 

humans exposed to carbon tetrachloride by inhalation (Heimann and Ford 1941; Norwood et al. 1950; 

Smyth et al. 1936).  In some cases, moderate elevations in white cell counts are observed, perhaps in 

response to necrosis in the liver or kidneys.  In a few cases, mild anemia is observed (Gray 1947), and 

may occasionally become severe (Straus 1954).  A cross-sectional study of hepatic function in workers 

exposed <1–>5 years to carbon tetrachloride reported small (2.5–3.6%), statistically significant reductions 

in some hematological parameters compared to non-exposed workers, but without a dose response 

(Tomenson et al. 1995).  At the low (<1 ppm) or medium (1–3 ppm) exposure levels, there were 

decreases in packed cell volume and in hemoglobin and erythrocyte count for the medium exposure 

group; no significant changes from controls were noted in the high exposure group (>4 ppm). The 

mechanism underlying anemia is not known, but it might be secondary to internal hemorrhaging as a 

result of decreased synthesis of clotting factors by the liver or a direct effect on bone marrow cells (Guild 

et al. 1958; Stevens and Forster 1953; Straus 1954).  Since lipid peroxidation caused by carbon 

tetrachloride also affects calcium sequestration, clotting functions, which are regulated by calcium 

sequestration would be expected to be impaired, resulting in a tendency for internal hemorrhaging. 

Similar observations have been obtained in inhalation studies in animals.  Prothrombin time increased and 

there was lengthened activated partial thromboplastin time in rats exposed 22–40 times to 325 ppm 

carbon tetrachloride for 10 minutes/day, 5 days/week, indicating defective coagulation in both the 

extrinsic and intrinsic clotting pathways (Vazquez et al. 1990).  No significant effects on hematology 

were detected in rats, monkeys, or guinea pigs exposed to concentrations of 10–200 ppm, 7 hours/day for 

periods of time up to 170 days (Adams et al. 1952; Prendergast et al. 1967).  Rats exposed for 10 months 

to 100 ppm suffered some destruction of red blood cells, but this did not result in anemia (Smyth et al. 

1936). No evidence of red blood cell hemolysis was observed at 50 ppm.  Decreased hemoglobin and 
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hematocrit levels and increased spleen weight) at ≥90 ppm and reduced erythrocyte counts at 810 ppm 

were observed in male and female rats intermittently exposed to carbon tetrachloride vapor for 13 weeks 

(Japan Bioassay Research Center 1998); in similarly exposed mice at  ≥270 ppm, reduced erythrocyte and 

hemoglobin counts were observed in females, and at 810 ppm, there were reductions in hematocrit in 

females and in hemoglobin counts in males.  Significant reductions in hemoglobin and hematocrit values 

were observed in female rats exposed to ≥25 ppm carbon tetrachloride vapor for 6 hours/day, 5 days/week 

for 2 years (Japan Bioassay Research Center 1998). Splenic changes related to erythrocyte destruction 

included increased hemosiderin deposition in male rats at ≥5 ppm, a consequence of erythrocyte 

destruction observed in the 13-week studies, and increased extramedullary hematopoeisis in male and 

female mice at ≥25 ppm.  

Hepatic Effects.    Carbon tetrachloride has been known for many years to be a powerful hepatotoxic 

agent in humans and animals.  The principal clinical signs of liver injury in humans who inhale carbon 

tetrachloride are swollen and tender liver, elevated levels of hepatic enzyme (aspartate aminotransferase) 

in the serum, elevated serum bilirubin levels and the appearance of jaundice, and decreased serum levels 

of proteins such as albumin and fibrinogen (Ashe and Sailer 1942; McGuire 1932; New et al. 1962; 

Norwood et al. 1950; Straus 1954).  In cases of lethal acute or repeated exposures, autopsy generally 

reveals marked liver necrosis with pronounced steatosis (Forbes 1944; Jennings 1955; Markham 1967; 

Smetana 1939), and repeated or chronic exposure leads in some cases to fibrosis and/or cirrhosis 

(McDermott and Hardy 1963). 

Quantitative information on the inhalation exposure levels that cause significant hepatic injury in humans 

is sparse. Liver necrosis was reported in one fatal case involving an alcoholic who was exposed to 

250 ppm carbon tetrachloride for 15 minutes (Norwood et al. 1950).  Humans exposed to concentrations 

of 50 ppm for 70 minutes or 10 ppm for 3 hours showed no measurable change in serum enzyme levels or 

urinary urobilinogen levels (Stewart et al. 1961).  A slight decrease in serum iron levels occurred in two 

of four subjects exposed to 50 ppm for 1 hour, suggesting to the authors that minimal liver injury had 

occurred. However, all values were within or close to the normal range of serum iron concentrations, and 

there were no control subjects.  Consequently, it is difficult to judge if the variations observed were 

treatment-related and whether they were of biological significance.  No hepatic effects were observed in 

humans exposed to average concentrations of 80 ppm for 8 hours/day, 5 days/week for 3 months 

(Heimann and Ford 1941). 
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Occasional and slight elevations of serum bilirubin levels were seen in workers exposed for 8 hours/day 

for several months to many years to carbon tetrachloride concentrations ranging from 10 to 100 ppm, but 

no other clinical signs of injury were detected (Smyth et al. 1936). Similarly, workers exposed for up to 

3 hours/day to carbon tetrachloride concentrations averaging about 200 ppm displayed small increases in 

serum enzyme levels and serum bilirubin levels, indicative of minimal liver damage (Barnes and Jones 

1967). More recently, chronic occupational exposure of 35 male workers to <1 ppm (8 hours/day) of 

chlorinated solvents, primarily carbon tetrachloride and perchlorethylene, was not correlated with any 

significant changes in standard indicators of liver function (e.g., serum levels of protein, albumin, 

bilirubin, alanine and aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transpeptidase, and 

cholesterol) (Driscoll et al. 1992).  However, when workers were segregated as to having relatively higher 

or lower exposure, higher exposure was correlated with significantly (p<0.03–0.05) lower fasting serum 

levels of three bile acids (chenodeoxycholate, taurocholate, and total deoxycholate).  This effect was in 

the opposite direction to what might be expected based upon oral animal data and upon serum bile acid 

increases reported by the same authors for a companion worker population exposed to hexachloro

butadiene or trichloroethylene.  Thus, these results should be viewed with caution, especially in view of 

the low exposure level to carbon tetrachloride and the variable concurrent exposure to several other 

solvents. 

A cross sectional study of hepatic function (serum enzyme levels) was conducted on 135 workers 

occupationally exposed to carbon tetrachloride and 276 nonexposed controls who were employed in three 

plants in northern England (Tomenson et al. 1995). Workers were categorized according to their duration 

of employment (<1 year, 1–5 years, and >5 years), but the serum enzyme results were not presented by 

estimated duration of exposure because statistical analysis showed that duration of exposure had no 

significant effect. Exposures were estimated from historical personal monitoring data for each job 

category, and exposure groups were categorized as low (≤1 ppm), medium (1.1–3.9 ppm), or high (≥4.0– 

11.9 ppm).  Alcohol consumption was equivalent among groups.  A comparison of exposed workers and 

nonexposed controls found no significant difference in blood levels of alkaline phosphatase or gamma 

glutamyl transferase; however, when the exposed group was subdivided by level of exposure, these values 

were significantly elevated in the medium exposure group.  None of the exposed subjects had hepatic 

disease that could be attributed to exposure to carbon tetrachloride. 

In animals, the hepatic effects of inhalation exposure to carbon tetrachloride are much the same as in 

humans: elevated serum enzyme levels, steatosis, and centrilobular necrosis progressing to fibrosis.  

Statistically significant doubling of serum levels of mitochondrial glutamate dehydrogenase and sorbitol 
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dehydrogenase was observed in rats 24 hours after a 4-hour exposure at 530 ppm and of ALT and AST at 

1,460 ppm (Brondeau et al. 1983).  Following 4-hour exposure at 500–2,500 ppm, fasted rats showed a 

2.0–2.5-fold higher level of serum enzymes indicative of hepatic injury than fed rats (Jaeger et al. 1975); 

the increases in serum enzyme levels were similar in fed and fasted rats at 5,000 ppm.  In rats, hypoxia 

(10–12% oxygen) increased the severity of hepatic injury (serum enzyme levels) compared to normal air 

(21% oxygen) conditions during 2–3 hour exposures to carbon tetrachloride vapor (Shen et al. 1982; 

Siegers et al. 1985).  In rats, exposure to concentrations of 10–100 ppm, 6–7 hours/day for approximately 

2 weeks generally results in mild to moderate signs of liver injury (fatty degeneration), both after short-

term (roughly 2 weeks) (Adams et al. 1952; David et al. 1981; Paustenbach et al. 1986a, 1986b).  Four 

days of exposure at 50 ppm caused elevated serum alanine aminotransferase, altered hepatic glycogen 

distribution (preferential accumulation in the central and pericentral zones, rather than the uniform 

distribution observed in controls), steatosis, hydropic degeneration, and necrosis (David et al. 1981). 

Short-term exposure (15 minutes/day, 2 days/week for 8 weeks) caused fibrosis in rats exposed to 

180 ppm (Sakata et al. 1987).  A 4-hour exposure to 4,800 ppm or higher induced centrilobular necrosis 

within 24 hours (Belyaev et al. 1992; Magos et al. 1982).  In rats exposed for 2 hours, there were 

significant reductions in hepatic CYP-450 levels at ≥100 ppm and significantly elevated serum enzymes 

(SDH 16-fold and ALT 2-fold) at 1,000 ppm (Sanzgiri et al. 1995); the results indicate an alteration of 

hepatic cell function at 100 ppm, but leakage from hepatocytes at 1,000 ppm.  With continued biweekly 

exposures at 4,800 ppm for 4 hours/day, necrotic areas were largely replaced by hepatocellular 

proliferation after 2–3 weeks, and then fibrosis and eventually cirrhosis (Belyaev et al. 1992).  Cirrhosis 

along with fatty degeneration was observed in rats exposed at 200 or 400 ppm (7 hours/day, 5 days/week 

for 2 weeks) (Adams et al. 1952).   No acute MRL was established for inhalation exposure to carbon 

tetrachloride because the value calculated from the most acceptable data would be the same as or lower 

than the intermediate-duration MRL (see Section 2.3).  The intermediate-duration inhalation MRL is 

expected to be protective for acute-duration inhalation exposures. 

The pattern of hepatic injury following intermediate-duration exposure to carbon tetrachloride is similar 

to that seen in acute studies.  Mild to moderate liver effects (increased liver weight, fatty degeneration) 

were observed following intermittent exposure (6–7 hours/day, 5 days/week) at 10 ppm  for 12 weeks to 

6 months (Adams et al. 1952; Bogers et al. 1987; DOE 1999; Japan Bioassay Research Center 1998; 

Smyth et al. 1936).  Similar effects were observed in rats exposed continuously at 10 ppm for 6 weeks 

(Prendergast et al. 1967). In 12–13-week studies, increased serum enzyme levels (AST and SDH) and 

necrotic injury is apparent in mice intermittently exposed at 20 ppm (DOE 1999) and in rats exposed at 

90 ppm or higher (Belyaev et al. 1992; Japan Bioassay Research Center 1998).  Hepatic regeneration and 
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proliferation were evident within 2–3 weeks of treatment at 4,800 ppm (Belyaev et al. 1992).  Fibrosis 

and cirrhosis developed in rats following intermittent (6–7 hours/day, 5 days/week) exposure at 50 ppm 

for 6 months (Adams et al. 1952) or at ≥90 ppm for 12–15 weeks (Belyaev et al. 1992; DOE 1999; Japan 

Bioassay Research Center 1998).  Although hepatic histopathology was similar in rats and mice exposed 

for 13 weeks, only rats developed fibrosis and cirrhosis and only mice developed collapse of the liver 

(Japan Bioassay Research Center 1998).  Guinea pigs appear to be somewhat more sensitive to carbon 

tetrachloride inhalation than rats (Prendergast et al. 1967; Smyth et al. 1936), and monkeys appear to be 

somewhat less sensitive than guinea pigs and rats (Adams et al. 1952; Prendergast et al. 1967). Another 

study found mice to be more susceptible to hepatic damage (necrosis) than rats or hamsters (DOE 1999).  

The basis of these species differences is likely related to differences in hepatic metabolism (see 

Section 3.4.3).  Exposure to concentrations of 1–5 ppm, 6–7 hours/day, 5 days/week for periods up to 

6 months or 1 ppm continuously for 6 weeks have not been observed to cause any significant changes in 

liver of rats, monkeys, or guinea pigs (Adams et al. 1952; Prendergast et al. 1967).  The NOAEL of 

5 ppm (Adams et al. 1952) was selected as the basis for an intermediate-duration MRL for inhalation 

exposure to carbon tetrachloride, as described in the footnote in Table 3-1. 

Plummer et al. (1990) conducted experiments that suggest that the hepatotoxicity of carbon tetrachloride 

administered by inhalation is proportional to the concentration x time product (Haber's rule).  Rats 

exposed for 4 weeks at equivalent time-weighted average concentrations—either continuously 

(24 hours/day, 7 days/week except for two 1.5-hour breaks 2 days/week) at 16 ppm or discontinuously 

(6 hours/day, 5 days/week) at 87 ppm—showed identical severity of liver histopathology. 

In 2-year inhalation bioassays, concentration-related hepatic effects were observed in rats and in mice 

following intermittent exposure (6 hours/day, 5 days/week) to carbon tetrachloride vapor (Japan Bioassay 

Research Center 1998; Nagano et al. 1998).  Alterations in some serum hepatic biomarkers were not 

statistically significant in rats exposed at 5 ppm.  Statistically significant increases in liver weight and 

serum parameters (ALT, AST, LDH, leucine aminopeptidase and gamma-glutamyl transferase, total 

bilirubin) were observed at ≥25 ppm in rats and mice.  Hepatic lesions at ≥25 ppm included basophilic, 

eosinophilic, clear and mixed cell foci, deposition of ceroid, fibrosis and cirrhosis, and increased severity 

of fatty change and granulation.  In the parallel assay in mice, statistically significant decreases in some 

serum parameters at 5 ppm were not considered by the authors to be biologically significant because the 

control values for serum chemistry parameters in males were unusually high compared to available 

historical control values. Hepatic degeneration, thrombus, and deposition of ceroid were evident in both 

sexes, and hepatic necrosis was found in female mice treated at ≥25 ppm.  The NOAEL of 5 ppm for 
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hepatic effects in rats (Japan Bioassay Research Center 1998) was selected as the basis for a chronic-

duration inhalation MRL for carbon tetrachloride, as described in a footnote in Table 3-1.   

Renal Effects.    Nephritis and nephrosis are very common effects in humans following inhalation 

exposure to carbon tetrachloride (Jennings 1955; McGuire 1932; Norwood et al. 1950).  The most 

obvious clinical signs, developing within hours to days after exposure, are oliguria or anuria with 

resulting edema. In some cases, this leads to generalized uremia, and is frequently accompanied by 

proteinuria, hemoglobinuria, and glucosuria (Forbes 1944; Guild et al. 1958; New et al. 1962; Smetana 

1939; Umiker and Pearce 1953).  In fatal cases, histological examination generally reveals relatively mild 

degeneration of the kidney (Ashe and Sailer 1942; Forbes 1944; Gray 1947; Jennings 1955; Norwood 

et al. 1950). The mechanism of the injury to the kidney is not known, but Sirota (1949) reported that 

back-diffusion of glomerular filtrate was important in the early stages of oliguria and decreased renal 

blood flow contributed in the later stages of oliguria following carbon tetrachloride inhalation in humans. 

The exposure levels leading to renal damage in humans have not been well defined.  An increased 

incidence of proteinuria was reported in workers exposed to vapor concentrations of around 200 ppm 

(Barnes and Jones 1967), while no change was observed in urinary properties following inhalation 

exposure to 50 ppm for 70 minutes or 10 ppm for 3 hours (Stewart et al. 1961). 

Threshold concentrations for renal injury in animals exposed by inhalation to carbon tetrachloride are 

sometimes higher than those for hepatic effects.  Animals appear to be less sensitive to renal injury than 

humans, possibly because of species differences in carbon tetrachloride metabolism by the kidney.  No 

evidence of kidney damage was observed in rats, cats, monkeys, or guinea pigs exposed for 6– 

8 hours/day to concentrations of 10–200 ppm for periods of time from 1 to 90 days (Adams et al. 1952; 

Bogers et al. 1987; Prendergast et al. 1967).  In a 13-week study, 10 ppm produced increased absolute and 

relative kidney weights in male rats; organ weight effects and vacuolization were observed in females at 

90 ppm and hyaline degeneration of the glomerulus at 810 ppm (Japan Bioassay Research Center 1998). 

No renal effects were noted in similarly exposed mice. Slight renal swelling was noted in rats exposed to 

50 ppm for 5–10.5 months for 7–8 hours/day, 5 days/week, and in monkeys exposed to 200 ppm for 

10.5 months for 7–8 hours/day, 5 days/week (Adams et al. 1952; Smyth et al. 1936).  Renal tubular 

degeneration was apparent following exposure at 200 ppm for 7 hours/day, 5 days/week for 6 months 

(Adams et al. 1952).   
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Chronic exposure (6 hours/day, 5 days/week for 2 years) to carbon tetrachloride vapor caused renal 

effects in rodents, with rats being more sensitive than mice (Japan Bioassay Research Center 1998).  The 

most sensitive renal effect in rats was a dose-related enhancement of proteinuria (scores of 4+), having a 

significantly (p≤0.01) higher severity in males and females treated at 5 or 25 ppm (too few animals 

survived at 125 ppm for statistical analysis) compared to controls; however, as the severity in controls 

was so high (>90% of rats with scores of  3+ or 4+), the statistical difference is not biologically 

significant and this end point was not used as the basis for the chronic-duration inhalation MRL.  Blood 

urea nitrogen levels and the severity and incidence of chronic progressive nephropathy were elevated at 

>25 ppm in both sexes.  In the parallel study in mice, protein casts in the kidney were observed in male 

and female mice exposed at ≥25 ppm.   

Dermal Effects.    Very few reports mention any effect of carbon tetrachloride inhalation on the skin.  

Inhalation exposure to carbon tetrachloride for several days in the workplace caused a blotchy, macular 

rash in one man (but not in six others) (McGuire 1932).  Similarly, a hemorrhagic rash occurred in a 

woman exposed to carbon tetrachloride vapors for several days in the workplace (Gordon 1944), and 

black and blue marks were seen in a patient exposed intermittently to carbon tetrachloride vapors for 

several years (Straus 1954).  Because observations of dermal effects are so sporadic, it is difficult to judge 

whether these effects are related to carbon tetrachloride exposure, or are incidental.  Conceivably, they 

may have been secondary to reduced synthesis of blood coagulation factors resulting from carbon 

tetrachloride-induced hepatotoxicity.  No animal studies evaluated dermal effects following inhalation 

exposure. 

Ocular Effects.    Ocular effects following inhalation exposure to carbon tetrachloride are discussed 

under neurological effects. 

Body Weight Effects.    No human and very few animal reports mention the effect of carbon 

tetrachloride inhalation on body weight gain.  In rodents intermittently exposed to carbon tetrachloride 

vapor for 6 hours/day, 5 days/week for 13 weeks, body weight gain was significantly reduced by 20% in 

male rats exposed at 810 ppm and by 8–15% in male mice exposed at ≥30 ppm, but not significantly in 

female rats or mice exposed at concentrations as high as 810 ppm (Japan Bioassay Research Center 

1998). In the companion 2-year study, terminal body weights were depressed by 11% in male and female 

rats exposed at 25 ppm and by 22–45% at 125 ppm (Japan Bioassay Research Center 1998; Nagano et al. 

1998); survival at 125 ppm was too low to determine statistical significance.  In mice exposed at 25 ppm 
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for 2 years, body weight gain at termination showed a >30% reduction in males and a >20% reduction in 

females relative to controls (only single male and female mice survived in the 125 ppm groups). 

3.2.1.3 Immunological and Lymphoreticular Effects  

No studies were located regarding immunological effects in humans or animals after inhalation exposure 

to carbon tetrachloride. 

3.2.1.4 Neurological Effects 

Like many volatile halocarbons and other hydrocarbons, inhalation of carbon tetrachloride leads to rapid 

depression of the central nervous system.  Because of its central nervous system depressant properties, 

carbon tetrachloride was used briefly as an anesthetic in humans, but its use was discontinued because it 

was less efficacious and more toxic than other anesthetics available (Hardin 1954; Stevens and 

Forster 1953).  Depending on exposure levels, common signs of central nervous system effects include 

headache, giddiness, weakness, lethargy, and stupor (Cohen 1957; Stevens and Forster 1953; Stewart and 

Witts 1944). Effects on vision (restricted peripheral vision, amblyopia) have been observed in some cases 

(e.g., Forbes 1944; Johnstone 1948; Smyth et al. 1936; Wirtschafter 1933), but not in others (e.g., Stewart 

and Witts 1944). Sudden severe epileptiform seizure and coma occurred in a subsequently fatal case 

following weekly combined inhalation/dermal exposure over a period of 3 months (Forbes 1944). In 

several fatal cases, microscopic examination of brain tissue taken at autopsy revealed focal areas of fatty 

degeneration and necrosis, usually associated with congestion of cerebral blood vessels (Ashe and Sailer 

1942; Cohen 1957; Stevens and Forster 1953). 

Exposure levels leading to effects on the central nervous systems of humans are not precisely defined.  No 

symptoms of lightheadedness or nausea were experienced by humans exposed to 50 ppm for 70 minutes 

or 10 ppm for 3 hours (Stewart et al. 1961), but nausea, headache, and giddiness were found to be 

common symptoms in workers exposed to carbon tetrachloride for 8 hours/day at concentrations of 20– 

125 ppm (Elkins 1942; Heimann and Ford 1941; Kazantzis and Bomford 1960). Dizziness has also been 

reported in humans following short-term exposure (15 minutes) at a higher concentration (250 ppm) 

(Norwood et al. 1950).  This suggests that the threshold for central nervous system effects in humans is, 

as a conservative estimate, probably in the range of 20–50 ppm for an 8-hour workday. 
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Central nervous system depression is also observed in animals exposed to carbon tetrachloride vapors.  

Rats reportedly became inactive within 15 minutes after exposure to a concentration of 180 ppm (Sakata 

et al. 1987), although when compared with other studies, this concentration appears too low to be capable 

of inducing such an effect.  Drowsiness or stupor occurred in rats exposed for 0.1–8.0 hours to 

4,600 ppm, with ataxia and unconsciousness at 12,000 ppm, and death (from respiratory failure) at 

19,000 ppm (Adams et al. 1952).  Similarly, dogs exposed for 2–10 hours to 15,000 ppm experienced 

profound depression of the autonomic system, as evidenced by decreases in respiration, reflex activity, 

body temperature, heart rate, and blood pressure (the latter due to marked vasodilation) (von Oettingen 

et al. 1949). Exposure of rats, monkeys, or guinea pigs to concentrations of carbon tetrachloride up to 

400 ppm, 8 hours/day, 5 days/week for over 10 months did not cause any observable effects on activity, 

alertness, or appetite, indicating that this level did not cause obvious central nervous system depression in 

animals (Smyth et al. 1936).  However, histological examination of sciatic and optic nerves revealed 

degenerative changes in a number of animals exposed to 200–400 ppm, and in a few animals (rats) after 

exposure to levels as low as 50 ppm under the same exposure schedule.  The changes were apparently not 

severe enough to impair movement or vision.  Exposure to ≥5 ppm carbon tetrachloride vapor for 

6 hours/day, 5 days/week for 2 years resulted in decreased absolute brain weights in male, but not female, 

rats, however, this effect was attributed to the overall depression in body weight, since brain weights 

relative to body weight were increased (Japan Bioassay Research Center 1998).  Furthermore, no 

histopathology was detected in the brain in either sex at any concentration.  

The highest NOAEL values and all LOAEL values for each reliable study for neurotoxicity in each 

species and duration category are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.5 Reproductive Effects  

No studies were located regarding reproductive effects in humans after inhalation exposure to carbon 

tetrachloride. 

In rats that inhaled carbon tetrachloride vapors for three generations, there was a decrease in fertility in 

animals exposed to concentrations of 200 ppm or higher for 8 hours/day, 5 days/week for 10.5 months 

(Smyth et al. 1936).  Since both sexes were exposed, it was not possible to determine if this was due to 

effects on males, females, or both.  Moderate to marked degeneration of testicular germinal epithelium 

has been seen in rats exposed repeatedly (7 hours/day, 5 days/week) to 200 ppm or higher for 192 days 

(Adams et al. 1952).   
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Deposition of ceroid was observed in the ovaries of mice that were exposed to 125 ppm of carbon 

tetrachloride vapor, 6 hours/day, 5 days/week for 2 years (Japan Bioassay Research Center 1998). 

At 25 ppm, absolute and relative testicular weights were elevated in male mice. 

All LOAEL values for each reliable study for reproductive effects in each species and duration category 

are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.6 Developmental Effects 

No studies were located on developmental effects in humans after known inhalation exposure to carbon 

tetrachloride. A questionnaire-based study of 3,418 pregnant women in West Germany found no 

association between probable occupational exposure to carbon tetrachloride (as estimated from a job 

exposure matrix) and the birth of infants who were small for their gestational age (Seidler et al. 1999).   

In rats, inhalation exposure to 330 or 1,000 ppm for 7 hours/day on gestational days 6–15 caused reduced 

feed intake by dams, maternal weight loss, and clear maternal hepatotoxicity (elevated serum ALT, 

relative liver weight), but no effect on conception, number of implants, or number of resorptions (Schwetz 

et al. 1974). There were no gross anomalies, but dose-related statistically significant reductions in fetal 

body weight and crown-rump length were observed.  The incidence of delayed ossification of sternebrae 

was significantly increased at 1,000 ppm.  The lowest exposure level in this study is a LOAEL for both 

maternal and fetal toxicity. 

All LOAEL values for each reliable study for developmental toxicity in each species and duration 

category are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.7 Cancer 

Two case reports of liver cancer in humans suggested that previous exposure to carbon tetrachloride 

vapors might have contributed to the development of the cancer (Tracey and Sherlock 1968; 

Johnstone 1948).  In the first case, a 66-year-old male died of hepatocellular carcinoma 7 years after acute 

intoxication with carbon tetrachloride sufficient to cause jaundice as well as vomiting and diarrhea 

(Tracey and Sherlock 1968).  As the tumor was too extensive to make a diagnosis of cirrhosis, the report 
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could not rule out the man’s history of moderate alcohol consumption as contributory .  In the second 

case, a 30-year-old female died of "liver cancer" after 2–3 years of occupational exposure to carbon 

tetrachloride that was sufficient to produce signs of central nervous system depression.  The evidence of 

these studies is much too weak to establish a cause-and-effect relationship between exposure to carbon 

tetrachloride and hepatic cancer in humans. 

A number of epidemiological studies have been conducted to evaluate the association of risk of increased 

mortality from particular types of cancer and occupational exposure to carbon tetrachloride.  Both 

positive and negative associations have been reported, varying with the target organ.  IARC (1999) has 

noted that few of these studies had definitive evidence of exposure to carbon tetrachloride—generally, 

few positive cases were identified among exposed individuals—and that extensive exposure to other 

possible carcinogenic chemicals could not be excluded, and in fact, was likely.  Thus, the positive 

associations discussed below are considered suggestive, but are not conclusive.   

An analysis of cancer mortality and solvent exposure among a cohort of 6,678 active and retired male 

workers in the rubber industry found a significant association between age-adjusted exposure to carbon 

tetrachloride and lymphosarcoma (odds ratio [OR] 4.2, p<0.05; based on six cases) and lymphatic 

leukemia (OR 15.3, p<0.001; based on eight exposed cases) (Checkoway et al. 1984; Wilcosky et al. 

1984).  A retrospective cohort mortality study of 14,457 workers employed at an aircraft maintenance 

facility for at least 1 year during 1952–1956 included 6,737 workers who had ever been exposed to 

carbon tetrachloride (Blair et al. 1998; Spirtas et al. 1991).  In the first study, standard mortality ratios 

(SMRs) for selected causes of death were calculated for workers exposed to solvents compared to the 

Utah death rates (Spirtas et al. 1991).  A statistically significant association was found in women for 

deaths from non-Hodgkin's lymphoma and exposure to carbon tetrachloride (SMR 325, 95% confidence 

interval [CI] 119–708); excess SMRs in men for non-Hodgkin's lymphoma and in both sexes for multiple 

myeloma following carbon tetrachloride exposure were not statistically significant.  In the follow-up 

study, a Poisson regression analysis was performed on cancer incidence data to evaluate the risk from 

exposure to carbon tetrachloride (Blair et al. 1998).  Among men and women, the relative risk (RR) of 

mortality from non-Hodgkin's lymphoma or non-Hodgkin's lymphoma following exposure to carbon 

tetrachloride was not significantly increased.  A study of causes of death in a cohort of 5,365 workers 

exposed to dry-cleaning solvents in St. Louis, Missouri, found statistically significant excesses in deaths 

from all cancers, esophageal cancer, and cervical cancer compared to the general U.S. population (Blair et 

al. 1990).  The risk of esophageal cancer showed a statistically significant association with estimated 

cumulative exposure to dry cleaning solvents (SMR = 2.8 for the highest cumulative exposure group), but 
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not with level or duration of exposure.  The most heavily exposed workers showed a 4-fold increased risk 

for cancers of the lymphatic and hematopoietic system, but the number of deaths (five) was small. 

No positive association was found between likely occupational exposure to carbon tetrachloride and the 

risk of increased mortality from pancreatic cancer among residents of 24 states (Kernan et al. 1999), 

astrocytic brain tumors in workers in the petrochemical industry in three states (Heineman et al. 1994), 

rectal cancer in Montreal (Dumas et al. 2000), renal carcinoma in Minnesota (Dosemici et al. 1999), lung 

cancer among men working in a chemical plant in Texas (Bond et al. 1986), or respiratory system tumors 

in workers in the rubber industry (Checkoway et al. 1984; Wilcosky et al. 1984).  No significantly 

elevated risk of cancer was detected in a cohort of 4,772 Finnish laboratory workers who were exposed to 

chemicals including carbon tetrachloride, but the duration of exposure was too short (<16 years) to detect 

cancers with longer latency periods (Kauppinen et al. 2003).  A case-control study estimating the 

occupational exposures to some industrial chemicals among women in 24 states found a weak association 

between probable high-intensity exposure to carbon tetrachloride and  an increased risk (OR ratio 1.21, 

95% CI: 1.1–1.3) of breast cancer in Caucasian women (Cantor et al. 1995).  However, a retrospective 

cohort study of workers in an aircraft maintenance facility found no association in woman for exposure to 

carbon tetrachloride and increased mortality from breast cancer (Blair et al. 1998).    

Chronic exposure to carbon tetrachloride vapor induced tumors in rats and mice (Japan Bioassay 

Research Center 1998; Nagano et al. 1998).  Following intermittent exposure for 2 years (6 hours/day, 

5 days/week), significant increases in the incidences of hepatocellular adenoma and carcinoma were 

observed in male and female rats exposed at 125 ppm (22.3 ppm, duration adjusted) and in mice exposed 

at ≥25 ppm (4.5 ppm, duration adjusted).  Adrenal pheochromocytomas were also induced in male mice 

exposed at ≥25 ppm and female mice at 125 ppm. 

The carcinogenicity of carbon tetrachloride is currently undergoing reassessment by the EPA under the 

IRIS program, with the final report scheduled for 2006.  As chronic inhalation data were not available for 

the earlier assessment, the EPA extrapolated oral dose-response data on liver tumor risk to yield estimates 

of the carcinogenic risk from inhalation exposure to carbon tetrachloride (EPA 1984).  Based on the 

assumption that a 70-kg person breathes 20 m3/day of air and that 40% of inhaled carbon tetrachloride is 

absorbed, the calculated upper-bound unit risk (the upper 95% confidence limit on the excess cancer risk 

associated with lifetime exposure to carbon tetrachloride at a concentration of 1 µg/m3) is 1.5x10-5. Based 

on this, the concentration of carbon tetrachloride in air corresponding to excess cancer risk levels of 10-4, 
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10-5, 10-6, and 10-7 are 0.001, 0.0001, 0.00001, and 0.000001 ppm, respectively. Because these are upper-

bound estimates, the true risk could be lower.  These values are displayed in Figure 3-1. 

3.2.2 Oral Exposure  

The highest NOAEL values and all LOAEL values from each reliable study for death and respiratory, 

cardiovascular, gastrointestinal, hematolgical, musculoskeletal, hepatic, renal, immunological/ 

lymphoreticular, neurological, reproductive, developmental, and cancer effects in each species and 

duration category are recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.1 Death 

Ingestion of concentrated solutions of carbon tetrachloride can cause death in humans within hours to 

days.  The principal clinical signs observed in fatal cases include gastrointestinal irritation, central 

nervous system depression, and cardiovascular disturbances, with death usually resulting from severe 

injury to kidney and/or liver (Guild et al. 1958; reviewed in von Oettingen 1964). 

There is considerable variation in the doses that have been found to cause lethality, with alcohol ingestion 

leading to markedly increased risk.  Twelve fatalities were reported following oral exposure (Umiker and 

Pearce 1953). In most cases, about 50–150 mL had been ingested, but one case involved only 5.3 mL 

(about 121 mg/kg).  A review of some of the earlier literature found that ingestion of 14–20 mL (320– 

450 mg/kg) was fatal in the majority of cases (von Oettingen 1964).  In other cases, ingestion of 2.5– 

15 mL (60–340 mg/kg) as a treatment for hookworm produced death in only a very small number of 

people out of hundreds of thousands treated, although doses as low as 1.5 mL (40 mg/kg) caused death in 

a few cases (Lamson et al. 1928).  Two fatal cases have been reported in humans dosed with 

approximately 70 mg/kg (Phelps and Hu 1924). 

A single dose oral LD50 value of approximately 13,000 mg/kg was reported for mice, and 14 daily doses 

of 625 mg/kg were lethal for 6 of 20 exposed male mice (Hayes et al. 1986).  In rats fed carbon 

tetrachloride in stock diets or protein-free diets, LD50 values of 10,200 or 23,400 mg/kg, respectively were 

reported (McLean and McLean 1966). The authors attributed the difference in sensitivity in animals in 

this study to protein depletion, which has reportedly afforded protection against carbon tetrachloride 

toxicity.  This may result from protein depletion-induced reduction in cytochrome P-450 synthesis, with a  
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral 

a
Key to 
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Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

ACUTE EXPOSURE 
Death 
1 Human Once 

(C) 
40 (lowest quantifiable dose 

producing death out of 
6 cases) 

Lamson et al. 1928 

2 Human Once 70 (death in 2/2) Phelps and Hu 1924 

3 Human Once M 120 (lowest quantifiable dose 
producing death out of 12 
cases) 

Umiker and Pearce 1953 

4 Rat Once 
(G) 

10200 (LD50) McLean and McLean 1966 

5 Rat 
(Sprague-
Dawley) 

Once 
(G) 

7500 (LD50) Pound et al. 1973 

6 Rat 
(Sprague-
Dawley) 

1 d 
1-2x/d 
(GO) 

8000 (death in 17/20) Thakore and Mehendale 1991 

7 Mouse Once 
(G) 

13000 (LD50) Hayes et al. 1986 

8 Mouse 14 d 
(G) 

M 625 (death in 6/20 males) Hayes et al. 1986 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

9 Cat Once 
(G) 

400 (death in 25/36) Chandler and Chopra 1926 

Systemic 
10 Human Once Cardio 2500 (sinus bradycardia and 

arrhythmia, 
auricoventricular nodal 

Conaway and Hoven 1946 

rhythm, auricular 
fibrillation) 

Renal 2500 (increased blood urea 
nitrogen) 

11 Human Once 
(W) 

Hepatic 110 (degeneration of 
hepatocytes) 

Docherty and Burgess 1922 

Renal 180 (swelling of proximal 
convoluted tubules) 

12 Human Once 
(W) 

Hepatic 90 (slight fatty inflitration) Docherty and Nicholls 1923 

Renal 90 

13 Human Once Renal 2700 (acute tubular necrosis, 
increased blood urea 

Guild et al. 1958 

nitrogen, anuria, 
proteinuria) 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

14 Human Once Hepatic 670 (severe necrosis; fatty 
deposits) 

MacMahon and Weiss 1929 

Renal 670 (mild proteinuria, 
elevated blood urea 
nitrogen; kidneys 
swollen, fatty 
degeneration) 

15 Human Once Gastro 100 (nausea) Ruprah et al. 1985 

16 Human 1-6 d Resp 120 (substantial hemorrhagic 
edema of the lung) 

Umiker and Pearce 1953 

17 Rat 
(Fischer- 344) 

8-10 d 
1x/d 
(GO) 

Hepatic 280 (centrilobular necrosis, 
increased alkaline 
phosphatase and 
5-nucleotidase) 

Blair et al. 1991 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

18 Rat 
(Sprague-
Dawley) 

Once 
(G) 

Hepatic M 40 M 80 (slight vacuolization of 
some centrilobular 
hepatocytes) 

M 160 (increased centrilobular 
vacuolization with 
significant necrosis, 
substantially elevated 
ornithine carbamyl 
transferase, sorbitol 

Bruckner et al. 1986 

deydrogenase and 
alanine aminotranferase) 

Renal M 160 

19 Rat 
(Sprague-
Dawley) 

11 d 
9 doses 
(G) 

Hepatic M 20 (limited centrilobular 
vacuolization, moderately 
elevated sorbitol 
deydrogenase, alanine 
aminotranferase, 
ornithine carbamyl 
transferase) 

M 80 (increased centrilobular 
vacuolization with some 
limited necrosis, greatly 
elevated ornithine 
carbamyl transferase, 
sorbitol deydrogenase, 
alanine aminotranferase) 

Bruckner et al. 1986 

Renal M 160 

20 Rat 
(Sprague-
Dawley) 

Once 
(GW) 

Hepatic 10 (increased alanine 
aminotransferase, 
sorbitol dehydrogenase, 
ornithine carbamyl 
transferase; hepatic 
centrilobular 

Kim et al 1990b 

vacuolization) 

21 Rat Once 
(F) 

Hepatic M 20 (cytoplasmic 
vacuolization of 

Korsrud et al. 1972 

hepatocytes) 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

22 Rat Once 
(G) 

Hepatic M 80 (decreased P-450) M 1600 (centrilobular necrosis) Matsubara et al. 1983 

23 Rat 
(Fischer- 344) 

10 d 
1x/d 
(GO) 

Hepatic 
b 

M 5 (slight vacuolation) Smialowicz et al. 1991 

Renal M 40 

24 Rat 
(Fischer- 344) 

once 
(GW) 

Hepatic M 80 (necrosis; increased 
serum 

Steup et al. 1993 

alanine aminotransferase, 
sorbitol dehydrogenase) 

25 Rat 
(Sprague-
Dawley) 

Once 
(G) 

Renal M 4000 (mitochondrial swelling in 
cells of proximal tubules) 

Striker et al. 1968 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

26 Rat 
(Sprague-
Dawley) 

1 d 
1-2x/d 
(GO) 

Hepatic M 480 (necrosis, vacuolation; 
elevated serum levels of 
aspartate transaminase, 
alanine transaminase, 

Thakore and Mehendale 1991 

sorbitol dehydrogenase, 
decreased liver 
microsomal cytochrome 
P-450, aminopyrine 
demethylase, aniline 
hydroxylase) 

27 Rat Once 
(GO) 

Hepatic 800 1600 

3200 

(elevated urinary taurine) 

(lipid vacuoles, 96 hours 
post-treatment) 

3200 (48 hours post-treatment: 
necrosis lipid 
vacuolation, 
inflammation, elevated 

Waterfield et al. 1991 

serum taurine, elevated 
serum alanine and 
aspartate 
amino-transferases, 
reduced liver taurine) 

28 Mouse Once 
(G) 

Hepatic 10 40 (necrosis) Eschenbrenner and Miller 1946 

29 Mouse 
(B6C3F1) 

14 d 
1x/d 
(GO) 

Hepatic F 50 (increased relative organ 
weight and SGPT) 

Guo et al. 2000 

Bd Wt F 1000 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

30 Mouse 
(CD-1) 

14 d 
(G) 

Hemato 625 (decreased fibrinogen 
and lymphocyte levels) 

Hayes et al. 1986 

Hepatic 625 (increased liver weight, 
elevated lactate 
dehydrogenase, alanine 
aminotransferase, 
aspartate 
aminotransferase) 

Renal 2500 

31 Dog Once 
(G) 

Hepatic 3200 (centrilobular necrosis) Chandler and Chopra 1926 

Renal 3200 (fatty degeneration) 

32 Dog Once 
(G) 

Hepatic 160 400 (centrilobular necrosis) Gardner et al. 1925 

Renal 6400 (fatty accumulation in 
cortical tubules) 

Immuno/ Lymphoret 
33 Rat 10 d 

1x/d 160 Smialowicz et al. 1991 

(GO) 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

34 Mouse 
(BALB/c) 

7 d 
1x/d 
(GO) 

F 500 (suppressed T-cell 
activity) 

Delaney et al. 1994 

35 Mouse 
(B6C3F1) 

14 d 
1x/d 
(GO) 

F 50 (decreased: IgM 
antibody-forming cell 
activity per spleen and 
host resistance to Listeria 

Guo et al. 2000 

monocytogenes) 

Neurological 
36 Human Once 

(C) 
70 Hall 1921 

37 Human Once 
(C) 

120 300 (drowsiness) Leach 1922 

38 Human Once 4800 (narcosis) Stevens and Forster 1953 

Developmental 
39 Rat 

(Fischer- 344) 
Gd 6-15 
1x/d 
(GO) 

F 25 F 50 (total litter resorption in 
5/12) 

Narotsky et al. 1997a 

40 Rat 
(Fischer- 344) 

Gd 6-15 
1x/d 
(G) 

F 25 F 50 (maternal piloerection 
and reduced body wt 
gain) 

F 50 (total litter resorption in 
2/14) 

Narotsky et al. 1997a 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

41 Rat 2-3 d 
(G) 

1400 (total litter resorption in 
11/29) 

Wilson 1954 

42 Mouse 
(B6D2F1) 

Gd 1-5 or GD 
6-10 or Gd 11-15 
1x/d 

F 826 Hamlin et al. 1993 

(GO) 

INTERMEDIATE EXPOSURE 
Death 
43 Rat 

(Sprague-
Dawley) 

13 wk 
5 d/wk 
(GO) 

M 25 (10% mortality) Koporec et al. 1995 

44 Rat 
(Sprague-
Dawley) 

13 wk 
5 d/wk 
(GW) 

M 25 (25% mortality) Koporec et al. 1995 

Systemic 
45 Rat 12 wk 

(GO) 
Hepatic 20 (increased serum 

enzymes; necrosis; 
cirrhosis) 

Allis et al. 1990 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

46 Rat 12 wk 
5d/wk 
1x/d 
(G) 

Hepatic 
c 
1 10 (substantially elevated 

sorbitol dehydrogenase, 
mild centrilobular 
vacuolization) 

33 (substantially elevated 
sorbitol dehydrogenase, 
ornithine carbamyl 
transferase, alanine 
aminotransferase, 

Bruckner et al. 1986 

cirrhosis) 

Renal 33 

Bd Wt 10 33 (Bd wt gain reduced by 
16%) 

47 Rat 
(Sprague-
Dawley) 

13 wk 
5 d/wk 
(GO) 

Hepatic M 25 (increases 2x in serum 
ALT and 10x in SDH; 
minimal-to-slight 
vacuolzation, minimal 

M 100 (necrosis, hyperplasia) Koporec et al. 1995 

fibrosis) 

Bd Wt M 25 M 100 (Bd wt decreased 25%) 

48 Rat 
(Sprague-
Dawley) 

13 wk 
5 d/wk 
(GW) 

Hepatic M 25 (increases 2 x in serum 
ALT and 10 x in SDH; 
vacuolation, fibrosis) 

M 100 (necrosis, hyperplasia) Koporec et al. 1995 

Bd Wt M 25 M 100 (Bd wt decr 25%) 

49 Mouse 90 d 
5d/wk 
(G) 

Hepatic 1.2 12 (elevated alanine 
aminotransferase, 
aspartate 
aminotransferase, lactate 

Condie et al. 1986 

dehydrogenase; mild 
necrosis) 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

50 Mouse 120 d 
(G) 

Hepatic 80 Eschenbrenner and Miller 1946 

51 Mouse 90 d 
(G) 

Hemato 1200 Hayes et al. 1986 

Hepatic 12 (centrilobular necrosis, 
elevated lactate 
dehydrogenase, alanine 
aminotransferase, 
asparte 
aminotransferase, and 
alkaline phosphatase) 

Renal 1200 

52 Dog 
(Beagle) 

28 d 
1 x/d 
(C) 

Hepatic 797 (incr serum ALT and 
OCT; vacuolization, 
single-cell necrosis) 

Litchfield and Gartland 1974 

53 Dog 
(Beagle) 

8 wk 
1 x/d 
(C) 

Hepatic F 32 Litchfield and Gartland 1974 

Neurological 
54 Rat 1x/wk 

10 wk 
(G) 

M 290 (increased serotonin 
synthesis) 

Bengtsson et al. 1987 

Cancer 
55 Mouse 120 d 

(G) 
20 (CEL: hepatoma) Eschenbrenner and Miller 1946 
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Table 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

56 Hamster 30 wk 
1x/wk 120 (CEL: hepatoma) Della Porta et al. 1961 

(GO) 

CHRONIC EXPOSURE 
Death 
57 Rat 

(Osborne-
Mendel) 

78 wk 
5d/wk 
(G) 

M 94 (survival at 110 wks decr 
by 46%) 

NCI 1976 

58 Mouse 78 wk 
5d/wk 1250 (survival decr by 80%) NCI 1976 

(G) 

Systemic 
59 Rat 

(Osborne-
Mendel) 

78 wk 
5d/wk 
(G) 

Hepatic M 47 (cirrhosis, bile duct 
proliferation, 
fatty accumulatioin) 

NCI 1976 

Cancer 
60 Rat 78 wk 

5d/wk 
(G) 

M 47 (CEL: hepatocellular 
carcinomas) 

NCI 1976 

61 Mouse 
(B6C3F1) 

78 wk 
5d/wk 
(G) 

1250 (CEL: 100% with hepatic 
carcinoma) 

NCI 1976 

a The number corresponds to entries in Figure 3-2. 

b Used to derive an acute-duration oral MRL of 0.02 mg/kg/day; the minimal LOAEL was divided by an uncertainty factor of 300 (3 for the use of a minimal LOAEL, 10 for 
extrapolation from animals to humans, and 10 for human variability). 

c Used to derive an intermediate-duration oral MRL of 0.007 mg/kg/day; the NOAEL was first adjusted for intermittent exposure (5 days/7 days) and divided by an uncertainty factor of 
100 (10 for extrapolation from animals to humans and 10 for human variability). 

(C) = capsule; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); F = female; (F) = feed; (G) = gavage; (GO) = gavage in oil; Gastro = gastrointestinal; (GW) = gavage in 
water; Hemato = hematological; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; mg/kg/day = milligrams per kilograms per day; NOAEL = 
no-observed-adverse-effect level; Resp = respiratory; (W) = water; wk = week(s); x = time(s); yr = year(s) 

C
A

R
B

O
N

 TE
TR

A
C

H
LO

R
ID

E

          3.  H
E

A
LTH

 E
FFE

C
TS

71



Figure 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral 
Acute (≤14 days) 
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Figure 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (Continued) 
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Figure 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (Continued) 
Intermediate (15-364 days) 

Systemic 
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Figure 3-2 Levels of Significant Exposure to Carbon Tetrachloride - Oral (Continued) 
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consequent diminished metabolic activation of carbon tetrachloride to toxic metabolites.  In other studies 

using rats, an LD50 value of approximately 7,500 mg/kg was reported (Pound et al. 1973), while 

17/20 animals were killed within 14 days of a single oral gavage exposure to 8,000 mg/kg (Thakore and 

Mehendale 1991). Doses as low as 400 mg/kg have resulted in the death of cats (Chandler and Chopra 

1926). 

One study reported a vehicle effect on mortality in rats repeatedly dosed on weekdays with carbon 

tetrachloride for 13 weeks (Koporec et al. 1995). When the vehicle was corn oil, mortality was 45% at 

the high dose of 100 mg/kg/day (average daily dose of 17.8 mg/kg/day) and 10% at the low dose of 

25 mg/kg/day (average daily dose of 17.8 mg/kg/day); there were no deaths in the control group.  When 

administration was as an aqueous emulsion in 1% Emulphor, the respective mortalities were 75 and 25%.  

As hepatic effects were the same for the equivalent dose groups, it is not known whether effects on other 

organ systems (not evaluated) were associated with the vehicle effects on mortality.   

In rats exposed to ≥47 mg/kg of carbon tetrachloride 5 days/week for 78 weeks and observed for an 

additional period, survival at 110 weeks was reduced by 46% compared to controls because of 

hepatotoxicity (NCI 1976a, 1976b).   In the same study, survival in mice treated at doses of ≥1,250 mg/kg 

was reduced by ≥80% compared to controls on account of hepatic carcinogenicity. 

All LOAEL values for each reliable study for death in each species and duration category are recorded in 

Table 3-2 and plotted in Figure 3-2. 

3.2.2.2 Systemic Effects  

No studies were located regarding endocrine, dermal, ocular, or metabolic effects in humans or animals 

after oral exposure to carbon tetrachloride.  Studies have been conducted in humans and animals to 

evaluate the respiratory, cardiovascular, hematological, or hepatic effects.  Gastrointestinal and renal 

effects have been evaluated in humans, and musculoskeletal effects have been noted in animals.  These 

effects are discussed below.  The highest NOAEL values and all LOAEL values for each reliable study 

for systemic effects in each species and duration category are recorded in Table 3-2 and plotted in 

Figure 3-2. 

Respiratory Effects. A number of human fatalities have been reported following ingestion of carbon 

tetrachloride (Umiker and Pearce 1953).  Edema and hemorrhage of the lung were common autopsy 
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findings.  Injury to the lung usually did not become apparent until 8 days or longer after poisoning, and 

the effects on the lung were essentially the same as observed in cases of uremia due to other causes.  This 

suggests that the late-developing edema and hemorrhagic injury to lung is secondary to severe kidney 

injury. 

In animals, acute oral exposure to doses of 4,000 mg/kg has been observed to cause respiratory edema, 

atelectasis, and hemorrhage (Gould and Smuckler 1971).  This is accompanied by marked disruption of 

subcellular structure in most pulmonary cell types, including granular pneumocytes, capillary endothelial 

cells, and Clara cells (Boyd et al. 1980; Gould and Smuckler 1971; Hollinger 1982).  It has been shown 

that Clara cells were most severely injured because they are the most active in metabolic activation of 

carbon tetrachloride. Injury to capillary endothelial cells is dose-dependent, with increased release of 

cellular enzymes occurring at doses as low as 160 mg/kg (Hollinger 1982).  No studies of respiratory 

effects following longer-term oral exposure were located. 

Cardiovascular Effects.    Effects of carbon tetrachloride ingestion on the cardiovascular system have 

not been the subject of extensive investigation.  Most studies in humans have not detected significant 

gross or histopathological changes in heart tissue at dose levels that cause marked hepatic and renal 

damage (Leach 1922; MacMahon and Weiss 1929).  Electrocardiographic changes (sinus arrhythmia, 

QRS complex splintering, elevated S-T4 and P-R intervals) suggestive of myocardial injury were seen in a 

man who ingested several mouthfuls of carbon tetrachloride, but these appeared to be fully reversible 

(Conaway and Hoven 1946).   

The few animal studies located appear to be in general agreement with the human findings (Gardner 

et al. 1925; Korsrud et al. 1972).  Effects of carbon tetrachloride ingestion on blood pressure are 

sometimes observed, but these are likely secondary to effects on the central nervous system, or to effects 

on fluid and electrolyte balance following renal injury. 

Gastrointestinal Effects.    Humans who ingest oral doses in excess of 30 or 40 mL (680–910 mg/kg) 

frequently experience nausea, vomiting, and abdominal pain (Hardin 1954; New et al. 1962; Smetana 

1939; Umiker and Pearce 1953; von Oettingen 1964). Nausea has been reported after an oral dose of as 

little as 100 mg/kg (Ruprah et al. 1985).  These effects could be the direct result of irritation of the 

gastrointestinal tract caused by the high dose or secondary to effects on the central nervous system.  Oral 

doses of 3–5 mL (70–110 mg/kg) were widely used in the past for the treatment of hookworms with only 

mild gastrointestinal distress (Hall 1921; Leach 1922). 
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No studies were located regarding gastrointestinal effects in animals after oral exposure to carbon 

tetrachloride. 

Hematological Effects.    Oral exposure to carbon tetrachloride has not been reported to have 

substantial direct hematological effects in humans or animals.  Focal hemorrhagic lesions and mild 

anemia are sometimes observed in humans who have ingested carbon tetrachloride (Guild et al. 1958; 

Stewart et al. 1963), but this is likely due to decreased hepatic synthesis and/or secretion of clotting 

factors. 

Only one study was identified that examined the hematological effects of carbon tetrachloride in animals.  

Intermediate oral exposure of mice to carbon tetrachloride did not result in any consistently significant 

hematological changes (Hayes et al. 1986). 

Musculoskeletal Effects.    No studies were located regarding musculoskeletal effects in humans after 

oral exposure to carbon tetrachloride. 

Only a single animal oral study was located that described effects on skeletal muscles, but as it employed 

co-treatment with phenobarbital to enhance the development of hepatotoxicity (inflammation, necrosis 

and fibrosis), it is omitted from the LSE table.  Male rats were exposed once per week by gavage to 

carbon tetrachloride doses of approximately 260–1,300 mg/kg/day, for either 3 or 10 weeks (Weber et al. 

1992).  Histological examination of various muscle tissues revealed no evidence of necrosis or 

inflammation, a finding supported by normal plasma levels of albumin, creatinine, creatinine 

phosphokinase, and urea nitrogen.  However, muscle atrophy was observed that was apparently selective 

for fast glycolytic fibers, but not fast or slow oxidative fibers.  This was shown to result from increased 

protein catabolism, and not from decreased protein synthesis.  Although the mechanisms are not clearly 

understood, this muscle effect may be secondary to induced hepatic damage.  This conclusion was 

partially inferred from the observed complete lack of myocyte necrosis, the fiber selectivity of the effect, 

the absence of enhanced catabolism in muscle exposed directly in vitro to 10-fold higher concentrations 

of carbon tetrachloride, the elimination of disuse atrophy as a factor, and the correlation of this effect with 

only liver inflammation and necrosis, not cirrhosis (a condition which has been associated in humans with 

a negative nitrogen balance). 
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Hepatic Effects.    Ingestion of carbon tetrachloride can lead to marked hepatotoxicity.  In most reports 

involving humans, exposure has involved ingestion of several mouthfuls or more (probably 500 mg/kg or 

higher). Typical clinical signs of hepatic damage in such patients include a swollen liver, along with 

elevated serum levels of hepatic enzymes and decreased serum levels of liver-synthesized proteins (e.g., 

albumin, fibrinogen).  In cases of death (usually occurring within 1–15 days), typical histological findings 

include fat accumulation, hepatic degeneration, and moderate to severe centrilobular necrosis; hepatitis 

was also diagnosed (Ashe and Sailer 1942; Jennings 1955; MacMahon and Weiss 1929; Umiker and 

Pearce 1953). 

Single oral doses of 3–5 mL (70–110 mg/kg) were widely used in the past for treatment of hookworm, 

and ingestion of this dose resulted in clinical signs of liver injury in only a small number of cases (Hardin 

1954; Lamson et al. 1928).  Single doses of 4–8 mL (90–180 mg/kg) were found to result in fat 

accumulation in liver in several individuals (Docherty and Burgess 1922; Docherty and Nicholls 1923), 

and doses of only 1 mL (child) and 3 mL (adult) (approximately 80 mg/kg) have resulted in hepatic 

necrosis and death in a few cases (Phelps and Hu 1924).  These results are indicative of differential 

susceptibility to carbon tetrachloride in humans.  Certain confounding variables (age) may have been 

contributing factors to lethality at lower dose levels.  One of the two cases involved a 5-year-old child, 

while the second report involved an adult; however, factors that may have increased susceptibility to the 

compound in this case could not be determined (Phelps and Hu 1924).  No studies were located regarding 

the effects of longer-term or chronic oral exposure in humans to carbon tetrachloride. 

The hepatotoxic effects of carbon tetrachloride have been widely studied in animals.  Indeed, carbon 

tetrachloride is used as a model chemical in many laboratory investigations of the basic mechanism of 

action of hepatotoxic chemicals.  Oral exposure to carbon tetrachloride has been observed to result in a 

wide spectrum of adverse effects on the liver, the most prominent of which are destruction of the smooth 

and rough endoplasmic reticulum and its associated enzyme activities (Reynolds and Yee 1968), 

inhibition of protein synthesis (Lutz and Shires 1978), impaired secretion of triglycerides with resultant 

fat accumulation (Recknagel and Ghoshal 1966; Recknagel and Glende 1973; Waterfield et al. 1991), 

centrilobular necrosis (Blair et al. 1991; Reynolds and Yee 1968; Waterfield et al. 1991), and eventually 

fibrosis and cirrhosis (Allis et al. 1990; Bruckner et al. 1986; ).  Hepatic injury, as indicated by 

regenerative proliferation following carbon tetrachloride ingestion, initially affects the peri-portal zone 

and spreads in a dose-dependent fashion to the perivenous-to-midlobular zones over time (Lee et al. 

1998).  In rats treated with 7,970 mg/kg, peak increases were observed in serum levels of ALT at 24 hours 

and AST at 48 hours and increased activity of DNA-synthesizing enzymes (thymidine kinase and 
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thymidylate synthetase) was observed at 48–72 hours (Nakata et al. 1975).  These results reflect the initial 

leakage of enzymes from damaged hepatocytes followed by cell regeneration.  Similar observations have 

been seen in dosed mice, in which hepatic necrosis was observed during the first 24 hours after dosing 

and hepatic mitotic activity was noted by 48 hours (Eschenbrenner and Miller 1946). 

Although the occurrence of these effects has been confirmed in a very large number of studies, only a few 

investigations have focused on the dose-dependency of hepatic injury.  After a single oral dose of 

1,600 mg/kg to rats, urinary taurine levels were significantly increased (p<0.01–0.05) within 24 hours and 

liver weight was reduced (Waterfield et al. 1991).  During the first 48 hours after a higher dose 

(3,200 mg/kg), first liver, then serum, and finally urinary levels of taurine were elevated.  Similar effects, 

as well as reduced hepatic microsome levels of cytochrome P-450, aminopyrine demethylase, and aniline 

hydroxylase, were observed in rats after a single oral dose of 480 mg/kg/day (Thakore and Mehendale 

1991). These effects were much more severe after 8,000 mg/kg, a dose found to be lethal within 14 days 

for most animals.  Additionally, the liver evidenced necrosis, lipid vacuolation, and inflammation, and 

serum alanine and aspartate amino transferase levels were elevated. Strain differences in sensitivity have 

been identified (Magos et al. 1982).  Twenty hours after a single dose, slight centrilobular damage was 

observed at 600 mg/kg in Fisher rats, but at 1,200 mg/kg in Porton-Wistar rats; the dose required to 

elevate serum ALT 10-fold over background was 610 mg/kg for Fisher rats, but 2,000 mg/kg for Porton-

Wistar rats. These results were consistent with the higher background levels of serum ALT in Fisher rats, 

twice that of Porton-Wistar rats (Magos et al. 1982); this study is omitted from the LSE table because 

exact group sizes were not reported.  Single oral doses of only 40–80 mg/kg have also been observed to 

produce liver injury in rats and mice (Bruckner et al. 1986; Eschenbrenner and Miller 1946; Steup et al. 

1993). In rats receiving 80 mg/kg, elevated serum ALT and SDH were observed as early as 3 hours after 

administration and histopathology (glycogen depletion and focal necrosis) by 6 hours (Steup et al. 1993); 

recovery was  largely complete by 72 hours.  When exposures are continued for 10–11 days, doses of 5– 

40 mg/kg/day produced mild signs of liver change, while 80 mg/kg/day caused clear hepatic injury 

(Bruckner et al. 1986; Smialowicz et al. 1991).  The LOAEL of 5 mg/kg/day from the study by 

Smialowicz et al. (1991) has been employed to calculate an acute-duration oral MRL of 0.02 mg/kg/day, 

as described in the footnote on Table 3-2.  At this dose, the earliest sign (vacuolar degeneration) of 

hepatocyte toxicity was just detectable.  The severity of this hepatocellular injury with accompanying 

necrosis increased in a dose-related manner from 10 to 40 mg/kg/day. 

The incidence and severity of hepatic effects were dose-related in intermediate-duration oral exposure 

studies in animals.  In rodents ingesting carbon tetrachloride 5 days/week for 12–13 weeks, no hepatic 
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effects were detected at doses of 1–1.2 mg/kg (Bruckner et al. 1986; Condie et al. 1986).  At 10 mg/kg, 

mild centrilobular vacuolization and elevated serum levels of sorbitol dehydrogenase were observed in 

rats (Bruckner et al. 1986).  Significant elevation in some serum enzymes (ALT, AST, lactate 

dehydrogenase) and mild necrosis were seen in mice at doses of 12 mg/kg and higher (Condie et al. 1986; 

Hayes et al. 1986).  More extensive hepatic lesions (fatty accumulation, fibrosis, cirrhosis, necrosis) were 

noted in rats at doses of 20–33 mg/kg (Allis et al. 1990; Bruckner et al. 1986; Koporec et al. 1995).  At 

100 mg/kg/day, hepatic effects  in rats also included cytomegaly and various types of hyperplasia 

(Koporec et al. 1995).  The vehicle used to administer carbon tetrachloride modifies the observed effect 

levels. The incidence and severity of hepatic lesions was increased when carbon tetrachloride was 

administered in an aqueous emulsion (in 1% Emulphor) compared to administration in corn oil (Koporec 

et al. 1995). Dogs appear to be less vulnerable to the hepatic effects of carbon tetrachloride than rodents.  

In female dogs given 32 mg/kg/day for 8 weeks, there was no liver histopathology and no significant 

increase in serum enzymes (Litchfield and Gartland 1974).  Male and female dogs that received 

797 mg/kg/day for 4 weeks exhibited liver histopathology (centrilobular fatty vacuolization sometimes 

with single cell necrosis); the severity of hepatic lesions in individual dogs was correlated with the level 

of increases in serum enzyme levels (ALT and ornithine carbamyl transferase).  Based on the NOAEL of 

1 mg/kg in rats that was reported by Bruckner et al. (1986), an intermediate oral MRL of 0.007 mg/kg/day 

was calculated as described in the footnote in Table 3-2.   

A no-effect level for hepatic effects has not been determined in chronic-duration oral exposure studies in 

animals.  Alumot et al. (1976) reported no significant effects on serum enzyme levels or hepatic fat 

content of rats exposed to nominal doses of approximately 11–14 mg/kg/day for 2 years.  However, the 

doses in this study cannot be reliably estimated because of uncertainty regarding the method of exposure; 

diets were fumigated with carbon tetrachloride vapor for 2 days prior to use and the degree of loss from 

evaporation is not known.  Although the gradual intake from the diet would be expected to result in less 

hepatic toxicity than the same daily amount delivered as a single oral bolus (see, for example, Bruckner et 

al. 1986 discussed above), this study does not provide definitive information on threshold levels for oral 

exposure to carbon tetrachloride.  The only other chronic-duration oral information comes from chronic 

gavage bioassays by the NCI (1976a, 1976b) on chloroform and trichloroethylene in which carbon 

tetrachloride was employed as a positive control for hepatic carcinogenicity.  Rats treated with doses as 

low as 47 mg/kg, 5 days/week for 78 weeks exhibited severe hepatotoxicity, the most prominant effects 

being portal cirrhosis in 58%, bile duct proliferation in 62%, and fatty accumulation in 58% of treated 

animals; fibrosis, necrosis, and regenerating nodules were observed less frequently.  The main hepatic 

effect in mice was carcinogenicity, discussed in Section 3.2.2.7.  No chronic-duration oral MRL was 
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derived for carbon tetrachloride because the lowest tested doses in well-conducted bioassays caused 

severe hepatic toxicity.  Under ATSDR guidance, MRLs are not derived on dose levels causing severe 

effects. 

Renal Effects.    Nephritis is a common finding in fatal cases of carbon tetrachloride ingestion in 

humans (Umiker and Pearce 1953), and renal failure may contribute to death in many cases (Gosselin 

et al. 1976; von Oettingen 1964).  Typically, clinical signs of renal dysfunction (oliguria or anuria, 

albuminuria, proteinuria, elevated blood urea nitrogen edema, hypertension) tend to develop within 1– 

6 days after exposure, somewhat later than the appearance of hepatic injury (Conaway and Hoven 1946; 

Guild et al. 1958; Kluwe 1981; MacMahon and Weiss 1929; Smetana 1939; Umiker and Pearce 1953).  In 

nonfatal cases, renal function usually returns to normal within several weeks (Guild et al. 1958; Kluwe 

1981; Smetana 1939).  Histological changes in the kidney are observed primarily in the proximal tubular 

epithelium, where cells become swollen and granular, with moderate to severe necrosis (Docherty and 

Burgess 1922; Guild et al. 1958; MacMahon and Weiss 1929; Smetana 1939). 

Studies in animals confirm that the kidney is a target tissue for carbon tetrachloride, although in rodents, 

the kidney is much less sensitive than the liver to carbon tetrachloride.  Doses of 4,000 mg/kg resulted in 

swollen and pale kidneys in rats within 2 days, with morphological changes present primarily in proximal 

tubular epithelial cells.  All histological and functional signs of renal injury were fully reversible within 

5 days (Striker et al. 1968).  Fatty degeneration of the kidney has been observed in dogs after a single 

dose of 3,200 mg/kg (Chandler and Chopra 1926) and swelling of the convoluted tubules after 

6,400 mg/kg (Gardner et al. 1925).  Exposure of rats to 160 mg/kg/day for about 10 days did not induce 

adverse renal effects (Bruckner et al. 1986; Smialowicz et al. 1991), nor did 12 weeks exposure to 

33 mg/kg/day, 5 days/week (Bruckner et al. 1986).  Only marginal indication of kidney injury was 

detected in mice exposed to doses of 2,500 mg/kg/day for 14 days or 1,200 mg/kg/day for 90 days (Hayes 

et al. 1986). It should be recalled that these doses result in marked hepatotoxicity. 

Body Weight Effects.    Reduced body weight gain has been observed in rats orally dosed with carbon 

tetrachloride 5 days/week for 90 days.  Terminal body weights were 16% lower than controls in rats 

dosed with 33 mg/kg (Bruckner et al. 1986) and 25% lower in rats dosed with 100 mg/kg (Koporec et al. 

1995). 
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3.2.2.3 Immunological and Lymphoreticular Effects  

No studies were located regarding immunological effects in humans after oral exposure to carbon 

tetrachloride. 

Studies in rodents have shown significant suppression of immune function following exposure to carbon 

tetrachloride. Exposure of female mice to carbon tetrachloride at 500 mg/kg/day for 7 consecutive days 

suppressed the T-cell-dependent humoral responses to sheep red blood cells (SRBC) (Delaney et al. 

1994).  The effect was mediated by an increase in serum levels of transforming growth factor 

beta-1 (TGF-beta-1), which occurred 24–48 hours after exposure in single-dose experiments (at 250– 

500 mg/kg, but not 50 mg/kg).  Exposure of rats to carbon tetrachloride (up to 160 mg/kg/day for 

10 days) by gavage did not alter the primary antibody response to SRBC, lymphoproliferative responses 

to mitogen or mixed leukocytes, natural killer cell activity, or cytotoxic T-lymphocyte responses; also, 

spleen and thymus weights were comparable to controls (Smialowicz et al. 1991).  In female mice that 

were given daily gavage doses between 50 and 500 mg/kg/day for 14 days (sufficient for hepatotoxicity), 

the T-cell-dependent humoral response to SRBC was suppressed at ≥50 mg/kg/day, serum anti-SRBC 

IgM titers were reduced at 100 mg/kg/day, and the absolute number and percentage of CD4+CD8- T-cells 

per spleen was reduced at 500 mg/kg/day (Guo et al. 2000).  Exposure had no effect on the mixed 

leukocyte response to allogenic spleen cells, or the activities of cytotoxic T-lymphocytes or natural killer 

(NK) cells.  In this study, exposure to carbon tetrachloride also decreased host resistance to Streptococcus 

pneumoniae and Listeria monocytogenes, with the effective dose dependent on the magnitude of the 

challenge. In rats exposed twice weekly for 4–12 weeks to 3,688 mg/kg/day, there was histologic 

evidence of hemorrhage, hemosiderin deposition, and lymphocyte depletion in the pancreaticoduodenal 

lymph node (Doi et al. 1991), an effect that may be secondary to induced hepatic damage. 

The highest NOAEL values and all LOAEL values for each reliable study of immunological and 

lymphoreticular effects in each species and duration category are recorded in Table 3-2 and plotted in 

Figure 3-2. 

3.2.2.4 Neurological Effects 

Ingestion of carbon tetrachloride frequently results in marked depression of the central nervous system.  

Neurological signs in humans include headache, vertigo, weakness, blurred vision, lethargy, and coma, 

sometimes accompanied by tremor and parasthesias.  Mental confusion and disorientation tend to appear 
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later. These symptoms have been reported in people who ingested single oral doses of carbon 

tetrachloride ranging from 5 to 473 mL (approximately 114–10,800 mg/kg) (Cohen 1957; Leach 1922; 

Stevens and Forster 1953; Stewart et al. 1963).  The onset of initial effects is very rapid, and is likely the 

result of direct narcotic action on the central nervous system, similar to other anesthetic halocarbons.  

Recovery from the depressant effects generally appears to be complete (Stevens and Forster 1953; 

Stewart et al. 1963), although in some fatal cases, histological examination of the brain has revealed 

patchy pontine necrosis, demyelination, and Purkinje cell damage, with widespread hemorrhagic infarcts 

(Cohen 1957).  Single oral doses of 70 or 120 mg/kg have been reported to be without significant 

neurological effect (Hall 1921; Leach 1922). 

Only one animal study was located that specifically reported neurological effects other than those that 

typically attend acute high-dose exposure (e.g., lethargy, coma, related cardiac effects of arrhythmia, and 

blood pressure changes). When rats pretreated with phenobarbitol received weekly doses of carbon 

tetrachloride for 10 weeks (initially 289 mg/kg/day, increasing to a maximum of approximately 

1,600 mg/kg/day according to body weight gain), a condition of diffuse micronodular liver cirrhosis was 

induced (Bengtsson et al. 1987). This was accompanied by significantly increased synthesis of the 

neurotransmitter serotonin in all six areas of the brain that were monitored.  Serotonin levels were not, 

however, reliably correlated with any abnormal open-field behavior, which was used as an indicator of 

the possible portal-systemic encephalopathy that may accompany liver failure. 

The highest NOAEL values and all LOAEL values for each reliable study for neurological effects in each 

species and duration category are recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.5 Reproductive Effects  

No studies were located regarding reproductive effects in humans after oral exposure to carbon 

tetrachloride. 

Rats (males and females) ingested carbon tetrachloride in their food for 5–6 weeks (Alumot et al. 1976).  

No effects were noted on most reproductive parameters monitored (percent conception, percent with 

litters, mean litter size, mean body weight of offspring at birth and at weaning).  An increase in neonatal 

mortality was observed in the low dose group (about 6 mg/kg/day), but not in the high dose group (about 

15 mg/kg/day).  The authors concluded that this response was not treatment related, and that these doses 

of carbon tetrachloride had no adverse effect on reproduction. 
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The highest NOAEL values for reproductive effects in rats after chronic exposure are recorded in 

Table 3-2 and plotted in Figure 3-2. 

3.2.2.6 Developmental Effects 

An epidemiological study was conducted using birth outcome and drinking water exposure databases 

from a four-county area in northern New Jersey (Bove et al. 1992a, 1992b, 1995).  The cross-sectional 

study of data from 75 out of 146 towns spanned the period 1985–1988 and evaluated the entire study 

population of 80,938 singleton live births and 599 singleton fetal deaths.  Estimated carbon tetrachloride 

concentrations in the drinking water of >1 ppb were associated with the following adverse developmental 

outcomes (odds ratio, 95% confidence interval, significance):  full-term birth weight <2,500 g (2.26, 

1.41–3.6, p<0.001), small for gestational age (1.35, 1.03–1.8, p<0.03), and neural tube defects (5.39, 

1.31–22.2, p<0.025).  However, the weight/size effects were also associated with trihalomethanes that 

were present in the drinking water at larger concentrations than carbon tetrachloride and the neural tube 

defects were based on a total of two cases in the group exposed to carbon tetrachloride.  Methodological 

limitations of the study may have resulted in chance, missed, or under- or overestimated associations.  As 

acknowledged by the authors, inhalation and/or dermal exposure through bathing and showering could be 

at least as significant as the oral exposure. Although these studies suggest a causative role for carbon 

tetrachloride in the generation of certain adverse developmental outcomes, issues that could beneficially 

be addressed in the future include better-defined exposure levels (these levels appear to be rather low for 

a causative agent) and the potential for such effects to be the result of complex mixture exposure. 

A case-control study of selected congenital malformations and maternal residential proximity to NPL 

sites in California between 1989 and 1991 did not find an increased risk of conotruncal heart defects or 

oral cleft defects associated with sites containing carbon tetrachloride (Croen et al. 1997). 

No teratogenic effects (morphological anomalies) were reported in rats following maternal oral exposure 

to carbon tetrachloride, but total resorption of fetuses was reported at maternally toxic doses.  Doses of 

1,400 mg/kg/day during gestation caused marked maternal toxicity in rats, and total resorption of fetuses 

in some animals, but no adverse effects in surviving litters (Wilson 1954).  In rats treated with carbon 

tetrachloride by gavage in corn oil or an aqueous vehicle (Emulphor EL-620) on gestational days 6–15, 

no maternal or developmental toxicity occurred at a dose of 25 mg/kg/day (Narotsky et al. 1997a).  Total 

loss of some litters and clinical signs of toxicity (piloerection and reduced body weight gain) occurred in 
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dams treated with ≥50 mg/kg/day.  Effects were slightly more severe when the vehicle was corn oil 

(5/12 litters resorbed) than when an aqueous vehicle was used (2/24 litters resorbed).  

Temporal variations during gestation in sensitivity to carbon tetrachloride were reported in rats.  When 

pregnant rats were given a single dose of 150 mg/kg carbon tetrachloride on gestational day 6, 7, 8, 10, or 

12, the incidences of full litter loss ranged between 36 and 72% during gestation days 6–10 (maximal 

day 8) and 0% on day 12 compared to 4% for the controls (Narotsky et al. 1997b).  The authors concluded 

that gestational days 6–10 represented a critical period of vulnerability to carbon tetrachloride in rats.  

Dams later found to have had full litter resorption exhibited bloody vaginal discharges within 24 hours of 

dosing.  No additional developmental toxicity was reported in surviving litters.  Offspring were not 

evaluated for possible neurobehavioral deficits. 

Mice appear to be less vulnerable than rats to carbon tetrachloride.  When pregnant mice were given oral 

doses as high as 826 mg/kg/day on five consecutive days (the preimplantation period [gestation days 1– 

5], or organogenesis periods [gestation days 6–10 or 11–15]), there were no overt signs of maternal 

toxicity and no adverse effects on survival, growth or development during the fetal and postnatal stages 

(Hamlin et al. 1993). 

The highest NOAEL value for developmental effects in rats after acute exposure is recorded in Table 3-2 

and plotted in Figure 3-2. 

3.2.2.7 Cancer 

No studies were located regarding carcinogenic effects in humans after oral exposure to carbon 

tetrachloride. 

Studies in animals (rats, hamsters, and several strains of mice) provide convincing evidence that ingestion 

of carbon tetrachloride increases the risk of liver cancer (Andervont 1958; Della Porta et al. 1961; 

Edwards 1941; Edwards and Dalton 1942; Edwards et al. 1942; Eschenbrenner and Miller 1944, 1946; 

NCI 1976a). In general, carbon tetrachloride-induced liver tumors were either hepatomas or 

hepatocellular carcinomas that appeared after exposure periods of only 10–30 weeks (Edwards 1941; 

Eschenbrenner and Miller 1944; NCI 1976a).  For example, daily oral doses as low as 20 mg/kg produced 

hepatic tumors in mice exposed for 120 days (Eschenbrenner and Miller 1946).  In most cases, the 

incidence of hepatic tumors was very high (75–100%) in exposed animals.  In each of these studies, the 
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carbon tetrachloride was administered daily by single bolus gavage.  As noted in the discussion of oral 

hepatic effects, such a dosing regimen may exacerbate cancer effects relative to those that might be 

observed under conditions of food or drinking water exposure.  Based on these studies, both IARC (1987) 

and EPA (IRIS 1993) have concluded there is sufficient evidence that carbon tetrachloride is carcinogenic 

in experimental animals, and that it is possibly or probably carcinogenic in humans. 

The EPA (1984) reviewed the available information on the carcinogenic effects of carbon tetrachloride 

following oral exposure, and concluded that the studies by Della Porta et al. (1961) in hamsters, Edwards 

et al. (1942) in mice, and NCI (1976a, 1976b, 1977; Weisburger 1977) in rats and mice had adequate 

dose-response data to allow quantitative estimation of the unit cancer risk (the excess risk of cancer 

associated with lifetime ingestion of water containing 1 µg/L, assuming intake of 2 L/day by a 70-kg 

person). Since each study was judged to have some limitations, no one study was selected as the basis for 

the risk calculation. Rather, calculations were performed for all four data sets, and the geometric mean of 

these estimates was taken to be the most appropriate value.  These calculations are summarized in 

Table 3-3. Because of the uncertainty in the data and in the calculations, the EPA identified the geometric 

mean of the upper 95% confidence limit (3.7x10-6) as the preferred estimate of unit cancer risk. 

Based on this value, the upper-bound lifetime risk from ingestion of 1 µg/kg/day of carbon tetrachloride is 

1.3x10-4, and the daily intake levels associated with lifetime risks of 10-4, 10-5, 10-6, and 10-7 are 0.77, 

0.077, 0.0077, and 0.00077 µg/kg/day, respectively. 

Because these are based on upper-bound estimates, the true risk could be lower.  These values, along with 

doses of carbon tetrachloride that have been observed to cause cancer in animals, are presented in 

Figure 3-2. 

3.2.3 Dermal Exposure  

The highest NOAEL values and all LOAEL values from each reliable study for death and hepatic  and 

dermal effects in each species and duration category are recorded in Table 3-4. 
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Table 3-3. Summary of Carcinogenic Unit Risk Calculations for Oral Exposure to 
Carbon Tetrachloridea 

Unit cancer riskb 

Reference Species Best estimate Upper 95% confidence limit 
Della Porta et al. (1961) Hamster 2.5x10-5 3.4x10-5 

Edwards et al. (1942) Mouse 7.1x10-6 9.4x10-6 

NCI (1976) Mouse 1.4x10-6 1.8x10-6 

NCI (1976) Rat 1.9x10-7 3.1x10-7

 Geometric Mean 2.5x10-6 3.7x10-6 

aSource: EPA 1984 
bThe estimated probability of cancer in a 70-kg person ingesting 2 L/day of water containing 1 µg/L of carbon 
tetrachloride for a lifetime 
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Table 3-4 Levels of Significant Exposure to Carbon Tetrachloride - Dermal 

Exposure/ LOAEL 
Duration/ 

Species Frequency Reference 
(Strain) (Route) System NOAEL Less Serious Serious Chemical Form 

ACUTE EXPOSURE 
Death 
Gn Pig Once 

24 hr 15000 (LD50, 24 hours) 
Roudabush et al. 1965 

mg/kg 

Gn Pig Once 
contact for 5 d 260 (5/20) 

Wahlberg and Boman 1979 

mg/cm² 

Rabbit Once 
24 hr 15000 (LD50, 24 hours) 

Roudabush et al. 1965 

mg/kg 

Systemic 
Gn Pig Once 

15 min-16 hr Hepatic 513 
mg/cm² 

(hydropic changes,
 slight necrosis) 

Kronevi et al. 1979 

Dermal 513 
mg/cm² 

(karyopynosis, 
spongiosis, perinuclear 
edema) 

Gn Pig Once 
24 hr Dermal 120 (primary irritation) 

Roudabush et al. 1965 

mg/kg/day 

Rabbit Once 
24 hr Dermal 120 (primary irritation) 

Roudabush et al. 1965 

mg/kg/day 
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cm = centimeters; d = day(s); Derm = dermal; Gn pig = Guinea pig; hr = hour(s); LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; mg/kg/day = milligrams 
per kilograms per day; NOAEL = no-observed-adverse-effect level 
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3.2.3.1 Death 

One of three naval officers who weekly misused a carbon tetrachloride fire-extinguishing fluid as a dry 

cleaning agent over 3 months died of heart failure that was secondary to nephrosis-induced pulmonary 

edema (Forbes 1944); the man who died was a heavy consumer of alcohol.  It is likely that the individual 

was exposed by inhalation as well as dermally, but the actual intakes were not known; 4 pints of the fluid 

(equivalent to 3 kg carbon tetrachloride) were used during the time period. 

3.2.3.2 Systemic Effects  

No studies were located regarding hematological, musculoskeletal, endocrine, or ocular effects after 

dermal exposure of humans or animals to carbon tetrachloride.  Respiratory, cardiovascular, 

gastrointestinal, hepatic, renal, ocular, and dermal effects were reported in humans.  Hepatic and dermal 

effects were also seen in animals.  These effects are discussed below.  The LOAEL values from each 

reliable study for systemic effects in each species and duration category are recorded in Table 3-4. 

Respiratory Effects.    Pulmonary edema that developed in one fatal case of combined weekly 

inhalation/dermal exposure over 3 months appeared to be secondary to renal malfunction (Forbes 1944). 

Cardiovascular Effects.    Failure of the left side of the heart was the proximate cause of death in one 

case repeatedly exposed dermally and by inhalation over 3 months (Forbes 1944).  The heart effect 

developed secondary to nephrosis-induced pulmonary edema. 

Gastrointestinal Effects.    There are case reports of three humans who experienced gastrointestinal 

symptoms, including nausea and vomiting, after dermal application of carbon tetrachloride-based lotion 

(Perez et al. 1987).  No quantitative estimate of the amount of carbon tetrachloride applied or absorbed 

was provided. Three individuals who were repeatedly exposed dermally and by inhalation over 3 months 

experiences anorexia and vomiting (Forbes 1944).  

No studies were located regarding gastrointestinal effects in animals after dermal exposure to carbon 

tetrachloride. 
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Hepatic Effects.    Liver injury, characterized by an elevated serum enzyme (alanine aminotransferase 

level), was described in case reports of three humans after dermal application of carbon tetrachloride 

(Perez et al. 1987).  In the absence of quantitative estimates of the amount of carbon tetrachloride applied 

or absorbed, NOAEL and LOAEL values cannot be determined.  Severe centrilobular necrosis was found 

at autopsy following the death of one of three naval officers who were exposed by inhalation and 

dermally over 3 months (Forbes 1944); none of the exposed men exhibited jaundice.  Actual exposure 

levels could not be determined. 

Hydropic changes and isolated necrotic areas were reported in the liver of guinea pigs 16 hours after 

dermal contact with 513 mg/cm2 of carbon tetrachloride (1.0 mL placed in a sealed enclosure covering a 

sealed enclosure covering a 3.1 cm2 area of clipped skin) (Kronevi et al. 1979). 

Renal Effects.    Acute renal failure, as evident by anuria and azoturia, was reported in three case 

reports of humans after dermal application of carbon tetrachloride-based lotion (Perez et al. 1987).  The 

usefulness of this finding is limited by the lack of data concerning the amount of carbon tetrachloride 

applied or absorbed.  Albuminuria and uremia developed in three naval officers exposed weekly by 

inhalation and dermally to an unknown amount of carbon tetrachloride over 3 months (Forbes 1944).  The 

one fatality, an alcoholic, showed signs of albuminous degeneration of the convoluted tubules and 

Bowman's capsule and granular casts in the distal convoluted tubules. 

No studies were located regarding renal effects in animals after dermal exposure to carbon tetrachloride. 

Dermal Effects.    In humans, direct dermal contact with undiluted carbon tetrachloride causes a mild 

burning sensation with mild erythema (Stewart and Dodd 1964). Some individuals appear to be 

hypersensitive, developing marked swelling, itching, and blisters following dermal contact (Taylor 1925). 

Similar effects of dermal contact with carbon tetrachloride have been described in animals.  A dose of 

124 mg/cm2 carbon tetrachloride produced moderate primary irritation within 24 hours when applied 

occluded to the intact or abraded skin of rabbits or guinea pigs, with irritation scores of 2.2–4.1 on skin 

(Roudabush et al. 1965).  Direct dermal contact of guinea pigs with liquid carbon tetrachloride (occluded; 

513 mg/cm2) caused degenerative changes in epidermal cells and marked intercellular edema or 

spongiosis (Kronevi et al. 1979).  These effects became apparent within 15 minutes, and progressed in 

severity over the course of several hours.  These effects require direct dermal contact because similar 

effects on the skin are not observed following inhalation or oral exposure. 
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Ocular Effects.    Double-vision was reported in an individual exposed dermally and by inhalatioin 

from weekly use of carbon tetrachloride fire-extinguishing fluid as a dry-cleaning agent over a period of 

3 months (Forbes 1944).  

 No data were located for ocular effects in animals exposed dermally. 

3.2.3.3 Immunological and Lymphoreticular Effects  

No studies were located regarding immunological effects in humans or animals after dermal exposure to 

carbon tetrachloride 

3.2.3.4 Neurological Effects 

A case of polyneuritis was reported in a man who had repeated dermal contact 8 hours/day with carbon 

tetrachloride using it as a degreasing agent (Farrell and Senseman 1944).  Sudden severe epileptiform 

seizure and coma occurred in a subsequently fatal case following weekly combined inhalation/dermal 

exposure (Forbes 1944).  The individual, an alcoholic, was one of three men who misused a carbon 

tetrachloride fire-extinguishing fluid as a dry-cleaning agent over a period of 3 months (Forbes 1944). 

No studies were located regarding neurological effects in animals after dermal exposure to carbon 

tetrachloride. 

3.2.3.5 Reproductive Effects  

No studies were located regarding reproductive effects in humans or animals after dermal exposure to 

carbon tetrachloride. 

3.2.3.6 Developmental Effects 

No studies were located exclusively regarding developmental effects in humans or animals after dermal 

exposure to carbon tetrachloride.  However, note the epidemiological studies discussed in Section 3.2.2.6, 
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which almost certainly involved significant dermal and inhalation exposures in addition to the 

emphasized oral exposure. 

3.2.3.7 Cancer 

No studies were located regarding carcinogenic effects in humans or animals following dermal exposure 

to carbon tetrachloride. 

3.3 GENOTOXICITY  

The genotoxic potential of carbon tetrachloride has been evaluated in vivo (Table 3-5) and in vitro 

(Table 3-6). 

Inhalation Exposure.  No studies were located on genetic effects in humans or animals after inhalation 

exposure to carbon tetrachloride.   

Oral Exposure. No studies were located regarding genetic effects in humans after oral exposure to 

carbon tetrachloride. 

Results of in vivo tests in animals orally exposed to carbon tetrachloride suggest that genotoxic effects 

only occur at doses high enough to cause hepatic toxicity.  No sex-linked recessive mutations were 

induced in Drosophila melanogaster exposed dietarily (Foureman et al. 1994). In oral gavage studies, 

there were no increases in the frequencies of chromosomal aberration, sister chromatid exchange, or 

micronucleus formation in the liver of rats or in the frequency of micronucleus formation in bone marrow 

of mice (Sawada et al. 1991; Suzuki et al. 1997).  Some studies reported negative results in the liver for 

unscheduled DNA synthesis in rats (Mirsalis and Butterworth 1980; Mirsalis et al. 1982).  However, 

authors of one study attributed increased DNA synthesis in rats exposed at a high dose not to unscheduled 

DNA synthesis per se, but to the increased tissue regeneration following hepatic necrosis (Craddock and  
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Table 3-5. Genotoxicity of Carbon Tetrachloride In Vivo 

Species (test system) End point Results Reference 
Oral route: 

Drosophila 
melanogastera 

 Rat hepatocytesb 


 Rat hepatocytesb 


 Rat hepatocytesb


 Rat hepatocytesc


 Rat hepatocytesd


 Rat hepatocytese


 Rat hepatocytesf


 Rat hepatocytesg


 Rat liverh 

Rat liver (partially 
hepatectomized)i 

Hamster liver and 
kidneyj 

Mouse liver, stomach,  
kidney, bladder, lung, 
brain, bone marrowk 

Mouse stomach,  
kidney, bladder, lung, 
brain, bone marrowl 

 Mouse liverm 

 Mouse livern 

Mouse bone marrowo 

Intraperitoneal injection: 
D. melanogasterp 

Rat forestomach, liver, 
lung, colon, kidneyq 

 Rat liverr 

 Rat livers 

 Hamster livers 

 Mouse livers 

 Mouse peripheral 
reticulocytest 

Mouse bone marrowu 

Sex-linked recessive mutation 

Chromosomal aberrations 
Sister chromatid exchange 
Micronuclei 
Unscheduled DNA synthesis 

 Unscheduled DNA synthesis 
Unscheduled DNA synthesis 
Unscheduled DNA synthesis 
DNA damage 
DNA adducts (lipid peroxidation) 
Caffeine elutable (single-stranded) 
DNA 
DNA adducts (Iipid peroxidation) 

DNA damage (comet assay) after 
3 hours 

DNA damage (comet assay) after 
24 hours 

DNA damage (comet assay) after 
24 hours 
DNA damage (alkaline elution) 
after 4 hours 
Micronuclei after 24–72 hours 

Sex-linked recessive mutation 
DNA adducts (lipid peroxidation) 

DNA adducts (lipid peroxidation) 
Covalent binding to DNA 
Covalent binding to DNA 
Covalent binding to DNA 
Micronuclei 

Micronuclei after 24 or 48 hours 

– Foureman et al. 1994 

– Sawada et al. 1991 
– Sawada et al. 1991 
– Sawada et al. 1991 
– Mirsalis and Butterworth 1980 
– Mirsalis et al. 1982 
– Craddock and Henderson 1978 

[+] Craddock and Henderson 1978 
– Bermudez et al. 1982 
+ Chaudhary et al. 1994 
– Stewart 1981 

+ Wang and Liehr 1995 

– Sasaki et al. 1998 

– Sasaki et al. 1998 

[+] Sasaki et al. 1998 

– Schwartz et al. 1979 

– Suzuki et al. 1997 

– Foureman et al. 1994 
[+] Wacker et al. 2001 

[+] Chung et al. 2001 
+ Castro et al. 1989 
+ Castro et al. 1989 
+ Castro et al. 1989 
– Suzuki et al. 1997 

– Crebelli et al. 1999 
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Table 3-5. Genotoxicity of Carbon Tetrachloride In Vivo 

Species (test system) End point Results Reference 
Oral route: 
 Rat liverv DNA damage (reduced viscosity) – Brambilla et al. 1983 

after 2 hours 
 Rat liverw DNA damage (alkaline elution) – Barbin et al. 1983 

after 4 hours 

aMales exposed to dietary concentration of 25,000 ppm for 72 hours prior to mating with untreated females. 
bMale F344 rats exposed to 1,600 mg/kg carbon tetrachloride by oral gavage in corn oil 4–72 hours prior to sacrifice. 
c

d
Male F344 rats exposed to 100 mg/kg carbon tetrachloride by oral gavage in corn oil. 
Male F344 rats exposed to 400 mg/kg carbon tetrachloride by oral gavage in corn oil. 

eFemale Wistar rats exposed to 4,000 mg/kg carbon tetrachloride by oral gavage in liquid paraffin; injected with 
hydroxyurea to stop de novo DNA synthesis and tritiated thymidine two hours after dosing. 
fFemale Wistar rats exposed to 4,000 mg/kg carbon tetrachloride by oral gavage in liquid paraffin; injected with 
hydroxyurea to stop de novo DNA synthesis and tritiated thymidine 17 hours after dosing.  Increase in DNA 
synthesis associated with increased tissue regeneration, but no unscheduled DNA synthesis. 
gMale Fischer 344 rats exposed to 400 mg/kg carbon tetrachloride by oral gavage in corn oil; nuclei of hepatocytes 
isolated 2, 12, or 24 hours after dosing were analyzed by alkaline elution. 
hSprague-Dawley rats (sex not specified) exposed to 0.1 mg/kg carbon tetrachloride by oral gavage 4 days before 
sacrifice. 
iFemale Wistar rats, 3 weeks after partial hepatectomy and treatment with tritiated thymidine, exposed to 200–

800 mg/kg carbon tetrachloride by oral gavage in corn oil 4 or 24 hours before sacrifice. 

jFemale Syrian golden hamsters exposed to 160 or 1,600 mg/kg carbon tetrachloride by oral gavage in corn oil 

4 days prior to sacrifice. 

kMale CD-1 mice, exposed to 2,000 mg/kg carbon tetrachloride by oral gavage in corn oil.

lMale CD-1 mice, exposed to 500, 1,000, or 2,000 mg/kg carbon tetrachloride by oral gavage in corn oil. 
mMale CD-1 mice, exposed to hepatotoxic doses of 1,000 or 2,000 mg/kg carbon tetrachloride by oral gavage in corn 
oil; no effect observed at 500 mg/kg. 
nMale and female NMRI mice exposed to 4,000 mg/kg carbon tetrachloride by oral gavage in corn oil 4 hours before 
sacrifice. 
oMale BDF1 mice exposed to 500, 1,000, or 2,000 mg/kg carbon tetrachloride by oral gavage in olive oil 24 hours 
before sacrifice. 
pMales injected with 0.7% NaCl containing 2,000 ppm carbon tetrachloride in ethanol 24 hours before mating. 
qFemale F344 rats injected with 500 mg/kg carbon tetrachloride 4–24 hours before sacrifice. 
rMale F344 rats injected with 3,200 mg/kg carbon tetrachloride in olive oil.

sAnimals injected with 770 mg/kg radiolabeled carbon tetrachloride 6 hours before sacrifice. 

tMale BDF1 mice injected with 2,000 or 3,000 mg/kg carbon tetrachloride 24–72 hours before sacrifice. 

uMale or female CD-1 mice injected with 1,500 or 3,000 mg/kg carbon tetrachloride 24–48 hours before sacrifice. 

vMale Sprague-Dawley rats injected with 200 mg/kg carbon tetrachloride. 
wMale BD-V1 rats injected with 4,000 mg/kg carbon tetrachloride. 

– = negative result; + = positive result; [+] = hepatotoxicity was evident; DNA = deoxyribonucleic acid 
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Table 3-6. Genotoxicity of Carbon Tetrachloride In Vitro 

Results 
Test system With Without 
Species (concentration)a End point activation activation Reference 
Prokaryotic organisms: 

Escherichia coli K-12 343/113 
(15.4 mg/mL) 
E. coli WP2, WP67, CM871; 
liquid micromethod, sealed 
(12.5 µg) 
E. coli WP2, WP67, CM871; 
2-hour preincubation, sealed 
E. coli WP2, WP67, CM871; 
spot test 
E. coli PQ37 (1540 µg/mL) 

E. coli WP2/pKM101; 
WPuvrA/pKM101 (1,000 ppm; 
enclosed gas atmosphere 
24 hours) 
E. coli WPuvrA/pKM101 
(10,000 ppm; enclosed gas 
atmosphere 24 hours) 
Salmonella typhimurium TA98 
(10,000 ppm; enclosed gas 
atmosphere 24 hours) 
S. typhimurium TA100, 
TA1535, TA1537 (50,000 ppm) 
S. typhimurium TA100, TA1535 
(10 mg/plate) 
S. typhimurium TA1535, 

TA1538 (1,230 µg/mL) 

S. typhimurium TA98, TA100, 
TA1535, TA1537, TA1538 
S. typhimurium TA1535, TA98, 
TA100) (2,830 µg/plate) 
S. typhimurium TA98, TA100, 
TA1535, TA1537, TA1538 
(10 mg/plate) 
S. typhimurium TA1537, TA100 
(2,450 µg/plate) 
S. typhimurium TA98 

(2,450 µg/plate)

S. typhimurium TA1535 

(2,450 µg/plate)

S. typhimurium TA1535/ 

pSK1002 (5.3 mg/plate)


Differential DNA repair – – Hellmer and 
Bolcsfoldi 1992 

Differential DNA repair + + De Flora et al. 1984 

Differential DNA repair – 


Differential DNA repair NT 


SOS induction (DNA – 

repair) 

Reversion frequency + 


+ De Flora et al. 1984 

– De Flora et al. 1984 

– Brams et al. 1987 

+ Araki et al. 2004 

Reversion frequency +/– +/– Araki et al. 2004 

Reversion frequency – +/– Araki et al. 2004 

Reversion frequency – 

Reversion frequency – 

Reversion frequency – 

Reversion frequency No data 

Reversion frequency – 

Reversion frequency – 

+b +

– Araki et al. 2004 

– McCann et al. 1975 

No data Uehleke et al. 1977 

– Simmon et al. 1977 

– Barber et al. 1981 

– De Flora 1981, De 
Flora et al.1984 

bReversion frequency Varma et al. 1988 

+ bReversion frequency NT 

Reversion frequency NT 

SOS induction (umu – 
expression) 

Varma et al. 1988 

– Varma et al.1988 

– Nakamura et al. 1987 
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Table 3-6. Genotoxicity of Carbon Tetrachloride In Vitro 

Test system 
Species (concentration)a End point 

Results 
With Without 
activation activation Reference 

S. typhimurium BA13 and 
BAL13; sealed (1,230 µg/plate) 

Eukaryotic organisms: 
Aspergillus nidulans P1 
(diploid) (0.5%) 

A. nidulans P1 (diploid) 

(0.0275%)

A. nidulans 35 (haploid); 

(growth mediated) (0.5%)

A. nidulans 35 (haploid); plate 
incorporation (0.5%) 
Saccharomyces cerevisiae D7 
(5230 µg/mL) 

S. cerevisiae RS112 (diploid) 
(4 mg/mL) 

S. cerevisiae RS112 (diploid) 
(4 mg/mL) 
S. cerevisiae RS112 (diploid) 
(4 mg/mL) 
S. cerevisiae RS112 (diploid); 
arrested in G1 (5 mg/mL) 
S. cerevisiae RS112 (diploid); 
arrested in G1  (8 mg/mL) 
S. cerevisiae AGY3 (arrested in 
G2) (8 mg/mL) 
S. cerevisiae D61.M 
(6.4 mg/mL) 

Mammalian cells: 
Rat liver cell line (RL1) 
(0.02 µg/mL) 
Rat hepatocytes (Wistar) 

(154 µg/mL) 

Rat hepatocytes (460 µg/mL) 

Rat hepatocytes (CD) 

(154 µg/mL) 


 Human/peripheral lymphocytes 

(48 µg/mL)


 Human/peripheral lymphocytes 

(76 µg/mL)

Human/ peripheral lymphocytes 

(1,540 µg/mL)


Forward mutation (AraR – – Roldan-Arjona et al. 

test) 1991 


Somatic segregation, NT + (CT) Gualandi 1984

crossovers, non

disjunction frequency 

Somatic segregation NT + (CT) Benigni et al. 1993 


Forward mutation (su NT + (CT) Gualandi 1984

meth G1) 

Forward mutation (su NT – Gualandi 1984

meth G1) 

Frequency of convert- No data + Callen et al. 1980 

ants recombinants, 

revertants 

DEL (intrachromosomal NT + (CT) Schiestl et al. 1989; 

recombinant HIS+) Brennan and Schiestl 


1998 
Interchromosomal NT – Schiestl et al. 1989 
recombinant (ADE+) 
DEL (intrachromosomal NT +/– (see Galli and Schiestl 
recombinant HIS+) text) 1998 
Interchromosomal NT + (CT) Galli and Schiestl 
recombinant (ADE+) 1996 
DEL (intrachromosomal NT + (CT) Galli and Schiestl 
recombinant HIS+) 1996 
DEL (intrachromosomal NT + (CT) Galli and Schiestl 
recombinant HIS+) 1995 
Aneuploidy NT – Whittaker et al. 1989 

Chromatid gaps, 
deletions or aberrations 
DNA strand breaks, 
adducts 
DNA damage 
Unscheduled DNA 
synthesis 
Sister chromatid 
exchange 
Chromosomal 
aberration 

No data – Dean and Hodson-
Walker 1979 

NT + Beddowes et al. 
2003 

NT +(CT) Sina et al. 1983 
NT – Selden et al. 1994 

– – Garry et al. 1990 

– – Garry et al. 1990 

+c +cMicronuclei Tafazoli et al. 1998 
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Table 3-6. Genotoxicity of Carbon Tetrachloride In Vitro 

Test system 
Species (concentration)a End point 

Results 
With Without 
activation activation Reference 

Human/ peripheral lymphocytes 

(3,080 µg/mL)


 Human/peripheral lymphocytes 

(16 mg/mL)


 Human lymphoblastoid cells 

AHH-1 (1,540 µg/mL) 


 Human lymphoblastoid cells 

h2E1, MCL-5 (308 µg/mL)

Lamb (Ovis aries)/peripheral 

lymphocytes (16 µg/mL)

Lamb (Ovis aries)/peripheral 

lymphocytes (4 µg/mL) 

Chinese hamster ovary cells 

(1,490 µg/mL)

Chinese hamster ovary cells 

(3,000 µg/mL)

Chinese hamster ovary cells 

(8 mg/mL) 

Chinese hamster V79 cells 

(246 µg/mL) 

Chinese hamster V79 cells 


Syrian hamster embryo cells 

(3 µg/mL) 

Calf thymus DNA (308 µg/mL) 


DNA damage (comet 
assay) 
Unscheduled DNA 
synthesis 
Micronucleus formation 

Micronucleus formation 

Chromosomal 
aberration 
Micronucleus formation 

Sister chromatid 
exchange 
Chromosomal 
aberration 
Chromosomal 
aberration at anaphase 
Aneuploidy 

Spindle disturbances 
(c-mitosis) 
Clonal transformation 

Covalent binding 

– 

+/– (CT) 

NT 

NT 

NT 

+ 

– 

– 

NT 

NT 

NT 

NT 

+ 

– 

– 

– 

+ 

– 

+ 

– 

– 

+ 

+ 

+ (CT) 

+/-

NT 

Tafazoli et al. 1998 

Perocco and Prodi 
1981 
Doherty et al. 1996 

Doherty et al. 1996 

Sivikova et al. 2001 

Sivikova et al. 2001 

Loveday et al. 1990 

Loveday et al. 1990 

Coutino 1979 

Onfelt 1987 

Onfelt 1987 

Amacher and Zelljadt 
1983 
DiRenzo et al. 1982 

a

b
Concentrations are the highest tested in negative studies and the lowest tested in negative studies. 
Effect not dose-related but cytotoxicity not evaluated. 

cEffect not dose-related, seen only in cells from one of two subjects. 

– = negative result; + = positive result; +/– = weak positive; CT = increase with cytotoxicity; NT = not tested; 
plate = plate incorporation assay; sealed = assay vessel sealed to prevent evaporation 
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Henderson 1978). Single high doses of carbon tetrachloride resulted in DNA breakage in the liver (but 

not other tissues) that was detectable electrophoretically (comet assay) in mice, but only 24 hours after 

dosing (Sasaki et al. 1998).  No increase in DNA breakage was detected in mice assayed only 3 or 4 hours 

after receiving a high dose (Sasaki et al. 1998; Schwarz et al. 1979) or in rats exposed at a lower dose 

(Bermudez et al. 1982).  Stewart (1981) found no increase in the generation of DNA repair intermediates 

(with accessible single-strand regions) in the livers of partially hepatectomized female Wistar rats given 

doses insufficient to cause overt hepatic necrosis 24 hours after exposure.  The results of these studies 

suggest that DNA breakage resulting from oral exposure to carbon tetrachloride is related to hepatic 

cytotoxicity. 

Some genotoxicity of carbon tetrachloride following oral exposure is related to the lipid peroxidation 

activity of its metabolites.  Increases in endogenous lipid peroxidation adducts of DNA, such as  

malondialdehyde deoxyguanosine, were noted in the liver and kidney of hamsters and the liver of rats  

dosed with carbon tetrachloride (Chaudhary et al. 1994; Wang and Liehr 1995).  

Dermal Exposure. No studies were located regarding genotoxic effects in humans or animals after 

dermal exposure to carbon tetrachloride. 

Other Routes of Exposure In Vivo. Results of genotoxicity assays in which carbon tetrachloride was 

administered by intraperitoneal injection were similar to results from oral gavage assays.  Carbon 

tetrachloride caused no increase in frequencies of sex-linked recessive mutations in D. melanogaster 

(Foureman et al. 1994) or micronucleus formation in mice (Crebelli et al. 1999; Suzuki et al. 1997). 

Hepatic DNA damage was not detectable electrophoretically in rats assayed 2–4 hours after exposure 

(Barbin et al. 1983; Brambilla et al. 1983).   

Two kinds of DNA adducts related to carbon tetrachloride metabolism have been detected in injection 

studies. Covalent binding of metabolites of radiolabeled carbon tetrachloride was detected in the hepatic 

DNA of rats, hamsters, and mice 6 hours after injection (Castro et al. 1989); the level of binding to DNA 

was similar in the three species, whereas binding to nuclear proteins was 3 times higher in mice and 

hamsters than in rats.  In other rat studies, carbon tetrachloride significantly increased the level of an 

endogenous lipid peroxidation product, trans-4-hydroxy-2-nonenal, and its deoxyguanosine adduct, 

1,N2-propanodeoxyguanosine (Chung et al. 2000; Wacker et al. 2001).  The affected tissues included the 

liver and forestomach, and to a lesser degree the lung, colon, and kidney (Chung et al. 2000; Wacker et al. 

2001).  Hepatic increases in adduct formation were about 2-fold following a dose of 500 mg/kg and ~37
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fold following a dose of 3,200 mg/kg (Chung et al. 2000).   In vivo genotoxicity studies are summarized 

in Table 3-5. 

In Vitro. The genotoxicity of carbon tetrachloride has been studied in prokaryotic and eukaryotic cells in 

vitro (Table 3-6). 

The majority of mutagenicity assays for bacteria exposed to carbon tetrachloride have been negative with 

or without metabolic activation, but volatilization of the chemical in standard plate incorporation methods 

using unsealed plates may have contributed to some negative findings.  In Salmonella typhimurium, 

negative results were reported for a preincubation forward mutation assay in strains BA13 and BAL13 

using sealed plates (Roldan-Arioina et al. 1991), for an SOS induction assay in strain TA1535/pSK1002 

(Nakamura et al. 1987), and for reverse mutation assays in several strains (Araki et al. 2004; Barber et al. 

1981; De Flora 1981, De Flora et al. 1984; McCann et al. 1975; Simmon et al. 1977; Uehleke et al. 1977; 

Varma et al. 1988).  Increases in reverse mutation frequency were observed in plate incorporation assays 

for strains TA1537 and TA100 with or without activation and TA98 without activation, but the responses 

were not dose-related and cytotoxicity was not examined (Varma et al. 1988).  Weak positive results for 

mutagenicity were also reported for strain TA98 exposed to 10,000 ppm carbon tetrachloride vapor in an 

enclosed system (Araki et al. 2004).  In the same gas-phase system, weakly increased reversion 

frequencies with or without metabolic activation were reported for Escherichia coli strain 

WPuvrA/pKM101 and stronger increases for strain WP2/pKM101, which is repair-proficient.  Negative 

results were reported for an SOS induction assay in E. coli strain PQ37 (Brams et al. 1987) and a 

differential DNA repair assays in strains K-12 343/113 (Hellmer and Bolcsfoldi 1992).  Induction of 

differential DNA repair was observed in strains WP2, WP67, and CM871 when assays were conducted in 

sealed vessels, but not when conducted as spot tests (De Flora et al. 1984).   

Assays for the genotoxicity (somatic segregation, non-disjunction frequency, forward mutation) of carbon 

tetrachloride in the mold Aspergillus nidulans were negative or positive only with cytotoxicity (Benigni et 

al. 1993; Gualandi 1984).  Carbon tetrachloride did not induce aneuploidy in the yeast Saccharomyces 

cerevisiae strain D61.M (Whittaker et al. 1989).  Similarly, cytotoxicity was generally observed at 

concentrations at which positive or weak positive results were reported for genotoxicity (interchromo

somal recombination or reversion) in S. cerevisiae (Brennan and Schiestl 1998; Callen et al. 1980; Galli 

and Schiestl 1996).   Galli and Schiestl (1998) observed that carbon tetrachloride induced 

intrachromosomal recombination in dividing cells or cells arrested in G1 or G2 phase, but not cells in 

S-phase. These authors suggested that chemical-induced cytotoxicity prematurely pushed G1 cells into 
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S-phase, indicating that genotoxicity might result from the failure to completely repair DNA before 

replication, resulting in DNA strand breaks.    

In vitro genotoxicity assays in mammalian cells treated with carbon tetrachloride gave results consistent 

with in vivo bioassays.  Carbon tetrachloride yielded weak positive results (1 out of 2,003 clones counted) 

in a clonal transformation assay in hamster embryo cells exposed without activation (Amacher and 

Zelljadt 1983). No increase in unscheduled DNA synthesis was observed in rat hepatocytes or human 

peripheral lymphocytes treated without metabolic activation, although weak positive results were 

observed in human lymphocytes treated with activation at cytotoxic concentrations (Perocco and Prodi 

1981; Selden et al. 1994).  Negative results in standard chromosomal aberration assays were reported for 

exposed rat hepatocytes, human peripheral lymphocytes, lamb lymphocytes, and Chinese hamster ovary 

cells (Dean and Hodson Walker 1979; Garry et al. 1990; Loveday et al. 1990; Sivikova et al. 2001).  

However, one study that examined Chinese hamster ovary cells for chromosomal aberrations at anaphase 

rather than metaphase reported 6-fold increases in lag chromosomes (indicative of centromere or 

microtubule malfunction) and multipolar spindles (Coutino 1979).  Aneuploidy was induced in treated 

Chinese hamster V9 lung cells, but a 10% increase in spindle aberrations (c-mitosis) only occurred at a 

concentration at which 50% cytotoxicity was observed (Onfelt 1987).  The frequency of sister chromatid 

exchanges was not elevated in human peripheral lymphocytes or Chinese hamster ovary cells treated with 

or without metabolic activation (Garry et al. 1990; Loveday et al. 1990).  Micronucleus formation was 

induced in treated peripheral lymphocytes taken from one of two human donors (Tafazoli et al. 1998).  In 

micronucleus assays in cultured human lymphoblastoid cells, negative results were reported for a cell line 

(AHH-1) with a low native level of  CYP1A1 activity, but positive results for derivative cell lines 

expressing cDNA for one or more human microsoal enzymes (CYP2E1 in line h2E1 and CYP 1A2, 2A6, 

3A4, and 2E1 and epoxide hydrolase in line MCL-5) (Doherty et al. 1996).  These results demonstrate 

that biotransformation of carbon tetrachloride is needed for micronucleus induction.  Increases in single-

strand DNA breaks were observed in rat hepatocytes exposed to cytotoxic concentrations of carbon 

tetrachloride, but not in exposed human lymphocytes (Beddowes et al. 2003; Sina et al. 1983; Tafazoli et 

al. 1998) 

As reported for in vivo studies, DNA adducts have been detected in mammalian cells following exposure 

to carbon tetrachloride in vitro. Covalent binding of radiolabeled carbon tetrachloride to DNA and 

protein was detected in hepatic nuclear preparations from male Sprague-Dawley rats, Syrian Golden 

hamsters, and C3H mice (Castro et al. 1989).  When NADPH was added to the reaction mixtures, the 

level of covalent binding to DNA was enhanced for hamsters and mice, but not rats.  Direct covalent 
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binding of carbon tetrachloride to calf thymus DNA was detected following microsomal bioactivation 

(DiRenzo et al. 1983); the degree of binding was increased 2.2-fold when the DNA samples were pre

treated with pronase, suggesting that reactive metabolites of carbon tetrachloride react with both DNA 

and protein. Carbon tetrachloride treatment of rat hepatocytes or hepatic microsomes also increased the 

frequency of DNA adducts generated as by-products of lipid peroxidation (Beddowes et al. 2003; Castro 

et al. 1997). In treated hepatocytes, there were statistically significant increases (compared to background 

levels) in malondialdehyde deoxyguanosine adducts (Beddowes et al. 2003).  Increases in 8-oxodeoxy-

guanosine adducts were observed at the threshold of, and concomitant with, cytotoxicity.  A biochemical 

study using DNA bases and liver microsomes from male Sprague-Dawley rats demonstrated that the 

bioactivation of carbon tetrachloride resulted in the formation of adducts to guanine (2,6-diamino-

4-hydroxy-5-formamidopyrimidine), cytosine (5-hydroxycytosine), and thymidine (5-hydroxy-

methyluracil), but not to adenine (Castro et al. 1997).  The authors attributed formation of these adducts to 

reactive metabolites (trichloromethyl or trichloromethylperoxyl free radicals) or to reactive aldehydes, 

such as malondialdehyde, which are generated by lipid peroxidation.  In vitro genotoxicity studies are 

summarized in Table 3-6. 

3.4 TOXICOKINETICS 

Carbon tetrachloride is absorbed readily from the gastrointestinal and respiratory tracts, and more slowly 

through the skin.  It is distributed to all major organs, with highest concentrations in the fat, liver, bone 

marrow, adrenals, blood, brain, spinal cord, and kidney (Bergman 1983; Dambrauskas and Cornish 1970; 

McCollister et al. 1951; Paustenbach et al. 1986a, 1986b).  Once carbon tetrachloride is absorbed, it is 

metabolized by cytochrome P-450 enzymes, with the production of the trichloromethyl radical (Lai et al. 

1979; Poyer et al. 1978).  Aerobically, metabolism of the trichloromethyl radical can eventually form 

phosgene (Shah et al. 1979). Anaerobically, the radical can undergo reactions to form chloroform 

(Glende et al. 1976; Uehleke et al. 1973), hexachloroethane (Fowler 1969; Uehleke et al. 1973), or carbon 

monoxide (Wolf et al. 1977), as well as bind directly to lipids, proteins, and deoxyribonucleic acid (DNA) 

(Rao and Recknagel 1969).  Carbon tetrachloride is excreted primarily in exhaled air (initial elimination 

half-life of 1–3 hours) and in the feces, while relatively minimal amounts are excreted in the urine 

(McCollister et al. 1951; Paustenbach et al. 1986a; Stewart and Dodd 1964; Stewart et al. 1961, 1963, 

1965; Young and Mehendale 1989). 



103 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

3.4.1 Absorption 

3.4.1.1 Inhalation Exposure 

Although there are many cases of human overexposure to carbon tetrachloride vapor, there are few 

quantitative studies of pulmonary absorption of carbon tetrachloride in humans.  Based on the difference 

in carbon tetrachloride concentration in inhaled and exhaled air, absorption across the lung was estimate 

to be about 60% in humans (Lehmann and Schmidt-Kehl 1936). Monkeys exposed to 50 ppm absorbed 

an average of 30.4% of the total amount of carbon tetrachloride inhaled, at an average absorption rate of 

0.022 mg carbon tetrachloride/kg/minute (McCollister et al. 1951).  The concentration of carbon 

tetrachloride in the blood increased steadily in monkeys, but did not reach a steady-state within 

344 minutes of exposure.  In rats exposed to 100 or 1,000 ppm for 2 hours, the total absorbed dose of 

carbon tetrachloride was 17.5 or 179 mg/kg of body weight, respectively (Sanzgiri et al. 1995).  (These 

results were used to establish dose levels for parallel oral-route studies described in Section 3.4.1.2.)  

Carbon tetrachloride was rapidly absorbed from the lungs as indicated by the near peak levels that were 

measured in arterial blood at the earliest timepoint (5 minutes).  A near steady-state was achieved within 

10 or 15 minutes and was maintained for the duration of the 2-hour exposures.  In rats, mice, and 

hamsters exposed to 20 ppm 14C-labeled carbon tetrachloride vapor for 4 hours, the initial body burdens 

of carbon tetrachloride equivalents (CE) immediately following exposure were 12.1, 1.97, and 3.65 µmol, 

respectively (Benson et al. 2001). 

3.4.1.2 Oral Exposure  

No studies were located regarding absorption in humans after oral exposure to carbon tetrachloride.  It 

would be anticipated, however, that carbon tetrachloride is well absorbed from the gastrointestinal tract of 

humans, since carbon tetrachloride is readily absorbed from the gastrointestinal tract of animals (see 

below), and there are many accounts of human poisonings resulting from ingestion of carbon tetrachloride 

(e.g., Ashe and Sailer 1942; Conway and Hoven 1946; Gosselin et al. 1976; Guild et al. 1958; Kluwe 

1981; Lamson et al. 1928; Phelps and Hu 1924; Ruprah et al. 1985; Stewart et al. 1963; Umiker and 

Pearce 1953; von Oettingen 1964). 

Results from several animal studies indicate that carbon tetrachloride is rapidly and extensively absorbed 

from the gastrointestinal tract.  Typically, 80–85% of an oral dose may be recovered in expired air, 

indicating that gastrointestinal absorption is at least 85% (Marchand et al. 1970; Paul and Rubinstein 
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1963).  The time course of absorption depends on exposure conditions, with peak blood levels occurring 

as early as 3–6 minutes after dosing (Kim et al. 1990a).  While oral absorption from water or other 

aqueous vehicles is very rapid and extensive, when carbon tetrachloride is administered using corn oil as 

the vehicle, absorption is slowed and diminished (Gillespie et al. 1990; Kim et al. 1990a).  Similar 

findings were reported by Withey et al. (1983) for several other halogenated hydrocarbons.  The 

absorption rate and, therefore, peak blood levels will be inversely proportional to the volume of corn oil 

employed in oral dosing. 

Sanzgiri et al. (1995) compared pharmacokinetics of carbon tetrachloride administered to fasted rats as a 

single bolus by gavage or by infusion over 2 hours.  The doses, 17.5 and 179 mg/kg, were established by 

uptake measured in a 2-hour inhalation experiment (see Section 3.4.1.1).  Carbon tetrachloride was 

rapidly absorbed in the gastrointestinal tract.  Peak arterial blood concentrations were reached within 

15 minutes of bolus administration and then declined, whereas infusion caused a steady increase over the 

2-hour period.  The peak concentrations were higher for the bolus group than for the infusion group. 

3.4.1.3 Dermal Exposure  

Carbon tetrachloride is significantly absorbed through the skin of humans, though less readily than from


the lung or gastrointestinal tract.  When volunteers immersed their thumbs in undiluted carbon 


tetrachloride for 30 minutes, carbon tetrachloride was detected in the alveolar air of each subject within 


10 minutes, indicating relatively rapid percutaneous absorption (Stewart and Dodd 1964).  The alveolar 


concentration of carbon tetrachloride rose steadily thereafter and peaked by about 30 minutes 


postexposure.  The authors estimated that immersion of both hands in liquid carbon tetrachloride for 


30 minutes would yield an exposure equivalent to breathing 100–500 ppm for 30 minutes.  The 


investigators noted that the amount of carbon tetrachloride that can penetrate human skin appeared to be 


related to the method of application, the duration and area of skin exposure, and the type of skin exposed.   


Studies in animals confirm that liquid carbon tetrachloride is absorbed through the skin (Jakobson et al. 


1982; Morgan et al. 1991; Tsuruta 1975). The rate of uptake is high enough (54 nmol/min/cm2 in mice) 


that absorbed doses may be comparable to the doses absorbed from relatively high levels of carbon 


tetrachloride in air (Tsuruta 1975).  Uptake kinetics are linear only for a short time (about 30 minutes), 


after which blood levels tend to decrease (Jakobson et al. 1982; Morgan et al. 1991).  This is probably due 


to local vasoconstriction in the exposed skin area.  During the course of a 24-hour exposure 


(2 mL/3.1 cm2 skin), rats absorbed 27% (0.54 mL) of the applied neat solution, whereas >99% of the 
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carbon tetrachloride in 110–648 µg/mL aqueous solutions (approximately one-third to completely 

saturated) was absorbed (Morgan et al. 1991).  Rather broad peak blood concentrations of approximately 

8–70 ng/mL were observed 2–8 hours into the exposure period.  In monkeys, the dermal absorption of 

radioactive carbon tetrachloride vapor at concentrations of 485 or 1,150 ppm over a period of 240 or 

270 minutes, respectively, was negligible, as measured in samples of blood and expired air (McCollister 

et al. 1951). 

3.4.2 Distribution  

3.4.2.1 Inhalation Exposure 

No studies were located regarding distribution in humans after inhalation exposure to carbon 

tetrachloride. 

Inhalation studies in monkeys (McCollister et al. 1951), rats (Benson et al. 2001; Dambrauskas and 

Cornish 1970; Paustenbach et al. 1986a, 1986b; Sanzgiri et al. 1997), and hamsters and mice (Benson et 

al. 2001) reveal that the highest carbon tetrachloride concentrations occur in fat, and in organs or tissues 

with high fat content such as bone marrow, liver, brain, and kidney.  In rats exposed to 1,000 ppm for 

2 hours (receiving a dose of 179 mg/kg), the maximal concentration of carbon tetrachloride was reached 

within 30 minutes (the earliest timepoint) in the liver, kidney, lung, brain, heart, muscle, spleen, and 

gastrointestinal tract, and by 240 minutes in fat (Sanzgiri et al. 1997).  The maximal concentration of 

carbon tetrachloride (µg/g tissue) achieved in the kidney was 1.25 times higher than the liver.  The area 

under the tissue concentration versus time curve (AUC) for the first 30 minutes of exposure was 322, 409, 

460, and 710 µg per minute/mL, respectively, for the liver, kidney, brain, and fat.  The half-life of 

clearance from different organs (evaluated over 24 hours) ranged from 204 minutes for the kidney, 

249 minutes for the liver to 665 minutes for fat.  Through the use of a low temperature whole-body 

autoradiographic technique, Bergman (1983) observed a particularly high uptake of 14C-carbon 

tetrachloride into the white matter of brain, spinal cord, and spinal nerves in mice exposed by inhalation.  

Considerably lower levels were found in the kidney, lung, spleen, muscle, and blood. 

Immediately following exposure to 20 ppm 14C-labeled carbon tetrachloride vapor for 4 hours, the 

proportion of the initial body burden as carbon tetrachloride equivalents (CE) present in the major tissues 

was 30% for rats and hamsters and 40% for mice (Benson et al. 2001).  The CE concentrations at that 
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time were highest in the liver of mice and hamsters but were highest in fat for rats; 48 hours later, CE 

concentrations in all three species were highest in the liver.   

3.4.2.2 Oral Exposure  

No studies were located regarding distribution in humans after oral exposure to carbon tetrachloride. 

Studies of the time-course of tissue distribution in male rats given oral doses of carbon tetrachloride 

reported that concentrations in the blood, striated muscle, brain, and liver were maximal 2 hours after 

dosing (Marchand et al. 1970).  The peak concentrations in the liver and brain were significantly higher 

than in the muscle and blood.  Peak levels in the fat were not reached until 5.5 hours post dosing, at which 

time they were more than 50-fold greater than peak blood levels.  A similar time-course of tissue 

deposition of carbon tetrachloride has been observed in female rats (Teschke et al. 1983) and rabbits 

(Fowler 1969) dosed orally with carbon tetrachloride.  Higher carbon tetrachloride levels were found 

consistently in the liver than in the brain of rats dosed orally (Marchand et al. 1970; Watanabe et al. 

1986). This may be because carbon tetrachloride absorbed from the gastrointestinal tract enters the portal 

circulation, which initially passes through the liver.  A significant proportion of the carbon tetrachloride is 

likely taken up from the portal blood during the first pass, resulting in the high liver levels following 

ingestion. One week after exposure to 14C-carbon tetrachloride, the concentrations of radiolabel 

(expressed as mmol carbon tetrachloride/g tissue) were about 1.5 in plasma, 5–6.5 in soleus and white 

vastus lateralis muscle, 8 in liver, 10 in kidney and diaphragm, and 13 in adipose tissue (Weber et al. 

1992).  It is interesting to note that phenobarbital pretreatment, often used to hasten or intensify the toxic 

effects of carbon tetrachloride exposure, was found not only to nearly double the amount of radiolabel 

retained in the examined tissues, but also to significantly alter its distribution.  Liver, kidney, and plasma 

concentrations were elevated to 600, 350, and 150% of their respective control (carbon tetrachloride 

alone) levels, while the muscle, diaphragm, and adipose levels were reduced to 40–70%.  This 

observation is consistent with higher levels of the administered dose being metabolized (largely in the 

liver) and subsequently entering the carbon pool. 

Sanzgiri et al. (1997) exposed rats by bolus dosing or gastric infusion over 2 hours to a dose of carbon 

tetrachloride that was equivalent to the amount absorbed during a 2-hour exposure at 1,000 ppm.  In rats 

receiving a dose of 179 mg/kg by infusion over 2 hours, the maximal concentration of carbon 

tetrachloride was reached by 120 minutes in the liver, kidney, and heart, 150 minutes in the brain, muscle, 

and spleen, 180 minutes in lung, and by 360 minutes in fat (Sanzgiri et al. 1997). The AUC for the first 
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30 minutes of exposure was 3, 4, 28, and 157 µg per minute/mL, respectively, for the liver, kidney, brain, 

and fat in infused rats.  Absorption of carbon tetrachloride was more rapid and organ concentrations of 

carbon were higher in rats that received the same dose as a single bolus by gavage.  The maximal 

concentration was reached by 1 minute in the liver, 5 minutes in the kidney, heart, and spleen, 15 minutes 

in lung and brain, 60 minutes in muscle, and 120 minutes in fat.  The AUC for the first 30 minutes was 

680, 380, 423, and 306 µg per minute/mL, respectively, for the liver, kidney, brain, and fat in the bolus-

treated rats. The authors indicated that the bolus-delivery resulted in high 30-minute AUC values because 

the capacity of first-pass hepatic and pulmonary elimination was exceeded.  The half-life of clearance 

from different organs (based on the AUC over 24 hours) ranged from 190 minutes for the kidney and 

269 minutes for the liver to 358 minutes for fat in the infused rats, and from 278 minutes for the kidney 

and 323 minutes for the liver to 780 minutes for fat in the bolus-treated rats.  The maximum tissue 

concentrations (µg/g tissue) achieved in the kidney were 24% of the value for the liver following bolus 

dosing, but 8 times higher than the liver following gastric infusion. 

3.4.2.3 Dermal Exposure  

No studies were located regarding distribution in humans or animals after dermal exposure to carbon 

tetrachloride. 

3.4.3 Metabolism 

The metabolism of carbon tetrachloride in humans has not been investigated, but a great deal of 

information is available from studies in animals.  Pathways of carbon tetrachloride metabolism are 

illustrated in Figure 3-3, and metabolites that have been identified are underlined.  Bioactivation of 

carbon tetrachloride proceeds by cytochrome P-450-dependent reductive dehalogenation (Sipes 

et al. 1977). Ethanol inducible CYP2E1 is the primary enzyme responsible for metabolizing carbon 

tetrachloride in humans at environmentally relevant concentrations, but others, particularly CYP3A, are 

also involved at higher concentrations (Castillo et al. 1992; Zangar et al. 2000).  Studies with CYP2E1 

genetic knockout mice (cyp2e1—/—) demonstrated that hepatic toxicity of carbon tetrachloride in mice is 

entirely dependent on CYP2E1 (Wong et al. 1998). A large body of experimental data indicates that the 

first step involves homolytic cleavage of one carbon chlorine bond in carbon tetrachloride to yield 

chloride ion and the trichloromethyl radical (Lai et al. 1979; Poyer et al. 1978).  Anerobically, the  
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Figure 3-3. Pathways of Carbon Tetrachloride Metabolism* 
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trichloromethyl radical may undergo several reactions, including (1) direct binding to microsomal lipids 

and proteins (Ansari et al. 1982; Gordis 1969; Rao and Recknagel 1969; Villarruel et al. 1977); 

(2) addition of a proton and an electron to form chloroform (Glende et al. 1976; Uehleke et al. 1973); 

(3) dimerization to form hexachloroethane (Fowler 1969; Uehleke et al. 1973); and (4) further reductive 

dechlorination to form carbon monoxide (Wolf et al. 1977).  Aerobically, trichloromethyl radical (CCl3•) 

may be trapped by oxygen to form trichloromethylperoxy radical (CCl3OO•), which decomposes to 

phosgene (COCl2) (Pohl et al. 1984).  Hydrolytic cleavage of phosgene is likely the major pathway by 

which carbon dioxide is formed from carbon tetrachloride (Shah et al. 1979).  The trichloromethylperoxy 

radical is more reactive than the trichloromethyl radical towards amino acids (Packer et al. 1978). 

Metabolism of carbon tetrachloride by CYP2E1 may result in the destruction of the enzyme during the 

metabolic process (Noguchi et al. 1982a, 1982b)  CYP2E1 may be lost by either a direct attack (i.e., 

covalent binding) of radicals on the cytochrome(s) (Manno et al. 1992; Vittozzi and Nastainczyk 1987), 

or highly localized lipid peroxidation resulting in detachment of P-450 proteins from the microsomal 

membranes.  Cytochrome P-450 mediated homolytic cleavage of the carbon-chlorine bond in carbon 

tetrachloride is thought to be followed by hydrogen abstraction by the trichloromethyl radical at a 

methylene group of polyenic fatty acids in the microsomal lipids, thus forming organic free radicals.  

These organic free radicals then rapidly react with molecular oxygen, leading to the formation of organic 

peroxy free radicals and eventually organic peroxides (Rao and Recknagel 1969; Recknagel 1967; 

Recknagel and Glende 1973; Recknagel et al. 1977). The unstable organic peroxides cleave 

homolytically to form new free radicals, which attack methylene groups of neighboring polyenic lipids in 

the membrane.  This autocatalytic process occurs very rapidly; hepatic microsomal lipid peroxidation is 

more than half of its maximum value at 5 minutes, and is complete within 15 minutes after oral 

administration of carbon tetrachloride to fasted rats (Rao and Recknagel 1968). Lipid peroxidation can 

contribute to breakdown of membrane structure and loss of organelle and cell functions.  Connor et al. 

(1986) conducted a study in which they detected the trichloromethyl radical and a second free radical, the 

carbon dioxide anion radical, by electron spin resonance spectroscopy in liver perfusate and in urine of 

female rats.  Adducts of both radicals have also been detected in blood of male rats (Reinke and Janzen 

1991). 

Cytochrome P-450 from rat or human liver microsome preparations is inactivated when incubated 

anaerobically with carbon tetrachloride in the presence of NADPH and an oxygen-scavenging system 

(Manno et al. 1988, 1992).  Inactivation involved destruction of the heme tetrapyrrolic structure, and 

followed pseudo first-order kinetics with fast and slow half-lives of 4.0 and 29.8 minutes.  When 
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compared with rat liver microsomes, the human preparations were 6–7 times faster at metabolizing 

carbon tetrachloride and only about one-eighth as susceptible to self-destructing ("suicidal") inactivation 

(about 1 enzyme molecule lost for every 196 carbon tetrachloride molecules metabolized). 

The rate of carbon tetrachloride metabolism in vivo has been estimated primarily by indirect methods.  

Male rats were exposed to carbon tetrachloride vapor in a desiccator jar with a recirculating atmosphere.  

The decline in the chamber concentration was monitored over time as the index of carbon tetrachloride 

uptake into the animals (Gargas et al. 1986).  The shapes of the uptake curves were a function of tissue 

partition coefficients and the metabolism of carbon tetrachloride.  The uptake kinetics of carbon 

tetrachloride were accurately described by a physiological pharmacokinetic model with a single, saturable 

metabolic pathway.  The maximum rate of reaction (Vmax) was calculated to be 0.14 mg/hour 

(0.62 mg/kg/hour), while the half-maximum rate concentration of carbon tetrachloride (Km, the 

Michaelis-Menten constant) was calculated to be 1.62 µM (0.25 mg/L).  Carbon tetrachloride was 

metabolized more slowly than other halocarbons studied (methyl chloroform, 1,1-dichloroethylene, 

bromochloromethane).  Another indirect method was evaluated for estimating the rate of carbon 

tetrachloride metabolism in male rats, based on arterial blood:inhaled air concentration ratios (Uemitsu 

1986).  Results of this study suggest that carbon tetrachloride metabolism was limited by the rate of blood 

perfusion of the liver at concentrations below 100 ppm, and was saturated at concentrations above 

100 ppm.  The estimated Vmax was 2.8 mg/kg/hour.  The rate of metabolism gradually decreased during 

the exposure period, apparently the result of carbon tetrachloride-induced loss of cytochrome P-450.   

Based on comparative PBPK modeling, which incorporated in vivo gas uptake data and in vitro data, 

Thrall et al. (2000) calculated that the rates of metabolism (Vmax/Km) by milligrams of liver protein 

differed across species, with hamster > mouse > rat > human.  The human in vivo metabolic rates for 

carbon tetrachloride were estimated as 1.49 mg/hour/kg body weight (Vmax) and 0.25 mg/L for Km. 

The extent of metabolism of 14C-carbon tetrachloride in rats was assessed by measuring the amounts of 

unchanged carbon tetrachloride, carbon dioxide, and chloroform exhaled in the breath, 14C-metabolite 

excreted in urine and feces, and 14C-metabolite bound to liver macromolecules within a 24-hour period 

post oral dosing (Reynolds et al. 1984).  The major metabolite in this study was carbon dioxide at all dose 

levels, ranging from 85% of total metabolites recovered at 15 mg/kg to 63% at 4,000 mg/kg.  The modest 

22% (from 85 down to 63%) reduction in carbon dioxide production when the dose was increased 28-fold 

(15 versus 4,000 mg/kg) suggests that excess amounts of P-450 are available in the liver for metabolism 

of carbon tetrachloride.  Intermediate amounts of nonvolatile 14C-labeled material were recovered from 
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the urine and feces, although none of the metabolites were identified by these investigators.  About 2–4% 

of the label was found covalently bound to liver macromolecules.  The relative amount of chloroform 

formed depended on dose, with chloroform being the least abundant metabolite formed at the lowest dose, 

but the second most abundant metabolite at the highest dose.  As the dose of carbon tetrachloride 

increased, the fraction of the dose recovered decreased for each metabolite except chloroform.  A major 

change in the overall extent of carbon tetrachloride metabolism occurred as the dose was increased from 

15 to 46 mg/kg, the nature of which suggests that the oxidative metabolism of carbon tetrachloride was 

saturated and/or impaired by destruction of cytochrome P-450 in this dosage range.  The fraction 

recovered in the expired air as unchanged carbon tetrachloride increased from 20 to 80% of the 

administered dose, and the peak carbon tetrachloride exhalation rate increased 40-fold.  Thus, this study 

indicated that when oxidative metabolism of carbon tetrachloride was saturated or inhibited, more of the 

parent chemical was exhaled and increased amounts of chloroform were formed by a reductive pathway. 

Low levels of carbon tetrachloride metabolism to CO2 were also indicated by other studies showing that 

6 hours after intraperitoneal injection of 128–159 mg/kg carbon tetrachloride to rats or gerbils, <1% 

(approximately 0.2% for rats, and 0.7% for gerbils) of the dose had been expired as CO2, while 

approximately 80–90% had been expired as unchanged carbon tetrachloride (Cai and Mehendale 1990; 

Mehendale and Klingensmith 1988; Young and Mehendale 1989). 

3.4.4 Elimination and Excretion 

3.4.4.1 Inhalation Exposure 

Little quantitative information was located regarding the amount or fraction of absorbed carbon 

tetrachloride that is subsequently excreted in air, urine, or feces in humans exposed by inhalation.  Studies 

of the rate of excretion of carbon tetrachloride in the expired air indicate that samples taken immediately 

after exposure may be contaminated with environmental carbon tetrachloride, but realistic values may be 

obtained by 15 minutes (Stewart et al. 1961).  Among volunteers who breathed 10–49 ppm carbon 

tetrachloride for 1–3 hours, expired air concentrations in the range of 1–3 ppm were detectable within 

15-25 minutes, steadily declining to about 0.3 ppm 5 hours after exposure (Stewart et al. 1961).  No 

carbon tetrachloride was detected in blood or urine of the subjects where the limit of detection was 5 ppm.  

In subjects who inhaled 2.5 mg radiochlorinated carbon tetrachloride vapor in a single breath 

(subsequently held for 20 seconds to maximize absorption), 33% of the administered dose was exhaled 

within 1 hour (Morgan et al. 1970).  The urinary excretion rate during the first hour was less than 0.01% 

of the administered dose per minute. 
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Studies in animals indicate about 30–40% of an inhaled dose of carbon tetrachloride is excreted in expired 

air and about 32–62% is excreted in feces (McCollister et al. 1951; Paustenbach et al. 1986a). Relatively 

low amounts are excreted in urine.  Nearly all of the material in expired air is parent carbon tetrachloride, 

with only small amounts of carbon dioxide.  The identity of the nonvolatile metabolites in feces and urine 

was not determined. 

During the 48 hours following nose-only inhalation exposure to 20 ppm 14C-labeled carbon tetrachloride 

vapor for 4 hours, rats, mice and hamsters eliminated 65–83% of the initial body burden of 14C activity as 

CO2 or volatile organic compounds in exhaled breath (Benson et al. 2001).  Elimination in expired air was 

described as a single-order negative exponential function.  Elimination half-times for carbon tetrachloride 

equivalents (CEs) in exhaled breath were 4.3, 0.8, and 3.6 hours for volatile organic compounds and 7.4, 

8.8, and 5.3 hours for CO2 for rats, mice, and hamsters, respectively.  The fraction of the initial body 

burden of CEs eliminated in urine and feces combined was <10% in rats and >20% in mice and hamsters.  

Clearance of CEs from various tissues was characterized as being best described by single- or two-

component negative exponential functions (Benson et al. 2001).  Clearance of CEs from the blood was 

complete within 48 hours and was described by a single-component function for all three species.  The 

half-life for clearance (T1/2) from blood was shortest for rats (1.8 hours) and longest for hamsters 

(23 hours). Clearance of CEs from the lung was also described by a single-component function for all 

three species, but was only about 80% complete after 48 hours; the T1/2 ranged from 7 hours for rats to 

17 hours for mice.  Clearance of CEs from the liver in hamsters was complete and best described by a 

single-component function; the T1/2 was 33 hours.  In rats and mice, clearance from the liver was best 

described by a two-component function; a large fraction was cleared with a T1/2 of 3 hours and the 

remainder cleared with a T1/2 of 35 hours.  Clearance of CEs from the kidney in rats was complete and 

best described by a two-component function.  In mice and hamsters, the T1/2 for clearance from the kidney 

for the largest fraction (70–80%) of carbon tetrachloride was <10 hours, but no additional clearance 

occurred up to 48 hours. 

As in humans, the rate of carbon tetrachloride excretion in rats appears to be biphasic, with an initial half-

life value of 7–10 hours (Paustenbach et al. 1986a).  The rapid phase was judged to reflect clearance from 

blood, while the slower phase was related to clearance from fatty tissue and metabolic turnover of 

covalent adducts (Paustenbach et al. 1988).  In support of this, exposure for longer periods of time led to 

higher concentrations of carbon tetrachloride in fat and a decreased rate of clearance (Paustenbach et al. 

1986a, 1986b, 1988). 
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3.4.4.2 Oral Exposure  

The concentration of carbon tetrachloride was measured in the expired air of a person who swallowed a 

large amount of carbon tetrachloride (Stewart et al. 1963).  Excretion in expired air was found to decrease 

exponentially in a biphasic or multiphasic fashion, but no quantitative estimate of the elimination half-life 

of carbon tetrachloride or of the fraction of the dose excreted by this pathway was provided.  Visual 

inspection of their graphed data suggests very approximate half-lives of less than several hours initially, 

40 hours (75–150 hours post exposure), and 85 hours (300–400 hours post exposure). 

A detailed investigation of carbon tetrachloride excretion was performed in rats exposed by gavage to a 

range of doses (Reynolds et al. 1984).  At doses of 50 mg/kg or higher, most of the dose (70–90%) was 

recovered in expired air as unchanged carbon tetrachloride.  Lower amounts were recovered as expired 

carbon dioxide or chloroform, or as nonvolatile metabolites in feces or urine.  As would be expected for a 

saturable or self-destructing metabolic system, the proportion of each dose recovered as metabolites 

tended to decrease as the dose increased.  For example, 12% of the lowest dose (15 mg/kg) was recovered 

as carbon dioxide, while only 0.7% of the highest dose (4,000 mg/kg) was recovered as carbon dioxide.  

The time-course of excretion also depended on dose, tending to become slower as doses increased.  For 

example, the half-life for exhalation of carbon tetrachloride was 1.3 hours at a dose of 50 mg/kg, but was 

6.3 hours at a dose of 4,000 mg/kg.  This is consistent with the concept that an increased proportion of a 

dose enters fat as the dose level increases, with clearance from fat being slower than from blood and other 

tissues. Increased hepatotoxicity in the form of greater cytochrome P-450 destruction (and thus reduced 

carbon tetrachloride metabolism) may also be a significant factor.  Studies evaluating the rate of excretion 

over the first 12 hours described a one-compartment model, but did not deduce that a two-compartment 

model was inappropriate (Reynolds et al. 1984).  Approximately 24 hours after receiving an oral dose of 

3,985 mg/kg, rats were observed to excrete elevated levels of various lipid peroxidation products 

(formaldehyde, acetaldehyde, malondialdehyde, and acetone) in their urine, presumably as a result of 

carbon tetrachloride-induced oxidative stress (Shara et al. 1992). 

3.4.4.3 Dermal Exposure  

Carbon tetrachloride was rapidly excreted in expired air of volunteers who immersed their thumbs in 

liquid carbon tetrachloride (Stewart and Dodd 1964). The half-life of expiration was about 30 minutes, 
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but no quantitative estimate of the fraction of the absorbed dose excreted in air was performed.  No 

studies were located regarding excretion in animals after dermal exposure to carbon tetrachloride. 

3.4.4.4 Other Routes of Exposure 

After what was described as either intragastric or intraduodenal administration of carbon tetrachloride to 

rats under various conditions, evidence from electron paramagnetic resonance experiments using phenyl-

N-t-butyl nitrone as a spin trap suggested that trichloromethyl free-radical adducts are secreted into the 

bile without being concentrated, and in concentrations which reflect those concurrently found in the liver 

(Knecht and Mason 1991).  Expressed in arbitrary concentration units, spin-trap-bound adduct quantities 

found in the liver, in the bile, and liver/bile concentration ratios under the various experimental conditions 

were as follows: carbon tetrachloride alone (93, 28, 3.4 ratio), carbon tetrachloride plus hypoxia (161, 50, 

3.2 ratio), carbon tetrachloride with phenobarbital pretreatment (118, 69, 1.7 ratio), and carbon 

tetrachloride with intravascular infusion of the bile salt dehydrocholate to double the bile flow rate (85, 

13, 6.8 ratio). Taken together, these results from conditions that vary bile flow or reductive metabolic 

generation of free radical seem to indicate that carbon tetrachloride free-radical adducts are secreted 

rather than merely diffused into bile, and in amounts proportional to their generation in the liver.  The 

drop in liver/bile ratio observed with phenobarbital pretreatment (from 3.4 to 1.7) was attributed to the 

liver's phenobarbital-enhanced ability to destroy many of the induced free-radical adducts.  These results 

are supported by findings in bile duct-cannulated rats and in perfused rat liver systems, where spin-

trapped free-radical adducts were observed in bile, but not in blood or urine (Hughes et al. 1991). 

As noted above, within 6 hours of intraperitoneally injecting rats or gerbils with 128–159 mg/kg of 

carbon tetrachloride, 80–90% of the administered dose was expired as unchanged carbon tetrachloride, 

while less than 1% was expired as CO2 (Cai and Mehendale 1990; Mehendale and Klingensmith 1988; 

Young and Mehendale 1989).  After rats were injected intraperitoneally with 3 mL carbon tetrachloride 

per kg body weight, volatile carbonyl compounds released into expired air over 24 hours were evaluated 

by gas chromatography (Dennis et al. 1993).  Injected rats exhaled significantly higher levels of acetone 

and a compound tentatively identified as formyl chloride than control rats; the amounts of acetaldehyde 

and formaldehyde were not significantly different in the two groups.  
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3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models  

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points.   

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen et al. 

1987; Andersen and Krishnan 1994).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps:  (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters.  The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions. 

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems.  If the uptake and disposition of the chemical substance(s) are 

adequately described, however, this simplification is desirable because data are often unavailable for 
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many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty.  The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994).  

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species.  

Figure 3-4 shows a conceptualized representation of a PBPK model. 

If PBPK models for carbon tetrachloride exist, the overall results and individual models are discussed in 

this section in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species 

extrapolations. 

A detailed physiologically based pharmacokinetic model (Figure 3-5) has been developed that describes 

the metabolism of carbon tetrachloride following inhalation exposure (Paustenbach et al. 1988).  The 

model was based on and validated against a previous study in rats in which 1–2 weeks of inhalation 

exposure to 100 ppm 14C-labeled carbon tetrachloride for 8–11.5 hours/day, 4–5 days/week apparently 

resulted in 40–60% of the absorbed dose being metabolized (Paustenbach et al. 1986a).  The model 

incorporated partition characteristics of carbon tetrachloride (blood:air and tissue:blood partition 

coefficients), anatomical and physiological parameters of the test species (body weight, organ weights, 

ventilation rates, blood flows), and biochemical constants (Vmax and Km) for carbon tetrachloride 

metabolism. Rat and human parameters used in the model are listed in Table 3-7.  The model accurately 

predicted the behavior of carbon tetrachloride and its metabolites, both the exhaled unmetabolized parent 

compound and 14CO2 and the elimination of radioactivity in urine and feces.  In agreement with other 

studies (Gargas et al. 1986; Uemitsu 1986), Paustenbach et al. (1988) found that metabolism was best 

described as a single saturable pathway, with a Vmax of 0.65 mg/kg/hour and a Km of 0.25 mg/L.  

Metabolites were partitioned in the model to three compartments: the amounts to be excreted in the breath 

(as 14CO2), urine, and feces.  Of total carbon tetrachloride metabolites, 6.5% was excreted as CO2, 9.5% 

was excreted in urine, and 84.0% was excreted in feces.  Based on this model, the authors estimated that 

about 4% of initially metabolized carbon tetrachloride is converted directly to carbon dioxide and is 

promptly excreted, while the remainder forms adducts with proteins and other cellular molecules.  These 

adducts are then degraded with a half-life of about 24 hours, and the products are excreted mainly in the  
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Figure 3-4. Conceptual Representation of a Physiologically Based 
Pharmacokinetic (PBPK) Model for a  

Hypothetical Chemical Substance 
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Note: This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a hypothetical 
chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by ingestion, 
metabolized in the liver, and excreted in the urine or by exhalation. 
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Figure 3-5. Physiologically Based Pharmacokinetic Model for Inhaled  
Carbon Tetrachloride* 
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Table 3-7. Parameters in PBPK Models for Carbon tetrachloride 

Parameter Rat Human 
Physiological parameters (as per Paustenbach et al. 1988) 

Body weight (kg) 
Percentages of body weight 

Liver 
Fat 

 Rapidly perfused 
 Slowly perfused 
Flows (L/hour)  

Cardiac output (QC) 
Alveolar ventilation (QP) 

Blood flow (percentages of cardiac output) 
Liver 
Fat 

 Rapidly perfused 
 Slowly perfused 

0.42 

4 
8 
5 

74 

8.15 
7.91 

25 
4 

51 
20 

70 

4a

10 
5 

62 

348 
254 

25a

6 
51a

18 
Partition coefficients 

Blood:air 4.52 2.64 
Liver:blood 3.14b 3.14a 

Fat:blood 79.4 79.4a 

Rapidly perfused:blood 3.14c 3.14a 

Slowly perfused:blood 1 1a 

Metabolism 
 Vmax (mg/hour) 0.35 12.72d

 Km (mg/L) 0.25 0.25a 

a

b
Human value set equal to rat value 
Gargas et al. 1986 
Rapidly perfused blood:  set equivalent to liver blood 

dHuman value scaled up using allometric equation Vmax = Vmaxc x (body weight)0.7 using Vmaxc for rat = (maximum rate 
of metabolism of 0.65 mg/hour-kg body weight) and human body weight of 70 kg 
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urine and feces, with small amounts eliminated as carbon dioxide.  The amount of carbon tetrachloride 

metabolized is limited by the saturable enzyme system, with high exposures (e.g., 100 ppm) leading to 

saturation within a short time.  Following cessation of exposure, considerable metabolism may occur as 

carbon tetrachloride emerges from fatty tissue.  The model successfully described elimination using a 

Vmax of 0.65 mg/kg/hour and a Km of 0.25 mg/L.  The model was scaled up to predict the expected 

behavior of carbon tetrachloride in monkeys and humans.  The results were consistent with data collected 

by McCollister et al. (1951) and Stewart et al. (1961).  The earlier study by Paustenbach et al. (1986) 

showed that rats did not have significant day-to-day accumulations in the blood or fat following repeated 

exposure to 100 ppm for 8 or 11.5 hours/day; this was accurately described in the model.  In contrast, 

humans exposed to 5 ppm for 8 hours/day would be expected to show day-to-day increases in fat because 

of physiological differences. 

Thrall et al. (2000) adapted the model of Paustenbach et al. (1988) to compare the metabolism of carbon 

tetrachloride in male rats, mice, and hamsters exposed to 40–1,800 ppm in a recirculating closed-chamber 

gas-uptake system.  For each species, an optimal fit of the uptake curves was obtained by adjusting the 

metabolic constants Vmax (capacity) and Km (affinity) using the model.  The mouse had a slightly higher 

capacity and lower affinity for metabolizing carbon tetrachloride than the rat, whereas the hamster had a 

higher capacity and lower affinity than either the rat or mouse.  A comparison of Vmax/Km normalized for 

milligrams of liver protein (L/hour/mg) indicated that hamsters metabolize more carbon tetrachloride than 

rats or mice.  The species comparisons were evaluated against toxicokinetic studies conducted in animals 

exposed by nose-only inhalation to 20 ppm 14C-labeled carbon tetrachloride for four hours.  Rats 

eliminated a lower fraction of the dose as metabolites and more as parent compound compared to mice or 

hamsters.  The use of the model was expanded to include in vitro constants using liver microsomes from 

rat, mouse, hamster, and human in order to estimate in vivo metabolic rates for humans:  a Vmax of 

1.49 mg/hour/kg body weight and a Km of 0.25 mg/L.  Normalizing the rate of metabolism (Vmax/Km), the 

rate of metabolism differed across species, with hamster > mouse > rat > human. 

Yoshida et al. (1999) estimated rates of absorption of carbon tetrachloride and three trihalomethanes in 

low-level inhalation exposures by rats using a pharmacokinetic analysis.  A three-compartment model, 

consisting of a tank with barium chloride to trap the chemical, the exposure chamber, and the rat, was 

employed for carbon tetrachloride, which was injected into the chamber.  The model estimated that the 

amounts of carbon tetrachloride metabolized by rats in µmol/hour/kg were 0.000053, 0.0053, and 0.53 for 

exposures at 1 ppb, 10 ppb, and 10 ppm, respectively. 
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Semino et al. (1997) adapted the model of Paustenbach et al. (1988) to develop a PBPK model to describe 

the oral uptake of carbon tetrachloride administered to male Fischer 344 rats in corn oil or 0.25% 

Emulphor, an aqueous vehicle.  The gastrointestinal model used a series of subcompartments with an 

absorption constant (Ka, L/hour), a bioavailability term (A, unitless), and a compartment emptying time 

(T, hours). The model was optimized by varying the values of the constants for the experimental data.  

Higher values of Ka and A were needed to fit data from aqueous gavage compared to that for corn oil.  

The model provided precise fits of multipeak blood and exhaled breath carbon tetrachloride 

concentration-time profiles.  A pulsatile pattern noted following corn oil gavage was attributed to 

discontinuous emptying of the stomach into the small intestine.  Initial absorption of the bolus occurs 

rapidly in the stomach, especially for aqueous vehicles; subsequently, stomach absorption slows and 

uptake from the small intestine determines the absorption profile. 

Gallo et al. (1993) developed a PBPK model for blood concentration of carbon tetrachloride in rats 

following intravenous delivery in aqueous polyethylene glycol 400.  Subsequently, absorption input 

functions were added to the model to describe blood concentration profiles resulting from administration 

of 25 mg carbon tetrachloride per kg body weight alone, in aqueous vehicles (water or 0.25% Emulphor 

emulsion), or in corn oil.  Absorption was 91.9% for administration in water, 85.4% in Emulphor, 62.8% 

for the pure compound, and 93.1% for administration in corn oil.  A pulsatile pattern was obtained for 

absorption in corn oil. 

Andersen et al. (1996) developed a pharmacokinetic model to calculate the concentration of carbon 

tetrachloride in microsomal suspensions from male Fischer 344 rats under anerobic conditions.  Dose-

response curves revealed a nonlinear, biphasis appearance of trichloromethane.  One experiment 

compared microsomes from fasted or unfasted rats; fasting did not alter the shape of the dose-response 

curve, but increased the production of trichloromethane in microsomes. 

3.5 MECHANISMS OF ACTION  

3.5.1 Pharmacokinetic Mechanisms 

Absorption.    As a small volatile haloalkane, carbon tetrachloride diffuses passively across cell 

membranes, leading to rapid absorption from the lungs and gastrointestinal tract into the circulatory 

system (Sanzgiri et al. 1995, 1997).  Pulmonary absorption is ventilation limited. 



122 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

Distribution.    Being somewhat lipophilic, absorbed carbon tetrachloride diffuses from the blood to the 

liver, kidney, brain, and other organs and accumulates in adipose tissue.  Following absorption by the 

gastrointestinal tract, a first-pass effect is apparent through the liver, where carbon tetrachloride is 

biotransformed and adducts are formed from reactive metabolites binding to cell macromolecules.  

Clearance of unmetabolized carbon tetrachloride is limited by passive diffusion; the rate of clearance is 

slowest for adipose tissue compared to internal organs (Benson et al. 2001; Sanzgiri et al. 1997).  

Quantitative differences between maximal tissue concentrations of carbon tetrachloride in the kidney or 

liver occur following administration of equivalent absorbed doses (179 mg/kg) by inhalation, oral bolus 

dosing, or gradual gastric infusion (Sanzgiri et al. 1997).  Inhalation exposure resulted in similar values 

for kidney (25 µg/g) and liver (20 µg/g).  Delivery of carbon tetrachloride as a single bolus can exceed 

first-pass hepatic and pulmonary elimination, resulting in higher blood levels and more severe hepatic 

injury compared to gradual delivery of the same dose over a longer period of time (Sanzgiri et al. 1997); 

bolus delivery resulted in a maximal tissue concentration for the kidney (14 µg/g) that is only 24% of the 

hepatic value (58 µg/g).  Gastric infusion of the equivalent dose over 2 hours resulted in much lower 

tissue concentrations, with the kidney value (4 µg/g) 8 times higher than the value for the liver (0.5 µg/g).  

These results suggest that gradual oral intakes, such as might occur from contaminated drinking water, 

might result in less hepatotoxicity than equivalent exposure by bolus dosing or inhalation.   

Metabolism.    Carbon tetrachloride is primarily metabolized in tissues that express CYP2E1.  The 

metabolic pathways are described in detail in Section 3.4.3 and depicted in Figure 3-3.   

Excretion.    In humans and animals, carbon tetrachloride is eliminated by passive diffusion primarily 

through exhaled breath, with a smaller fraction eliminated in urine and feces (Benson et al. 2001; Thrall et 

al. 2000).   

3.5.2 Mechanisms of Toxicity 

Unmetabolized carbon tetrachloride, as a volatile halogenated alkane, depresses the central nervous 

system.  All other toxic effects of carbon tetrachloride are related to its biotransformation catalyzed by 

cytochrome P-450 dependent monooxygenase, specifically CYP2E1 (Azri et al. 1991; Hughes et al. 1991; 

Lindros et al. 1990; Raucy et al. 1993; Wong et al. 1998; Zangar et al. 2000).  The liver and kidney 

(especially in humans) are especially vulnerable because of the abundance of CYP2E1, which is also 

present in the respiratory and nervous systems, and various isoforms of CYP3A  (Haehner et al. 1996; 

Koch et al. 2002; Martin et al. 2003; Warrington et al. 2004; Wauthier et al. 2004).  Considerable data 
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are available for hepatic toxicity, but similar cellular damage would be expected in other tissues with a 

high abundance of CYP2E1.  There is considerable evidence that hepatic injury produced by carbon 

tetrachloride is mediated by two major processes resulting from bioactivation in the endoplasmic 

reticulum and mitochondria of centrilobular hepatocytes, which have the highest concentration of 

CYP2E1 (Buhler et al. 1992; Raucy et al. 1993): haloalkylation of cellular macromolecules by reactive 

metabolites such as trichloromethyl free radical or trichloromethyl peroxyl free radical (Link et al 1984; 

Mico and Pohl 1983; Poyer et al. 1980; Recknagel et al. 1977; Slater et al. 1986) and lipid peroxidation, 

which impairs cellular functions dependent on membrane integrity (Benedetti et al. 1982; Comporti 1985; 

Lee et al. 1982; Slater 1981; Slater and Sawyer 1970; Tribble et al. 1987; Weber et al. 2003).  Both 

haloalkylation and lipid peroxidation contribute to loss of cellular functions and subsequent cell death as 

discussed in greater detail in the following paragraphs.  In response to parenchymal cell damage, 

perisinusoidal cells may be stimulated to release extracellular matrix proteins (type-I collagen) that 

contribute to hepatic fibrogenesis, which is largely mediated by hepatic macrophages (Kupffer cells) 

(Belyaev et al. 1992; Ishiki et al. 1992; Johnson et al. 1992; Luckey and Petersen 2001; Muriel and 

Escobar 2003).  Kupffer cells activated by carbon tetrachloride release tumor necrosis factor-alpha (TNF

alpha), nitric oxide, transforming growth factor-beta (TGF-beta) (Date et al. 1998), and interleukins 

(IL)-1, -6, and -10 (Weber et al. 2003). TNF-alpha elicits an inflammatory response and may generate 

aptoptosis or contribute to the development of steatosis in heptocytes (Morio et al. 2000); however, 

impaired secretion of lipoproteins, possibly because of lipid peroxidation, has also been proposed as a 

mechanism for steatosis (Boll et al. 2001c).  TNF-alpha may also stimulate genes involved in hepatic 

mitogenesis (Bruccoleri et al. 1997).  TNF-alpha is also responsible for the activity of hepatocyte nuclear 

factor 1 (HNF-1) in down-regulating genes for organic anion transporters (Ntcp, Oatp1, and Oatp2) that 

operate in the basolateral domain of parencymal cells following carbon tetrachloride treatment (Geier et 

al. 2003).  Nitric oxide modulates intra-hepatic vascular tone in normal rats (Loureiro-Silva et al. 2003) 
-and generally protects against apoptopic tissue damage (Muriel 1998), but it can also react with the O2 

radical (formed during carbon tetrachloride-induced oxidative stress) to form an aggressive peroxynitrite 

radical, resulting in more severe hepatic injury (Morio et al. 2001; Weber et al. 2003).  Inhibition of 

Kupffer cell activation with gadolinium prevented hepatic lipid peroxidation and histopathology produced 

by carbon tetrachloride (Muriel et al. 2001).  Interleukin-6 pathways that use the signal transducer gp130 

have been proposed as protective against the progression of carbon tetrachloride-induced fibrosis (Streetz 

et al. 2003). As shown by the results of experiments with IL-10 knockout mice, IL-10 reduces 

neutrophilic infiltration (inflammation) following injury with carbon tetrachloride and limits the 

proliferative response of hepatocytes and the development of fibrosis during the recovery phase (Louis et 

al. 1998).  TGF-beta1 promotes hepatic fibrogenesis following carbon tetrachloride treatment, as shown 
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by the inhibition of fibrosis by peptides that block the cytokine’s Type III receptor (Ezquerro et al. 2003).   

Lipid peroxidation may be at least partially independent of cytochrome P-450, as iron-dependent 

peroxidation occurred in cultured mammalian cells even in the presence of P-450 inhibitors (Dickens 

1991).  While carbon tetrachloride-induced liver damage was mitigated by treatment with allopurinol, an 

inhibitor of xanthine oxidase (a free radical-generating enzyme), prolonged administration of the free 

radical scavenger superoxide dismutase actually aggravated hepatocellular damage (Dashti et al. 1992).  

Some inflammatory processes in the liver following carbon tetrachloride treatment appear to be mediated 

by the activation of prothrombin by the prothrombinase complex (Mizuguchi et al. 2002).  In acute injury 

from carbon tetrachloride, hydrolytic enzymes such as calpain are released from dying hepatocytes and 

are activated by the higher calcium levels in the extracellular space (Limaye et al. 2003).  As a result, the 

activated proteases begin to hydrolyze proteins in neighboring cells, leading to a progression of the lesion. 

Necrotic responses in the liver to carbon tetrachloride are apparently mediated by the Cdk inhibitor p21, 

as shown by an absence of necrosis in p21-knockout mice treated with the chemical (Kwon et al. 2003). 

Overall responses of different organs to carbon tetrachloride will be mediated, in part, by variations in 

gene expression patterns.  DNA array studies in rodents demonstrated slightly different and dose-related 

patterns of gene expression/repression in the liver and kidney; activated genes involved heat shock 

proteins, oxidative stress, and DNA damage responses (Bartosiewicz et al. 2001; Fountoulakis et al. 2002; 

Jessen et al. 2003; Kier et al. 2004). In human hepatoma G2 cells, treatment with carbon tetrachloride 

increased expression and activity of interleukin-8 (IL-8), which in vivo directs the migration of 

neutrophils, resulting in release of reactive oxygen species (Holden et al. 2000).  Injection of carbon 

tetrachloride into rats activated the expression of c-fos and c-jun within 30 minutes and also increased in 

hepatic nuclei the levels of the transcription factor NF-kB, which regulates transcription related to 

inflammation, apoptosis, and regenerative processes (Gruebele et al. 1996).  Suppression of CYP3A1 and 

activation of multiple drug resistance gene1 (MDR1) were observed in livers of Sprague-Dawley rats 

following acute exposure (Kier et al. 2004). Gene expression changes associated with fibrosis (see 

below) may persist for weeks after cessation of treatment (Jiang et al. 2004). 

Hepatic microsomal lipid peroxidation damages cellular functions by disturbing the integrity and hence 

the function of membranes and by covalent binding of reactive intermediates.  The trichloromethyl radical 

is sufficiently reactive to bind covalently to CYP2E1, a process sometimes referred to as the "suicidal 

inactivation" of CYP2E1 (De Groot and Haas, 1981; Fernandez et al. 1982; Fujii 1997; Manno et al. 

1988, 1992).  It is also possible that reactive intermediates formed during the process of lipid peroxidation 

contribute to the loss of CYP2E1, but some in vitro studies have indicated that carbon tetrachloride
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induced lipid peroxidation is not required for the inactivation of CYP2E1 (Dai and Cederbaum 1995; De 

Groot and Haas 1980). Nevertheless, it is still not clear how these initial events are related to subsequent 

triglyceride accumulation, polyribosomal disaggregation, depression of protein synthesis, cell membrane 

breakdown and eventual death of the hepatocytes.  Carbon tetrachloride can inhibit triglyceride secretion 

from hepatocytes in the absence of lipid peroxidation, and polyribosomal dissociation and decreased 

protein synthesis can occur when no 14C-labelled carbon tetrachloride has been incorporated into 

ribosomal fractions (Waller et al. 1983).  When rats were pretreated with a chemical that reduced lipid 

peroxidation by 85%, only small recoveries from carbon tetrachloride-induced decreases in hepatocellular 

viability, cytochrome P-450 content, aniline hydroxylase activity, and carbon tetrachloride metabolism 

capacities were observed (Kostyuk and Potapovich 1991).  This suggests that free radical binding to 

critical cellular macromolecules (e.g., microsomal oxidation system enzymes) may be more critical for 

these effects than lipid peroxidation.  On the other hand, inhalation exposure to carbon tetrachloride 

produced a direct correlation between lipid peroxidation and proline hydroxylase (a collagen biosynthetic 

enzyme) in rats, and dietary zinc supplementation was associated with decreases in lipid peroxidation, 

collagen deposition, and proline hydroxylase activity, together with an increase in collagenase activity 

(Camps et al. 1992).  Carbon tetrachloride-induced lipid peroxidation apparently requires the presence of 

Fe2+ ions, as demonstrated by the inhibitory effect of the iron-chelating agent deferrioxamine on lipid 

peroxidation and hepatotoxicity in rats (Younes and Siegers 1985).  One product of lipid peroxidation, 

4-hydroxynonenal, has been shown to act as a pro-fibrogenic stimulus following acute hepatic injury from 

carbon tetrachloride (Zamara et al. 2004). 

Intrinsic tissue levels of antioxidants such as glutathione influence the degree to which oxidative damage 

progresses following exposure to carbon tetrachloride.  In 11 selected human cells types, steady-state 

levels of oxidative DNA base modifications (e.g., 8-hydroxyguanine) were inversely proportional to 

intrinsic glutathione levels (Will et al. 1999).  An age-related decline in the activity of nuclear factor 

erythroid2-related factor (Nrf2), the factor regulating the transcription of gamma-glutamylcysteine ligase 

(GGCL), is the ultimate cause of the age-related decline in hepatic glutathione levels in rats (Suh et al. 

2004). The hepatic activity of GGCL, which synthesizes gamma-glutamylcysteine, a precursor to 

glutathione, is 54.8% lower in old (24-month) rats compared to young (3-month) rats, resulting in a 35% 

decline in glutathione content in older rats.  Agents such as buthionine sulphoximine, which inhibit 

GGCL, also deplete glutathione levels (Edgren and Revesz 1987).  Conversely, S-adenosylmethionine 

(SAM), which is required for the synthesis of precursors to glutathione (homocysteine and cysteine), is 

also depleted by liver injury and its loss is exacerbated by the concomitant inactivation of SAM 

synthetase (Gasso et al. 1996).  Exogenous administration of SAM or cysteine reduced carbon 
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tetrachloride-induced liver injury by the increase in glutathione levels (De Ferreyra et al. 1974; Gasso et 

al. 1996).  Reduced glutathione levels concomitant with renal histopathology have also been 

demonstrated in the kidney of rats injected with carbon tetrachloride (Dogukan et al. 2003; Ozturk et al. 

2003). 

Another factor that may be of importance in carbon tetrachloride-induced hepatotoxicity is the 

perturbation of normal cellular calcium homeostasis following exposure.  A number of studies have 

reported data that suggest carbon tetrachloride exposure inhibits the capacity of the hepatocyte 

endoplasmic reticulum or microsomal fraction to sequester (or keep sequestered) calcium, under either in 

vivo (Kodavanti et al. 1993; Long and Moore 1986a; Long et al. 1989; Lowrey et al. 1981b; Moore 1980; 

Moore et al. 1976) or in vitro (Long and Moore 1987; Long et al. 1989; Lowrey et al. 1981a; Srivastava 

et al. 1990; Waller et al. 1983) exposure conditions.  This inhibition of sequestration capacity is 

considered to be a key contributor to the rise in cytosolic calcium concentration that is generally observed 

following carbon tetrachloride exposure (e.g., Kodavanti et al. 1990b, 1993; Long and Moore 1987), and 

that is postulated to play a central role in the induced cytotoxicity.  The suppression of calcium uptake by 

microsomes occurred in the liver, (but not the kidney) of rats receiving a single oral dose of 2,500 mg/kg 

carbon tetrachloride (Moore et al. 1976).  While some in vivo (Long and Moore 1986a) and in vitro 

(Srivastava et al. 1990) data suggest that carbon tetrachloride intoxication actually promotes the release of 

calcium to the cytosol from the endoplasmic reticulum or microsomes, other in vivo studies with carbon 

tetrachloride alone (Yamamoto 1990b) or in conjunction with chlordecone (Agarwal and Mehendale 

1984a, 1984b, 1986) indicate that microsomal calcium content in fact rises, though generally to a lesser 

extent than cytosolic or total calcium content.  Such microsomal increases presumably occur despite 

diminished calcium sequestration capacity.  In isolated hepatocytes, immediate (<1 minute) alterations in 

calcium sequestation following treatment have been attributed to the solvent effect of unmetabolized 

carbon tetrachloride (Hemmings et al. 2002). It should be noted that another in vitro study found that 

membrane effects (membrane fusion) only occurred at concentrations that are unlikely to be achieved 

during inhalation exposure, but might occur following bolus gavage dosing at high levels (Johnston and 

Kroening 1998).   

Studies have indicated that increased intracellular calcium may mediate cytotoxicity by activating 

phospholipase A2 (Chiarpotto et al. 1990; Glende and Recknagel 1991, 1992; Simon et al. 1986; van den 

Bosch et al. 1990), which might contribute to irreversible plasma membrane damage.  Lipid damage from 

phospholipase A2 may result from increased lipid hydrolysis and from the initiation of the arachidonic 

acid cascade that generates toxic prostanoids (Basu 2003; Glende and Pushpendran 1986).  Elevated 



127 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

phospholipase A2 activity has been detected in the renal cortex and medulla of rats with carbon 

tetrachloride/phenobarbital-induced hepatic cirrhosis (Niederberger et al. 1998).  Elevated intracellular 

calcium may also be associated with elevated levels of phosphorylase and altered intracellular levels and 

distribution of calmodulin (Kodavanti et al. 1990), but was reported not to result in any DNA 

degradation—a potential result of calcium-activation of endonuclease activity (Long et al. 1989). 

The finding that carbon tetrachloride is converted to reactive metabolites that bind to nuclear protein, 

lipids, and DNA may be relevant to the understanding of carbon tetrachloride carcinogenicity.  Binding of 

radiolabel to liver cytoplasmic and nuclear proteins was found in Wistar rats and Swiss mice dosed with 
14C-carbon tetrachloride (Rocchi et al. 1973).  Pretreatment of the animals with 3-methylcholanthrene (an 

inducer of cytochrome P-450 IA [P-448]) resulted in 14C binding to hepatic DNA of mice, but not rats.  

Similarly, Diaz Gomez and Castro (1980a) found significantly greater 14C binding to the liver DNA of 

A/J mice than to that of Sprague-Dawley rats given a tracer dose of 14C-carbon tetrachloride. A/J mice 

are among the most susceptible of strains tested with respect to liver tumor induction by carbon 

tetrachloride. Administration of a high dose (3,200 mg/kg) of 14C-carbon tetrachloride, having the same 

total radioactivity as the tracer dose, resulted in much more intensive binding to hepatic DNA.  

Presumably, the fewer reactive metabolites formed from the tracer dose react primarily with microsomal 

lipids and proteins in close proximity to their formation.  With the higher dose, more 14C-carbon 

tetrachloride can apparently reach the nucleus and be metabolically activated there, subsequently reacting 

with nuclear lipids, proteins, and DNA. This scenario receives support from the finding that highly 

purified rat liver nuclear preparations were able to anaerobically activate 14C-carbon tetrachloride in the 

presence of an NADPH generating system (Diaz Gomez and Castro 1980b).  Under microsome-mediated 

aerobic conditions, it was observed that 14C-carbon tetrachloride bound more to histone than to 

nonhistone chromosomal proteins from livers of B6C3F1 mice (Oruambo and Van Duuren 1987).  These 

findings may be relevant to the understanding of carbon tetrachloride hepatocarcinogenicity, since 

reactive metabolites of carbon tetrachloride appear capable of binding to targets of putative relevance to 

cancer induction (chromosomal DNA and nucleosome proteins), and may even be generated within the 

nucleus itself. Since lipid peroxidation products such as malonaldehyde also have the ability to form 

adducts with DNA (Chaudhary et al. 1994; Chung et al. 2001; Wacker et al. 2001), it is possible that the 

genotoxic effect of carbon tetrachloride is partly indirect.  Malonaldehyde-initiated tumors have been 

reported in Swiss mice (Shamberger et al. 1974).  It is also worth noting that data from a variety of 

congenic mouse strains suggest that both the toxicity of, and recovery from, carbon tetrachloride exposure 

are under genetic control (an Ah gene, and H-2 genes) (Bhathal et al. 1983; Biesel et al. 1984).  
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Results of chronic bioassays in rats and mice exposed orally or by inhalation indicate that hepatocellular 

carcinomas are induced at hepatotoxic doses, suggesting that there may be a threshold for carcinogenicity 

of carbon tetrachloride (Japan Bioassay Research Centre 1998; NCI 1976a, 1976b, 1977).  The results of 

these chronic rodent studies are consistent with the idea that hepatic carcinogenicity directly related to the 

increase in cellular replication that occurs in response to hepatocyte lethality.  Enhanced cellular 

replication increases the possibility that unrepaired DNA errors will become fixed mutations, possibly 

resulting in an initiated preneoplastic cell.  Exposures at levels lower than those eliciting hepatic 

regeneration would not be expected to result in hepatic carcinogenicity. 

Interesting data from other studies illustrate that the hepatotoxic effects of carbon tetrachloride (or carbon 

tetrachloride plus chlordecone) depend not merely on its metabolic activation, but also to a substantial 

degree on the liver’s hepatocellular regenerative capacity (e.g., Mehendale 1990, 1991, 1992).  For 

example, the auto protection conferred by a low nontoxic dose of carbon tetrachloride against the toxic 

effects of a subsequent high dose seem not to be completely accounted for by mere destruction of 

cytochrome P-450 activation capacity, but appear also to involve the early (2–6 hours after pretreatment) 

stimulation of hepatocellular regeneration (Rao and Mehendale 1991; Thakore and Mehendale 1991). 

This early, low-dose stimulation, which leads to much greater hepatocellular regenerative activity (DNA-

synthesis and mitosis) following the high-dose exposure, and the autoprotection phenomenon are both 

inhibited by a colchicine-induced mitotic block (Rao and Mehendale 1991, 1993).  It has been 

hypothesized that the low dose of carbon tetrachloride and/or the resulting minimal injury induces 

hepatocytes into the cell cycle from an arrested G2 state (Calabrese et al. 1993).  Further, partial 

hepatectomy in rats has been shown to confer resistance to carbon tetrachloride-induced hepatotoxicity, 

presumably via enhanced regenerative capacity, as hepatic uptake and metabolism of carbon tetrachloride 

was not significantly altered (Young and Mehendale 1989).  The particular sensitivity of gerbils to carbon 

tetrachloride-induced hepatotoxicity appeared related not only to extensive bioactivation, but also to a 

sluggish hepatocellular regenerative and tissue repair response, and was mitigated by partial hepatectomy 

that stimulated this response in the absence of any significant effect on carbon tetrachloride bioactivation 

or induced lipid peroxidation (Cai and Mehendale 1990, 1991a, 1991b).  Finally, in rats, pretreatment 

with nontoxic levels of chlordecone has been shown to substantially potentiate the hepatotoxicity of low 

doses of carbon tetrachloride without affecting its hepatic metabolism to a similarly significant degree, 

whereas phenobarbital pretreatment induced greater bioactivation, but less hepatotoxicity (Mehendale and 

Klingensmith 1988; Young and Mehendale 1989).  This chlordecone potentiation phenomenon has been 

attributed to its inhibitory effect on the level of hepatocellular regeneration and tissue repair normally 

induced by low-dose carbon tetrachloride, with death resulting from hepatic failure and hepatic 
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encephalopathy (renal toxicity was not affected) (Kodavanti et al. 1992; Soni and Mehendale 1993).  

Where chlordecone cannot inhibit this regenerative response, as in cultured rat hepatocytes (Mehendale 

et al. 1991) or gerbils (Cai and Mehendale 1990), it does not potentiate cellular or hepatic toxicity. 

The signaling factor leptin apparently plays a role in the initiation of hepatic regenerative processes 

following acute injury by a sublethal dose of carbon tetrachloride (Leclercq et  al. 2003).  Hepatic 

changes occurring in mice treated with carbon tetrachloride (in temporal order) include induction of 

nuclear factor kappaB (NF-kB) and interleukin-6 (IL-6) at the time of G1/S transition, increased DNA 

binding by STAT3 (signal transducer and activator of transcription), induction of cyclin D1 expression 

consistent with an increase in mitosis, and a time-dependent increase in tumor necrosis factor (TNF) 

consistent with the appearance of necrosis. NF-kB also regulates genes involved in inflammation, 

apoptosis, proliferation, and regeneration in the liver (Gruebele et al. 1996).  Mice (ob/ob) transgenic for 

the loss of expression of leptin and treated with carbon tetrachloride had an exaggerated expression of 

STAT3 and NF-kB, impaired activation of TNF and IL-6 release, failure of induction of cyclin D1, and 

reduced hepatocyte proliferation.  Exogenous leptin restored the regenerative capacity of ob/ob mice.   

Hepatic regeneration following acute injury by carbon tetrachloride is mediated by the type 1 TNF 

receptor, but not the type 2 receptor, in mice (Yamada and Fausto 1998). 

Fibrotic processes in the liver following carbon tetrachloride treatment are modulated by the 

adipocytokine adiponectin (Kamada et al. 2003).  Repeated (twice weekly) intraperitoneal dosing with 

1,594 mg/kg but not 478 mg/kg carbon tetrachloride significantly reduced plasma concentrations of 

adiponectin. Although showing the same degree of initial hepatic injury (serum ALT, inflammation) as 

wild type mice following injection with carbon tetrachloride, adiponectin-knockout mice showed more 

extensive liver fibrosis (hydroxyoproline content) and enhanced expression of TGF-beta1 and connective 

tissue growth factor (CTGF) compared to wild type mice.  Replacement dosing with adiponectin reduced 

hepatic fibrosis. The effect of adiponectin on cultured hepatic stellate cells stimulated with platelet-

derived growth factor-BB (PDGF-BB) was to inhibit proliferation and migration and counteract the TGF-

beta1-induced activation of TGF-beta1 and CTGF genes by interfering with the nuclear translocation of 

Smad2.  Overall, a reduction of adiponectin levels following carbon tetrachloride treatment would be 

expected to foster fibrotic processes in the liver.   

Telomere shortening resulting in chromosomal instability has been associated with hepatocellular 

carcinoma in humans, with loss of regenerative capacity in chronic liver injury.  Intraperitoneal injection 

of carbon tetrachloride into wild type mice increased the initiation of hepatic foci and the development of 
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hepatocellular carcinoma (Farazi et al. 2003).  The number and size of hepatic nodules were significantly 

lower in treated mice that were transgenic for aberrant telomerase.  The authors suggest that telomere 

dysfunction impedes the progression to malignancy. Estradiol protected against telomere shortening, 

fibrosis, and senescence in hepatocyes of rats injected intramuscularly with carbon tetrachloride (Sato et 

al. 2004).  The authors attributed the protective effect of estradiol on its transactivation of the telomerase 

gene. 

3.5.3 Animal-to-Human Extrapolations 

Patterns of toxicity and metabolism of carbon tetrachloride in laboratory animals are very similar in 

humans and animals.  In both, similar effects are observed in the major target organs, the liver and kidney, 

as well as in the nervous system during acute inhalation exposures.  There are some minor species 

differences in metabolic parameters following exposure to carbon tetrachloride.  Benson et al. (2001) 

reported that the fraction of carbon tetrachloride (equivalents following inhalation of radiolabeled carbon 

tetrachloride) partitioning to the liver after a 4-hour inhalation exposure was higher in hamsters and mice 

than in rats, which show an immediate accumulation in fat. .  Rats eliminated less radioactivity associated 

with metabolism and more associated with the parent compound in exhaled air than mice or hamsters. 

Thrall et al. (2000) estimated that humans at low inhalation concentrations metabolized less of the dose 

than rats, and would be less sensitive than rats at equivalent exposures; the rate of metabolism was highest 

in mice, followed by rat, and then humans.  In humans, rats, and mice, CYP2E1 is the major enzyme 

responsible for bioactivation of carbon tetrachloride; thus, similar effects of reactive metabolites could be 

expected in rodents and humans. 

3.6 TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS  

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Colborn and Clement (1992), was also used in 1996 when Congress mandated the EPA 

to develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”.  To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 
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1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors. In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 

(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

There is no reported direct effect of carbon tetrachloride on hormones in humans or animals.  Fertility was 

reduced in an inhalation bioassay in rats, but it is not known whether the cause was hormonal disruption 

or a necrotic effect on the gonads (Smyth et al. 1936).  Testicular degeneration, possibly resulting from 

necrosis, was observed in rats exposed by inhalation (Adams et al. 1952).  Adrenal pheochromocytomas 

were induced in mice exposed to carbon tetrachloride vapor for 2 years (Japan Bioassay Research Center 

1998). It is possible that catecholamine balances were affected in these animals (Landsberg and Young 

1998). 

It is possible that the loss of hepatic function caused by carbon tetrachloride could indirectly impair 

hormone metabolic processes that are regulated by the liver.  Functions that could be affected by reduced 

liver function include inactivation of some hormones (e.g., insulin and glucagon) by proteolysis or 

deamination, deiodination of thyroxine and triiodothyronine, inactivation of steroid hormones (e.g., 

glucocorticoids and aldosterone) followed by glucuronidation, metabolism of testosterone to 

17-ketosteroids and sulfonation, conversion of estrogens to estriol and estrone followed by conjugation to 

glucuronic acid or sulfate, and removal of circulating vasoactive substances such as epinephrine and 
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bradykinin (Podolsky and Isselbacher 1998).  In humans, chronic liver disease not caused by carbon 

tetrachloride is known to result in signs of hormonal imbalance such as testicular atrophy (Podolsky and 

Isselbacher 1998). The development of ascites in chronic liver disease may be facilitated by the elevated 

levels of epinephrine (Podolsky and Isselbacher 1998). 

No in vitro studies were located regarding endocrine disruption of carbon tetrachloride. 

3.7 CHILDREN’S SUSCEPTIBILITY  

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 

susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life and a 

particular structure or function will be most sensitive to disruption during its critical period(s).  Damage 

may not be evident until a later stage of development.  There are often differences in pharmacokinetics 

and metabolism between children and adults.  For example, absorption may be different in neonates 

because of the immaturity of their gastrointestinal tract and their larger skin surface area in proportion to 

body weight (Morselli et al. 1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants 

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example, 

infants have a larger proportion of their bodies as extracellular water and their brains and livers are 

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 

1966; Widdowson and Dickerson 1964).  The infant also has an immature blood-brain barrier (Adinolfi 

1985; Johanson 1980) and probably an immature blood-testis barrier (Setchell and Waites 1975).  Many 
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xenobiotic metabolizing enzymes have distinctive developmental patterns.  At various stages of growth 

and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

One epidemiological study reported associations between maternal exposure to carbon tetrachloride at 

levels higher than 1 ppb in drinking water and adverse developmental outcomes (low full-term birth 

weight and small for gestational age) in humans (Bove et al. 1992a, 1992b, 1995). However, the same 

effects were associated with exposure to trihalomethanes, which occurred at higher concentrations in 

drinking water. Associations between exposure and incidences of central nervous system defects, cleft-

lip or cleft-palate, or heart conotruncal defects were not statistically significant (Bove et al. 1992a, 1992b, 

1995; Croen et al. 1997).  In general, exposure to other chemicals by the study population raises 

uncertainty as to the causative role of carbon tetrachloride in the observed adverse developmental effects.  

Animal studies did not report adverse developmental effects in the absence of maternal toxicity.  No 

teratogenic effects (morphological anomalies) were observed in rats exposed to carbon tetrachloride by 

inhalation (Gilman 1971; Schwetz et al. 1974) or in rats or mice exposed by ingestion (Hamlin et al. 

1993; Wilson 1954).  Complete litter loss occurred in some rats given oral doses that produced clear 

maternal toxicity (Narotsky et al. 1997a, 1997b; Wilson 1954).  It is not known whether litter loss is the 

result of toxicity to the fetus or to the placenta, but the critical site of injury is likely related to the 

abundance of cytochrome proteins that metabolize carbon tetrachloride.   
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An in vitro fertilization assay in mice reported significant adverse effects on fertilization at concentrations 

≥1 mM (154 µg/mL), but not ≤0.5 mM (77 µg/mL) (Hamlin et al. 1993).  These levels are significantly 

higher than those encountered by the general population (see Section 6.5).  An assay in mice 

intraperitoneally injected with carbon tetrachloride found no increase in sperm head abnormalities at 

doses as high as 3,180 mg/kg (Topham 1990). 

Fetal tissues and the placenta appear to have the capacity for bioactivating carbon tetrachloride, although 

the levels of cytochrome enzymes are lower than in neonates or adults (EPA 2001).  Total fetal liver CYP 

content is a relatively constant 30% of the adult level from the end of the first trimester of gestation up to 

1 year of age (EPA 2001). mRNA for CYP2E1 has been detected in human first-trimester placentas 

(Hakkola et al. 1996).  Low levels of CYP2E1 protein have been detected in human fetal brain as early as 

gestational day 46, substantially increasing around day 50 (Boutelet-Bochan et al. 1997; Brzezinski et al. 

1999). In the fetal liver, CYP2E1 protein was not detectable at 10 weeks of gestation, but was present at 

16 weeks (Carpenter et al. 1996).  Therefore, it would appear that there is a period early in gestation 

during which the fetal brain might be more vulnerable than the liver to the effects of carbon tetrachloride.  

However, no developmental studies are available that specifically examined neurological or 

neurobehavioral effects of exposure to carbon tetrachloride during gestation.  Additionally, there is some 

evidence that maternal alcohol consumption induces placental CYP2E1 in humans (Rasheed et al. 1997b).  

If maternal alcohol exposure also increases levels of CYP2E1 in fetal tissues, the likelihood of fetal injury 

from exposure to carbon tetrachloride would be increased.  Induction of fetal hepatic CYP2E1 by 

maternal ethanol consumption has been confirmed in rats (Carpenter et al. 1997).  Transcription of the 

CYP2E1 gene in human placenta and fetal lung and kidney is regulated in part by hypermethylation of 

dinucleotide CG residues within the promoter (Viera et al. 1998). 

Hepatic levels of CYP2E1 mRNA increase significantly during the first 24 hours after birth, largely 

resulting from demethylation that allows transcription to proceed (Viera et al. 1996).  Major 

accumulations of CYP2E1 occur between 1 and 3 months of age and values comparable to those of adults 

are achieved sometime between 1 and 10 years of age (EPA 2001; Viera et al. 1996).  Thus, children 

exposed to carbon tetrachloride would be expected to experience similar effects as in adults. 

Fisher et al. (1997) have calculated that maternal exposure to carbon tetrachloride is likely to result in its 

transfer to breast milk, which would be a possible means of exposure for nursing infants. 
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Effects of metabolism of carbon tetrachloride on late (day 20) rat fetal hepatic microsomes have been 

measured in vitro (Cambron-Gros 1986).  Fetal microsomes had the ability to metabolize the compound 

as evidenced by inhibition of cytochrome P-450 (to a greater degree than maternal microsomes), 

inhibition of calcium uptake (similar to maternal microsomes), and the increased amount of carbon 

tetrachloride bound to protein (less than maternal microsomes).  The production of trichloromethyl 

radicals by fetal microsomes did not induce the membrane phospholipid peroxidation observed with 

maternal microsomes.  The absence of lipid peroxidation in fetal liver would be expected to result in a 

qualitatively different pattern of hepatic toxicity following exposure to carbon tetrachloride compared to 

adults. The authors suggest that necrotic effects would be less in fetuses than in adults.  The basis for the 

lack of lipid peroxidation by fetal microsomes was not determined in that study. 

3.8 BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of biomarkers 

as tools of exposure in the general population is very limited.  A biomarker of exposure is a xenobiotic 

substance or its metabolite(s) or the product of an interaction between a xenobiotic agent and some target 

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989).  The 

preferred biomarkers of exposure are generally the substance itself or substance-specific metabolites in 

readily obtainable body fluid(s) or excreta.  However, several factors can confound the use and 

interpretation of biomarkers of exposure.  The body burden of a substance may be the result of exposures 

from more than one source.  The substance being measured may be a metabolite of another xenobiotic 

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic 

compounds).  Depending on the properties of the substance (e.g., biologic half-life) and environmental 

conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the 

body by the time samples can be taken.  It may be difficult to identify individuals exposed to hazardous 

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as 

copper, zinc, and selenium).  Biomarkers of exposure to carbon tetrachloride are discussed in 

Section 3.8.1. 
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Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989).  This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific.  They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by carbon tetrachloride are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response.  If biomarkers of susceptibility exist, they are 

discussed in Section 3.10 “Populations that are Unusually Susceptible.” 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Carbon Tetrachloride  

Measurement of parent carbon tetrachloride and its metabolites in expired air has been the most 

convenient way to determine exposure. Levels of 9.5 ppm carbon tetrachloride were detected in expired 

air of one worker who had been exposed to carbon tetrachloride vapors for several minutes (Stewart et al. 

1965). In another case, expired air levels were over 2,000 ppm in a person exposed by ingestion to a pint 

of carbon tetrachloride mixed with methanol (Stewart et al. 1963).  Levels fell below 2 ppm after 16 days.  

Depending on dose and length and route of exposure, the half-life of carbon tetrachloride in expired air 

initially appears to range from 1 to several hours, later lengthening to 40–>85 hours.  Measurement of 

carbon tetrachloride in blood has also been used as an indicator of exposure. 

Covalent adducts between reactive carbon tetrachloride metabolites (trichloromethyl radical) and cellular 

protein, lipids, and nucleic acids are known to occur.  Although measurements of such adducts may 

provide data on past exposure, the method's overall usefulness in assessing exposure in the general 

population is severely limited since it requires the use of radiolabeled carbon tetrachloride.  Further, 

metabolite compounds and their adducts may originate in ways other than from carbon tetrachloride, or 

they may undergo reduction and thus require some reoxidation procedure prior to being detectable by in 

vivo spin trapping techniques (Sentjure and Mason 1992). 
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3.8.2 Biomarkers Used to Characterize Effects Caused by Carbon Tetrachloride  

As discussed in Section 3.2, the effects that are most often observed in humans exposed to carbon 

tetrachloride are liver and kidney injury and central nervous system depression.  Exposure levels leading 

to these effects in humans are not well-defined.  The threshold for central nervous system effects 

following exposures of 8 hours or more is probably in the range of 20–50 ppm (Elkins 1942; Heimann 

and Ford 1941; Kazantzis and Bomford 1960).  On the other hand, kidney and liver effects can occur 

following exposure (15 minutes to 3 hours) to vapor concentrations of 200 and 250 ppm, respectively 

(Barnes and Jones 1967; Norwood et al. 1950).  These exposures correspond to an absorbed dose of 

approximately 100–200 mg/kg. 

Detection of liver injury has commonly been associated with alterations in serum levels of certain hepatic 

enzymes and proteins.  Elevation in bilirubin levels following exposure (Barnes and Jones 1967) has been 

detected in humans, as have decreased serum levels of secreted liver proteins (e.g., albumin and 

fibrinogen) (Ashe and Sailer 1942; McGuire 1932; New et al. 1962; Norwood et al. 1950; Straus 1954). 

Elevations in serum levels of enzymes (alkaline phosphatase and gamma-glutamyltransferase) released 

from damaged hepatocytes have been reported in occupational exposures above 1 ppm lasting months to 

years (Tomenson et al. 1995).  Similar enzyme elevations were observed following acute-, intermediate-, 

and chronic-duration exposures to carbon tetrachloride in animals (Bruckner et al. 1986; Hayes et al. 

1986; Japan Bioassay Research Center 1998; Sakata et al. 1987).  Typically, ALT, AST, alkaline 

phosphatase, and LDH have been monitored, but these are also produced in nonhepatic tissues.  Ikemoto 

et al. (2001) investigated serum levels of several urea-cycle enzymes that are more exclusively found in 

the liver: liver-type arginase (ARG), ornithine carbamoyltransferase (OCT), and arginosuccinate synthase 

(AS). After rats were injected with carbon tetrachloride, serum ARG levels were immediately elevated at 

the first 15-minute timepoint and within 30 minutes, were about 45-fold higher than normal; after 

300 minutes, the increase in serum ARG levels had not reached a plateau.  All other enzymes (AST, ALT, 

OCT, and AS) measured had maximally 10-fold increases.  The authors propose that ARG is a sensitive 

biomarker for acute exposure to carbon tetrachloride and attribute its pattern of appearance in serum to 

the fact that it is a cytosolic enzyme (having only the plasma membrane as a barrier to the extracellular 

compartment) and to its smaller molecular mass compared to the other enzyme biomarkers. 

Yamaguchi et al. (2002) proposed that serum concentrations of regulcalcin, a Ca2+-binding protein that is 

especially abundant in the liver but not abundant in the kidney, heart, or brain of rats, would be a sensitive 

measure of hepatitis following exposure to carbon tetrachloride.  In rats that received 5 doses of 
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15,940 mg/kg at 3-day intervals, standard serum markers for AST and ALT were significantly elevated 

compared to controls in samples taken during the first week of exposure, but not later, whereas significant 

elevations in serum regucalcin were detectable both during the first week and, at lower levels, 18 and 

30 days after the first exposure. 

In rats acutely treated with 1,275 mg/kg carbon tetrachloride, histological evaluations of the liver showed 

peak scores for necrosis at 24–36 hours and for inflammation at 48 hours, with resolution largely evident 

by 60 hours and 4 days, respectively (Giffen et al. 2003).  Detection of serum markers for necrosis and 

inflammation demonstrated a pattern consistent with the histological results.  Serum markers of hepatic 

damage (AST, ALT, glutamate dehydrogenase) showed peak elevations at 36 hours and a subsequent 

decline. Serum haptoglobin, a marker for inflammation, peaked at 48 hours (400% over control), and 

after declining, was significantly elevated at 4 days but not later.  The authors suggest that haptoglobin 

would be a sensitive marker for hepatic inflammation, since that protein is primarily synthesized by 

centrilobular hepatocytes, which are vulnerable to injury by carbon tetrachloride. 

In the rat, carbon tetrachloride-induced liver cytolysis has been associated with elevated serum activities 

of glutamate dehydrogenase, sorbitol dehydrogenase, and glucose-6-phosphatase (microsomal glucose-

6-phosphatase activity was decreased) (Brondeau et al. 1991, 1993), while serum procollagen III peptide 

was demonstrated to be a valuable indicator of liver fibrogenesis, and serum prolidase was shown to be a 

limited signal of accelerated liver collagen metabolism (Jiang et al. 1992).  Serum immunoassay for the 

7S fragment of type IV collagen may be an even more sensitive indicator of hepatic fibrosis in man (Ala-

Kokko et al. 1992).  Another sensitive (but nonspecific) indicator of liver injury is the serum levels of 

individual bile acids (Bai et al. 1992).  Lipid peroxidation, increased erythrocyte membrane 

cholesterol/phospholipid ratio, and decreased erythrocyte ATPase activity were all associated with the 

onset of carbon tetrachloride-induced liver cirrhosis (Mourelle and Franco 1991). Also, lipid 

peroxidation accompanying carbon tetrachloride-induced hepatotoxicity has been monitored by 

quantitating hepatic levels of hydroperoxy- and hydroxy-eicosatetraenoic acids (Guido et al. 1993). 

Renal injury has been associated with acute exposure of humans to carbon tetrachloride.  Impaired renal 

function as evidenced by oliguria and anuria have been reported (Barnes and Jones 1967; Norwood et al. 

1950).  Proteinuria, hemoglobinuria, and glycosuria have also been reported in other cases involving 

acute exposure of humans to the compound (Forbes 1944; Guild et al. 1958; New et al. 1962; Smetana 

1939; Umiker and Pearce 1953).  Although acute renal failure induced in rats by carbon tetrachloride 

apparently did not involve activation of the circulating active renin-angiotensin system, increased 
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prorenin levels were associated with decreased renal function (Cruz et al. 1993).  Long-term inhalation 

exposure to carbon tetrachloide increased the incidence and severity of chronic nephropathy in the rat, 

and significantly increased proteinuria levels and serum biomarkers such as blood nitrogen (Japan 

Bioassay Research Center 1998).  These renal effects can occur following exposure to chemicals other 

than carbon tetrachloride. 

Neurotoxicity, as evidenced by central nervous system depression, has been associated with acute 

exposure to carbon tetrachloride in humans.  Clinical signs and symptoms that may be monitored include 

headache, dizziness, fatigue, and coma (Cohen 1957; Stevens and Forster 1953; Stewart et al. 1961).  

Impaired visual functions have also been observed (Johnstone 1948; Smyth et al. 1936; Wirtschafter 

1933).  It should be noted that central nervous system effects disappear rapidly as carbon tetrachloride is 

eliminated from the body.  Therefore, they will be detectable for only relatively short periods after 

exposure. The neural effects are not specific to carbon tetrachloride exposure and may occur following 

exposure to other chemicals. 

Lipid peroxidation products appearing in urine following exposure to carbon tetrachloride offer the 

possibility of noninvasive monitoring for hepatic damage (de Zwart et al. 1998).  As measured by gas 

chromatography, the urinary levels in rats of the following lipid peroxidation products showed 

statistically significant increases over normal values within 12 hours of an intraperitoneal injection with 

0.5 or 1.0 mL/kg carbon tetrachloride: formaldehyde, acetaldehyde, propanal, butanal, pentanal, hexanal, 

and malondialdehyde (MDA).  The 0.25 mL/kg dose elicited significant increases only in acetaldehyde.  

The level of MDA returned to normal after 48 hours, at which time the levels of the other chemicals 

remained elevated.  The same study found that neither coproporphyrin III nor 8-hydroxy-2'-deoxy-

guanosine were suitable urinary biomarkers for exposure to carbon tetrachloride. 

Metabonomics is a new technology combining high resolution nuclear magnetic resonance (NMR) and 

pattern recognition technology that is starting to be applied to the evaluation of in vivo toxicology. 

Robertson et al. (2000) treated rats with single intraperitoneal or oral doses of carbon tetrachloride and 

evaluated the changes in NMR spectra of urine as displayed by principal component analysis (PCA), a 

statistical method that reduces multidimensional data to a two- or three-dimensional pattern.  The PCA 

pattern was most altered compared to the pretreatment state on the first and second days after treatment, 

but had returned to normal within 10 days.  PCA patterns were detectable in rats treated with 0.5 mg/kg, 

but not in rats treated with 0.1 mg/kg. 
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Additional information concerning biomarkers for effects on the immune, renal, and hepatic systems can 

be found in the CDC/ATSDR Subcommittee Report on Biological Indicators of Organ Damage 

(CDC/ATSDR 1990), and on the neurological system in the Office of Technology Assessment Report on 

Identifying and Controlling Poisons of the Nervous System (OTA 1990). 

3.9 INTERACTIONS WITH OTHER CHEMICALS  

There is substantial evidence that the toxicity of carbon tetrachloride is dramatically increased by 

alcohols, ketones and a variety of other chemicals.  Many of these might be found at hazardous waste 

sites also containing carbon tetrachloride.  Although the precise mechanisms for this marked potentiation 

are not always known, it is likely that most potentiators act, at least in part, by increasing the metabolic 

activation of carbon tetrachloride to its toxic intermediates and metabolites, thus increasing the induced 

injury.  Other agents may affect the toxic outcome by altering cellular regenerative and tissue repair 

capacities. The extent to which either or both of these mechanisms are involved in the interaction will 

substantially affect the relationships among induced injury, duration of toxic damage, and animal 

survival. Interactions with agents enhancing lipid peroxidation would be expected to increase the severity 

of cell injury due to increased permeability of cell membranes.  

Ethanol.  Alcohol (ethanol) ingestion has often been associated with potentiation of carbon tetrachloride-

induced hepatic and renal injury in humans (Manno et al. 1996).  In two cases in which men cleaned 

furniture and draperies with carbon tetrachloride, one man, a heavy drinker, became ill and died, whereas 

his coworker, a nondrinker, suffered a headache and nausea, but recovered quickly after breathing fresh 

air (Smetana 1939).  Both men were subjected to the same carbon tetrachloride exposure, as they had 

been working in the same room for the same amount of time.  In 19 cases of acute renal failure due to 

carbon tetrachloride inhalation or ingestion, 17 of 19 patients had been drinking alcoholic beverages at 

about the time of their carbon tetrachloride exposure (New et al. 1962).  Many other cases of carbon 

tetrachloride-induced hepatic and/or renal injury associated with ethanol ingestion have been described in 

the medical literature (Durden and Chipman 1967; Guild et al. 1958; Jennings 1955; Lamson et al. 1928; 

Markham 1967; Tracey and Sherlock 1968).  These clinical reports establish that occasional or frequent 

ingestion of alcoholic beverages can increase the danger from exposure to carbon tetrachloride at levels 

that otherwise do not result in significant toxicity.  As ethanol is known to induce microsomal mixed-

function oxidase activity in man (Rubin and Lieber 1968), the mechanism of potentiation may involve 

ethanol-induced enhancement of the metabolic activation of carbon tetrachloride. 
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Numerous studies in animals confirm that ethanol is a strong potentiator of carbon tetrachloride-induced 

hepatotoxicity (Ikatsu et al. 1991; Kniepert et al. 1991; Reinke et al. 1988; Sato and Nakajima 1985; 

Strubelt 1984; Teschke et al. 1984; Wang et al. 1997a).  Ethanol administration 16–18 hours before 

carbon tetrachloride exposure potentiated hepatotoxicity (Cornish and Adefuin 1966; Towner et al. 1991); 

however, enhancement was less when ethanol was given 2 hours before carbon tetrachloride (Cornish and 

Adefuin 1966). This is consistent with the idea that ethanol increases carbon tetrachloride toxicity by 

inducing the synthesis of one or more enzymes, such as cytochrome P-450 2E1 (Castillo et al. 1992), that 

are involved in the metabolic activation of carbon tetrachloride; or by acting as a competitive inhibitor of 

carbon tetrachloride metabolism during concurrent exposure.  Thus, the precise timing of exposure to 

each agent is likely to critically influence the observed effects.  For example, a single dose of ethanol 

18 hours prior to intraperitoneal administration of 1,275 mg/kg carbon tetrachloride in rats did not 

increase either trichloromethyl free-radical adducts or p-nitrophenol hydroxylase activity, whereas 

2 weeks of dietary exposure to ethanol significantly increased the generation of trichloromethyl radicals 

(Reinke et al. 1988,  1992).  Threshold levels also appear involved, as 14 days of 0.05–0.5 mL/kg/day 

ethanol did not result in a statistically significant increase in any effects of a subtoxic 20 mg/kg/day dose 

of carbon tetrachloride (Berman et al. 1992).  Ethanol exposure intensified carbon tetrachloride toxicity in 

pregnant rats and caused decreased postnatal survival of offspring (Gilman 1971).  For the most part, 

these studies involved short-term exposures to ethanol.  Inhalation studies involving longer-term 

pretreatment exposures to ethanol (5–10 weeks) prior to carbon tetrachloride exposure raised the 

possibility of increased susceptibility to chronic liver injury at low doses of carbon tetrachloride that have 

not been shown to cause significant liver damage (Hall et al. 1990).  On the other hand, when ethanol 

pretreatments increased in duration (30 or 52 weeks), there was a decrease in ethanol potentiation of 

carbon tetrachloride toxicity (Kniepert et al. 1990).  Factors contributing to this diminished potentiation 

were not determined.  It has also been reported that despite substantial potentiation of carbon 

tetrachloride-induced hepatotoxicity in ethanol pretreated rats, no increase in lethality was observed (Ray 

and Mehendale 1990).  The authors speculated that this result occurred due to the treatment's concomitant 

stimulation of hepatic regenerative capacity—to a degree sufficient to overcome the induced injury. In 

addition to enhanced hepatotoxicity pretreatments with ethanol have been reported to enhance certain 

immunosuppressive effects of carbon tetrachloride (Kaminski et al. 1990). 

Other Alcohols and Ketones.  Secondary alcohols can also potentiate carbon tetrachloride hepatorenal 

toxicity in humans.  Eighteen workers in an isopropyl alcohol packaging plant became ill after inhalation 

of carbon tetrachloride (Folland et al. 1976).  Four of these people were hospitalized; one with liver 

injury, one with kidney damage, and the other two with both kidney and liver injury.  Air samples taken 
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at the plant during a subsequent investigation revealed relatively high concentrations of isopropanol and 

acetone, and these were thought to play a major role in potentiation of toxicity.  Potentiation of carbon 

tetrachloride hepatoxicity in mice by isopropanol far exceeded that caused by an equal dose of ethanol, 

though both exerted their maximum effect when given 18 hours before carbon tetrachloride (Traiger and 

Plaa 1971). In rats, isopropanol potentiated hepatic injury caused by carbon tetrachloride, but lethality 

was not increased because of the augmentation of hepatic tissue repair mechanisms (Rao et al. 1996).  

Methanol co-treatment in rats potentiated the hepatotoxicity of carbon tetrachloride by inducing CYP2E1 

in rat liver (Allis et al. 1996). Methanol was found to be markedly less effective on an equimolar basis 

than either isopropanol or tertiary-butanol in enhancing carbon tetrachloride-induced hepatotoxicity in 

rats (Harris and Anders 1980).  These differences likely reflect the substantially longer half-lives of the 

secondary and tertiary compounds (relative to their primary congeners), which makes them more potent 

and persistent inducers of cytochrome P-450 activities.  Methanol, ethanol, isopropanol, or decanol in 

combination with carbon tetrachloride caused massive liver damage, but failed to increase carbon 

tetrachloride induced lethality.  On the other hand, tert-butanol, pentanol, hexanol, and octanol not only 

potentiated liver damage when administered prior to carbon tetrachloride, but also significantly increased 

the lethal effects of carbon tetrachloride (Ray and Mehendale 1990).  Thus, potentiated hepatotoxicity, as 

measured by various endpoints, may not be a very reliable predictor of the eventual survival outcome.  

Other experiments in rats demonstrated that both isopropanol and acetone (the major metabolite of 

isopropanol) are apparently responsible for the marked enhancement of carbon tetrachloride 

hepatotoxicity (Plaa and Traiger 1972).  Similarly, the metabolism of 2-butanol to 2-butanone contributed 

to the marked ability of this alcohol to potentiate carbon tetrachloride hepatotoxicity in rats (Traiger and 

Bruckner 1976). 

Investigations in rats indicate that ketosis, caused either by diabetes or administration of ketones, can 

potentiate carbon tetrachloride hepatotoxicity.  Pre-treatment with methyl isobutyl ketone, acetone, or 

metyl ethyl ketone increased hepatotoxicity in rats treated with a single dose of carbon tetrachloride, 

essentially reducing the ED50 for carbon tetrachloride by 80, 73, or 89%, respectively (Raymond and Plaa 

1995).  Hepatotoxicity (fibrosis and cirrhosis) and nephrotoxicity were increased in rats exposed to both 

acetone and carbon tetrachloride (Charbonneau et al. 1986).  Carbon tetrachloride hepatotoxicity 

increased in diabetic rats (Hanasono et al. 1975), while 1,3-butanediol induced ketosis and potentiated 

carbon tetrachloride hepatoxicity (Pilon et al. 1986). In both studies, ketosis was a better index for 

prediction of liver injury than glycemic status.  Interestingly, the same specific form of cytochrome P-450 

was reported to be induced in rats by chronic ethanol administration (Joly et al. 1977) and by diabetes 

(Past and Cook 1982).  The bulk of available evidence suggests that elevated levels of ketone bodies 
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induce the enzyme system responsible for biotransformation of carbon tetrachloride to its reactive 

metabolites (Pilon et al. 1986).  Methyl isobutyl ketone significantly increased total levels of cytochrome 

P-450 in rat liver microsomes (Raymond and Plaa 1995).   

Phenobarbital, Metamphetamine, DDT, PBB, Chlordecone.  Phenobarbital (PB) has been shown to 

produce a marked increase in carbon tetrachloride hepatotoxicity in rats and it is widely used to provide 

experimental animal models of carbon tetrachloride-induced cirrhosis (Abraham et al. 1999; Cornish et al. 

1973; Garner and McLean 1969; Hocher et al. 1996; Sundari et al. 1997).  This is not surprising, in that 

cytochrome P-450 PB-B (CYP2B1), the isozyme that can be induced at least 50-fold in rats by PB, 

participates in the metabolic activation of carbon tetrachloride (Vittozzi and Nastainczyk 1987).  Lethal 

effects of carbon tetrachloride are not potentiated by even large doses of phenobarbital in spite of 

increased liver injury.  Thus, as with the alcohols, manifestations of bioactivation capacity or hepatic 

injury do not appear to reliably predict the eventual survival outcome.  The mechanism underlying this 

phenomenon appears to be the stimulation of hepatic regeneration and tissue repair.  Although the early 

phase of hepatic regeneration was postponed from 6 to 24 hours, it was greatly increased at 24 and 

48 hours. Therefore, in spite of remarkably increased liver injury, the animals are able to overcome injury 

and survive the potentiated liver toxicity (Kodavanti et al. 1992; Mehendale 1990, 1991, 1992).  Some 

data suggest that the PB-induced P-450 isozyme(s) are more rapidly inactivated by carbon tetrachloride, 

and that PB pretreatment may alter the target lipids and/or the initiating metabolites involved in lipid 

peroxidation and diene conjugate formation (Moody 1992).  DDT increased the sensitivity of rats to 

carbon tetrachloride poisoning (McLean and McLean 1966), and mice fed 100 ppm polybrominated 

biphenyls (PBBs) or 200 ppm polychlorinated biphenyls (PCBs) in their diet for 28 days experienced 

increased carbon tetrachloride hepatotoxicity (Kluwe et al. 1979).  Potentiation of renal dysfunction was 

also found in the PBB-pretreated mice.  All of these compounds are broad-spectrum mixed-function 

oxidase (MFO) inducers. 

Concurrent treatment with methamphetamine at doses between 5 and 15 mg/kg increased hepatotoxicity 

in rats treated with carbon tetrachloride (Roberts et al. 1994).  No potentiation occurred when 

metamphetamine was administered several hours before or after administration of carbon tetrachloride. 

Low dietary doses (10 ppm) of the insecticides chlordecone or mirex (a structural analog of chlordecone) 

have been demonstrated to potentiate carbon tetrachloride hepatotoxicity.  Chlordecone greatly enhanced 

the hepatotoxicity of carbon tetrachloride in rats, producing cholestasis as well as hepatocellular damage 

(Curtis et al. 1979).  The investigators conclude that there is the likelihood of severe liver damage 
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resulting from interaction of carbon tetrachloride and chlordecone at exposure levels which may 

independently be nontoxic.  Chlordecone has been reported not to potentiate the renal toxicity in rats 

(Kodavanti et al. 1992) or neurotoxicity in gerbils (Desaiah et al. 1991) of carbon tetrachloride, so its 

enhancing effects may be liver-specific.  Chlordecone potentiation of carbon tetrachloride hepatotoxicity 

and lethality appears due to incapacitation of hepatocytes to regenerate and initiate the early phase of 

tissue repair.  The authors also suggest that this is due to a precipitous depletion of cellular ATP that 

results from increased intracellular accumulation of Ca2+, which in turn leads to a depletion of glycogen 

(Bell and Mehendale 1987; Mehendale 1990, 1991, 1992; Soni and Mehendale 1993).  Mirex 

pretreatment of carbon tetrachloride-dosed rats was found not to produce cholestasis, but to produce a 

relatively modest increase in carbon tetrachloride hepatotoxicity (Bell and Mehendale 1985).  

Pretreatment of carbon tetrachloride-dosed rats with both mirex and chlordecone did not increase 

hepatotoxicity above that seen with chlordecone alone, indicating that chlordecone influenced 

susceptibility to carbon tetrachloride in a way independent of that of mirex.  As proposed for 

phenobarbital, the mechanism underlying only limited and low-grade potentiation of carbon tetrachloride 

by mirex may involve a stimulation of hepatic regeneration and tissue repair that offsets cytochrome 

P-450 induction (Mehendale 1990, 1991, 1992).  A single oral dose of chlordecone enhanced the 

oxidative metabolism of carbon tetrachloride in rats, but to a lesser degree than PB, which was in inverse 

relationship to these agents' effects on potentiation of the lethal and hepatotoxic effects of carbon 

tetrachloride (Mehendale and Klingensmith 1988).  The investigators suggested the involvement as of yet 

unidentified factors, in addition to the modest enhancement of carbon tetrachloride metabolism, in 

chlordecone's unusually strong potentiating capacity. As discussed above, subsequent studies have 

suggested that chlordecone potentiates carbon tetrachloride-induced hepatotoxicity by depleting cellular 

energy stores, and consequently by inhibiting hepatocellular regeneration and liver tissue repair (e.g., 

Kodavanti et al. 1992; Mehendale 1991, 1992; Soni and Mehendale 1993). 

Haloalkanes.  Certain haloalkanes and haloalkane-containing mixtures have been demonstrated to 

potentiate carbon tetrachloride hepatotoxicity.  Pretreatment of rats with trichloroethylene (TCE) 

enhanced carbon tetrachloride-induced hepatotoxicity, and a mixture of nontoxic doses of TCE and 

carbon tetrachloride elicited moderate to severe liver injury (Pessayre et al. 1982).  The researchers 

believed that the interaction was mediated by TCE itself rather than its metabolites.  TCE can also 

potentiate hepatic damage produced by low (10 ppm) concentrations of carbon tetrachloride in ethanol 

pretreated rats (Ikatsu and Nakajima 1992). Acetone was a more potent potentiator of carbon 

tetrachloride hepatotoxicity than was TCE, and acetone pretreatment also enhanced the hepatotoxic 

response of rats to a TCE-carbon tetrachloride mixture (Charbonneau et al. 1986).  The potentiating 
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action of acetone may involve not only increased metabolic activation of TCE and/or carbon 

tetrachloride, but also possible alteration of the integrity of organelle membranes. Carbon tetrachloride-

induced liver necrosis and lipid peroxidation in the rat have been reported to be potentiated by 

1,2-dichloroethane in an interaction that does not involve depletion of reduced liver glutathione, and that 

is prevented by vitamin E (Aragno et al. 1992; Danni et al. 1992). Dichloromethane potentiated the 

hepatotoxicity of carbon tetrachloride in rats by increasing the covalent binding of carbon tetrachloride 

metabolites to hepatic microsomal lipids (Kim 1997).  Several anesthetics (isoflurane, enflurane, 

halothane, and sevoflurane) enhanced the dechlorination of carbon tetrachloride by guinea pig 

microsomes by stimulating the reduction of cytochrome P-450 (Fujii 1996; Fujii et al. 1996). 

Nicotine.  Treatment of rats for 10 days with nicotine in drinking water increased liver histopathology 

(fatty change, necrosis, and dark-cell change) caused by an injection of carbon tetrachloride (Yuen et al. 

1995). It was proposed that the increased hepatotoxicity might have resulted from a synergistic effect of 

the lipid peroxidation induced by both agents.  Pregnant rats showed less severe effects than nonpregnant 

rats, possibly because of the differential hormonal status or differential expression of CYP-450 enzymes. 

Carbon Disulfide and Other Alkyl Sulfides.  Just as chemicals that serve to stimulate the metabolism of 

carbon tetrachloride lead to increased toxicity, chemicals that impair carbon tetrachloride metabolism lead 

to decreased toxicity.  Rats dosed with carbon disulfide together with carbon tetrachloride displayed 

effects on the liver that resembled those due to carbon disulfide alone, rather than those caused by carbon 

tetrachloride alone (Seawright et al. 1980).  This was judged to be due to destruction of the hepatic P-450 

metabolizing system by carbon disulfide, such that activation of carbon tetrachloride was much reduced.  

Similar results have been reported in workers exposed to "80/20" (a mixture of carbon tetrachloride and 

carbon disulfide used to fumigate grain) (Peters et al. 1987).  The neurological effects observed in these 

individuals resembled those caused by carbon disulfide alone, and there was no evidence of hepatotoxic 

effects characteristic of carbon tetrachloride exposure. 

Other sulfides administered as pretreatments had different effects on carbon tetrachloride hepatotoxicity 

as measured by plasma ALT levels (Kim et al. 1996).  The increase in plasma ALT levels induced by 

carbon tetrachloride was blocked by pretreatment with allyl sulfide or allyl disulfide and increased by 

pretreatment with propyl disulfide and butyl sulfide. 

Dietary Status.  Because carbon tetrachloride causes injury through oxidative pathways, depletion of 

cellular antioxidants such as glutathione, vitamin E, and methionine tend to increase the toxicity of carbon 
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tetrachloride. For example, feeding rats a diet low in vitamin E, selenium (a required cofactor for 

glutathione reductase), and methionine led to increased lipid peroxidation, while feeding a diet 

supplemented with one or more of these antioxidants tended to decrease lipid peroxidation (Hafeman and 

Hoekstra 1977) and oxidative liver damage (Parola et al. 1992).  Similar results have been obtained by 

Taylor and Tappel (1976) and Sagai and Tappel (1978).  In mice, retinoic acid or retinol inhibited the 

carbon tetrachloride-induced increase in serum alanine transaminase activity and liver histopathology, 

suggesting a protective effect of vitamin A in mice (Kohno et al. 1992; Rosengren et al. 1995).  However, 

pretreatment with retinol increased hepatocyte injury in rats exposed to carbon tetrachloride (Badger et al. 

1996; ElSisi et al. 1993a, 1993b).   

Food deprivation has also been shown to have a substantial effect on carbon tetrachloride hepatotoxicity. 

A 24-hour fast significantly depressed hepatic glutathione (GSH) levels and enhanced carbon 

tetrachloride hepatotoxicity in rats (Harris and Anders 1980; Sato and Nakajima 1985), and promoted 

lipid peroxidation as measured by malondialdehyde formation (Ikatsu et al. 1991).  A 1-day fast also 

increased hepatic injury as measured by increases in serum enzymes 2–2.5-fold compared to fed rats 

following 4-hour exposures at 500–2,500 ppm (Jaeger et al. 1982); the dietary status had no effect at 

5,000 ppm.  Diurnal decreases in hepatic GSH levels were found to coincide with periods of maximal 

susceptibility to carbon tetrachloride hepatotoxicity (Bruckner et al. 1984; Harris and Anders 1980).  

Even though the role of GSH in carbon tetrachloride cytotoxicity is poorly understood, it appears that 

more than GSH depletion is involved in fasting-induced enhancement of carbon tetrachloride 

hepatotoxicity. A 1-day fast stimulates the capacity of liver microsomes from male and female rats to 

metabolize carbon tetrachloride, although fasting did not produce a significant increase in hepatic 

microsomal protein or cytochrome P-450 levels (Nakajima and Sato 1979).  Thus, short-term food 

deprivation may enhance the biotransformation of carbon tetrachloride to cytotoxic metabolites.  Another 

factor in fasted animals was demonstrated in mice fasted for 24 hours that showed an 8-fold increase in 

hepatic triglycerides (steatosis) compared to untreated mice (Pentz and Strubelt 1983); it is likely that the 

increase in lipid content in the livers of fasted mice was responsible for their greater hepatic accumulation 

of injected carbon tetrachloride compared to fed mice.  It should be recognized that food deprivation or 

consumption of a protein-free diet for several days diminishes MFO activity and makes rats more 

resistant to carbon tetrachloride (McLean and McLean 1966; Seawright and McLean 1967).  Food 

restriction (25 or 50% lower caloric than control intake) for 30 days prior to administration of carbon 

tetrachloride and increased the carbon-tetrachloride-induced elevations in some serum enzymes in 

carbon-tetrachloride-treated rats. (Ramkumar et al. 2003; Seki et al. 2000).  For example, the chemical-

induced increase in serum AST was elevated 11-fold in female rats fed ad libitum but 27-fold in those on 
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a restricted diet (-25%) compared to controls.  Food restriction (reduced by 25%) also increased the 

severity of lesions of the liver (hepatic cellular degeneration and fibrosis) and kidney (proximal tubular 

vacuolation and glomerular sclerosis) in treated rats compared to those fed ad libitum (Seki et al. 2000). 

Metals.  Pre-exposure to single doses of various metals (hexavalent chromium, mercuric chloride or 

silver) had no synergistic effect on lipid peroxidation in rats treated with carbon tetrachloride (Rungby 

and Ernst 1992).  In mice fed a diet augmented with 3% carbonyl iron and intraperitoneally injected with 

carbon tetrachloride for 12 weeks, there were significant increases in parameters of hepatic injury (serum 

ALT, absolute and relative liver weight, severity of necrosis) compared to controls that were numerically 

larger than for groups treated with iron or carbon tetrachloride alone (Arezzini et al. 2003).  Rats fed a 

low-copper diet were reported to be more sensitive to hepatic plasma membrane injury 24 hours 

following an intraperitoneal injection of carbon tetrachloride, possibly due to reduced Cu-Zn superoxide 

dismutase activities (DiSilvestro and Medeiros 1992).  Rats fed a diet mildly deficient in zinc showed 

elevated levels of hepatocyte injury, as assessed by serum sorbitol dehydrogenase activity (DiSilvestro 

and Carlson 1994).  In rats injected with lead nitrate and then carbon tetrachloride, hepatoxicity, as 

measured by serum ALT and AST, was lower than in rats injected with carbon tetrachloride alone 

(Calabrese et al. 1995); the authors attributed this effect to the ability of lead to inhibit cytochrome P-450. 

3.10 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to carbon tetrachloride than will 

most persons exposed to the same level of carbon tetrachloride in the environment.  Reasons may include 

genetic makeup, age, health and nutritional status, and exposure to other toxic substances (e.g., cigarette 

smoke).  These parameters result in reduced detoxification or excretion of carbon tetrachloride, or 

compromised function of organs affected by carbon tetrachloride.  Populations who are at greater risk due 

to their unusually high exposure to carbon tetrachloride are discussed in Section 6.7, Populations with 

Potentially High Exposures. 

Section 3.9 discusses several types of compounds that can exacerbate the toxicity of carbon tetrachloride.  

Individuals exposed to these compounds may, therefore, be more sensitive to carbon tetrachloride 

exposure. As noted above, persons who are moderate to heavy drinkers are at significantly increased risk 

of liver and/or kidney injury following ingestion or inhalation of carbon tetrachloride (Manno et al. 1996). 

Occupational exposure to isopropanol has also been reported to markedly potentiate the hepatic or renal 

toxicity of carbon tetrachloride in men and women (Folland et al. 1976).  This report and numerous 
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animal studies indicate that primary, secondary, and tertiary alcohols, as well as their ketone analogues, 

can substantially enhance the toxic potency of carbon tetrachloride.  Substantial exposures to alcohols and 

ketones may occur in occupational settings or in certain instances in the use of household products 

containing these chemicals. 

Drugs and other chemicals that significantly induce microsomal MFO activity can significantly increase 

the toxicity of carbon tetrachloride by enhancing its biotransformation to reactive, cytotoxic metabolites.  

A number of drugs such as phenobarbital, pentobarbital, and phenylbutazone are MFO inducers in 

animals and humans.  Thus, individuals taking such medications may be at substantially greater risk of 

carbon tetrachloride toxicity. Other unusually susceptible individuals are those who have had significant 

exposures to insecticides such as DDT, chlordecone, or mirex, or to industrial chemicals such as PCBs or 

PBBs. All of these chemicals are potent MFO inducers and have been shown to markedly potentiate the 

hepatotoxicity of carbon tetrachloride in animals.  Exposures to these chemicals can occur in industrial 

and agricultural settings, as well as in the general population via environmental media (i.e., contaminated 

water, food, air, and soil). Other widely used chemicals such as TCE have been found to enhance carbon 

tetrachloride toxicity in animals.  Thus, persons with substantial exposure to TCE and other haloalkanes 

may be at greater risk of carbon tetrachloride toxicity. 

Nutritional status can also influence the toxic potency of carbon tetrachloride.  Animal studies have 

clearly demonstrated that brief fasting or consumption of diets low in antioxidants (vitamin E, selenium, 

methionine) can lead to increased carbon tetrachloride hepatotoxicity.  The same may be true for humans, 

although this is not known for certain.  Another aspect of nutritional status affecting carbon tetrachloride 

toxicity is hepatic energy status.  Hepatic ATP levels might influence the ultimate outcome of toxicity 

(low levels may inhibit recovery mechanisms). 

A variety of conditions may predispose certain segments of the population to carbon tetrachloride 

toxicity.  Persons with alcoholic cirrhosis, or other liver diseases that have significantly diminished the 

functional reserve of the liver, have a reduced capacity to tolerate carbon tetrachloride-induced 

hepatotoxicity.  The same is true for carbon tetrachloride-induced nephrotoxicity in people with 

significant renal dysfunction from other causes.  Diabetics may be particularly susceptible to carbon 

tetrachloride poisoning, in light of animal studies that indicate elevated levels of ketone bodies induce the 

MFO system, which converts carbon tetrachloride to reactive, cytotoxic metabolites.  Animal models for 

diabetes suggest different outcomes from exposure to carbon tetrachloride, depending on whether the 

disease is type 1 or type 2 (Sawant et al. 2004).  Mice with type 1 diabetes, induced by intraperitoneal 
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injection with 200 mg/kg streptozotocin, showed no mortality after receiving a dose of carbon 

tetrachloride (1,594 mg/kg) that was lethal to half of non-diabetic mice (Shankar et al. 2003). 

Conversely, rats with type 2 diabetes, induced by administration of a high-fat diet and 45 mg/kg 

streptozotocin, showed 100% lethality at a dose of 3,188 mg/kg carbon tetrachloride that was not lethal 

to untreated controls or rats receiving a high-fat diet or streptozotocin alone (Sawant et al. 2004).  The 

type 2 diabetic group had more severe hepatic necrosis between hours 12 and 36, greater depletion of 

hepatic glutathione at 6 hours, and a significant delay in the stimulation and progression of the S-phase of 

the cell division cycle compared to the other groups; CYP2E1 levels and rates of lipid peroxidation were 

not affected by type 2 diabetes in this animal model.  Individuals with genetically-determined high MFO 

activity may be more susceptible to carbon tetrachloride toxicity, as may be persons with habits (e.g., 

smoking, consumption of smoked meats) that can produce increased MFO activity. 

The organ-content of microsomal enzymes responsible for metabolizing carbon tetrachloride may change 

during different stages of the life cycle, indicating a potential for differing age-related susceptibilities 

following exposure.  A number of studies on drug metabolism reported declines in hepatic activities of 

CYP2E1 and CYP3A3/4 in the elderly (>65 years) compared with earlier adult stages (as reviewed in 

Tanaka 1998).  In vitro studies of human microsomes indicated that total immunoreactive CYP3A (the 

sum of CYP3A4 and CYP3A5) was significantly higher in livers from individuals aged 21–40 years 

compared to those aged 14–20 or 61–72 years (Patki et al. 2004). The observed lower rates of 

biotransformation of triazolam in the adolescent and elderly microsomal preparations was consistent with 

the reduced CYP3A content. In 18-month-old rats, no statistically significant reduction was observed in 

the mRNA or protein content for CYP2E1, but enzyme activity was reduced by 46% compared to 

8-month-old rats (Wauthier et al. 2004).  The reduced activity was attributed to inactivation of the enzyme 

over time by reactive metabolites.  Reduced hepatic CYP3A content was noted in microsomes from 

2-year-old CD-1 mice compared to 1-year-old mice (Warrington et al. 2000). Total CYP3A protein was 

also reduced in the liver of 25–26-month old F344 rats compared to younger animals, but was elevated by 

11% in the kidney, largely because of a 50% upregulation of one isoform (Warrington et al. 2004).  These 

results suggest that in F344 rats, ability of the kidney to generate reactive metabolites increases in the 

elderly. 

Age-related reductions in antioxidant content would also tend to increase vulnerability to reactive 

metabolites of carbon tetrachloride in the elderly.  Reductions in glutathione in old rats compared to 

younger animals have been noted in the liver and are associated with an age-related reduction in the 

transcription factor nuclear factor erythroid2-related factor (NrF2) that induces gammaglutamylcysteine 
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ligase, significantly involved with the synthesis of glutathione (Suh et al. 2004).  In Wistar rats, both the 

liver and kidney of 22-month-old rats had significant decreases in glutathione and glutathione peroxidase, 

but increases in biomarkers of lipid peroxidation compared to 10-week-old rats (Martin et al. 2003).  In 

F344 rats, glutathione peroxidase activity was significantly reduced in the kidney but not the liver of 

24-month-old rats compared to 6-month-old rats (Tian et al. 1998); these results suggest a possible basis 

for the increasing sensitivity of the kidney in rats exposed to carbon tetrachloride by inhalation for 2 years 

(Japan Bioassay Research Center 1998).  No study, however, has directly measured age-related 

differences in carbon tetrachloride metabolism in the kidney. 

Genetic polymorphisms may confer differing susceptibilities to the effects of carbon tetrachloride 

exposure. In rat liver, two different forms of glutathione S-transferase 3-3 have been identified (Mayama 

et al. 2003). Hirosaki hairless rats are homozygous for the NC type gene (encoding Asn198-Cys199) and 

Sprague-Dawley rats are homozygous for the KS type gene (encoding Lys198-Ser199). When the two 

strains of rat were given an oral gavage dose of carbon tetrachloride, hepatic glutathione activity 0.5 hours 

later was reduced more significantly in NC rats compared to KS rats.  Electrophoretic and 

chromatographic studies showed that the polymorphism affected the ability of the two kinds of enzyme to 

bind to heat shock protein 90-beta.  The authors conclude that heat shock protein-beta protects the KS 

type of enzyme from inactivation by carbon tetrachloride. 

3.11 METHODS FOR REDUCING TOXIC EFFECTS  

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to carbon tetrachloride.  However, because some of the treatments discussed may be 

experimental and unproven, this section should not be used as a guide for treatment of exposures to 

carbon tetrachloride. When specific exposures have occurred, poison control centers and medical 

toxicologists should be consulted for medical advice.  The following texts provide specific information 

about treatment following exposures to carbon tetrachloride:   

Ellenhorn MJ.  1997.  Ellenhorn’s medical toxicology:  Diagnosis and treatment of human poisoning. 2nd 

ed. New York, NY: Elsevier, 1422-1429. 

Leikin JB, Paloucek FP. 2002.  Poisoning and toxicology handbook. 3rd ed.  Hudson, OH: Lexi-Comp, 
Inc., 334. 

Shih RD. 1998.  Hydrocarbons.  In:  Goldfrank LR, Flomenbaum NE, Lewin NA, et al., eds  Goldfrank's 
toxicologic emergencies.  6th ed. Stamford, CT:  Appleton & Lange, 1383-1398. 
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3.11.1 Reducing Peak Absorption Following Exposure  

Human exposure to carbon tetrachloride may occur by inhalation, ingestion, or dermal contact. Inhalation 

or oral exposure to carbon tetrachloride may cause hepatic, renal, and neurological effects.  There is 

evidence, though limited, that dermal contact causes a similar pattern of effects. 

If carbon tetrachloride has been inhaled, movement to fresh air is recommended.  Humidified 

supplemental oxygen (100%) may be administered as required. 

Ingestion of carbon tetrachloride should be considered a toxic emergency in which treatment should begin 

immediately.  Treatment currently involves gastric emptying, either by gastric lavage (with a small bore 

nasogastric tube) or by induction of vomiting, preferably within minutes of exposure (Shih 1998).  The 

patient needs to have a gag reflex and should not show signs of seizure, lethargy, or coma because of the 

risk of pneumonitis from pulmonary aspiration.  In infants and young children, the induction of vomiting 

may induce severe fluid loss.  Supportive therapy should be followed in all instances of treatment.  A 

cathartic may be administered to speed fecal excretion (Ellenhorn 1997).  Administration of activated 

charcoal is unlikely to be effective (Ellenhorn 1997).  Animal studies revealed peak blood levels of 

carbon tetrachloride within 3–6 minutes after oral exposure when carbon tetrachloride was ingested 

undiluted or in aqueous vehicles by fasted rats (Kim et al. 1990a).  Chemicals that induce P-450, such as 

ethanol and phenobarbital, should not be given.  The administration of epinephrine is avoided, due to the 

possibility of inducing ventricular arrhythmias.  In order to minimize absorption through the skin, all 

contaminated clothing should be removed and the skin should be washed with soap and water.  In cases 

where the compound has been splashed into the eyes, irrigation with copious amounts of tepid water for 

15 minutes has been recommended.  Medical treatment is required if irritation, pain, swelling, 

lacrimation, or photophobia persist. 

3.11.2 Reducing Body Burden  

Hemodialysis may be employed in order to lower plasma carbon tetrachloride at the onset of renal failure 

(Ellenhorn 1997).  Although this method is not very effective in removing lipophilic compounds from the 

blood, it is effective in controlling extracellular fluid composition if renal failure occurs (Ellenhorn 1997; 

EPA 1989b;). Because a substantial portion of absorbed carbon tetrachloride is exhaled within the first 
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hour, maintenance of a good tidal volume is recommended; hyperventilation may also be of value 

(Ellenhorn 1997).  Administration of hyperbaric oxygen is an experimental treatment that is also 

available. Hyperbaric oxygen has been used in treating overdoses of carbon tetrachloride in humans 

(Larcan and Lorbet 1981; Truss and Killenberg 1982; Zearbaugh et al. 1988).  Administration of 

hyperbaric oxygen following exposure to carbon tetrachloride improved survival from 31 to 96% in rats 

(Ellenhorn and Barceloux 1988). Hyperbaric oxygen has also been used in treating overdoses of carbon 

tetrachloride in humans and may correct regional tissue hypoxia and damage, as well as inhibit the P-450-

dependent reductive dehalogenation of carbon tetrachloride to the metabolically active trichloromethyl 

radical in the liver. However, the effectiveness of this method has not been established in humans 

(Burkhart et al. 1991; Ellenhorn and Barceloux 1988). 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects  

Information is limited in humans regarding compounds that interfere with the mechanism of action of 

carbon tetrachloride. However, there is evidence that liver toxicity associated with exposure to carbon 

tetrachloride is mediated by reactive metabolites that bind to hepatocytes and initiate lipid peroxidation, 

thus resulting in loss of cell function. N-acetylcysteine has been suggested to bind the toxic metabolite 

phosgene and to serve as a precursor for the formation of glutathione (Ellenhorn and Barceloux 1988), 

and was protective against hepatotoxicity in carbon tetrachloride-exposed rats (Simko et al. 1992; Wong 

et al. 2003). Glutathione, a cellular antioxidant, tends to decrease lipid peroxidation due to carbon 

tetrachloride ingestion in rats (Arosio et al. 1997; Hafeman and Hoekstra 1977).  Prior oral treatment with 

glutathione protected against hepatic necrosis, but did not modify lipid peroxidation or prevent covalent 

binding of carbon tetrachloride metabolites to hepatic microsomes in rats exposed intraperitoneally (Gorla 

et al. 1983). Agents that foster the maintenance of hepatic reduced glutathione levels have a similar 

protective effect against carbon tetrachloride:  cysteine, a precursor to glutathione (De Ferreyra et al. 

1974), taurine (Dincer et al. 2002; Vohra and Hui 2001; Waterfield et al. 1993), constituents of garlic oil 

such as diallyl trisulfide (Fukao et al. 2004), gamma-glutamylcysteinylethyl ester (Nishida et al. 1998), 

metformin, a dimethyl biguanide anti-hypoglycemic agent (Poon et al. 2003), and clofibrate (Manautou et 

al. 1998).  Administration of 16,16-dimethyl prostaglandin E2 to block the accumulation of intracellular 

lipids has also been suggested (Haddad and Winchester 1990; Rush et al. 1986).  Administration of 

fructose 1,6-diphosphate to rats has been shown to decrease carbon tetrachloride liver toxicity by 

increasing hepatocyte levels of ATP.  The ATP thus generated is thought to promote hepatocellular 

regeneration and tissue repair (Rao and Mehendale 1989).  Shertzer and Sainsbury (1991) reported that 

indole antioxidants 4b,5,9b,10-tetrahydroindeno[1,2-b]indole (THII) and 5,10-dihydroindeno-



153 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

[1,2-b]indole (DHII) inhibited carbon tetrachloride initiation of lipid peroxidation in rat liver microsomes, 

and protected against hepatotoxicity in rats when administered prior to carbon tetrachloride treatment.  

The authors suggested that these compounds may be suitable candidates for further development as 

potential chemoprotective and therapeutic agents for use in human disorders that involve free-radicals.  

Colchicine and trimethylcolchicinic acid, an analog that does not bind tubulin, prevented decreases in 

Ca2+-ATP-ase activity, and reduced increases in gamma-glutamyl transpeptidase, alanine amino

transferase, and alkaline phosphatase in hepatocyte plasma membranes in rats treated with carbon 

tetrachloride (Cedillo et al. 1996; Martinez et al. 1995). 

Oxygen supplementation improved ratios of ATP/ADP, inorganic phosphate/ATP, and lactate/pyruvate 

that had been altered in cirrhotic livers of rats previously treated with carbon tetrachloride (Harvey et al. 

2000). These results were consistent with the hypothesis that hepatocyte damage in cirrhotic livers is 

exacerbated by a reduced oxygen supply and may partly explain the efficacy of hyperbaric oxygen 

therapy as described in Section 3.11.2). 

Compounds that suppress the activity or expression of CYP2E1 have been shown to reduce the hepatic 

necrosis caused by the bioactivation of carbon tetrachloride.  Pretreatment with 100–400 µmol/kg 

(subcutaneous) oleanolic acid, a triterpenoid compound, reduced heptatoxicity in rats and mice injected 

with carbon tetrachloride (Liu et al. 1998); the protective effect occurred 12–72 hours after pretreatment 

and was found to be unrelated to metallothionein levels.  In mice, the protective effect of oleanolic acid 

was associated with inhibition of expression and activity of CYP2E1 (Jeong 1999).  Another triterpenoid, 

alpha-hederin similarly reduced expression of CYP2E1 and hepatic injury in mice treated with carbon 

tetrachloride (Jeong and Park 1998).  Methylenedioxybenzenes such as isosafrole, dihydrosafrole, and 

benzodioxole, administered 1 hour before carbon tetrachloride, prevented increases in plasma AST and 

ALT in mice (Zhao and O'Brien 1996). Isosafrole co-treatment also prevented the development of liver 

necrosis. Safrole was partially hepatoprotective, whereas piperonyl butoxide, eugenol, isoeugenol, 

sesamol, and curcumin were ineffective.  Other similar compounds that prevented increases in plasma 

AST and ALT in rats included tetrahydro-5-methyl bis[1,3]benzdioxide [4,5-C: 5',6]-azecin-13 (5H)-one 

(protopine) (Janbaz et al. 1998) and 2-methylaminoethyl-4,4'-dimethoxy-5,6,5',6'-dimethylenedioxy-

biphenyl-2-carboxylic acid-2'-carboxylate monohydrochloride (DBB-S) (Oh et al. 2000).  A synthetic 

agent, 2-(allylthio)pyrazine, suppressed constitutive and inducible CYP2E1 expression and also blocked 

carbon tetrachloride-induced hepatotoxicity in mice (Kim et al. 1997); the compound also elevated 

hepatic GSH levels. 
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Tumor necrosis factor alpha (TNF-alpha) has been implicated in the process of hepatocellular injury 

following exposure to carbon tetrachloride.  Co-treatment of rats with the soluble receptor to TNF-alpha 

reduced hepatocellular necrosis and the elevation in serum enzyme levels caused by carbon tetrachloride 

(Czaja et al. 1995).  Mortality was 16% in the rats co-treated with the soluble receptor and 60% in rats co-

treated with IgG. 

A number of agents have been shown to reduce the severity of fibrosis induced in animals following 

intermediate-duration exposure to carbon tetrachloride.  A weak but significant reduction in the area of 

carbon tetrachloride-induced hepatic fibrosis was measured by image analysis in rats co-treated with 

interferon alpha2a over a period of 9 weeks (Fort et al. 1998).  There were concomitant reductions in 

several biochemical markers of fibrosis (hyaluronate, hydroxyproline, and the mRNAs for procollagen 

and fibronectin). In mice transgenic for the alpha(2)(I) collagen gene (COL1A2) promoter sequence and 

receiving a single intraperitoneal injection of carbon tetrachloride, interferon-alpha antagonized the 

transcription of COL1A2 that is stimulated by transforming growth factor-beta and the coactivator Smad3 

(Inagaki et al. 2003); the progression of hepatic fibrosis was also prevented in interferon-treated mice. 

Administration of interferon-alpha2b also reduced the severity of fibrosis in the kidneys of rats 

subcutaneously injected with carbon tetrachloride over 7 weeks (Dogukan et al. 2003).  Histopathology 

analysis revealed reductions in necrosis, dilatation and atrophy of renal tubules, hypercellularity of 

glomeruli, and obliteration of renal capillaries in rats co-treated with interferon compared to placebo-co-

treated rats; the level of interstitial fibrosis was also reduced by interferon, although the difference was 

not statistically significant from the placebo co-treatment group.  The kidneys of rats co-treated with 

interferon had more interstitial inflammation than the rats in the control group or in the placebo-co-

treatment group.  Pirfenidone (5 methyl-1-phenyl-2-(1H)-pyridone), an anti-fibrotic drug approved by the 

U.S. FDA for Phase II trials against pulmonary and renal fibrosis, reduced both the number of activated 

hepatic stellate cells and the severity of hepatic fibrosis when administered to rats with carbon 

tetrachloride-induced hepatic cirrhosis (Garcia et al. 2002); according to the authors, the anti-fibrotic 

effect of pirfenidone involves suppression of collagen gene transcription and possibly an inhibition of 

proline hydroxylase levels that would be expected to reduce the availability of hydroxyproline required 

for collagen synthesis. 

Administration of liver growth factor to rats with hepatic cirrhosis following intraperitoneal injections of 

carbon tetrachloride for 10 weeks significantly improved the structure and function of the liver (Diaz-Gil 

et al. 1999). Significant decreases were observed in the levels of serum enzymes, the hepatic collagen 

content, and microscopic findings of fibrosis, necrosis, and inflammatory infiltration of the liver.  In 
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addition, hepatic hemodynamic measures were improved in rats treated with liver growth factor compared 

to cirrhotic rats: reduced portal pressure and portosystemic shunting, reduced ascites, and increased mean 

arterial pressure and systemic vascular resistance.  Implantation of rat fibroblasts genetically modified to 

express hepatic growth factor into the spleens of syngeneic rats significantly reduced hepatic injury 

(serum enzymes, histopathology) resulting from an intraperitoneal injection of carbon tetrachloride 

(Kaido et al. 1997). Gene therapy using an adenoviral vector bearing cDNA for a nonsecreted form of 

human urokinase plasminogen activator (Ad-∆huPA) reduced hepatic fibrosis in rats that became cirrhotic 

following treatment with carbon tetrachloride for 6–8 weeks (Salgado et al. 2000).  The beneficial effect 

of enhanced uPA expression was partly attributed to its induction of hepatocyte growth factor. 

Treatment of insulin-like growth factor-I (IGF-I) to rats during the last 3 weeks of exposure to carbon 

tetrachloride/phenobarbitol partially normalized the expression of 8 of 16 genes that were either up- or 

down-regulated in the cirrhotic liver (Mirpuri et al. 2002).  Three of the genes affected by IGF-I are for 

protease inhibitors; restoration of the expression of these genes would be expected to protect against 

necrosis. IGF-I treatment also partially restored the expression of growth hormone receptor and the levels 

of global genomic DNA methylation, which are reduced during the development of cirrhosis (Mirpuri et 

al. 2002).  Evaluation of hepatic effects following IGF-I administration to cirrhotic rats on the same 

protocol resulted in reductions in lipid peroxidation, fibrosis, and plasma AST and ALT, and increases in 

mitochondrial transmembrane potential (a measure of mitochondrial membrane integrity) (Castilla-

Cortazar et al. 1997). 

Several agents have been shown to ameliorate the effect of carbon tetrachloride on hepatic membranes.  

When co-administered with carbon tetrachloride, betaine, a mitochondrial metabolite of choline, reduced 

the extent of centrilobular steatosis and minimized the loss of hepatocyte organelle membranes (rough 

endoplasmic reticulum) in treated rats (Junnila et al. 2000); the effect was attributed to the enhancement 

of phospholipid synthesis necessary for maintaining the integrity of cell membranes.  Hydroxychalcones, 

which have a 3,4-dihydroxycinnamoyl structure and inhibit lipoxygenases and cyclooxygenases, were 

potent inhibitors of lipid peroxidation in cultured rat hepatocytes (Sogawa et al. 1994).  Polyenylphos

phatidyl choline also reduced hepatic fibrosis induced by carbon tetrachloride in rats and accelerated the 

regression of existing fibrosis (Ma et al. 1996). 

One effect of lipid injury following exposure to carbon tetrachloride is the release of hydrolytic enzymes 

such as calpain from lysosomes into the extracellular space where activation by calcium occurs (Limaye 

et al. 2003). As a result, cell necrosis progresses to neighboring cells, extending the hepatic lesion. 
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Administration of the calpain inhibitor N-CBZ-Val-Phe-methyl ester (CBZ) or the cell-impermeable 

inhibitor E64 1 hour after a toxic, nonlethal intraperitoneal dose of carbon tetrachloride protected against 

calpain-specific breakdown of alpha-fodrin, a cytoskeletal protein, and reduced the increase in serum 

ALT. Administration of CBZ 1 hour after a lethal dose (3 g/kg) increased survival from 25 to 75%.  The 

calpain inhibitors have no effect on the metabolism of carbon tetrachloride by CYP2E1 or the generation 

of metabolites that bind to liver tissue. 

As vitamin A (retinol) shows species-specific variations on carbon tetrachloride-related hepatotoxicity, it 

is not possible to predict whether it would be useful as a therapeutic agent in exposed humans. 

Pretreatment of male mice with vitamin A for 7 days prior to a single exposure to carbon tetrachloride 

reduced the elevations in plasma ALT levels as well as the extent of hepatic degeneration (Hooser et al. 

1994).  Some strain variations were evident in the protective effect of vitamin A, with no hepatocyte 

damage visible in C3H/He or athymic nude mice and only minimal hepatocyte damage visible near the 

central vein in Swiss-Webster or Balb/C mice.  Conversely, pretreatment with vitamin A increased the 

hepatotoxicity (plasma ALT levels) of carbon tetrachloride 10-fold in male and female Sprague-Dawley 

rats, and male nude and Fischer-344 rats.  The underlying basis for the species and strain differences is 

not known, but the possible involvement of Kupffer cells or polymorphonuclear neutrophils is under 

investigation.  Inder et al. (1999) determined that the effect of vitamin A in Swiss-Webster mice does not 

involve alteration of the constitutive or inducible expression of CYP2E1. 

Avid retention of Na+ is a feature of liver cirrhosis. Icatibant (HOE 140), an antagonist to the bradykinin 

B2 receptor, normalized Na+ retention and reduced the hyperactivity of the renin-angiotensin-aldosterone 

system in rats that had become cirrhotic following treatment with carbon tetrachloride (Wirth et al. 1997). 

Malnutrition is a common result of cirrhosis.  Survival was improved in rats with carbon tetrachloride-

induced cirrhosis by the dietary administration of branched-chain amino acids in addition to a casein diet 

(Kajiwara et al. 1998).  Supplementation with branched-chain amino acids significantly preserved plasma 

albumin concentration and inhibited the occurrence of ascites and hyperammonemia without altering liver 

histopathology.  The authors hypothesize that administration of branched-chain amino acids may suppress 

muscular protein catabolism and aid in detoxifying excess serum ammonia levels, which are characteristic 

of cirrhotic patients. 

The protective effects of gadolinium a rare earth metal (lanthanide) and glycine against carbon 

tetrachloride injury operate via inactivation of Kupffer cells, which are hepatic macrophages (Rivera et al. 



157 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

2001).  When either compound was administered to rats with carbon tetrachloride-induced cirrhosis, the 

livers showed reductions in fibrosis, collagen protein, and transforming growth factor-beta-1 caused by 

carbon tetrachloride (Rivera et al. 2001).  The inactivation of Kuppfer cells by glycine is suspected to be 

related to the inhibition of calcium signaling via glycine-gated chloride channels (Rivera et al. 2001). 

Gadolinium chloride also prevented liver injury and increased hepatocyte proliferation (as measured by 

immunostaining for the hepatocyte proliferating cell nuclear antigen) in rats when administered prior to 

treatment with carbon tetrachloride (Ishiyama et al. 1995).  Gadolinium chloride inhibited CYP2E1 

activity in cultured hepatocytes, reducing the loss of plasma membrane integrity caused by carbon 

tetrachloride (Badger et al. 1997).   

Other substances that have been demonstrated to be protective against the toxic effects of carbon 

tetrachloride in animals include disulfiram (Brady et al. 1991), enprostil, an analog of prostaglandin E2 

(Bang et al. 1992), bosentan, and TAK-044,  antagonists to the endothelin receptor (Hocher et al. 1995; 

Thirunavukkarasu et al. 2004), the xanthine oxidase inhibitor allopurinol (Dashti et al. 1992), the prolyl 

4-hydroxylase inhibitors S 0885 and HOE 077 (Bickel et al. 1991), pyridoxol L,2-pyrrolidon-

5 carboxylate (metadoxine) (Annoni et al. 1992), cyclosporine A (Farghali et al. 1996), the calcium 

antagonist nifedipine (Cutrin et al. 1992, 1994), alpha-tocopherol and derivatives (Hsiao et al. 2001; Liu 

et al. 1995), polyamines (Wu et al. 1997), adenosine (Hernandez-Munoz et al. 1992), various phenolic 

compounds (mostly flavinoids) (Adaramoye and Akinloye 2000; Cholbi et al. 1991; Pavanato et al. 

2003), zinc (Camps et al. 1992), and chromium III (but not chromium IV) (Rungby and Ernst 1992; 

Tezuka et al. 1991a, 1991b).  Supplementation with sodium tungstate for 7 weeks significantly reduced 

lipid peroxidation and necrosis produced by carbon tetrachloride in rats (Pawa and Ali 2004).  A 

combination treatment with hyaluronic acid and chondroitin-4-sulfate (but not either agent alone) partly 

reduced the effects of carbon tetrachloride treatment (Camp et al. 2004); the therapy reduced hepatic 

necrosis and the increases in hepatic malondialdehyde, plasma TNF-alpha, and neutrophil-mediated 

myeloperoxidase and reversed the reduction in glutathione.  Exercise has been shown to protect 

subsequently isolated rat hepatocyte from carbon tetrachloride cytotoxicity, probably by affecting 

cytochrome P-450-2E1 activity, and perhaps also by stimulating intracellular levels of free radical 

scavengers and antioxidants (Day and Weiner 1991). Food restriction (25 or 50% lower caloric than 

control intake) for 30 days prior to administration of carbon tetrachloride reduced the magnitude of blood 

lipid peroxidation and of increases in serum enzymes in carbon-tetrachloride treated rats (Ramkumar et 

al. 2003).   
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3.12 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of carbon tetrachloride is available.  Where adequate 

information is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is 

required to assure the initiation of a program of research designed to determine the health effects (and 

techniques for developing methods to determine such health effects) of carbon tetrachloride. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of Carbon Tetrachloride 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

carbon tetrachloride are summarized in Figure 3-6.  The purpose of this figure is to illustrate the existing 

information concerning the health effects of carbon tetrachloride.  Each dot in the figure indicates that one 

or more studies provide information associated with that particular effect.  The dot does not necessarily 

imply anything about the quality of the study or studies, nor should missing information in this figure be 

interpreted as a “data need”.  A data need, as defined in ATSDR’s Decision Guide for Identifying 

Substance-Specific Data Needs Related to Toxicological Profiles (Agency for Toxic Substances and 

Disease Registry 1989), is substance-specific information necessary to conduct comprehensive public 

health assessments.  Generally, ATSDR defines a data gap more broadly as any substance-specific 

information missing from the scientific literature. 

As shown in Figure 3-6, there is a considerable body of data on the health effects of carbon tetrachloride 

in humans, especially following acute oral or inhalation exposures.  Although many of the available 

reports lack quantitative information on exposure levels, the data are sufficient to derive approximate 

values for safe exposure levels. There is limited information on the effects of intermediate or chronic 

inhalation exposure in the workplace, but there are essentially no data on longer-term oral exposure of 

humans to carbon tetrachloride.  Most toxicity studies have focused on the main systemic effects of  
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Figure 3-6.  Existing Information on Health Effects of Carbon Tetrachloride 
 

 

Existing Studies

Inhalation

Oral

Dermal

Death
Acute

Int
erm

ediate

Chronic

Im
muno

logic/L
ym

pho
ret

ic

Neurologic

Reproduct
ive

Deve
lopmental

Genotox
ic

Cancer

Systemic

Animal

Inhalation

Oral

Dermal

Death
Acute

Int
erm

ediate

Chronic

Im
muno

logic/Lym
phore

tic

Neurologic

Reproductive

Developmental

Genotox
ic

Cance
r

Systemic

Human



160 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

obvious clinical significance (hepatotoxicity, renal toxicity, central nervous system depression).  There 

are data on the effects of carbon tetrachloride on the immune system, but there are no reports that 

establish whether or not developmental, reproductive, genotoxic, or carcinogenic effects occur in humans 

exposed to carbon tetrachloride.   

The toxicity of carbon tetrachloride has been extensively investigated in animals, both by oral and 

inhalation exposure. While the majority of existing studies in animals have focused on systemic toxicity 

(hepatic and renal injury), several studies have examined the neurologic, developmental, and reproductive 

effects of carbon tetrachloride.  Effects of carbon tetrachloride on the immune system have been studied 

following oral, but not after inhalation or dermal exposure.  The carcinogenicity of carbon tetrachloride 

has been studied in animals following inhalation or oral exposure. 

3.12.2 Identification of Data Needs 

Despite the phase-out of carbon tetrachloride manufacture and use in many areas of the world, its 

environmental persistence may support the continued practical relevance of many of the data needs 

identified below. 

Acute-Duration Exposure.    A large number of studies are available regarding the effects of single 

exposures to carbon tetrachloride, both in animals and humans.  Available data indicate that the central 

nervous system, liver, and kidneys are primary target organs for carbon tetrachloride.  Many of these 

studies involved exposure to only one dose level (usually high enough to cause clear effects), and the 

minimum dose needed to produce the characteristic effects of carbon tetrachloride toxicity is not defined 

with certainty. Although human studies exist, data were not suitable for derivation of an acute inhalation 

MRL. An acute inhalation MRL was not derived because calculations based on the most suitable data 

(exposure of rats at 10 ppm, 7 hours/day for 13 exposures over 17 days in the study by Adams et al. 

1952), would result in a value (0.02 ppm) lower than the intermediate-duration inhalation MRL.  Another 

assay by Adams et al. (1952) in which rats were exposed for 7 hours on a single day used too small group 

sizes. The intermediate-duration inhalation MRL of 0.03 ppm is expected to be protective for acute-

duration inhalation exposures.  An acute-duration oral MRL of 0.02 mg/kg/day was derived based on a 

LOAEL of 5 mg/kg/day in rats exposed on 10 consecutive days (Smialowicz et al. 1991).  Further studies 

in animals, involving a range of exposure levels and employing sensitive histological and biochemical 

measurements of injury to liver and kidney, would be helpful in defining the thresholds for acute hepatic 



161 CARBON TETRACHLORIDE 

3. HEALTH EFFECTS 

and renal toxicity.  Studies on the time-course of changes in the most sensitive parameters would be 

valuable. Most studies are conducted 18–24 hours after exposure.  Because carbon tetrachloride is so 

rapidly absorbed and distributed to target tissues, significant biochemical and histological changes may 

occur within minutes.  These changes may not be evident 18–24 hours later (e.g., Mehendale 1991, 1992). 

Data for all exposure routes would be valuable, but further information on inhalation and dermal dose-

response relationships would be particularly helpful.  In addition, dose-response studies of the effects of 

acute exposures on other tissues and systems (e.g., nervous, immune, reproductive, developmental) would 

be useful in determining whether other tissues are injured, especially at doses near the thresholds for 

injury to the liver and kidney. Furthermore, for purposes of enhancing toxicity and risk assessments 

related to carbon tetrachloride exposure, dose-response studies in species other than rats and gerbils on 

induced compensatory mechanisms (e.g., hepatocellular regeneration and tissue repair; see, for example, 

Calabrese et al. 1993; Kodavanti et al. 1992; Mehendale 1990, 1991, 1992; Rao and Mehendale 1991, 

1993) might also prove useful. 

Intermediate-Duration Exposure.    The effects of repeated exposure to carbon tetrachloride have 

been investigated in a relatively small number of studies.  Similar target organs were reported as those for 

acute-duration exposure. An intermediate-duration inhalation MRL of 0.03 ppm was derived for liver 

effects based on a NOAEL of 5 ppm in rats (Adams et al. 1952).  An intermediate-duration oral MRL of 

0.007 mg/kg/day was derived based on a NOAEL of 1 mg/kg/day in animals (Bruckner et al. 1986).  

There are a number of areas where further studies would be useful.  Most oral studies of carbon 

tetrachloride toxicity in animals have involved administration of carbon tetrachloride by gavage in corn 

oil (Condie et al. 1986; Kim et al. 1990b).  Since a bolus dose in oil may produce effects somewhat 

different from those following intermittent exposure in water (e.g., greater hepatotoxicity when 

administered in oil, Condie et al. 1986), studies involving exposure in drinking water would be valuable, 

especially since this is a likely exposure pathway for residents using private wells near hazardous waste 

sites. More information on the adverse effect levels and mechanism of toxicity in tissues other than the 

liver (e.g., the kidney and nervous system) would be useful; since many oral exposure studies examined 

only the liver, adverse effect levels for other organ systems are not well characterized. 

Chronic-Duration Exposure and Cancer.    No definitive studies were located in humans on the 

noncarcinogenic effects of carbon tetrachloride after chronic-duration exposure.  An occupational study 

by Tomenson et al. (1995) evaluated liver function, as indicated by the levels of hepatic enzymes in 

serum, in a cross-sectional study of individuals occupationally exposed to carbon tetrachloride.  Although 

the exposed workers were categorized by their length of time on the job (<1, 1–5, and >5 years), this 
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information was not included in the exposure-response analysis, so the effect of exposure duration is 

uncertain. A chronic inhalation MRL of 0.03 ppm was derived based on a NOAEL of 5 ppm and a 

LOAEL of 25 ppm for hepatic effects in rats exposed 6 hours/day, 5 days/week for 2 years (Japan 

Bioassay Research Center 1998; Nagano et al. 1998).  Increased incidence of chronic progressive 

nephropathy in rats occurred at the same NOAEL and LOAEL; significantly elevated proteinuria (4+) 

was observed at a LOAEL of 5 ppm, but was not used for derivation of the MRL because intrinsic levels 

in controls were so high (>90% scoring 3+ or 4+).  At the doses used in chronic oral bioassays, increases 

in the incidence and severity of non-neoplastic hepatic lesions in rats, the incidence of hepatic cancer in 

mice, and mortality in both sexes were too high to provide a basis for a chronic oral MRL.  A study is 

needed to determine no-effect levels for hepatotoxicity following chronic-duration oral dosing with 

carbon tetrachloride. 

The carcinogenicity of carbon tetrachloride was evaluated in rats and mice exposed intermittently by 

inhalation for 2 years (Japan Bioassay Research Center 1998; Nagano et al. 1998).  These assays provided 

sufficient data for hepatic carcinogenicity in both sexes, and some evidence for a threshold effect in both 

species. The adrenal gland in mice was the only other tissue that had an increased tumor incidence.  

There is ample evidence that oral (Andervont 1958; Della Porta et al. 1961; Edwards 1941; Edwards et al. 

1942; Eschenbrenner and Miller 1944, 1946; NCI 1976a) and parenteral (Della Porta et al. 1961; Reuber 

and Glover 1967b, 1970) exposure to carbon tetrachloride can lead to increased tumor frequency in 

animals, but there is currently no dose-response information for carcinogencity at more relevant oral 

exposure levels. Results of oral gavage studies could be used to plan dose levels for studies in which the 

chemical is administered in drinking water, as more relevant to actual human exposure scenarios .  

Current oral data was derived from animals dosed by corn oil bolus gavage, a method of dosing that does 

not reflect human exposure calculations, and may overestimate the risk as has been suggested by studies 

of other chlorinated methane and ethane compounds (Jorgenson et al. 1985; Kleming et al. 1986).  While 

the carcinogenic risks of chronic dermal exposure have not been studied, chronic dermal exposure to 

carbon tetrachloride is not likely for most individuals. 

Genotoxicity.    Although it is evident that carbon tetrachloride exposure can increase the incidence of 

tumors in animals, it is not certain whether carbon tetrachloride is acting via a genotoxic mechanism, as a 

promoter, or some other process.  Nearly all studies to date have failed to demonstrate any genotoxicity of  

unmetabolized carbon tetrachloride, although reactive metabolites and lipid peroxidation products are 

genotoxic, forming adducts with DNA (Castro et al. 1989; Chaudhary et al. 1994; Chung et al. 2000; 

Wacker et al. 2001).  Since it is believed that carbon tetrachloride toxicity is mediated at least in part 
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through highly reactive and short-lived metabolites, further studies should focus particular attention on 

the issue of metabolic activation (especially anaerobic, reductive reactions), with in vivo or intact 

eukaryotic cell systems capable of activation in situ being preferred over systems relying on exogenous 

activation. 

Reproductive Toxicity.    The effects of carbon tetrachloride on reproduction have not been well 

investigated. Inhalation of carbon tetrachloride caused testicular degeneration (Adams et al. 1952) and 

reduced fertility (Smyth et al. 1936) in rats, but at doses higher than the adverse effect level for 

hepatotoxicity.  Oral exposure to carbon tetrachloride did not adversely affect reproduction in one study 

in rats, but there is uncertainty as to the actual doses administered in this study (Alumot et al. 1976).  

Additional studies in animals using modern techniques and protocols would be useful to evaluate dose-

response relationships for functional reproductive parameters in males and females.  

Developmental Toxicity.    Epidemiological studies have been published on the developmental effects 

of carbon tetrachloride in humans (Bove et al. 1992a, 1992b, 1995; Croen et al. 1997).  Limited data 

suggest that carbon tetrachloride has a low potential for developmental toxicity in animals.  Fetal size was 

reduced and viability and lactation indices were decreased following inhalation exposures at or above 

250 ppm (Gilman 1971; Schwetz et al. 1974).  Fetotoxicity and teratogenicity were not seen in offspring 

coming to term, but total resorption of fetuses occurred in pregnant rats following oral exposure 

(Narotsky et al. 1997a, 1997b; Wilson 1954).  Metabolic studies suggest that the fetuses of several rodent 

species, including the rat, lack the enzymes needed for activation of carbon tetrachloride, and that this 

may explain the low developmental toxicity.  However, this phenomenon may not apply to humans, 

where some drug metabolizing activity takes place in utero, especially in the fetal brain (Brezinski et al. 

1999).  It would be useful to find nonrodent animal models, possibly primates, in which the MFO system 

also develops in utero, and use these to study the developmental toxicity of carbon tetrachloride.  Studies 

are needed to evaluate the possible neurological or neurobehavioral effects of gestational exposure to 

carbon tetrachloride; parallel groups to evaluate the effect of maternal exposure to ethanol, which induces 

CYP2E1 would also be relevant to humans. 

Immunotoxicity.    There are a number of reports that parenteral exposure of animals to carbon 

tetrachloride can affect the immune system (Kaminski et al. 1989, 1990; Tajima et al. 1985).  The effects 

of carbon tetrachloride on the immune system have been investigated following oral dosing (Smialowicz 

et al. 1991), but no immunotoxicity was observed at doses much higher than those causing hepatic 

toxicity.  Intermediate- and chronic-duration inhalation bioassays in rodents reported increased spleen 
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weights, but, as indicated by hemosiderin deposition, this effect appears to be secondary to erythrocyte 

toxicity and not an immunological effect per se (Japan Bioassay Research Center 1998).  Although some 

older reports suggested that dermal exposure to carbon tetrachloride may result in a hypersensitization 

reaction (McGuire 1932; Taylor 1925), additional dermal exposure studies do not appear to be of high 

priority.  

Neurotoxicity.    Available data make it clear that the central nervous system is a target organ for 

carbon tetrachloride, with the most obvious acute effects being central nervous system depression (Cohen 

1957; Stevens and Forster 1953; Stewart et al. 1963). Although our understanding of this important 

aspect of carbon tetrachloride toxicity might benefit from further study of animals and accidentally 

exposed humans, of greater concern are the scattered reports that carbon tetrachloride exposure causes 

focal injury and degeneration of peripheral neurons.  Additional studies by inhalation and oral routes 

would be helpful in defining the dose-response dependency of nerve cell injury, and in determining 

whether these effects are primary or are secondary to effects on the liver or kidneys. 

Epidemiological and Human Dosimetry Studies.    Several epidemiological studies have been 

conducted on the health effects of intermittent workplace exposure to carbon tetrachloride, primarily 

evaluating the effects on the central nervous system (Elkins 1942; Heimann and Ford 1941; Kazantzis and 

Bomford 1960), hepatic (Barnes and Jones 1967; Smyth et al. 1936; Tomenson et al. 1995), and renal 

(Barnes and Jones 1967) function in relatively small groups of workers.  Cancer epidemiological studies 

have been conducted on significantly larger subject groups (Blair et al. 1998; Bond et al. 1986; Cantor et 

al 1985; Checkoway et al. 1984; Dumas et al. 2000; Heineman et al. 1994; Kernan et al. 1999; Wilcosky 

et al. 1984). Epidemiological studies evaluated developmental effects (Bove et al. 1992a, 1992b, 1995; 

Croen et al. 1997) in populations exposed to carbon tetrachloride in drinking water, which is a route of 

exposure that may be of concern near hazardous waste sites.  A common problem in epidemiological 

studies is the acquisition of reliable dosimetry data on the exposed populations.  For this reason, efforts to 

improve estimates of past exposures and to define more accurately current exposure levels to carbon 

tetrachloride would be valuable. 

Biomarkers of Exposure and Effect.     

Exposure. The presence of carbon tetrachloride in expired air is the most commonly used biomarker of 

exposure. The rate of excretion in humans appears to be biphasic, with an initial elimination half-life of 

less than 1 hour, and a second phase of about 30–40 hours.  The compound can be detected in expired air 
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within hours to weeks after exposure.  Research on additional biomarkers of exposure would be of value, 

perhaps in areas such as detection of DNA adducts. 

Effect. There are a number of clinical and biochemical tests available that can detect early signs of 

hepatic and renal injury in humans.  However, these tests are not specific for carbon tetrachloride-induced 

effects. For this reason, studies to identify and measure effects more diagnostic of carbon tetrachloride-

specific injury would be helpful.  Also, improvements in the sensitivity of these tests, such as 

accomplished by Ikemoto et al. (2001), would be valuable in evaluating the health status of individuals 

who have been exposed to low levels of carbon tetrachloride. 

Absorption, Distribution, Metabolism, and Excretion.    There is relatively little quantitative 

information on the systemic absorption of inhaled carbon tetrachloride in animals and humans, with 

estimates ranging from 30 to 60% (Lehmann and Schmidt-Kehl 1936; McCollister et al. 1951).  Sanzgiri 

et al. (1995, 1997) have compared uptake, distribution, and elimination of carbon tetrachloride 

administered to rats over 2 hours by inhalation or gastric infusion or as a single bolus by gavage and 

correlated the results with the severity of hepatic injury.  This study provides information pertinent to a 

route-to-route extrapolation. 

Although dermal absorption of carbon tetrachloride is relatively modest compared to absorption by the 

oral or inhalation routes, it would be helpful to quantify the rate and extent of percutaneous absorption of 

carbon tetrachloride from water.  This information would be useful in determining the contribution of 

dermal exposure to the total dose received by persons using carbon tetrachloride-contaminated drinking 

water for bathing or showering, or to those who contact carbon tetrachloride-contaminated water near 

chemical waste sites. 

Animal studies reveal that carbon tetrachloride is distributed to tissues according to their rate of blood 

perfusion and lipid content. Adipose tissue accumulates much higher concentrations of carbon 

tetrachloride than other tissues, due to the high oil:water partition coefficient of carbon tetrachloride.  The 

animal tissue distribution data are limited, in that carbon tetrachloride levels in tissues in rats have been 

determined at only a few time-points after a single, high oral dose (Marchand et al. 1970; Teschke 

et al. 1983). Paustenbach et al. (1986a, 1986b) have measured 14C-carbon tetrachloride levels in tissues 

of rats at just one time-point following repeated inhalation exposure regimens.   
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Although numerous studies have investigated the metabolism of carbon tetrachloride in the liver, there is 

little information about rates of metabolism or relevant CYP-450 proteins in the kidney, to which a 

substantial proportion of absorbed carbon tetrachloride is distributed under gradual exposures such as 

inhalation or gastric infusion (Sanzgiri et al. 1997).  Investigation of these processes would provide a 

basis for understanding the increased prominence of renal toxicity in rats under intermediate- and chronic-

duration inhalation exposures (Japan Bioassay Research Center 1998).   

Comparative Toxicokinetics.    Metabolic pathways and mechanisms of hepatotoxicity of carbon 

tetrachloride have been the subject of many studies in intact animals and in vitro, and are therefore better 

understood than for many other chemicals.  However, there are apparently little data on metabolism of 

carbon tetrachloride in humans.  It would be valuable to conduct in vitro experiments with human liver 

samples and hepatocytes to determine whether metabolic pathways and toxic metabolites are similar to 

those found in animals.  It would also be beneficial to identify an animal model in which MFO systems 

develop in utero as they do in the human fetus. 

PBPK models have been developed for a number of drugs and chemicals, in order to better understand 

and simulate the dynamics of those compounds in the body.  Advances made to date indicate that valid 

PBPK models can accurately predict the concentration of chemicals over time in the blood and specific 

tissues. Blood and tissue concentration versus time profiles, as well as excretion patterns from animals 

have been used to validate and adjust PBPK models for carbon tetrachloride (Gallo et al. 1993; 

Paustenbach et al. 1988). Addition of parameter values for humans has been used to scale-up the PBPK 

model to predict target tissue uptake, metabolism, and elimination of carbon tetrachloride in humans 

(Thrall et al. 2000).  One limitation of using current models for deriving human equivalent concentrations 

from animal data for the purposes of MRL derivation is that there is insufficient information on the rates 

of metabolism for carbon tetrachloride for the general population. Thrall et al. (2000) estimated the in 

vivo metabolic rate (Vmax) in humans from animal in vivo rates and in vitro results for animal and human 

hepatic microsomes.  However, the in vivo rate derived for humans was based on microsomes pooled 

from only three individuals (Zangar et al. 2000) and without additional studies, it is not known whether 

the rate is typical of the general population.  Additional studies to characterize the variability of metabolic 

rates in humans would help to reduce the uncertainty associated with the application of the PBPK model.  

Quantitative relationships between carbon tetrachloride levels in target organs and organ damage in 

animals could be used to establish toxicodynamic models.  Accurate prediction of ultimate toxicological 

outcomes will likely also have to account for base-line and inducible levels of compensatory repair 
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mechanisms. Combined PBPK-toxicodynamic models might then be scaled up and used to predict target 

organ concentrations and toxicity of carbon tetrachloride in man. 

Methods for Reducing Toxic Effects.    The usefulness of methods and treatments for reducing peak 

absorption and reducing the body burden of carbon tetrachloride is rather limited due to the chemical's 

rapid rates of absorption and tissue disposition.  On the other hand, investigations of antidotal therapy 

based on the mechanism of action have been limited to a few studies involving the administration of 

compounds to reduce free radical injury.  Additional studies would be useful to better establish the 

effectiveness of both acute and prolonged antidotal therapy, since carbon tetrachloride is persistent in the 

body. 

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

The difference between the toxicity of carbon tetrachloride in children and adults is likely to be dependent 

on the relative expression of microsomal enzymes, such as CYP2E1.  Viera et al. (1996) determined that 

hepatic levels of CYP2E1 in children reach adult levels sometime between the ages of 1 and 10.  

Additional studies are needed to obtain a precise chronology of the increase.  Furthermore, additional 

studies are needed to clarify fetal expression of CYP2E1 to determine the sensitivity of different fetal 

tissues and the placenta during gestation. 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs:  

Exposures of Children. 

3.12.3 Ongoing Studies 

Numerous current publications on carbon tetrachloride have addressed the efficacy of various agents for 

reducing or eliminating the toxic effects of exposure; these are mentioned in Section 3.11.3.  Additional 

research programs are focusing on potential therapeutic agents, interacting factors, or mechanisms of 

toxicity following exposure to carbon tetrachloride.   These studies are listed in Table 3-8. 
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Table 3-8. Ongoing Studies on the Health Effects of Carbon Tetrachloride  

Investigator Affiliation Research description 	 Sponsor 
Alpini GD Texas A&M 

University 
Anania FA University of 

Maryland 
Bacon BR St. Louis 

University 
Carrasquillo JA NIH Clinical 

Center 

Devilliers WJ 	 University of 
Kentucky 

Dranoff JA 	 DVA, Medical 
Center, West 
Haven, 
Connecticut 

Gandhi CR 	 University of 
Pittsburgh 

Kavanagh TJ University of 
Washington 

Lambris JD University of 
Pennsylvania 

Lu SC 	 University of 
Southern 
California 

Manautou JE	 University of 
Connecticut 

Mason R 	 NIEHS 

Mason R 	 NIEHS 

Mehendale HM 	 University of 
Louisiana at 
Monroe 

Role of protein kinase C in regulating biliary NIH-NIDDKD

damage from carbon tetrachloride. 

Role of leptin in liver fibrogenesis. NIH-NIDDKD


Signaling pathways in hepatic fibrogenesis. NIH-NIDDKD


Development and use of  Tc-99m, a NIH 

radiopharmaceutical as a hepatobiliary 

agent to visualize effects of carbon

tetrachloride in vivo.

Role of CD36, a class B scavenger NIH-NIAAA 

receptor, on activation of hepatic stellate

cells and hepatic fibrosis. 

Effects of liver injury on nucleotide DVA 

receptors. 


Endothelin receptor involvement in NIH- NIDDKD

development of hepatic cirrhosis following

exposure to carbon tetrachloride. 

Role of glutamate-cysteine ligase in NIH-NIEHS  

antioxidant defense against hepatic injury. 

Role of complement in liver regeneration NIH-NIDDKD


Support research on cultured hepatic NIH-NIDDKD

parenchymal and non-parenchymal cells as 

models of hepatic injury from carbon

tetrachloride and other hepatotoxins. 

Evaluation of upregulation of canalicular NIH-NIEHS  

ATP-dependent efflux pump (cMRP or

C MOAT) for organic ions and 

hepatocellular regeneration after carbon

tetrachloride exposure. 

Role of nitric oxide in metabolism of toxic NIH-NIEHS  

chemicals. 

Biomarkers of oxidative stress in carbon NIEHS 

tetrachloride -induced hepatotoxicity. 

Investigate factors associated with NIH-NIA  

resiliency in aged rats to hepatotoxicity from 

chlordecone and carbon tetrachloride. 
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Table 3-8. Ongoing Studies on the Health Effects of Carbon Tetrachloride  

Petersen BE University of Study subpopulations of oval cells derived NIH-NIDDKD 
Florida from bone marrow for therapeutic purposes 

following carbon tetrachloride 
hepatotoxicity. 

Song BJ NIAAA Regulation and role of CYP2E1 in NIH-NIAAA 
mechanism of hepatic injury. 

Tyner AL University Illinois Role of cyclin kinase inhibitors p21 and p27 NIH-NIDDKD 
at Chicago in carbon tetrachloride -induced 

hepatotoxicity. 

Sources: CRISP 2004; FEDRIP 2004 

CRISP = Computer Retrieval of Information on Scientific Projects; DVA = Department of Veterans Affairs; 
FEDRIP = Federal Research in Progress database; NIAAA = National Institute on Alcohol Abuse and Alcoholism; 
NIDDKD = National Institute of Diabetes and Digestive and Kidney Diseases; NIEHS = National Institute of 
Environmental Health Services; NIH = National Institute of Health 
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4.1 CHEMICAL IDENTITY  

Information regarding the chemical identity of carbon tetrachloride is located in Table 4-1. 

4.2 PHYSICAL AND CHEMICAL PROPERTIES  

Information regarding the physical and chemical properties of carbon tetrachloride is located in Table 4-2. 
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Characteristic Information Reference 
Chemical name Carbon tetrachloride IARC 1979 
Synonym(s) Carbona; carbon chloride; carbon tet; methane tetrachloride; HSDB 2004 

perchloromethane; tetrachloromethane; benzinoform 
Registered trade name(s) Benzinoform; Fasciolin; Flukoids; Freon 10; Halon 104; IARC 1979 

Tetraform; Tetrasol 
Chemical formula CCl4 IARC 1979 
Chemical structure Cl IARC 1979 

Cl Cl 
Cl 

Identification numbers: 
CAS registry 56-23-5 NLM 1988 

 NIOSH RTECS FG4900000 HSDB 2004 
EPA hazardous waste U211; D019 HSDB 2004 

 OHM/TADS 7216634 HSDB 2004 
 DOT/UN/NA/IMCO UN1846; IMCO 6.1 HSDB 2004 
shipping 
HSDB 53 HSDB 2004 
NCI No data 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 

America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency;

HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 

Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 

RTECS = Registry of Toxic Effects of Chemical Substances
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Table 4-2. Physical and Chemical Properties of Carbon Tetrachloride 

Property Information Reference 
Molecular weight 
Color 
Physical state 
Melting point 
Boiling point 
Density 
Odor 
Odor threshold: 
Water 
Air 

Solubility: 
Water at 20 °C 

 Organic solvent(s) 
Partition coefficients: 
 Log Kow

 Log Koc

Vapor pressure at 20 °C 
Henry’s law constant: 
at 25 °C 
at 24.8 °C 
at 20 °C 
at 30 °C 

Autoignition temperature 
Flashpoint 
Flammability limits 
Conversion factors 
ppm (v/v) to mg/m3 in air (25 °C) 
mg/m3 to ppm (v/v) in air (25 °C) 

Explosive limits 

153.82 Lide 1993 
Colorless Verschueren 1983 
Liquid Verschueren 1983 
-23 °C Lide 1992 
76.5 °C Lide 1992 
1.594 g/mL Lide 1992 
Aromatic, sweet HSDB 2004 

0.52 mg/L IRIS 2004 
10–71,000 mg/m3 Verschueren 1983 
96 ppm (600 mg/m3) Amoore and Hautala 1983 
60–1,500 mg/m3 Ruth 1986 

800 mg/L Verschueren 1983 
Miscible HSDB 2004 

2.64 EPA 1984 
2.04 Kenaga 1980 
90 mmHg Verschueren 1983 

2.94x10-2 atm-m3/mol Yaws et al. 1991 
3.04x10-2 atm-m3/mol HSDB 2004 
2.04x10-2 atm-m3/mol Tse et al. 1992 
3.37x10-2 atm-m3/mol Tse et al. 1992 
Nonflammable HSDB 2004 
Nonflammable HSDB 2004 
Nonflammable HSDB 2004 

1 ppm=6.39 mg/m3 HSDB 2004 
1 mg/m3=0.16 ppm Verschueren 1983 
No data 
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5.1 PRODUCTION 

Carbon tetrachloride is produced by exhaustive chlorination of a variety of low molecular weight 

hydrocarbons such as carbon disulfide, methane, ethane, propane, and ethylene dichloride (HSDB 2004).  

It is also produced by thermal chlorination of methyl chloride (HSDB 2004).  Carbon tetrachloride is a 

feedstock for chlorofluorocarbon gases, such as dichlorodifluoromethane (F-12) and trichlorofluoro

methane (F-11), which were used as aerosol propellants in the 1950s and 1960s (Holbrook 1991).  

Following this, the growth rate for the production of carbon tetrachloride averaged 10.7% per year from 

1960 to 1970 (Holbrook 1991).  This rate slowed to 7.2% per year from 1970 to 1974, when the 

production of this chemical was at its peak, as other forms of propellants became commercially available 

(Anonymous 1981; Holbrook 1991).  The FDA banned the sale of carbon tetrachloride in any product 

used in the home and the EPA regulated the use of chlorofluorocarbon gases as aerosols or propellants.  

Since then, production of carbon tetrachloride has declined at approximately 8% a year from 1974 to 

1994 (Anonymous 1995; Holbrook 1991).  Carbon tetrachloride is currently manufactured in the United 

States by Vulcan Materials Company at two plants: Geismar, Louisiana and Wichita, Kansas, with a 

combined 130 million pound capacity (HSDB 2004; SRI 2004).  It should be noted, however, that these 

capacities are flexible, since other chlorinated solvents are made using the same equipment (SRI 2004). 

This recent decline in production is due to the adoption of an international agreement (the Montreal 

Protocol) to reduce environmental concentrations of ozone-depleting chemicals (including carbon 

tetrachloride), and to the provisions of Title VI of the Clean Air Act Amendments of 1990 addressing 

these chemicals.  The regulation called for reduction to 15% of 1989 production levels by 1995 and a 

complete phase-out of carbon tetrachloride production for nonfeedstock uses by 2000. The EPA allocated 

a baseline production allowance of about 138 million pounds (63,000 metric tons) of carbon tetrachloride, 

apportioned among the eight U.S. companies producing the chemical in 1989 (EPA 1991a). 

5.2 IMPORT/EXPORT 

The trend in recent years has shown a drop off in both imports and exports for carbon tetrachloride.  

(Anonymous 1983, 1995).  Current import or export quantities show that for the year 2002, the United 
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States exported 11,880,074 kg (1,880 metric tons), and for 2003 through April, the United States exported 

3,714,817 kg (3,715 metric tons) (USITC 2003).  Imports for both years were reported at <50 kg.  

Table 5-1 summarizes information on U.S. companies that reported the production, import, or use of 

carbon tetrachloride for the Toxics Release Inventory (TRI) in 2002 (TRI02 2004).  The TRI data should 

be used with caution since only certain types of facilities are required to report.  This is not an exhaustive 

list. 

5.3 USE 

The major use of carbon tetrachloride has historically been for the production of chlorofluorocarbons, 

such as dichlorodifluoromethane (F-12) and trichlorofluoromethane (F-11), which are used primarily as 

refrigerants as mentioned in section 5.1 (Holbrook 1991; HSDB 2004).  Carbon tetrachloride found a 

variety of other uses in the past in industry, in medicine, and in the home.  In the early part of this century, 

carbon tetrachloride was taken by mouth as a treatment for intestinal worms (Hall 1921), and it was also 

used briefly as an anesthetic (Hardin 1954).  Because carbon tetrachloride is a solvent, it has been widely 

used as a cleaning fluid in the home and as a degreaser in industry.  Because it is nonflammable, it was 

also used in fire extinguishers.  Until recently, it was used as solvent in some household products and as a 

fumigant to kill insects in grain.  It has been estimated that 28 million pounds of carbon tetrachloride were 

used as a fumigant in 1978 (Daft 1991).  Because of the toxicity of carbon tetrachloride, consumer and 

fumigant uses have been discontinued, and only industrial uses remain (HSDB 2004). 

Since production of carbon tetrachloride for most remaining uses has been phased-out due to Clean Air 

Act legislation (see Section 5.1), the chemical is only available for those uses for which no effective 

substitute has been found. 

5.4 DISPOSAL 

EPA classifies carbon tetrachloride and waste containing carbon tetrachloride as hazardous wastes.  

Generators of waste containing this contaminant must conform to EPA regulations for treatment, storage, 

and disposal (see Chapter 8). Rotary kiln or fluidized bed incineration methods are acceptable disposal 

methods for these wastes (HSDB 2004).  According to the TRI, 2,893 pounds of carbon tetrachloride 

were transferred to landfills and/or other treatment/disposal facilities and 617,050 pounds were sent to 

publicly owned treatment works in 2002 (TRI02 2004) (see Section 6.2).   
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Table 5-1. Facilities that Produce, Process, or Use Carbon Tetrachloride 

Number of Minimum amount Maximum amount 
Statea facilities on site in poundsb on site in poundsb Activities and usesc 

AL 10 0 49,999,999 
AR 10 100 999,999 
CA 25 0 49,999,999 
CO 8 1,000 999,999 
CT 2 10,000 999,999 
DE 2 100,000 999,999 
FL 1 10,000 99,999 
GA 4 0 9,999,999 
ID 1 0 99 
IL 14 0 9,999,999 
IN 13 0 9,999,999 
KS 14 0 9,999,999 
KY 12 1,000 49,999,999 
LA 60 0 49,999,999 
MD 5 10,000 999,999 
MI 10 0 9,999,999 
MN 4 100 99,999 
MO 5 100 99,999 
MS 6 0 999,999 
MT 2 100 99,999 
NC 2 0 9,999 
ND 2 1,000 99,999 
NE 2 10,000 999,999 
NH 1 0 99 
NJ 16 0 9,999,999 
NY 6 1,000 999,999 
OH 18 1,000 999,999 
OK 2 10,000 999,999 
PA 10 1,000 9,999,999 
PR 1 10,000 99,999 
SC 7 1,000 9,999,999 
TN 14 0 999,999 
TX 52 0 99,999,999 
UT 1 10,000 99,999 
VA 4 0 99,999 
VI 3 10,000 9,999,999 
WA 3 1,000 99,999 
WI 2 1,000 9,999 

1, 3, 4, 5, 10, 11, 12, 13 
6, 7, 10, 11, 12 
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 
1, 2, 5, 6, 10, 11, 12, 13 
6, 10 
6, 10 
12 
7, 8, 10, 11 
2, 3, 10, 11 
1, 3, 4, 5, 6, 7, 9, 10, 12 
1, 2, 3, 5, 10, 11, 12, 13, 14 
1, 3, 4, 6, 7, 10, 11, 12, 13 
1, 3, 5, 6, 9, 10, 12 
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 
2, 3, 6, 7 
5, 6, 7, 10, 12 
7, 10, 11, 12 
7, 12 
8, 9, 10, 12 
10 
1, 7, 13 
10 
12 
12 
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 
9, 10, 12, 13 
1, 4, 5, 9, 10, 11, 12, 13 
10 
6, 7, 10, 11, 12 
12 
6, 7, 8, 12 
1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
12 
12 
10 
10, 11, 12 
9, 10 
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Table 5-1. Facilities that Produce, Process, or Use Carbon Tetrachloride 

Number of Minimum amount Maximum amount 
Statea facilities on site in poundsb on site in poundsb Activities and usesc 

WV 11 0 9,999,999 1, 4, 5, 9, 11, 12, 13 
WY 4 0 99,999 2, 3, 10 

Source: TRI02 2004 (Data are from 2002) 

aPost office state abbreviations used 
bAmounts on site reported by facilities in each state 
Activities/Uses: 

1. Produce 6. Impurity 11. Chemical Processing Aid 
2. Import 7. Reactant 12. Manufacturing Aid  
3. Onsite use/processing 8. Formulation Component 13. Ancillary/Other Uses 
4. Sale/Distribution 9. Article Component 14. Process Impurity 
5. Byproduct 10. Repackaging 
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6.1 OVERVIEW 

Carbon tetrachloride has been identified in at least 430 of the 1,662 hazardous waste sites that have been 

proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2005).  However, the number 

of sites evaluated for carbon tetrachloride is not known.  The frequency of these sites can be seen in 

Figure 6-1. Of these sites, 425 are located within the United States, 1 is located in Guam, 2 are located in 

the Virgin Islands, and 2 are located in the Commonwealth of Puerto Rico (not shown). 

Carbon tetrachloride is a stable chemical that is degraded very slowly, so there has been a gradual 

accumulation of carbon tetrachloride in the environment as a consequence of releases from human 

activities. Until 1986, the largest source of release was from the use of carbon tetrachloride as a grain 

fumigant, but this practice has now been stopped.  Other releases of carbon tetrachloride may occur 

during carbon tetrachloride production or during the use of carbon tetrachloride in the manufacture of 

chlorofluorocarbons and other chemical products.   

Because carbon tetrachloride is volatile at ambient temperature, most carbon tetrachloride in the 

environment exists in the air.  Typical levels in rural areas are about 1 µg/m3, with somewhat higher 

values in urban areas and near industrial sources (Brodzinski and Singh 1983; Simmonds et al. 1983; 

Wallace et al. 1986).  Low levels of carbon tetrachloride have been detected in many water systems 

(particularly surface water systems), with typical values of <0.5 µg/L (Letkiewicz et al. 1983).  Less than 

1% of all groundwater-derived drinking water systems has levels of carbon tetrachloride >0.5 µg/L and 

<0.2% have levels >5 mg/L (EPA 1987a). 

6.2 RELEASES TO THE ENVIRONMENT 

The TRI data should be used with caution because only certain types of facilities are required to report 

(EPA 1997). This is not an exhaustive list.  Manufacturing and processing facilities are required to report 

information to the Toxics Release Inventory only if they employ 10 or more full-time employees; if their 

facility is classified under Standard Industrial Classification (SIC) codes 20–39; and if their facility 
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Figure 6-1.  Frequency of NPL Sites with Carbon Tetrachloride Contamination 
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produces, imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds 

of a TRI chemical in a calendar year (EPA 1997). 

6.2.1 Air 

Estimated releases of 4.44 million pounds (202 metric tons) of carbon tetrachloride to the atmosphere 

from 55 domestic manufacturing and processing facilities in 2002, accounted for about 71% of the 

estimated total environmental releases from facilities required to report to the TRI (TRI02 2004).  These 

releases are summarized in Table 6-1. 

Although sources of carbon tetrachloride including marine algae, oceans, volcanoes, and drill wells have 

been cited (Gribble 1994), the majority of carbon tetrachloride in the environment is due to direct release 

to the atmosphere during production, disposal, or use of the compound. The estimated annual global 

release of carbon tetrachloride was about 60,000–80,000 metric tons/year during the period 1965–1977 

(Singh et al. 1979a).  Based on measurements of the rate of change of carbon tetrachloride levels in air 

around the globe, the calculated total atmospheric releases of carbon tetrachloride during the period 

1978–1985 were around 90,000 metric tons/year (Simmonds et al. 1988).  Some carbon tetrachloride may 

also be formed in air by photochemical decomposition of perchloroethylene (Singh et al. 1975) or by 

incomplete combustion of this chemical during waste incineration (Katami et al. 1992), although the 

magnitude of this contribution is difficult to estimate (Singh et al. 1979a). 

Releases of carbon tetrachloride to air in the United States from manufacturing and processing ranged 

from 3.7 to 4.6 million pounds during 1987–1989, but were substantially reduced in 1990 and years after 

(EPA 1990, 1991b; TRI02 2004).  According to the TRI02 (2004), an estimated total of 444,436 pounds 

(202 metric tons) of carbon tetrachloride, amounting to 71% of the total environmental release, was 

discharged to the air from manufacturing and processing facilities in the United States in 2001 (TRI02 

2004) (see Table 6-1). The TRI data should be used with caution since only certain types of facilities are 

required to report.  This is not an exhaustive list. 

6.2.2 Water 

Estimated releases of  320 pounds (0.145 metric tons) of carbon tetrachloride to surface water from 

55 domestic manufacturing and processing facilities in 2002, accounted for about <1% of the estimated  
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Table 6-1. Releases to the Environment from Facilities that Produce, Process, or 
Use Carbon Tetrachloridea 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
AL 1 10 0 0 
AR 3 4,031 0 0 
CA 1 1,000 0 0 
IL 1 11 0 0 
IN 2 500 250 0 
KS 1 12,239 0 32,922 
KY 2 854 0 0 
LA 12 304,984 55 139,323 
MD 1 119 0 0 
MI 1 250 0 0 
MS 1 500 0 0 
NC 1 41 0 0 
NE 1 255 0 0 
OH 4 4,530 5 2 
PA 2 6,983 0 0 
TN 2 21 0 0 
TX 15 107,605 10 5,568 
UT 1 65 0 0 
WV 2 438 0 0 
WY 1 No data No data No data 

0 0 0 10 10 
0 0 0 4,031 4,031 
0 0 0 1,000 1,000 

215 168 383 11 394 
5 0 0 755 755 
0 0 0 45,161 45,161 
5 0 5 854 859 

45 38 44 444,401 444,445 
0 0 0 119 119 
0 0 0 250 250 
0 0 0 500 500 
0 0 0 41 41 
0 0 0 255 255 

255 61 316 4,537 4,853 
500 1,564 2,064 6,983 9,047 

0 0 0 21 21 
8 28 5,604 107,618 113,223 
0 0 0 65 65 
0 0 0 438 438 

No data No data No data No data No data 
Total 55 444,436 320 177,815 1,033 1,860 8,417 617,050 625,467 

Source: TRI02 2004 (Data are from 2002) 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 
exhaustive list.  Data are rounded to nearest whole number. 
bData in TRI are maximum amounts released by each facility. 
cPost office state abbreviations are used. 
dNumber of reporting facilities. 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs)

(metal and metal compounds).

g

h
Class I wells, Class II-V wells, and underground injection. 

Resource Conservation and Recovery Act (RCRA) subtitle C landfills; other on-site landfills, land treatment, surface 


impoundments, other land disposal, other landfills. 

Storage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 

disposal, unknown 

jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 

kTotal amount of chemical transferred off-site, including to POTWs. 


RF = reporting facilities; UI = underground injection 


i
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total environmental releases from facilities required to report to the TRI (TRI02 2004).  These releases are 

summarized in Table 6-1. 

Relatively small amounts of carbon tetrachloride are released to water.  The total in 1978 was estimated to 

be 2.5 metric tons, due almost entirely to discharges from carbon tetrachloride production facilities (Rams 

et al. 1979). Analysis of data from EPA's Storage and Retrieval (STORET) database for the early 1980s 

indicate that carbon tetrachloride was detectable in 5.5% of 1,343 industrial effluent samples (Staples et 

al. 1985).  The median concentration of all samples was <5 µg/L.  Carbon tetrachloride was also detected 

in leachates from industrial landfills at concentrations ranging from <10 to 92 µg/L (Brown and Donnelly 

1988). 

In 1989, approximately 320 pounds (0.145 metric tons) of carbon tetrachloride was released in the United 

States to surface waters (EPA 1991b).  An estimated total of 178,135 pounds (81 metric tons) of carbon 

tetrachloride, amounting to about 28% of the total environmental release, was discharged to the water and 

underground injection (potential groundwater release) from manufacturing and processing facilities in the 

United States in 2002 (TRI02 2004, see Table 6-1). 

6.2.3 Soil 

Estimated releases of 1,033  pounds (0.47 metric tons) of carbon tetrachloride to soils from 55 domestic 

manufacturing and processing facilities in 2002, accounted for about 0.0016% of the estimated total 

environmental releases from facilities required to report to the TRI (TRI02 2004).  An additional 

1.78 million pounds (81 metric tons), constituting about 28% of the total environmental emissions, were 

released via underground injection (TRI02 2004).  These releases are summarized in Table 6-1. 

Release of carbon tetrachloride to soil during carbon tetrachloride production was estimated to be 

200,000 pounds (92 metric tons) in 1978 (Letkiewicz et al. 1983).  Other sources of carbon tetrachloride 

discharged to soil include wastes associated with production and use of chlorofluorocarbons, metal 

cleaning compounds, adhesives, paints and other products.  Total emissions to soil were estimated to be 

2.6 million pounds (1,200 metric tons) in 1978 (Letkiewicz et al. 1983).  In 1989, approximately 

1,800 pounds (0.8 metric tons) of carbon tetrachloride were released in the United States to land (EPA 

1991b).  An estimated total of 1,033 pounds (0.47 metric tons) of carbon tetrachloride, amounting to <1% 
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of the total environmental release, was discharged to the soil from manufacturing and processing facilities 

in the United States in 2002 (TRI02 2004). 

6.3 ENVIRONMENTAL FATE 

6.3.1 Transport and Partitioning 

Nearly all carbon tetrachloride released to the environment exists in the atmosphere (73% is released to 

the atmosphere directly).  Most of the carbon tetrachloride released to soil and water evaporates within a 

few days (EPA 1991b).  Because carbon tetrachloride does not degrade readily in the atmosphere, 

significant global transport is expected.  Although carbon tetrachloride is moderately soluble in water 

(800 mg/L at 20 °C) (Verschueren 1983), only about 1% of the total carbon tetrachloride in the 

environment exists dissolved in surface waters and oceans (Galbally 1976).  This is attributable to the 

relatively high rate of volatilization of low molecular weight chlorinated hydrocarbons from water 

(Dilling 1977; Dilling et al. 1975). Because of this, carbon tetrachloride also tends to volatilize from tap 

water used for showering, bathing, cooking, and other household uses inside a home (McKone 1987; 

Tancrede et al. 1992). 

Most carbon tetrachloride released to soil is expected to volatilize rapidly due to its high vapor pressure 

(91.3 mmHg at 20 °C) (Howard 1990; IARC 1979).  A fraction of the carbon tetrachloride remaining in 

the soil may adsorb to the soil organic matter, based on a calculated soil sorption coefficient of 110 (log 

Koc of 2.04) (Kenaga 1980).  Nevertheless, carbon tetrachloride is expected to be moderately mobile in 

most soils, depending on the organic carbon content, and leaching to groundwater is possible (Howard 

1990).  Marine sediments high in organic matter tended to have higher concentrations of carbon 

tetrachloride than did sediments with lower organic matter (McConnell et al. 1975).  The composition of 

the soil organic matter and the water content of the soil may also affect sorption of carbon tetrachloride 

(Rutherford and Chiou 1992; Rutherford et al. 1992).  Experimentally determined Koc values for sorption 

of carbon tetrachloride on soils with organic carbon contents of 1.49 and 0.66% were 143.6 and 

48.89 (log Koc = 2.16 and 1.69), respectively (Walton et al. 1992). The retardation factor of carbon 

tetrachloride in breakthrough sampling in groundwater ranged from 1.4 to 1.7, indicating that soil 

adsorption is a relatively minor fate process (Mackay et al. 1983).  Retardation factors for carbon 

tetrachloride measured in a flow-through system studying sorption of organics to aquifer materials with 

very low organic carbon (0.07–0.025%) ranged from 1.10 to 1.46 (Larsen et al. 1992), confirming this 

conclusion. 
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There is little tendency for carbon tetrachloride to bioconcentrate in aquatic or marine organisms.  

Reported log bioconcentration factors (BCFs) were 1.24 and 1.48 in trout and bluegill sunfish, 

respectively (HSDB 2004; Neely et al. 1974; Pearson and McConnell 1975).  However, the log 

octanol/water partition coefficient (log Kow) of 2.64 for carbon tetrachloride (EPA 1984) suggests that 

bioaccumulation is at least possible under conditions of constant exposure and may occur in occupational 

settings or in people living at or near hazardous waste sites.  No data were located on the 

biomagnification of carbon tetrachloride.  However, since most animals readily metabolize and excrete 

carbon tetrachloride following exposure (see Section 3.4.3), biomagnification is not expected. 

6.3.2 Transformation and Degradation  

6.3.2.1 Air 

Carbon tetrachloride is very stable in the troposphere (Cox et al. 1976; Lillian et al. 1975; Singh et al. 

1980). This is primarily because carbon tetrachloride does not react with hydroxyl radicals that initiate 

breakdown and transformation reactions of other volatile hydrocarbons.  In addition, carbon tetrachloride 

does not photodissociate in the troposphere because, in the vapor state, it has no chromophores that 

absorb light in those visible or near ultraviolet regions of the electromagnetic spectrum, which prevail in 

the troposphere (Davis et al. 1975).  The rate of oxidation of carbon tetrachloride is thought to be so slow 

that its estimated tropospheric half-life exceeds 330 years (Cox et al. 1976).  Ultimately, carbon 

tetrachloride that is not removed from the troposphere by rainfall (Pearson and McConnell 1975) diffuses 

upward into the stratosphere where it may be photodegraded by shorter wavelength ultraviolet light (185– 

225 nm) more prevalent in this region of the atmosphere to form the trichloromethyl radical and chlorine 

atoms (Molina and Rowland 1974).  The rate of photodissociation begins to become important at altitudes 

>20 km, and increases as altitude increases (Molina and Rowland 1974).  Estimates of the atmospheric 

lifetime (the overall persistence of carbon tetrachloride in the troposphere and the stratosphere combined) 

are variable, but most values range from 30 to 100 years (EPA 1991b; Molina and Rowland 1974; 

Simmonds et al. 1983, 1988; Singh et al. 1979a), with 50 years generally being accepted as the most 

reasonable value. 

Chlorine atoms and other chlorine species formed by photodecomposition of carbon tetrachloride in the 

stratosphere can catalyze reactions that destroy ozone.  As the manufacture of carbon tetrachloride for use 
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in chlorofluorocarbons is phased out according to an international agreement (EPA 1987e), the impact of 

carbon tetrachloride on atmospheric ozone is likely to decrease. 

6.3.2.2 Water 

Carbon tetrachloride dissolved in water does not photodegrade or oxidize in any measurable amounts 

(Howard et al. 1991).  The rate of hydrolysis in water is second order with respect to carbon tetrachloride, 

but is extremely slow, with a calculated half-life of 7,000 years at a concentration of 1 ppm (Mabey and 

Mill 1978). The reported aqueous hydrolysis rate calculated from gas phase measurements was 

<2x10-6M-1s-1 (Haag and Yao 1992), 1–2 orders of magnitude less than other chlorinated alkanes.  Others 

have suggested that hydrolysis may be the cause of decreasing carbon tetrachloride concentrations with 

depth in the ocean (Lovelock et al. 1973).  However, this observation might also be explained by the 

biodegradation of carbon tetrachloride, which occurs much more rapidly than hydrolysis, particularly 

under anaerobic conditions. Biodegradation may occur within 16 days under anaerobic conditions (Tabak 

et al. 1981). Based upon acclimated aerobic screening test data, the aqueous aerobic half-life of carbon 

tetrachloride was estimated to be 6–12 months (Howard et al. 1991).  Based upon unacclimated anaerobic 

screening test data and acclimated aerobic sediment/aquifer grab sample data, the aqueous anaerobic half-

life of carbon tetrachloride was estimated to be 7–28 days (Howard et al. 1991). 

The carbon atom in carbon tetrachloride is in its most oxidized state, therefore it is much more likely to 

undergo reductive degradation, as opposed to oxidative degradation (McCarty 1996a; McCarty and 

Reinhart 1993; McCarty and Semprini 1994; McCarty et al. 1996b).  Carbon tetrachloride may undergo 

reductive dechlorination in aquatic systems in the presence of free sulfide and ferrous ions, or naturally 

occurring minerals providing those ions (Kriegman-King and Reinhard 1991).  The transformation rate of 

carbon tetrachloride to chloroform and other products under simulated groundwater conditions at 50 °C 

was evaluated for the chemical alone, with minerals (biotite and vermiculite) providing ferrous ions and 

free sulfide ions, and with natural iron sulfides (pyrite and marcasite).  Reported half-lives for carbon 

tetrachloride were 380 days for carbon tetrachloride alone, 2.9–4.5 days with minerals and sulfide ion 

present, and 0.44–0.85 days in the presence of natural iron sulfides.  The effects noted with free ferrous or 

free sulfide ions were two orders of magnitude less than with natural minerals.  Another recent study 

found degradation of 84% of the carbon tetrachloride present in aqueous solution containing ferrous ions 

33 days, but no effect with sulfide ions (Doong and Wu 1992).  Additional studies indicated that the 

abiotic reductive dechlorination of carbon tetrachloride could involve microbial cofactors or metabolites.  

Reductive dechlorination also occurs by anaerobic microbial transformation (Edwards et al. 1942). 
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Carbon tetrachloride removal via reductive dechlorination has also been observed under sulfate reducing 

conditions in an anaerobic system (de Best et al. 1998).  Complete removal of carbon tetrachloride was 

observed, with chloroform and dichloromethane as the main transformation products; however, some 

unknown degradation products were also observed.   

6.3.2.3 Sediment and Soil 

No studies were located on the degradation of carbon tetrachloride in soil or sediment.  Based on the 

estimated aqueous aerobic biodegradation half-life of carbon tetrachloride, the half-life of carbon 

tetrachloride in soil is estimated to be 6–12 months (Howard et al. 1991). 

6.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT  

Reliable evaluation of the potential for human exposure to carbon tetrachloride depends in part on the 

reliability of supporting analytical data from environmental samples and biological specimens.  

Concentrations of carbon tetrachloride in unpolluted atmospheres and in pristine surface waters are often 

so low as to be near the limits of current analytical methods.  In reviewing data on carbon tetrachloride 

levels monitored or estimated in the environment, it should also be noted that the amount of chemical 

identified analytically is not necessarily equivalent to the amount that is bioavailable.  The analytical 

methods available for monitoring carbon tetrachloride in a variety of environmental media are detailed in 

Chapter 7. 

6.4.1 Air 

Carbon tetrachloride appears to be ubiquitous in ambient air.  Based on analysis of 4,913 ambient air 

samples reported in the National Ambient Volatile Organic Compounds Database (including remote, 

rural, suburban, urban, and source dominated sites in the United States), the average concentration of 

carbon tetrachloride was 0.168 ppb (1.1 µg/m3) (Shah and Heyerdahl 1988).  Carbon tetrachloride was 

detected in air at 76 NPL hazardous waste sites (HazDat 2005).  Average values reported in four U.S. 

cities ranged from 0.144 to 0.291 ppb (Singh et al. 1992).  Similar results were reported by Simmonds 

et al. (1983), who found average concentrations of 0.6–0.8 µg/m3 (0.10–0.13 ppb) at five coastal 

monitoring stations around the world, and Kelly et al. (1994), who reported a median ambient 
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concentration of 0.8 µg/m3 based on a compilation of ambient data from 1964 though 1992.  Continued 

monitoring studies by Simmonds et al. (1988) reveal that global atmospheric levels of carbon 

tetrachloride have been steadily increasing by about 1.3% per year, reaching 0.12–0.14 ppb by 1985.  

Similar concentrations of carbon tetrachloride were also reported in air at five hazardous waste sites and 

one landfill in New Jersey, where average values ranged from 0.02 to 0.12 ppb (LaRegina et al. 1986).  A 

study done involving the Toxic Air Monitoring System (TAMS) network showed concentrations of 

carbon tetrachloride in urban locations in Boston, Chicago, Houston, and the Seattle/Tacoma area (Evans 

et al. 1992). The median 24-hour concentrations were 0.12, 0.13, and 0.13 ppb at the three Boston sites, 

0.12, 0.12, and 0.13 ppb at the three Chicago sites, 0.15, 0.13, and 0.12 ppb at the three Houston sites, and 

0.12 ppb at the Seattle/Tacoma site. Sweet and Vermette (1990, 1992) have shown that carbon 

tetrachloride is present in areas of urban Illinois including southeast Chicago and east St. Louis at average 

concentrations of 0.7–1.0 µg/m3 (0.11–0.16 ppb). It was determined in this study that point sources of 

carbon tetrachloride from industry and wind direction are responsible for localized increases in 

concentration. The Arizona hazardous air pollutants monitoring program has demonstrated average 

concentrations of carbon tetrachloride ranging from 0.7 to 0.75 µg/m3 (0.11–0.12 ppb) (Zielinska et al. 

1998).  A study on air toxics in Minnesota has shown a carbon tetrachloride median concentration of 

0.77 µg/m3 (0.12 ppb) This concentration exceeded health benchmark values in 88% of monitoring sites 

(Pratt et al. 2000). A study monitoring levels of carbon tetrachloride in 13 urban areas of the United 

States during September 1996 to August 1997 provided a mean concentration of 0.072–0.09 ppbv 

throughout the areas (Mohamed et al. 2002).  The more recent studies demonstrate a decrease in levels of 

carbon tetrachloride in the ambient air, which could be a reflection of the current drop in production; 

however, the resistance to atmospheric degradation allows for levels to remain somewhat constant.  

Ambient air concentrations of carbon tetrachloride were unaffected by changes in temperature and season 

(Mohamed et al. 2002), or day of the week (Austin 2003). 

Studies have revealed that carbon tetrachloride is also a common contaminant of indoor air.  Typical 

concentrations in homes in several U.S. cities were about 1 µg/m3 (0.16 ppb), with some values up to 

9 µg/m3 (1.4 ppb) (Wallace et al. 1986).  Concentrations in indoor air were usually higher than in outdoor 

air, indicating that the source of the carbon tetrachloride was building materials or products (pesticides, 

cleaning agents) inside the home (Wallace et al. 1986, 1987).  Based on 2,120 indoor air samples in the 

United States, the average concentration of carbon tetrachloride was 0.4 ppb (2.6 µg/m3) (Shah and 

Heyerdahl 1988).  However, the median value was 0 ppb, indicating that carbon tetrachloride was not 

detected in more than half of the samples.  A later study determined backyard outdoor air concentrations 

of carbon tetrachloride taken from 175 home sites in 6 urban areas to be 0.6 µg/m3 (Wallace 1991).  In 
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this same study, 24-hour average exposures of 750 people in 6 urban areas were determined to be 1 µg/m3 

(0.16 ppb). This indicates that for carbon tetrachloride, outdoor sources account for a majority of the 

airborne risk; however, indoor sources are still a concern (Acquavella et al. 1994; Wallace 1991).  These 

data may reflect the effects of the discontinuation of the use of carbon tetrachloride in consumer products.  

6.4.2 Water 

There have been a number of surveys performed by the federal government to define typical levels of 

carbon tetrachloride in water supplies in this country. The results of these studies reveal that about 99% 

of all groundwater supplies and about 95% of all surface water supplies contain <0.5 µg/L of carbon 

tetrachloride (Letkiewicz et al. 1983).  Carbon tetrachloride was detected in groundwater at 310 NPL 

hazardous waste sites, and in surface water at 53 NPL hazardous waste sites (HazDat 2005).  Analysis of 

945 drinking water samples from cities around the United States found detectable levels (>0.2 µg/L) in 

30 (3.2%) of the samples (Westrick et al. 1984).  The highest value reported was 16 µg/L, and the median 

value of the positive samples ranged from 0.3 to 0.7 µg/L in different sample groups.  Carbon 

tetrachloride has also been detected in some private drinking water wells, at levels ranging from 1 to 

720 µg/L (RIDOH 1989).  Based on a survey of groundwater monitoring data from 479 waste sites, 

carbon tetrachloride was also detectable in groundwater (concentration not reported) at 32 sites in 9 EPA 

regions (Plumb 1991, 1992).  A U.S. Geological Survey study of pesticide compounds present in well 

water around the United States showed the presence of carbon tetrachloride in <5% of the wells, but no 

concentration data were provided (Kolpin et al. 1997).  A study on chemicals in California drinking water 

from 1984 to 1990 showed organic pollutants in 921 of 7,712 wells sampled (Lam et al. 1994).  Of these 

contaminated wells, 45 were contaminated with carbon tetrachloride, at a maximum concentration of 

29 µg/L (Lam et al. 1994).  A survey of data by the National Academy of Sciences (NAS 1978) reported a 

range of carbon tetrachloride concentrations in seawaters of 0.2–0.7 ng/L.  Based on analysis of data from 

the STORET database, carbon tetrachloride was detectable in 12% of 8,858 ambient water samples 

(Staples et al. 1985).  The median concentration in all samples was 0.1 µg/L. 

6.4.3 Sediment and Soil 

Because carbon tetrachloride is ubiquitous in air, it is likely that trace levels of carbon tetrachloride are 

present in surface soils around the globe.  Carbon tetrachloride was detected in soil at 103 NPL hazardous 

waste sites, and in sediment at 23 NPL hazardous waste sites (HazDat 2005).  Based on information from 
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the STORET database, carbon tetrachloride was detected in 0.8% of sediment samples across the United 

States (Staples et al. 1985).  The median concentration of all samples was <5 mg/kg dry weight. 

6.4.4 Other Environmental Media 

Until 1986, one of the major uses of carbon tetrachloride was as a fumigant for grain, and consequently, 

low levels of carbon tetrachloride occurred in grain or food products derived from such grain.  Estimates 

of carbon tetrachloride residue levels in treated grain varied as a function of fumigation conditions and the 

amount of aeration after fumigation, but values of 1–100 mg/kg were typical (Deer et al. 1987; 

Letkiewicz et al. 1983; Lynn and Vorches 1957; McMahon 1971).  Levels in finished food prepared from 

fumigated grains were considerably lower, with typical concentrations below 0.1 mg/kg (Berck 1974).  

Carbon tetrachloride was detected in 44 of 549 food items at an average concentration of 0.031 mg/kg in 

a Food and Drug Administration (FDA) survey (Daft 1991).  However, carbon tetrachloride is no longer 

used for this purpose in the United States, so exposure from this source is no longer of concern, but 

certain foods may absorb small amounts of carbon tetrachloride from the air during processing (Daft 

1991).  Carbon tetrachloride does not appear to occur in significant quantities in most other foods 

(Letkiewicz et al. 1983; McConnell et al. 1975). 

Carbon tetrachloride was detected in 11 of 1,159 household cleaning and related products in a survey 

conducted during the late 1980s (Sack et al. 1992).  Since this chemical is no longer used in consumer 

products, exposure from this source is not likely to be of concern. 

6.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE  

Members of the general population are most likely to be exposed to carbon tetrachloride through ambient 

air and drinking water.  Despite being banned from consumer products, the long lifetime of carbon 

tetrachloride in the atmosphere contributes to the background level to which the general population is 

exposed (Wallace 1991). Assuming inhalation of 20 m3/day by a 70-kg adult and 40% absorption of 

carbon tetrachloride across the lung (IRIS 2003), typical levels of carbon tetrachloride in ambient air 

(about 1 µg/m3) yield systemically absorbed doses of about 0.1 µg/kg/day.  Somewhat higher exposures 

could occur near point sources such as industries that produce or use carbon tetrachloride or hazardous 

waste sites contaminated with carbon tetrachloride.  Estimates of daily intake from air and water range 

from 12 to 511 µg/day and from 0.2 to 60 µg/day, respectively, based on average concentrations of 0.1– 
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4 ppb (0.64–25.6 µg/m3) in air and 0.1–30 µg/L in water (Howard 1990).  For water, consumption of 

2 L/day by a 70-kg adult containing a typical carbon tetrachloride concentration of 0.5 µg/L yields a 

typical daily intake of about 0.01 µg/kg/day. 

A study by Hartwell et al. (1992) analyzed the levels of carbon tetrachloride breath, personal air, and 

fixed indoor and outdoor sites in the Los Angeles area of California.  The percentages of samples in 

which carbon tetrachloride was detected overnight, during the winter season were 2.13% in breath, 81.4% 

in personal air, 90.5% in kitchen, and 91.3% in outdoor air.  Based on these results, carbon tetrachloride is 

considered often found, but not at relatively high concentrations in the winter season, and therefore, 

concentrations were not provided.  Similar results were determined for daytime and summer months.   

Exposure to carbon tetrachloride may also occur by dermal and inhalation routes while using tap water for 

bathing and other household purposes (McKone 1987; Tancrede et al. 1992).   

Exposure to carbon tetrachloride via food is not likely to be of significance, since levels in most foods are 

below analytical detection limits.  Ingestion of bread or other products made with carbon tetrachloride-

fumigated grain may have contributed to dietary exposure in the past, but this route of exposure is no 

longer believed to be of significance. 

In the workplace, the most likely route of exposure is by inhalation.  Air concentrations at a number of 

locations where fumigated grain was stored were well below 5 ppm, while some samples contained over 

60 ppm (Deer et al. 1987).  The average exposure of workers in the grain facilities ranged from 

0.002 to 0.1 ppm, depending on job activity.  For a worker exposed to 0.1 ppm (630 µg/m3), the intake 

during an 8-hour day corresponds to a dose of about 35 µg/kg/day.  Based on results of the National 

Occupational Exposure Survey (NOES) conducted during 1981–1983, the National Institute for 

Occupational Safety and Health (NIOSH) estimated that 58,208 workers were potentially exposed to 

carbon tetrachloride in the United States at that time (HSDB 2004).  A study showing the baseline for 

potential emissions in the extrusion of polycarbonate resin at 304 °C showed that carbon tetrachloride was 

either undetectable or present at very low levels (Rhodes et al. 2002). 
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6.6 EXPOSURES OF CHILDREN  

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways. 

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age:  from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths, 

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

Young children often play close to the ground and frequently play in the dirt, which increases their dermal 

exposure to toxicants in dust and soil.  They also tend to ingest soil, either intentionally through pica, or 

unintentionally through hand-to-mouth activity.  Children, thus, may be orally dosed and dermally 

exposed to carbon tetrachloride present as a contaminant in soil and dust.  It has been demonstrated that 

carbon tetrachloride vapors are absorbed by the skin slowly (HSDB 2004).  In addition, carbon 

tetrachloride has a log Koc value (organic carbon-water partition coefficient) of 2.04 (Kenaga 1980) 

indicating that it is not expected to adsorb to soil and sediment (HSDB 2004).  Most of the carbon 

tetrachloride in the upper layers of the soil will be rapidly volatilized to air (vapor pressure=90 mmHg at 

20 °C). Loss of carbon tetrachloride from the soil decreases the potential of dermal and oral exposure to 

children, but its rapid volatilization results in inhalation being the most likely route of exposure during 

play on the ground. 

Children breathe in more air per kilogram of body weight than adults.  Therefore, a child in the same 

micro-environment as an adult is likely to be exposed to a higher dosage of carbon tetrachloride from 

ambient air.  Young children are closer to the ground or floor because of their height.  The carbon 

tetrachloride vapors being heavier than air (vapor density=5.32, air=1, HSDB 2004) tend to concentrate 

near the ground. Children are therefore at a greater risk of exposure than adults during accidental spills or 

through indoor use of carbon tetrachloride in an unventilated area.   
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Exposures of the embryo or fetus to volatile organic compounds such as carbon tetrachloride may occur if 

the expectant mother is exposed.  A newborn infant may be exposed by breathing contaminated air and by 

ingestion of mother’s milk, which can contain small amounts of carbon tetrachloride.  Children may be 

exposed through accidental ingestion of products containing carbon tetrachloride.  Because of the toxicity 

of carbon tetrachloride, consumer uses have been discontinued, and only industrial uses remain 

(Section 5.3); therefore, the occurrence of products containing carbon tetrachloride being in the home 

should be low.  Older children and adolescents may be exposed to carbon tetrachloride in their jobs or 

hobbies, or through deliberate solvent abuse by “sniffing.”  Inhalant abuse during pregnancy poses 

significant risks to the pregnancy and endangers both the mother and the fetus.  Solvent abuse of carbon 

tetrachloride for euphoric effects would result in exposure levels that exceed those producing adverse 

effects in animals. 

A study has been done in the Kanawha Valley in West Virginia observing children from 74 elementary 

schools in the this area (Ware et al. 1993).  The Kanawha Valley region is one of the largest areas of 

chemical manufacturing in the United States.  Concentrations of 5 petroleum-related compounds and 

10 compounds more specific to industrially related processes, including carbon tetrachloride, were 

determined at the different schools in groups based on proximity to industry.  It was determined that the 

mean concentration values of both the petroleum-related compounds and the process-related compounds 

for schools in the valley, near the chemical companies, were higher than for schools in the valley further 

away from the chemical companies, as well as schools out of the valley, both near and further away from 

the chemical companies.  These values (19.71 µg/m3 for the petroleum-related compounds and 5 µg/m3 for 

the process-related compounds) are also higher than normally found in outdoor air around the country. A 

correlation was drawn between these higher concentrations of chemicals and an increased incidence of 

respiratory symptoms, including asthma, wheeze-related symptoms, and symptoms characteristic of 

reactive airway disease.  It should be noted, however, that these data are for mixtures of volatile organic 

compounds and are not specific to carbon tetrachloride.  Also, the observed data do not show direct 

causation of the observed symptoms; therefore, a need exists for further investigation of the effects of 

carbon tetrachloride on children (Donelly et al. 1995). 

6.7 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES  

Workers involved in the manufacture or use of carbon tetrachloride are the population most likely to have 

exposures to carbon tetrachloride significantly higher than members of the general public.  Workers 

exposed to concentrations in air ranging from 20 to 125 ppm for intermediate durations have experienced 
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a variety of neurological effects (see Section 3.2.1.4).  Current regulations restrict the acceptable 

concentration of carbon tetrachloride in workplace air to 2 ppm, but this is still much higher than 

commonly encountered in the ambient environment.  Fugitive emissions of carbon tetrachloride from 

chemical plants may expose area residents to elevated levels of this halocarbon, although concentrations 

outside the plant are typically much lower than in the chemical plant itself.  Other populations that might 

have above average exposure include persons living near hazardous waste sites contaminated with carbon 

tetrachloride. 

6.8 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of carbon tetrachloride is available.  Where adequate 

information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a 

program of research designed to determine the health effects (and techniques for developing methods to 

determine such health effects) of carbon tetrachloride.  

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

6.8.1 Identification of Data Needs 

Physical and Chemical Properties.    The physical and chemical properties of carbon tetrachloride 

have been well studied, and reliable values for key parameters are available for use in environmental fate 

and transport models.  On this basis, it does not appear that further studies of the physical-chemical 

properties of carbon tetrachloride are essential. 

Production, Import/Export, Use, Release, and Disposal. According to the Emergency Planning 

and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required to submit 

substance release and off-site transfer information to the EPA.  The TRI, which contains this information 
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for 2002, became available in May of 2004.  This database is updated yearly and should provide a list of 

industrial production facilities and emissions. 

Although the production of carbon tetrachloride has been declining, humans are at risk of exposure to the 

compound at specific industrial locations where the compound is used or near chemical waste sites where 

emission to the environment may occur.  Available data indicate that most carbon tetrachloride 

manufactured in this country is consumed in the synthesis of chlorofluorocarbons, but current quantitative 

data on the amounts of carbon tetrachloride imported and exported into and from the United States are 

sparse (HSDB 2004; USITC 2003).  According to the Emergency Planning and Community Right-to 

Know Act of 1986, 43 U.S.C. Section 11023, Industries are required to submit substance release and off-

site transfer information to the EPA.  TRI, which contains this information for 2002, became available in 

2004. This database is updated yearly and should provide a list of industrial production facilities and 

emissions. 

In 2002, the United States released approximately 414,000 pounds (188 metric tons) of carbon 

tetrachloride to the environment from manufacturing and processing facilities, most of which (70%) was 

released directly to the atmosphere (TRI02 2004). Carbon tetrachloride is considered a hazardous waste 

and is subject to disposal regulations.  Information on current disposal practices for used containers, 

sludges, and soils containing carbon tetrachloride waste are lacking.  Because carbon tetrachloride is so 

stable in the environment, collection of this information on production, use, release, and disposal are 

needed to evaluate the effect of current industrial practices on local and global levels of carbon 

tetrachloride. Further, this information would be useful in the overall evaluation of human health risk of 

carbon tetrachloride. 

Environmental Fate. The environmental fate of carbon tetrachloride has been investigated by a 

number of workers, and available data are adequate to conclude that one main fate process is 

volatilization followed by photodecomposition in the stratosphere (Pearson and McConnell 1975).  

However, there is some uncertainty in available estimates of atmospheric lifetime, and more detailed 

studies of the rate of carbon tetrachloride decomposition, and how this depends on altitude, geographic 

location, and other atmospheric components, are needed to refine models predicting global and local 

trends in carbon tetrachloride levels.  Although only a small fraction of environmental carbon 

tetrachloride is thought to exist in surface waters, the possibility exists that hydrolysis, bioaccumulation, 

or adsorption, while slow, could compete with the slow photodecomposition occurring in the atmosphere. 

Estimates on the aerobic and anaerobic biodegradation half-lives of carbon tetrachloride in water have 
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been made based on limited data.  For this reason, additional studies on carbon tetrachloride flux rates 

into and out of surface water, as well as refined quantitative estimates of aquatic fate processes would be 

valuable. The chemical is expected to evaporate rapidly from soil due to its high vapor pressure and may 

migrate into groundwater due to its low soil adsorption coefficient.  No data are available on 

biodegradation in soil.  Additional studies to determine degradation rates and the extent to which 

adsorption has occurred are needed.  These data are also useful in evaluating the impact of carbon 

tetrachloride leaching from hazardous waste sites. 

Bioavailability from Environmental Media.    Carbon tetrachloride can be absorbed following oral 

dosing and inhalation, or dermal exposure.  No data were located regarding the potential effects of 

environmental media (air, water, soil) on the absorption of carbon tetrachloride.  However, since soil 

adsorption is considered to be relatively low for carbon tetrachloride, it seems unlikely that soil would 

have a significant effect on its bioavailability.  Additional studies are needed to determine the extent of 

bioavailability from contaminated air, drinking water, and soil at hazardous waste sites. 

Food Chain Bioaccumulation. Limited data indicate that carbon tetrachloride has a low tendency 

to bioconcentrate in the food chain, even though it is a lipophilic compound (Neely et al. 1974; Pearson 

and McConnell 1975).  The lack of bioconcentration is mainly due to the volatility of carbon 

tetrachloride, which facilitates clearance from exposed organisms.  Nevertheless, carbon tetrachloride 

does tend to become concentrated in fatty tissues, and further studies on the levels of carbon tetrachloride 

in the fat of fish would help evaluate the risk of carbon tetrachloride exposure by this pathway.  No data 

are available on the bioconcentration in plants.  Additional studies would be useful in assessing potential 

for human exposure from ingestion of plant foodstuff.  Data are also needed on the biomagnification of 

the compound in the aquatic and terrestrial food chain.  These data would be useful in assessing food 

chain bioaccumulation as a potential human exposure pathway. 

Exposure Levels in Environmental Media.    Reliable monitoring data for the levels of carbon 

tetrachloride in contaminated media at hazardous waste sites are needed so that the information obtained 

on levels of carbon tetrachloride in the environment can be used in combination with the known body 

burden of carbon tetrachloride to assess the potential risk of adverse health effects in populations living in 

the vicinity of hazardous waste sites. 

Levels of carbon tetrachloride in air, water, and sediments have been measured at numerous locations in 

the United States, and typical or average exposure levels in ambient air and drinking water are fairly well 
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defined (Letkiewicz et al. 1983; Shah and Heyerdahl 1988; Singh et al. 1992; Westrick et al. 1984). 

There is considerable local variation, with higher-than-average levels occurring in some industrial areas 

and near some waste sites.  However, much of this information is no longer current.  Consequently, 

further monitoring of carbon tetrachloride in the workplace and in ambient water and air near known or 

potential sources of carbon tetrachloride would be valuable in identifying locations where human 

exposure could be elevated. 

Reliable monitoring data for the levels of carbon tetrachloride in contaminated media at hazardous waste 

sites are needed so that the information obtained on levels of carbon tetrachloride in the environment can 

be used in combination with the known body burden of carbon tetrachloride to assess the potential risk of 

adverse health effects in populations living in the vicinity of hazardous waste sites. 

Exposure Levels in Humans. Detection of carbon tetrachloride in blood, urine, and expired air has 

been used as an indicator of exposure to the compound in occupational settings.  Similar information on 

the general population, particularly in the vicinity of hazardous waste sites, are needed to estimate levels 

of the compound to which the general population has been exposed and perhaps some correlation of these 

levels with levels of carbon tetrachloride in contaminated air, drinking water, and soil. 

This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children.    There are very limited data on the effects of carbon tetrachloride exposure 

on children. As stated earlier (Section 6.6), adult data cannot simply be extrapolated to children for a 

variety of different reasons.  Data on children’s exposure are needed. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 

Exposure Registries. No exposure registries for carbon tetrachloride were located. This substance 

is not currently one of the compounds for which a sub-registry has been established in the National 

Exposure Registry. The substance will be considered in the future when chemical selection is made for 

sub-registries to be established. The information that is amassed in the National Exposure Registry 

facilitates the epidemiological research needed to assess adverse health outcomes that may be related to 

exposure to this substance. 
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6.8.2 Ongoing Studies 

As part of the Third National Health and Nutrition Evaluation Survey (NHANES III), the Environmental 

Health Laboratory Sciences Division of the National Center for Environmental Health, Centers for 

Disease Control and Prevention, will be analyzing human blood samples for carbon tetrachloride and 

other volatile organic compounds.  These data will give an indication of the frequency of occurrence and 

background levels of these compounds in the general population. 

The Federal Research in Progress (FEDRIP 2004) database provides additional information obtainable 

from a few ongoing studies that may fill in some of the data needs identified in Section 6.8.2.  These 

studies that include one which deals with the phytoremediation of toxic waste sites using poplar trees to 

remove toxic solvents from influent waters.  Over a 4-year period, 98–99% of trichloroethylene was 

removed, with similar results shown for carbon tetrachloride and perchloroethylene.  Further study is 

being done using this methodology to determine the fate of the carbon from these chemicals.  
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The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring carbon tetrachloride, its metabolites, and other biomarkers of exposure and 

effect to carbon tetrachloride.  The intent is not to provide an exhaustive list of analytical methods.  

Rather, the intention is to identify well-established methods that are used as the standard methods of 

analysis.  Many of the analytical methods used for environmental samples are the methods approved by 

federal agencies and organizations such as EPA and the National Institute for Occupational Safety and 

Health (NIOSH).  Other methods presented in this chapter are those that are approved by groups such as 

the Association of Official Analytical Chemists (AOAC) and the American Public Health Association 

(APHA). Additionally, analytical methods are included that modify previously used methods to obtain 

lower detection limits and/or to improve accuracy and precision. 

As is true for most volatile organic compounds, the preferred analytical technique for carbon tetrachloride 

is gas chromatography (GC).  A number of devices are suitable for detection of carbon tetrachloride as it 

emerges from the GC, including flame ionization detector (FID), halogen-sensitive detector (HSD), or 

electron-capture detector (ECD).  In general, HSD or ECD are preferable because of their high sensitivity 

for halogenated compounds.  When absolute confidence in compound identity is required, gas 

chromatography/mass spectrometry (GC/MS) is the method of choice. 

The most variable aspect of carbon tetrachloride analysis is the procedure used to extract carbon 

tetrachloride from the medium and prepare a sample suitable for GC analysis.  As a volatile organic 

compound of relatively low water solubility, carbon tetrachloride is easily lost from biological and 

environmental samples, so appropriate care must be exercised in handling and storing such samples for 

chemical analysis.  Brief summaries of the methods available for extraction and detection of carbon 

tetrachloride in biological and environmental samples are provided below. 

7.1 BIOLOGICAL MATERIALS  

Separation of carbon tetrachloride from biological samples may be achieved by headspace analysis, 

purge-and-trap collection from aqueous solution or slurry samples, solvent extraction, or direct collection 

on resins. Headspace analysis offers speed, simplicity, and good reproducibility, but partitioning of the 
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analyte between the headspace and the sample matrix is dependent upon the nature of the matrix and must 

be determined separately for each different kind of matrix (Walters 1986). 

Purge-and-trap collection is well adapted to biological samples such as blood or urine that are soluble in 

water (Pellizzari et al. 1985a; Peoples et al. 1979), and is readily adapted from techniques that have been 

developed for the analysis of carbon tetrachloride in water and waste water.  For water-insoluble 

materials, the purge-trap approach is complicated by uncertainty of partitioning the analyte between 

sample slurry particles and water. 

Historically, diethyl ether has been a widely used solvent for the extraction of volatile components from 

biological fluids (Zlatkis and Kim 1976).  Homogenization of tissue with the extractant and lysing of cells 

improves extraction efficiency.  When, as is often the case, multiple analytes are being determined using 

solvent extraction, selective extraction and loss of low-boiling compounds can cause errors.  Highly 

purified solvents have largely eliminated problems with solvent impurities, although high costs, solvent 

toxicities, and restrictions on spent solvent disposal must be considered.  Supercritical fluid extraction 

using pure carbon dioxide or carbon dioxide with additives offers some potential for the extraction of 

organic analytes such as carbon tetrachloride from biological samples (Hawthorne 1988).   

Analytical methods for the determination of carbon tetrachloride in biological samples are summarized in 

Table 7-1. 

7.2 ENVIRONMENTAL SAMPLES 

The basic method for collection of carbon tetrachloride from the ambient atmosphere is adsorption on a 

solid phase, followed by removal by thermal or solvent elution for subsequent analysis.  One of the most 

common adsorbents for carbon tetrachloride is Tenax® GC. Using Tenax® adsorbent, standard air 

containing 1.15 ppb by gas volume of carbon tetrachloride was determined with biases of -23.0, -34.7, 

-50.0, and -69.2% at collection volumes of 10, 20, 38, and 76 L of air, respectively (Crist and 

Mitchell 1986). Citing these large negative biases even when the sampled volume was less than 10% of 

the breakthrough volume, these authors conclude that Tenax® is not suitable for quantitative sampling for 

carbon tetrachloride (Crist and Mitchell 1986).  For occupational monitoring of carbon tetrachloride in 

air, NIOSH (1984) recommends samplers containing activated carbon.  The adsorbed carbon tetrachloride 

is extracted from the activated carbon with carbon disulfide, then determined by GC/FID.  Studies have 

been conducted to improve analytical methods for detection of low-level volatile organic compounds.   
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Table 7-1. Analytical Methods for Determining Carbon Tetrachloride 
in Biological Materials 

Sample 
Sample Analytical detection Percent 
matrix Preparation method method limit recovery Reference 
Alveolar Collect on Tenax-TA®; desorb Capillary No data No data Clair et al. 
air thermally; inject by cryotrap column 1991 

GC/FID 
Breath Collect on Tenax-GC®; desorb Capillary No data No data Pellizzari et 

thermally column al. 1985b 
GC/MS 

Adipose Purge from liquefied fat at 115 °C, GC/HSD <1.3 µg/L 96 (90– Peoples et al. 
tissue trap on Tenax ®/silica gel, thermal 100) 1979 

desorption   
Adipose Macerate in water; purge with inert Capillary ≈6 ng/g ≈50 Pellizzari et 
tissue gas; trap on Tenax-GC®; desorb column al. 1985a 

thermally GC/MS 
Blood Purge from water-serum mixture GC/HSD <1.3 µg/L 112 (108– Peoples et al. 
serum containing antifoam reagent at 124) 1979 

115 °C, trap on Tenax®/silica gel, 
thermal desorption   

Blood Purge with inert gas, trap on Tenax- Capillary ≈3 ng/mL 89.4 Pellizzari et 
GC®; desorb thermally column al. 1985a 

GC/MS 
Biofluids Dilute with water, sealed vial; collect GC/FID NR No data Suitheimer et 

headspace vapors al. 1982 

FID = flame ionization detector; GC = gas chromatography; HSD = halogen-selective detector; MS = mass 
spectrometry; NR = not reported 
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Methods have been evaluated that do not require the use of sorbents, thereby reducing associated 

uncertainties due to their adsorption/desorption efficiencies.  The use of cryogenic preconcentration 

techniques to increase the sample content of trace volatile toxic organic compounds in a gas matrix for 

analysis by GC has been evaluated (Rhoderick and Miller 1990).  The authors revealed that a linear 

multipoint calibration range from 1 to 15 ppb can be obtained by using a single standard, cryogenic 

trapping, a constant flow rate and varied trapping timer.  Acceptable methods for the determination of 

carbon tetrachloride in ambient air are detailed in EPA Compendium Method TO-14A (EPA 1999). 

Purge and trap methods are standard for the determination of carbon tetrachloride in water, with analyte 

measurement by GC using halogen-specific detection, electron-capture detection, or mass-spectrometry 

(APHA 1992a, 1992b; ASTM 1987; Bellar 1989; Eichelberger and Buddle 1989a, 1989b; EPA 1982a, 

1982b; Ho 1989).  The APHA (1992a, 1992b) methods for carbon tetrachloride have been accepted by 

EPA as equivalent to EPA-developed methods.  Analyte measurement using an ion trap detector that 

functions as a mass spectrometer has also been evaluated (Eichelberger et al. 1990).  This method is 

sufficiently sensitive to measure the analytes below the regulatory levels.  Headspace sampling, coupled 

with whole column cryotrapping chromatography and mass spectrometry, have been used in the analysis 

of volatile priority pollutants in water and waste water (Gryder-Boutlet and Kennish 1988).  The 

advantage of headspace sampling over other methods of analysis include minimal sample preparation, 

injection of a larger sample preparation and, and shorter analysis timer, because all of the compounds 

being analyzed are volatile.  Carbon tetrachloride can also be determined in solid wastes by purge and 

trap collection followed by GC (EPA 1986a, 1986b). A modified open-loop dynamic headspace 

technique has been applied for stripping and trapping volatile organic compounds from estuarine 

sediments (Bianchi et al. 1991).  This method is capable of quantifying volatile organic compounds at 

detection limits between 10 and 100 ng/kg. 

Analytical methods for the determination of carbon tetrachloride in environmental samples are 

summarized in Table 7-2. 

7.3 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of carbon tetrachloride is available.  Where adequate 
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Table 7-2. Analytical Methods for Determining Carbon Tetrachloride  
in Environmental Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Air Coconut shell carbon sorption, GC/FID 10 µg/sample No data NIOSH 

carbon disulfide desorption 1984 
Air Adsorption on Tenax ® GC, GC/MS <1.15 ppba 23–77 Crist and 

thermal desorption Mitchell 
1986 

Air Sorption GC/CLMD 0.003 ng/ No data Yamada et 
sample al. 1982 

Air Charcoal sorption, carbon GC/HSD No data No data ASTM 1987 
disulfide desorption 

Water Purge and trap GC/MS No data No data ASTM 1987 
Water Extract with n-pentane GC/ECD 0.4 µg/L No data Garcia et al. 

1992 
Water Purge and trap GC/HSD 0.12 µg/L 82.5 EPA 1982a 
Water Purge and trap GC/MS 2.8 µg/L 102 EPA 1982b 
Drinking water Purge with inert gas; trap on Capillary 0.01 µg/L 92 Ho 1989 

sorbent tube; desorb thermally column 
GC/HSD 

Drinking water Purge with inert gas; trap on Packed column 0.003 µg/L 90 Bellar 1989 
sorbent tube; desorb thermally GC/HSD 

Drinking water Purge with inert gas; trap on Capillary 0.08 µg/L 92 EPA 1989b 
sorbent tube; desorb thermally column 

GC/HSD 
Drinking water Purge with inert gas; trap on Packed column 0.3 µg/L 88 EPA 1989b 

sorbent tube; desorb thermally GC/HSD 
Water Purge and trap GC/ITD 0.1 µg/L No data Eichelberger 

et al. 1990 
Water Solvent extraction (isooctane) GC/ECD 1 µg/Lb No data ASTM 1988 
Soil Purge and trap GC/HSD 1.2 µg/kg 43–143 EPA 1986b 
Wastes, non- Purge and trap GC/HSD 150 µg/kg 43–143 EPA 1986b 
water miscible 
Solid waste Purge and trap GC/MS 5 µg/kg 70–140 EPA 1986a 
Grain Extract with acetone/water (5/1); GC/ECD NR No data AOAC 1984 

dry; inject acetone solution 

aPersistent negative bias in recovery suggests Tenax® sorption is not suitable for collection of carbon tetrachloride. 
bApproximate detection limit 

CLMD = chemiluminescence detection; ECD = electron capture detector; FID = flame ionization detector; GC = gas 
chromatography; HSD = halogen-selective detector; ITD = ion trap detector; MS = mass spectrometry; NR = not 
reported 
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information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a 

program of research designed to determine the health effects (and techniques for developing methods to 

determine such health effects) of carbon tetrachloride.  

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. Covalent adducts between 

reactive carbon tetrachloride metabolites (e.g., the trichloromethyl radical) and cellular proteins, lipids 

and nucleic acids are known to occur, but at present these can only be measured using radiolabeled carbon 

tetrachloride. Development of immunological or other methods to detect such adducts in humans 

exposed to carbon tetrachloride could be of value in estimating past exposures to carbon tetrachloride.  

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media.    Analytical methods are available for measuring carbon tetrachloride in air, water, soil, and solid 

waste, and most of these methods have good sensitivity and specificity (APHA 1992a, 1992b; ASTM 

1987; Bellar 1989; Eichelberger and Buddle 1989a, 1989b; EPA 1982a, 1982b; Ho 1989).  However, the 

estimated 10-6 cancer risk levels for carbon tetrachloride are quite low (0.01 ppb in air and 0.3 ppb in 

drinking water) (IRIS 2003), so improvements in sensitivity would be valuable. It is desirable to have 

means to measure organohalides such as carbon tetrachloride in situ in water and other environmental 

media. One approach to doing this has been demonstrated by the in situ analysis of chloroform-

contaminated well water using remote fiber fluorimetry (RFF) and fiber optic chemical sensors (FOCS) 

(Milanovich 1986).  With this approach, fluorescence of basic pyridine in the presence of an organohalide 

(Fujiwara reaction) is measured from a chemical sensor immersed in the water at the end of an optical 

fiber. Carbon tetrachloride undergoes a Fujiwara reaction, so its determination might be amenable to this 

approach. Another in situ method for field monitoring of carbon tetrachloride has been described by 

Kirtland et al. (2003); this method uses isotopic labeling and detection of metabolites by gas 

chromatography.   
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7.3.2 Ongoing Studies 

The EPA is funding on-going research to develop a "Master Analytical Scheme" for organic compounds 

in water (Michael et al. 1988), which includes carbon tetrachloride as an analyte.  The overall goal is to 

detect organic compounds at 0.1 µg/L in drinking water, 1 µg/L in surface water, and 10 µg/L in effluent 

waters. Analytes are to include numerous semivolatile compounds and some compounds that are only 

"semisoluble" in water, as well as volatile compounds.  A comprehensive review of the literature leading 

up to these efforts has been published (Pellizzari et al. 1985a).   

Improvements in analytical technology to identify groundwater contaminants revealed that soil gas 

analysis may enhance the effectiveness of traditional sampling and analysis (Kerfoot 1990). Carbon 

tetrachloride has properties that make it amenable to detection by soil gas analysis. 

Researchers have coupled two GC capillary columns with different lengths and polarities in series to 

optimize separation of complex mixtures of volatile organics in air samples (Clair et al. 1991).  Atomic 

emission detectors (AEDs) and mass selective detectors (MSDs) are also being used to enhance 

selectivity and sensitivity for air analyses (Yamashita et al. 1992). 

The Environmental Health Laboratory Sciences Division of the Center for Environmental Health and 

Injury Control, Centers for Disease Control, is developing methods for the analysis of carbon 

tetrachloride and other volatile organic compounds in blood (Ashley et al. 1992).  These methods use 

purge and trap methodology, high resolution gas chromatography, and magnetic mass spectrometry which 

gives detection limits in the low parts per trillion (ppt) range.  Also useful is the ability to test for carbon 

tetrachloride and other volatile organic compounds in expired air (Wallace 1996).  





207 CARBON TETRACHLORIDE 

8. REGULATIONS AND ADVISORIES 


Because of its potential to cause adverse health effects in exposed people, a number of regulations and 

advisory values have been established for carbon tetrachloride by various international, national, and state 

agencies. These values are summarized in Table 8-1. 

ATSDR has calculated an intermediate inhalation MRL of 0.03 ppm based on a NOAEL of 5 ppm and a 

LOAEL of 10 ppm for liver effects in an intermediate-duration (187–192 days) inhalation study in rats 

exposed 7 hours/day, 5 days/week (Adams et al. 1952).  The intermediate-duration MRL is expected to be 

protective also for acute-duration inhalation exposures.  ATSDR has also calculated a chronic inhalation 

MRL of 0.03 ppm based on a NOAEL of 5 ppm and a LOAEL of 25 ppm for hepatic effects (increased 

liver weight, serum enzymes, and liver histopathology) in rats exposed for 6 hours/day, 5 days/week for 

2 years (Japan Bioassay Research Center 1998; Nagano et al. 1998).  ATSDR has also calculated an acute 

oral MRL of 0.02 mg/kg/day based on a LOAEL of 5 mg/kg/day over 10 days for minimal liver effects 

(vacuolar degeneration) in the rat (Smialowicz et al. 1991), and an intermediate oral MRL of 

0.007 mg/kg/day based on a NOAEL of 1 mg/kg/day (0.71 mg/kg/day adjusted for intermittent exposure) 

and a LOAEL of 10 mg/kg/day for liver effects in rats dosed 5 days/week over 12 weeks (Bruckner et al. 

1986).  More information about the derivation of MRLs is found in Section 2.3 and Appendix A. 

EPA has calculated a chronic oral reference dose (RfD) of 7x10-4 mg/kg/day for carbon tetrachloride 

based on a NOAEL of 1 mg/kg/day (converted to 0.71 mg/kg/day based on intermittent exposure) for rats 

in a 12-week study (Bruckner et al. 1986; IRIS 2003).  The critical effect was liver toxicity.  A subchronic 

oral RfD of 7x10-3 mg/kg/day was also calculated based on the same NOAEL used for the chronic RfD 

(EPA 1989b).  It should be noted that EPA is currently developing new assessments for carbon 

tetrachloride that have not yet been released for public review.   
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Table 8-1. Regulations and Guidelines Applicable to Carbon Tetrachloride 

Agency Description Information Reference 
INTERNATIONAL 
Guidelines: 

IARC 
WHO 

Carcinogenicity classification 
Guideline value or tolerable 

Group 2Ba

6.1 µg/m3
 IARC 1999 

 WHO 2000 
concentration for air quality 
Guideline for drinking water 2 µg/L WHO 1993 

NATIONAL 
Regulations and 
Guidelines: 
a. Air 

ACGIH TLV (8-hour TWA)b 5 ppm ACGIH 2003 
TLV-STEL (15-minute TWA) 10 ppm 

EPA Hazardous air pollutant pursuant Yes EPA 2003e 
to Section 112 of the Clean Air Act 40 CFR 61.01 
Protection of stratospheric ozone; Group IV EPA 2003h 
listed as a ozone-depleting 40 CFR 82, 
chemical Subpart A, Appendix F 

NIOSH STEL (60-minute TWA) 2 ppm NIOSH 2003 
IDLH 200 ppm 

OSHA 
Potential occupational carcinogen 
PEL (8-hour TWA) for general 

Yes 
2 mg/m3 OSHA 2003c 

industry 29 CFR 1910.1000, 
Table Z-1 

 PEL (8-hour TWA) 10 ppm OSHA 2003e 
Acceptable ceiling concentration 25 ppm 29 CFR 1910.1000, 
Acceptable maximum peak above 200 ppm (maximum Table Z-2 
the acceptable ceiling concentra duration for 
tion for an 8-hour shift 5 minutes in any 

4 hours) 
PEL (8-hour TWA) for construction 
industryc 

10 ppm OSHA 2003f 
29 CFR 1926.55, 
Appendix A 

PEL (8-hour TWA) for shipyard 
industryc 

10 ppm OSHA 2003a 
29 CFR 1915.1000 

USC Hazardous air pollutant Yes USC 2003 
42 USC 7412 

b. Water 
EPA Drinking water health advisories EPA 2002 

 1-day (10-kg child) 4 mg/L 
10-day (10-kg child)

 DWELd 

10-4 Cancer riske 

0.2 mg/L 
0.03 mg/L 
0.03 mg/L 

Effluent guidelines and standards; Yes EPA 2003c 
toxic pollutants pursuant to 40 CFR 401.15 
Section 307(a)(1) of the Clean 
Water Act 
Hazardous substance in Yes EPA 2003n 
accordance with Section 311 of 40 CFR 116.4 
the Clean Water Act 
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Table 8-1. Regulations and Guidelines Applicable to Carbon Tetrachloride 

Agency Description Information Reference 
National primary drinking water 
regulations—MCL 

5 µg/L EPA 2003g 
40 CFR 141.61 

NATIONAL (cont.) 
EPA National primary drinking water 

regulations—MCLG 
Pollutant of initial focus in the 

0 µg/L 

Yes 

EPA 2003f 
40 CFR 141.50 
EPA 2003o 

Great Lakes Water Quality 
Initiative 

40 CFR 132, 
Table 6 

Reportable quantity of hazardous 
substances designated pursuant 
to Section 311 of the Clean Water 

10 pounds EPA 2003i 
40 CFR 117.3 

Act 
c. Food 

FDA Bottled drinking water allowable 
level 

5 µg/L FDA 2003a 
21 CFR 165.110 

Indirect food additive; adhesives Yes FDA 2003b 

Indirect food additive; paper and 
paperboard components; anti-
offset substances 

Yes 
21 CFR 175.105(c)(5) 
FDA 2003c 
21 CFR 176.130(c) 

Indirect food additive; components 
of paper and paperboard in 
contact with dry food 
Labeling; warning statements for 
prescription and restricted device 
products containing or manu
factured with chlorofluorocarbons 

Yes 

Yes 

FDA 2003d 
21 CFR 176.180(b)(2) 

FDA 2003f 
21 CFR 801.433 

or other ozone-depleting 
substances 
Labeling; medical devices; 
warning statements for devices 
containing or manufactured with 
chlorofluorocarbons and other 

Yes FDA 2003e 
21 CFR 801.63 

class I ozone-depleting 
substances 

d. Other 
 ACGIH 

EPA 
Carcinogenicity classification 
Carcinogenicity classification 
RfC 

A2f

B2g

No data 

 ACGIH 2003
 IRIS 2003 

IRIS 2003 
 RfD (chronic oral) 

Community right-to-know; release 
reporting; effective date of 
reporting 
Criteria for municipal solid waste 
landfills; hazardous constituent 

7x10-4 mg/kg/day 
01/01/87 

Yes 

IRIS 2003 
EPA 2003m 
40 CFR 372.65 

EPA 2003a 
40 CFR 258, 

Identification and listing of 
hazardous waste; regulatory level 
of the maximum concentration of 

0.5 mg/L 
Appendix II 
EPA 2003d 
40 CFR 261.24 

contaminants for the toxicity 
characteristic 
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Table 8-1. Regulations and Guidelines Applicable to Carbon Tetrachloride 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA Reportable quantity; designated 10 pounds EPA 2003b 
as a hazardous substances 40 CFR 302.4 
pursuant to Section 307 and 311 
of the Clean Water Act, 
Section 112 of the Clean Air Act, 
and Section 3001 of RCRA 
Standards for owners and Suggested EPA 2003l 
operators of hazardous waste Method PQL 40 CFR 264, 
TSD facilities; groundwater 8010 1 µg/L Appendix IX 
monitoring 
Standards for owners and 

8240 5 µg/L 
5x10-3 mg/kg EPA 2003k 

operators of hazardous waste 40 CFR 266, 
TSD facilities; health-based limits Appendix VII 
for exclusion of waste-derived 
residues; residue concentration 
limit 
Standards for the management 6.7x10-1 µg/m3 EPA 2003j 
of specific hazardous waste and 40 CFR 266, 
hazardous waste management Appendix V 
facilities; risk specific dose 

NTP Carcinogenicity classification Reasonably NTP 2002 
anticipated to be a 
human carcinogen 

STATE 
a. Air No data 
b. Water 

Arizona Drinking water guideline 0.27 µg/L 
California Drinking water standard 0.5 µg/L HSDB 2003 
Connecticut Drinking water guideline 5 µg/L HSDB 2003 
Florida Drinking water standard 3 µg/L HSDB 2003 
Maine Drinking water guideline 2.7 µg/L HSDB 2003 
Minnesota Drinking water guideline 3 µg/L HSDB 2003 
New Jersey Drinking water standard 2 µg/L HSDB 2003 

c. Food No data 
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8. REGULATIONS AND ADVISORIES 

Table 8-1. Regulations and Guidelines Applicable to Carbon Tetrachloride 

Agency Description Information Reference 
STATE (cont.) 
d. Other No data 

aGroup 2B: possibly carcinogenic to humans 
bSkin notation:  refers to the potential significant contribution to the overall exposure by the cutaneous route, including 
mucous membranes and the eyes, either by contact with vapors or, of probable greater significance, by direct skin 
contact with the substance. 
c

d
Skin designation 
DWEL:  a lifetime exposure concentration protection of adverse, non-cancer health effects, that assumes all of the 

exposure to a contaminant is from drinking water. 
e10-2 Cancer risk:  the concentration of a chemical in drinking water corresponding to an excess estimated lifetime 
cancer risk of 1 in 10,000. 
fA2:  suspected human carcinogen 
gB2: probable human carcinogen 

ACGIH = American Conference of Governmental Industrial Hygienists; CFR = Code of Federal Regulations; 
DWEL = drinking water equivalent level; EPA = Environmental Protection Agency; FDA = Food and Drug 
Administration; HSDB = Hazardous Substances Data Bank; IARC = International Agency for Research on Cancer; 
IDLH = immediately dangerous to life or health; IRIS = Integrated Risk Information System; MCL = maximum 
contaminant level; MCLG = maximum contaminant level goal; NIOSH = National Institute for Occupational Safety and 
Health; NTP = National Toxicology Program; PQL = practical quantitation limit; OSHA = Occupational Safety and 
Health Administration; PEL = permissible exposure limit; RCRA = Resource Conservation and Recovery Act; 
RfC = inhalation reference concentration; RfD = oral reference dose; STEL = short-term exposure limit; 
TLV = threshold limit values; TSD = treatment, storage, and disposal; TWA = time-weighted average; USC = United 
States Codes; WHO = World Health Organization 
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Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD10)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible.    

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study—A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 
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Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 

Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.   

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 
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Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 

Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(Lo) (LCLo)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(Lo) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a 
chemical is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 
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Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 

Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA. Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor). An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points. These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 
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Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows.  These models require a 
variety of physiological information:  tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time.  

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and 
µg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime.  
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical.  The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 
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Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken. Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic that is associated with an increased occurrence of disease or other health-related 
event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors. A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually. No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods. The daily Threshold Limit Value-Time Weighted Average (TLV-TWA) may 
not be exceeded. 

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect.  
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 

Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 
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Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any chemical that is foreign to the biological system. 
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APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects.  These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects.  MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure. MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 
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MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention. Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking.  In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive.  Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology, expert panel peer reviews, and agency-wide MRL Workgroup reviews, with 

participation from other federal agencies and comments from the public.  They are subject to change as 

new information becomes available concomitant with updating the toxicological profiles.  Thus, MRLs in 

the most recent toxicological profiles supersede previously published levels.  For additional information 

regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease 

Registry, 1600 Clifton Road NE, Mailstop F-32, Atlanta, Georgia 30333. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Carbon Tetrachloride 
CAS Number: 56-23-5 
Date: June 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [X] Inhalation [ ] Oral 
Duration: [ ] Acute   [X] Intermediate  [ ] Chronic 
Graph Key: 30 
Species: Rat 

Minimal Risk Level: 0.03 [ ] mg/kg/day  [X] ppm 

Reference: Adams EM, Spencer HC, Rowe VK, et al.  1952.  Vapor toxicity of carbon tetrachloride 
determined by experiments on laboratory animals.  Arch Ind Hyg Occup Med 6:50-66. 

Experimental design: Groups of Wistar rats (15–25 males, 15–23 females) were exposed to vapors of 
carbon tetrachloride (5, 10, 25, 50, 100, 200, and 400 ppm) for 173–205 days (5 days/week, 7 hours/day). 
Two kinds of control groups were used:  ‘unexposed controls’ that were maintained in the animal quarters 
and ‘air-exposed controls’ that were exposed to room air while in exposure chambers at equivalent 
frequency and duration as compound-exposed animals.  Animals were weighed twice weekly and 
observed frequently for clinical signs.  Food consumption was monitored.  Hematological (prothrombin 
time) and biochemical indices (blood urea nitrogen, phospholipid, esterified cholesterol) were monitored 
in selected groups. Gross necropsy was performed and organ weights were determined for lung, heart 
liver, kidneys, spleen, and testes.  Histopathological examination was performed on these and 11 other 
organs. 

Effects noted in study and corresponding doses: No effects were observed in the 5 ppm exposure groups 
for any of the parameters measured.  In rats, fatty degeneration of the liver and increased liver weight 
were evident at concentrations of ≥10 ppm and hepatic cirrhosis and pathology of the renal tubular 
epithelium (moderate cloudy swelling) occurred at ≥50 ppm.  At ≥200 ppm, hepatic necrosis, increased 
kidney weight, degeneration of the renal tubular epithelium, and some testicular atrophy were observed.  
The severity of effects increased with exposure level.   

Dose and end point used for MRL derivation: The MRL was based on a NOAEL of 5 ppm and a LOAEL 
of 10 ppm for fatty degeneration and increased liver weights.  

[X] NOAEL  [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ]  10 for use of a LOAEL 
[X] 3 for extrapolation from animals to humans using a dosimetric adjustment 
[X]  10 for human variability 

Was a conversion used from ppm in food or water to a mg/body weight dose?  Not applicable. 
If so, explain: 
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If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
A human equivalent concentration was calculated from the rat NOAEL of 5 ppm in the principal study for 
an extrarespiratory effect of a type 3 gas, as recommended by EPA (1994) guidance for derivation of 
inhalation reference concentrations.  A human equivalent concentration of the identified rat NOAEL of 
5 ppm (NOAELHEC) was calculated by multiplying the duration-adjusted rat NOAEL (NOAELADJ) by the 
ratio of the rat and human blood:gas partition coefficients.  The NOAELADJ is 0.9 ppm (5 ppm x 
7 hours/24 hours x 5 days/7 days) and the blood:gas partition coefficient ratio is 1.7 (4.52/2.64).  Because 
the ratio was greater than 1, a default value of 1 was applied, resulting in a NOAELHEC of 0.9 ppm.  An 
uncertainty factor of 30 was applied to the NOAELHEC of 0.9 ppm (3 for extrapolation from animals to 
humans using a dosimetric adjustment and 10 for human variability).   

Other additional studies or pertinent information which lend support to this MRL: Limited human data 
are available for intermediate-duration inhalation exposure to carbon tetrachloride. Effects in humans 
exposed intermittently included gastrointestinal effects (nausea, dyspepsia) at 20–50 ppm, central nervous 
system depression at 40 ppm, and narcosis at 80 ppm (Elkins 1942; Heiman and Ford 1941; Kazantzis 
and Bomford 1960).  An occupational study of hepatic effects in workers exposed from <1 to >5 years 
indicated that serum levels of hepatic enzymes were significantly elevated only at exposures >1 ppm, but 
the actual durations of exposure were not reported (Tomenson et al. 1995).  Interpretation of this study is 
also limited by the finding that the group estimated to have had the highest exposure did not show the 
highest levels of serum enzymes.  The liver appears to be the most sensitive target in animals exposed for 
intermediate durations.  Fatty degeneration, sometimes with increased liver weight, was observed at a 
LOAEL of 10 ppm in rats, mice, and guinea pigs treated 6–8 hours/day, 5 days/week for 12–36 weeks or 
continuously for 90 days (Adams et al. 1952; DOE 1999; Japan Bioassay Research Center 1998; 
Prendergast et al. 1967), and 50–100 ppm in monkeys (Adams et al. 1952; Smyth et al. 1936).  Increased 
serum enzymes and necrosis were observed in mice at 20 ppm and hamsters at 100 ppm (DOE 1999).  
Exposure to higher concentrations resulted in cirrhosis in guinea pigs (25 ppm) and rats (50–270 ppm) 
(Adams et al. 1952; Japan Bioassay Research Center 1998; Prendergast et al. 1967; Smyth et al. 1936).  
In studies examining other organs, renal effects (tubular degeneration) were noted at 50–200 ppm in rats 
(Adams et al. 1952; Smyth et al. 1936), at 90 ppm in rats and mice (Japan Bioassay Research Center 
1998), and at 200 ppm in monkeys (Smyth et al. 1936).  Injury to sciatic and optical nerves was noted in 
rats at 50 ppm (Smyth et al. 1936); hematological effects (decreased erythrocytes, hemoglobin, 
hematocrit; hemolysis, increased spleen weight) were observed in rats and mice exposed to 90–270 ppm 
(Japan Bioassay Research Center 1998; Smyth et al. 1936), and reproductive toxicity (decreased litters, 
testicular atrophy) was noted at 200 ppm (Adams et al. 1952; Smyth et al. 1936).  Hepatotoxicity is 
identified as the critical effect of intermediate-duration inhalation exposure to carbon tetrachloride since it 
was noted at the lowest LOAELs. The study by Adams et al. (1952) is selected as the principal study 
because it identified the lowest LOAEL and the highest NOAEL for the critical effect.   

Agency Contacts (Chemical Managers):  Obaid Faroon, Ph.D.; Jessilynn Taylor, M.S.; Nickolette Roney, 
M.P.H. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Carbon Tetrachloride 
CAS Number: 56-23-5 
Date: June 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [X] Inhalation [ ] Oral 
Duration: [ ] Acute   [ ] Intermediate   [X] Chronic 
Graph Key: 50 
Species: Rat 

Minimal Risk Level: 0.03 [ ] mg/kg/day  [X] ppm 

References: Japan Bioassay Research Center.  1998. Subchronic inhalation toxicity and carcinogenicity 
studies of carbon tetrachloride in F344 rats and BDF1 mice (Studies Nos. 0020, 0021, 0043, and 0044).  
Kanagawa, Japan Industrial Safety and Health Association, Japan Bioassay Research Center 
(Unpublished report to the Ministry of Labor).  Hirasawa Hadano Kanagawa, 257 Japan.  (In 2001, T. 
Matsushima provided to SRC organ weight data tables for these studies.) 

(Methods published in:  Nagano K, Nishizawa T, Yamamoto S, et al.  1998.  Inhalation carcinogenesis 
studies of six halogenated hydrocarbons in rats and mice.  In: Chiyotani K, Hosoda Y, Aizawa Y, eds.  
Advances in the prevention of occupational respiratory diseases.  Elsevier Science B.V., 741-746.) 

Experimental design: Groups of 50 male and 50 female F344/DuCrj rats were exposed (whole-body) to 
vapors of carbon tetrachloride (>99% pure) at concentrations of 0, 5, 25, or 125 ppm, 6 hours/day, 
5 days/week for 104 weeks.  Rats were observed daily for clinical signs, behavioral changes, and 
mortality.  Body weights were measured weekly for the first 13 weeks and every 4 weeks thereafter.  
Urinalysis was performed at the end of the dosing period.  Hematology and serum chemistry were 
measured in blood samples taken during final euthanization after overnight fasting.  All organs and tissues 
were examined for gross lesions, weighed, and fixed for histopathological analysis. 

Effects noted in study and corresponding concentrations: Male rats at ≥5 ppm exhibited enhanced 
hemosiderin deposition in the spleen; this was apparently a residual effect of anemia that was observed in 
the 13-week study, but not at 104 weeks.  No significant hepatic effects were noted at 5 ppm.  At 
≥25 ppm, significant hepatic effects were observed:  statistically significant elevations relative liver 
weights, serum parameters (total bilirubin, ALT, AST), and increased incidences of liver histopathology 
(fatty change, granulation, foci in the liver, deposition of ceroid, and serious effects such as fibrosis and 
cirrhosis). Chronic nephropathy was observed in all groups, including controls, but at greater severity at 
25 ppm and above; significant proteinuria (dipstick values of 3+ or 4+) was also observed in all groups 
(in >90% of controls), but at higher severity in males treated at 5 ppm and females at 25 ppm and above. 
At 25 ppm, females had significant hematological changes (decreased hemoglobin, hematocrit, and 
lymphocyte counts and increased leukocyte and segmented neutrophil counts).  At 125 ppm, body 
weights were decreased and there was increased mortality from chronic nephrosis and tumors.   

The tumors observed at 125 ppm included:  hepatocellular adenomas in 21/50 males and 40/50 females 
and hepatocellular carcinomas in 32/50 males and 15/50 females.  At 25 ppm, females had significant 
hematological changes (decreased hemoglobin, hematocrit, and lymphocyte counts and increased 
leukocyte and segmented neutrophil counts).   
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Dose and end point used for MRL derivation: A NOAEL of 5 ppm LOAEL of 25 ppm for increased liver 
weight, serum enzymes, and liver histopathology (fatty change, granulation, foci, deposition of ceroid, 
fibrosis, and cirrhosis).   

[X] NOAEL  [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ]  10 for use of a LOAEL 
[X]   3 for extrapolation from animals to humans using dosimetric adjustment 
[X]  10 for human variability 

Was a conversion used from ppm in food or water to a mg/body weight dose?  Not applicable. 
If so, explain: 

If an inhalation study in animals, list the conversion factors used in determining human equivalent 
concentration:  A human equivalent concentration was calculated from the rat NOAEL of 5 ppm in the 
principal study for an extrarespiratory effect of a type 3 gas, as recommended by EPA (1994) guidance 
for derivation of inhalation reference concentrations.  A human equivalent concentration of the identified 
rat NOAEL of 5 ppm for hepatic effects (Japan Bioassay Research Center 1998) was calculated by 
multiplying the duration-adjusted rat NOAEL (NOAELADJ) by the ratio of the rat and human blood:gas 
partition coefficients.  The NOAELADJ is 0.9 ppm (5 ppm x 6 hours/24 hours x 5 days/7 days) and the 
blood:gas partition coefficient ratio is 1.7 (4.52/2.64).  Because the ratio was greater than 1, a default 
value of 1 was applied, resulting in a NOAELHEC of 0.9 ppm.  An uncertainty factor of 30 was applied to 
the NOAELHEC to derive the chronic-duration inhalation MRL. 

Other additional studies or pertinent information which lend support to this MRL: The chronic-duration 
inhalation database for carbon tetrachloride includes the occupational study by Tomenson et al. (1995) 
and 2-year bioassays in rats and mice (Japan Bioassay Research Center 1998; Nagano et al. 1998).  As 
discussed under the intermediate-duration MRL, elevated hepatic serum enzymes were observed in 
workers who had been exposed to concentrations >1 ppm for <1–>5 years, but the actual durations of 
exposure were not reported (Tomenson et al. 1995).  Interpretation of this study is also limited by the 
finding that the group estimated to have had the highest exposure did not show the highest levels of serum 
enzymes.  In the 2-year bioassay in BDF1 mice, groups of 50/sex were treated at 0, 5, 25, or 125 ppm, 
6 hours/day, 5 days/week for 104 weeks (Japan Bioassay Research Center 1998; Nagano et al. 1998).  No 
effects were noted at the lowest concentration of 5 ppm.  In mice, 25 ppm was a LOAEL for most 
observed effects: hematological (increased extramedullary hematopoeisis in spleen associated with 
recovery from anemia), body weight (reduced body weight gain), renal (protein casts and altered clinical 
chemistry values), and hepatic (increased liver weights, degeneration, cyst, deposition of ceroid, increased 
serum enzymes, cholesterol, bilirubin in both sexes, and thrombus and necrosis in females).  Mice at 
≥25 ppm also exhibited significant increases in the incidences of hepatic adenoma and carcinoma with 
increased mortality.   

One effect in rat was noted at 5 ppm, but was not selected as the critical effect of chronic-duration 
inhalation exposure.  The severity of proteinuria, but not renal histopathology, was elevated in male and 
female rats treated at 5 ppm compared to controls; however, as the severity in control rats was so high 
(>90% with scores of 3+ or 4+), this lesion was not used as the basis for MRL derivation.  Hepatotoxicity 
is selected as the critical effect of chronic-duration inhalation exposure because the severity of effects at 
25 ppm was greater compared to other end points.  Furthermore, selection of hepatotoxicity as the critical 
effect of chronic exposure is consistent with the database for intermediate-duration inhalation exposure. 
The 2-year bioassay in rats is selected as the principal study for the chronic-duration inhalation MRL 
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since it provided a NOAEL of 5 ppm and a LOAEL of 25 ppm for hepatic effects without increased 
mortality. 

Agency Contacts (Chemical Managers):  Obaid Faroon, Ph.D.; Jessilynn Taylor, M.S.; Nickolette Roney, 
M.P.H. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Carbon Tetrachloride 
CAS Number: 56-23-5 
Date: June 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [ ] Inhalation [X] Oral 
Duration: [X] Acute   [ ] Intermediate  [ ] Chronic 
Graph Key: 23 
Species: Rat 

Minimal Risk Level: 0.02 [X] mg/kg/day [ ] ppm 

Reference: Smialowicz RJ, Simmons JE, Luebke RW, et al.  1991.  Immunotoxicologic assessment of 
subacute exposure of rats to carbon tetrachloride with comparison to hepatotoxicity and nephrotoxicity. 
Fundam Appl Toxicol 17:186-196. 

Experimental design: Groups of 5–6 male Fischer 344 rats were dosed by gavage for 10 consecutive days 
with 0, 5, 10, 20, or 40 mg/kg/day of carbon tetrachloride in corn oil.  Serum chemistry profiles, hepatic 
cytochrome P-450 content and activity, and kidney and liver organ weight and histopathology were 
assessed.  Various immune function parameters were also examined in these animals, and in another set 
exposed to 40, 80, or 160 mg/kg/day.  Immune function end points included relative spleen and thymus 
weights; natural killer cell activity; lymphoproliferative response to concanavalin A, phytohemagglutinin, 
pokeweed mitogen, and Salmonella typhimurium mitogen; allogeneic cytotoxic T lymphocyte reaction; 
and primary antibody response to sheep red blood cells. 

Effects noted in study and corresponding doses: No hepatic effects were observed in controls.  Minimal 
centrilobular vacuolar degeneration was detectable in all rats at 5 mg/kg/day; degeneration was mild in all 
rats treated at 10 and 20 mg/kg/day and 5/6 rats at 40 mg/kg/day and moderate in one high-dose rat.  
Hepatocellular necrosis was minimal in 3/6 rats at 10 mg/kg/day, 5/6 rats at 20 mg/kg/day, and 5/6 rats at 
40 mg/kg/day, and mild in one high-dose rat.  Serum ALT and AST levels were significantly elevated 
1.5–5.4-fold compared to controls at doses of 20 and 40 mg/kg/day.  Mean relative liver weight was 
significantly (p<0.01) increased by 17.7% compared to controls at 40 mg/kg/day.  Treatment with carbon 
tetrachloride had no significant effect compared to controls on body weight, absolute liver weight, or 
renal parameters at doses from 5 to 40 mg/kg/day.  However, when three separate 40 mg/kg/day groups 
and their controls were analyzed by two-way ANOVA with carbon tetrachloride and replicates as factors, 
a significant decrease in weight gain was detected.  Body weight gain was significantly reduced at 
80 mg/kg/day and higher, as determined by comparison of the slopes of weight gains over the dosing 
period. There were no adverse effects on immunological parameters at doses up to 160 mg/kg/day. 

Dose and end point used for MRL derivation: LOAEL of 5 mg/kg/day for minimal vacuolar degeneration 
of centrilobular hepatocytes. 

[ ] NOAEL   [X] LOAEL 

Uncertainty Factors used in MRL derivation: 

[X]    3 for use of a minimal LOAEL 
[X]   10 for extrapolation from animals to humans 
[X]  10 for human variability 
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Was a conversion used from ppm in food or water to a mg/body weight dose?  Not applicable. 
If so, explain: 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Other additional studies or pertinent information which lend support to this MRL: In humans, hepatic 
toxicity (fatty accumulation, necrosis) has been noted following ingestion of single doses of carbon 
tetrachloride in the range of 80–180 mg/kg (Docherty and Burgess 1922; Docherty and Nicholls 1923; 
Phelps and Hu 1924). Single doses of 70 mg/kg had no overt neurological effect, but various 
neurological symptoms indicative of depression of the central nervous system have been reported at doses 
between 114 and 10,800 mg/kg (Cohen 1957; Hall 1921; Leach 1922; Stevens and Forster 1953; Stewart 
et al. 1963). Gastrointestinal effects in humans following ingestion of single doses include nausea at 
≥100 mg/kg (Ruprah et al. 1985) and vomiting and abdominal pain at 680–910 mg/kg (Hardin 1954; New 
et al. 1962; Smetana 1939; Umiker and Pearce 1953; von Oettingen 1964).  In laboratory animals, mild 
hepatic effects (cytoplasmic vacuolization and increased serum enzymes) have been reported to occur 
following treatment with single doses of 40-80 mg/kg or repeated dosing at 5–20 mg/kg/day (Bruckner et 
al. 1986; Kim et al. 1990b; Korsrud et al. 1972; Smialowicz et al. 1991).  No renal effects or positive 
results in special tests for immunological function were observed in rats following repeated 
administration at 5–160 mg/kg/day (Bruckner et al. 1986; Smialowicz et al. 1991).  Renal effects (fatty 
degeneration, swelling of convoluted tubules) were observed in dogs given single doses of 3,200– 
6,400 mg/kg (Chandler and Chopra 1926; Gardner et al. 1925).  Hepatic toxicity is selected as the critical 
effect of acute-duration oral exposure to carbon tetrachloride because effects were observed at the lowest 
effect level. The study of Smialowicz et al. (1991) is selected as the principal study because it provides 
the lowest LOAEL of 5 mg/kg/day for the critical effect. 

Agency Contacts (Chemical Managers):  Obaid Faroon, Ph.D.; Jessilynn Taylor, M.S.; Nickolette Roney, 
M.P.H. 



A-10 CARBON TETRACHLORIDE 

APPENDIX A 

MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Carbon Tetrachloride 
CAS Number: 56-23-5 
Date: June 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [ ] Inhalation [X] Oral 
Duration: [ ] Acute   [X] Intermediate  [ ] Chronic 
Graph Key: 46 
Species: Rat 

Minimal Risk Level: 0.007 [X] mg/kg/day  [  ] ppm 

Reference: Bruckner JV, MacKenzi WF, Muralidhara S, et al.  1986.  Oral toxicity of carbon 
tetrachloride: Acute, subacute and subchronic studies in rats.  Fundam Appl Toxicol 6:16–34. 

Experimental design: Male Sprague-Dawley rats (15–16/dose) were administered carbon tetrachloride (0, 
1, 10, or 33 mg/kg) in corn oil by gavage 5 days/week for 12 weeks.  Body weight was monitored twice 
weekly.  Blood samples were collected from five rats per group just before dosing at 2, 4, 6, 8, 10, and 
12 weeks for measurement of serum levels of sorbitol dehydrogenase (SDH), ornithine carbamyl 
transferase (OCT), alanine aminotransferase (ALT), and blood urea nitrogen (BUN).  Each rat served as a 
blood donor twice during the study at 6-week intervals.  At the end of the 12-week period, 7–9 rats per 
group were sacrificed and the remaining were maintained for 13 days without dosing before sacrifice.  
Histopathological examination of the liver and kidneys was performed.  

Effects noted in study and corresponding doses: No adverse effects were noted at 1 mg/kg.  Body weight 
gain was reduced in the 33 mg/kg group by 17% compared to controls after 90 days (p<0.05). At 
10 mg/kg, there were statistically significant increases in serum SDH activity, 2-fold higher than controls, 
observed as early as 10 weeks; a statistically significant 35% elevation in serum ALT was observed in 
this group at 12 weeks.  Elevations in these serum parameters returned to control levels during the 
recovery period.  Mild centrilobular vacuolization was observed in the liver of all animals treated at 
10 mg/kg/day for 12 weeks.  Substantial liver toxicity was observed at 33 mg/kg as early as 2 weeks.  At 
2 weeks, serum ALT was elevated 5-fold, OCT 6-fold, and SDH 38-fold compared to controls; after 
12 weeks, serum ALT was elevated 20-fold, OCT 5-fold, and SDH 45-fold compared to controls.  Only 
the serum ALT elevation (2-fold) was still statistically different from controls after 2 weeks of recovery.  
The liver:body weight ratio was significantly elevated by 46% in the 33 mg/kg group compared to 
controls. Extensive hepatic lesions observed in the 33 mg/kg group after 12 weeks included 
vacuolization, periportal fibrosis, bile duct hyperplasia, hyperplastic nodules, and single-cell necrosis.  
Treatment with carbon tetrachloride had no significant effect on kidney:body weight ratios, a kidney-
related serum parameter (BUN) or on the incidence of kidney lesions. 

Dose and end point used for MRL derivation: The NOAEL of 1 mg/kg for mild centrilobular 
vacuolization and increased serum SDH was used to derive the MRL.  The NOAEL was adjusted for 
intermittent exposure (5 days/7 days), resulting in a duration-adjusted NOAEL of 0.71 mg/kg/day. 

[X] NOAEL  [ ] LOAEL 
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Uncertainty Factors used in MRL derivation: 

[ ] 10 for use of a LOAEL 
[X] 10 for extrapolation from animals to humans 
[X] 10 for human variability 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 
If so, explain: 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Other additional studies or pertinent information which lend support to this MRL: The intermediate-
duration oral toxicity database for carbon tetrachloride is somewhat limited in that no human data are 
available and many studies in laboratory animals restricted analysis to the liver or to the liver and kidney. 
The incidence and severity of hepatic effects were dose-related in animal studies.  Whereas no hepatic 
effects were noted at 1 mg/kg, significantly elevated sorbitol dehydrogenase (SDH) and mild centrilobular 
vacuolization were noted in rats exposed at 10 mg/kg 5 days/week for 12 weeks (Bruckner et al. 1986).  
In mice ingesting carbon tetrachloride 5 days/week for 12–13 weeks, no hepatic effects were detected at a 
dose of 1.2 mg/kg (Condie et al. 1986). Significant elevation in some serum enzymes (ALT, aspartate 
aminotransferase [AST], lactate dehydrogenase [LDH]), and mild necrosis were seen in mice at doses of 
12 mg/kg and higher (Condie et al. 1986; Hayes et al. 1986).  More extensive hepatic lesions (fatty 
accumulation, fibrosis, cirrhosis, necrosis) were noted in rats at doses of 20–25 mg/kg and higher (Allis et 
al. 1990; Bruckner et al. 1986; Koporec et al. 1995).  At 100 mg/kg/day, hepatic effects  in rats also 
included cytomegaly and various types of hyperplasia, which were perhaps adaptive responses to necrosis 
(Koporec et al. 1995).  Effects in other organ systems include reduced body weight gain at doses between 
33 and 100 mg/kg/day (Bruckner et al. 1986; Koporec et al. 1995) and neurological effects (increased 
serotonin synthesis) at 290 mg/kg/day (Bengtsson et al. 1987).  No renal effects were observed in mice 
exposed at 1,200 mg/kg/day despite hepatic effects at lower levels (Hayes et al. 1986).  Increased 
mortality was observed in rats exposed at 25 mg/kg/day (Koporec et al. 1995) and cancer (hepatoma) in 
mice treated with 20 mg/kg/day for 120 days and hamsters treated once weekly with 120 mg/kg/day for 
30 weeks (Eschenbrenner and Miller 1946; Della Porta et al. 1961).  Hepatic effects were selected as the 
critical effects of intermediate-duration oral exposure to carbon tetrachloride because they occurred at the 
lowest effect level.  The rat study of Bruckner was selected as the principal study because it provided the 
lowest LOAEL for the critical effect.   

Agency Contacts (Chemical Managers):  Obaid Faroon, Ph.D.; Jessilynn Taylor, M.S.; Nickolette Roney, 
M.P.H. 
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Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language.  Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern.  The 
topics are written in a question and answer format.  The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2. 	 What effects observed in animals are likely to be of concern to humans? 

3. 	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments.  Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic).  These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.   

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects.  These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario.  The LSE tables and figures should always be used in 
conjunction with the text.  All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1) 	 Route of Exposure. One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure.  Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively). LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2) 	Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure.  
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3) 	Health Effect. The major categories of health effects included in LSE tables and figures are 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer.  
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4) 	 Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5) 	Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6) 	Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies. In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7) 	System. This column further defines the systemic effects.  These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular.  "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8) 	NOAEL. A NOAEL is the highest exposure level at which no harmful effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9) LOAEL. A LOAEL is the lowest dose used in the study that caused a harmful health effect. 
LOAELs have been classified into "Less Serious" and "Serious" effects.  These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL.  The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10) Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11) CEL. A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects.  The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12) Footnotes. Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13)	 Exposure Period. The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14) 	Health Effect. These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15)	 Levels of Exposure. Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16) 	NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17)	 CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18) Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19) Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 
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APPENDIX C.  ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD benchmark dose 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
DOT Department of Transportation 
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DOT/UN/ Department of Transportation/United Nations/ 
NA/IMCO     North America/International Maritime Dangerous Goods Code 

DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank  
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
MCL maximum contaminant level 



C-3 CARBON TETRACHLORIDE 

APPENDIX C 

MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 
OW Office of Water 
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OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic  
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 
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> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
µm micrometer 
µg microgram

* q1 cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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absorbed dose .................................................................................................... 103, 104, 114, 116, 122, 136, 137, 190

adducts..................................................................... 94, 97, 99, 101, 112, 114, 116, 122, 127, 136, 141, 162, 165, 204

adipose tissue.....................................................................................................................................................106, 122 

adrenal gland .........................................................................................................................................................6, 162 

adrenals......................................................................................................................................................................102 

adsorbed.....................................................................................................................................................................200 

adsorption ............................................................................................................................ 14, 184, 195, 196, 200, 202 

aerobic ...............................................................................................................................................127, 186, 187, 195 

alanine aminotransferase (see ALT) ............................................................................................ 16, 20, 25, 50, 91, 153 

ALT (see alanine aminotransferase) .............16, 24, 25, 50, 51, 56, 79, 80, 81, 129, 137, 138, 145, 147, 153, 155, 156 

ambient air ........................................................................................................................... 13, 187, 190, 192, 196, 202 

anaerobic............................................................................................................................................163, 186, 187, 195 

anemia .......................................................................................................................................................15, 22, 47, 78 

aspartate aminotransferase (see AST)........................................................................................................16, 25, 48, 49 

AST (see aspartate aminotransferase)...................................... 16, 24, 25, 50, 51, 79, 81, 137, 138, 146, 147, 153, 155 

bioaccumulation ........................................................................................................................................185, 195, 196 

bioavailability ....................................................................................................................................................121, 196 

bioconcentration factor ..............................................................................................................................................185 

biodegradation ...........................................................................................................................................186, 187, 195 

biomarker............................................................................................. 51, 135, 136, 137, 139, 140, 150, 164, 165, 199

Body Weight Effects .............................................................................................................................................53, 82 

breast milk .....................................................................................................................................................7, 134, 192 

calcium .......................................................................................................................... 16, 47, 124, 126, 135, 155, 157

cancer..........................................................4, 6, 15, 18, 23, 25, 28, 56, 57, 58, 59, 86, 87, 88, 127, 133, 162, 204, 210 

carcinogen........................................................................................................................................6, 18, 207, 209, 210 

carcinogenic......................................................................... 6, 10, 14, 18, 19, 27, 28, 57, 58, 86, 87, 93, 160, 162, 210

carcinogenicity ........................................................................................ 15, 18, 19, 26, 58, 76, 81, 127, 128, 160, 162 

carcinoma ........................................................................................................................................56, 58, 86, 128, 129 

cardiac arrhythmia .......................................................................................................................................................46 

cardiovascular.......................................................................................................................... 28, 45, 46, 59, 76, 77, 90 

Cardiovascular Effects.....................................................................................................................................46, 77, 90 

chromosomal aberrations...........................................................................................................................................101 

cirrhosis .......................15, 16, 19, 20, 21, 22, 23, 25, 26, 48, 50, 51, 56, 78, 79, 81, 84, 127, 138, 142, 143, 148, 154,  


155, 156, 157, 168 

Clara cells ....................................................................................................................................................................77 

clearance ............................................................................................................................ 105, 107, 112, 113, 122, 196 

CYP2E1....................................14, 16, 17, 101, 107, 109, 122, 124, 130, 134, 142, 149, 153, 156, 157, 163, 167, 169

death .................................................................. 5, 15, 27, 28, 45, 46, 55, 57, 59, 76, 79, 82, 87, 90, 91, 123, 125, 128

deoxyribonucleic acid (see DNA)........................................................................................................................95, 102 

dermal effects ............................................................................................................................................53, 87, 90, 91 

DNA (see deoxyribonucleic acid)....................................................... 18, 79, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 


124, 125, 127, 128, 129, 136, 155, 162, 165

endocrine .........................................................................................................................................45, 76, 90, 130, 132 

endocrine effects..........................................................................................................................................................45 

erythema ......................................................................................................................................................................91 

ethanol ................................................................................................................. 95, 134, 140, 141, 142, 144, 151, 163

fetal tissue..........................................................................................................................................................134, 167 

fetus ......................................................................................................................................... 7, 15, 132, 133, 166, 193 

fibrosis ......................15, 16, 19, 23, 25, 48, 49, 51, 78, 79, 81, 123, 124, 129, 130, 138, 142, 147, 154, 155, 157, 168

gastrointestinal effects ............................................................................................................. 14, 20, 21, 47, 77, 78, 90 

general population ............................................................................. 3, 13, 14, 134, 135, 136, 148, 166, 190, 197, 198

genotoxic ................................................................................................................................. 27, 93, 99, 127, 160, 162 
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genotoxicity ................................................................................................................................. 99, 100, 101, 102, 162 

germinal epithelium.....................................................................................................................................................55 

groundwater ............................................................................................. 2, 13, 179, 183, 184, 186, 189, 196, 205, 209 

half-life .............................................................................. 102, 105, 107, 112, 113, 116, 135, 136, 164, 185, 186, 187

hematological effects .................................................................................................................................15, 20, 47, 78 

hematopoietic ..............................................................................................................................................................58 

hepatic effects .......................................15, 16, 19, 20, 21, 23, 24, 48, 49, 51, 52, 76, 79, 80, 81, 87, 91, 155, 162, 206

hydrolysis ..................................................................................................................................................126, 186, 195 

hydroxyl radical.........................................................................................................................................................185 

immune system ..................................................................................................................................................160, 163 

immunological ............................................................................................................... 24, 27, 54, 59, 83, 92, 164, 204

immunological effects ...............................................................................................................................24, 54, 83, 92 


ow .....................................................................................................................................................................173, 185 

Kupffer cells ......................................................................................................................................................123, 156 


50 .......................................................................................................................................................................59, 76 

leukemia ................................................................................................................................................................18, 57 

lipid peroxidation...............................18, 47, 94, 99, 102, 109, 113, 123, 124, 127, 128, 135, 138, 139, 140, 143, 145, 


146, 147, 149, 150, 152, 155, 157, 162

lymphatic ...............................................................................................................................................................18, 57 

lymphoreticular......................................................................................................................................................59, 83 

metabolic effects..........................................................................................................................................................76 

milk............................................................................................................................................................................193 

musculoskeletal effects..........................................................................................................................................76, 78 

necrosis ........................................................... 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 47, 48, 49, 51, 54, 78, 79, 80, 


81, 82, 84, 91, 93, 99, 124, 129, 131, 138, 145, 147, 149, 152, 153, 154, 155, 157 

neonatal .......................................................................................................................................................................84 

neoplastic.............................................................................................................................................................16, 162 

neurobehavioral ...................................................................................................................................86, 131, 134, 163 

neurotransmitter...........................................................................................................................................................84 

nitric oxide.........................................................................................................................................................123, 168 

non-Hodgkin’s lymphoma ...........................................................................................................................................18 

nuclear ......................................................................................................... 99, 101, 123, 125, 127, 129, 139, 149, 157

ocular effects ...................................................................................................................................................45, 90, 92 

odds ratio ...............................................................................................................................................................57, 85 

partition coefficients ..............................................................................................................................22, 23, 110, 116 

pharmacodynamic......................................................................................................................................................115 

pharmacokinetic................................................................................................. 104, 110, 115, 116, 117, 120, 121, 132

phosgene ....................................................................................................................................................102, 109, 152 

phospholipase A2 ......................................................................................................................................................126 

placenta................................................................................................................................................15, 133, 134, 167 

renal effects ............................................................................................. 17, 20, 21, 24, 25, 45, 52, 53, 76, 82, 91, 139

retention.........................................................................................................................................................15, 46, 156 

sequestered ................................................................................................................................................................126 

solubility ....................................................................................................................................................................199 

T4.................................................................................................................................................................................77 

thyroxine....................................................................................................................................................................131 

TNF-alpha..................................................................................................................................................123, 154, 157 

toxicokinetic ........................................................................................................................................................27, 120 

triiodothyronine .........................................................................................................................................................131 

tumor necrosis factor-alpha .......................................................................................................................................123 

tumors .......................................................................................................................................... 6, 18, 58, 86, 127, 162 

vapor pressure......................................................................................................................................13, 184, 192, 196 

volatility.....................................................................................................................................................................196 

volatilization ................................................................................................................................ 13, 100, 184, 192, 195 
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