TOXICOLOGICAL PROFILE FOR COBALT

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
Agency for Toxic Substances and Disease Registry

April 2004
DISCLAIMER

The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry.
A Toxicological Profile for cobalt, Draft for Public Comment was released in July 2001. This edition supersedes any previously released draft or final profile.

Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at:

Agency for Toxic Substances and Disease Registry
Division of Toxicology/Toxicology Information Branch
1600 Clifton Road NE,
Mailstop F-32
Atlanta, Georgia 30333
FOREWORD

This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary.

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance's relevant toxicological properties. Following the public health statement is information concerning levels of significant human exposure and, where known, significant health effects. The adequacy of information to determine a substance's health effects is described in a health effects summary. Data needs that are of significance to protection of public health are identified by ATSDR and EPA.

Each profile includes the following:

(A) The examination, summary, and interpretation of available toxicologic information and epidemiologic evaluations on a hazardous substance to ascertain the levels of significant human exposure for the substance and the associated acute, subacute, and chronic health effects;

(B) A determination of whether adequate information on the health effects of each substance is available or in the process of development to determine levels of exposure that present a significant risk to human health of acute, subacute, and chronic health effects; and

(C) Where appropriate, identification of toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans.

The principal audiences for the toxicological profiles are health professionals at the Federal, State, and local levels; interested private sector organizations and groups; and members of the public.

This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that has been peer-reviewed. Staff of the Centers for Disease Control and Prevention and other Federal scientists have also reviewed the profile. In addition, this profile has been peer-reviewed by a nongovernmental panel and was made available for public review. Final responsibility for the contents and views expressed in this toxicological profile resides with ATSDR.

Julie Louise Gerberding, M.D., M.P.H.
Administrator
Agency for Toxic Substances and Disease Registry
Background Information

The toxicological profiles are developed by ATSDR pursuant to Section 104(i) (3) and (5) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund) for hazardous substances found at Department of Energy (DOE) waste sites. CERCLA directs ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List (NPL) and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. ATSDR and DOE entered into a Memorandum of Understanding on November 4, 1992 which provided that ATSDR would prepare toxicological profiles for hazardous substances based upon ATSDR's or DOE's identification of need. The current ATSDR priority list of hazardous substances at DOE NPL sites was announced in the Federal Register on July 24, 1996 (61 FR 38451).
Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions.

Primary Chapters/Sections of Interest

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure.

Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, and assesses the significance of toxicity data to human health.

Chapter 3: Health Effects: Specific health effects of a given hazardous compound are reported by type of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length of exposure (acute, intermediate, and chronic). In addition, both human and animal studies are reported in this section.

NOTE: Not all health effects reported in this section are necessarily observed in the clinical setting. Please refer to the Public Health Statement to identify general health effects observed following exposure.

Pediatrics: Four new sections have been added to each Toxicological Profile to address child health issues:

Section 1.6 How Can (Chemical X) Affect Children?
Section 1.7 How Can Families Reduce the Risk of Exposure to (Chemical X)?
Section 3.8 Children’s Susceptibility
Section 6.6 Exposures of Children

Other Sections of Interest:

Section 3.9 Biomarkers of Exposure and Effect
Section 3.12 Methods for Reducing Toxic Effects

ATSDR Information Center
Phone: 1-888-42-ATSDR or (404) 498-0110 Fax: (770) 488-4178
E-mail: atsdric@cdc.gov Internet: http://www.atsdr.cdc.gov

The following additional material can be ordered through the ATSDR Information Center:

Case Studies in Environmental Medicine: Taking an Exposure History—The importance of taking an exposure history and how to conduct one are described, and an example of a thorough exposure history is provided. Other case studies of interest include Reproductive and Developmental
Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene (prehospital) and hospital medical management of patients exposed during a hazardous materials incident. Volumes I and II are planning guides to assist first responders and hospital emergency department personnel in planning for incidents that involve hazardous materials. Volume III—Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care professionals treating patients exposed to hazardous materials.

Fact Sheets (ToxFAQs) provide answers to frequently asked questions about toxic substances.

Other Agencies and Organizations

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, injury, and disability related to the interactions between people and their environment outside the workplace. Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015.

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational diseases and injuries, responds to requests for assistance by investigating problems of health and safety in the workplace, recommends standards to the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains professionals in occupational safety and health. Contact: NIOSH, 200 Independence Avenue, SW, Washington, DC 20201 • Phone: 800-356-4674 or NIOSH Technical Information Branch, Robert A. Taft Laboratory, Mailstop C-19, 4676 Columbia Parkway, Cincinnati, OH 45226-1998 • Phone: 800-35-NIOSH.

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for biomedical research on the effects of chemical, physical, and biologic environmental agents on human health and well-being. Contact: NIEHS, PO Box 12233, 104 T.W. Alexander Drive, Research Triangle Park, NC 27709 • Phone: 919-541-3212.

Radiation Emergency Assistance Center/Training Site (REAC/TS) provides support to the U.S. Department of Energy, the World Health Organization, and the International Atomic Energy Agency in the medical management of radiation accidents. A 24-hour emergency response program at the Oak Ridge Institute for Science and Education (ORISE), REAC/TS trains, consults, or assists in the response to all kinds of radiation accidents. Contact: Oak Ridge Institute for Science and Education, REAC/TS, PO Box 117, MS 39, Oak Ridge, TN 37831-0117 • Phone 865-576-3131 • FAX 865-576-9522 • 24-Hour Emergency Phone 865-576-1005 (ask for REAC/TS) • e-mail: cooleyp@orau.gov • website (including emergency medical guidance): http://www.orau.gov/reacts/default.htm

Referrals

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics in the United States to provide expertise in occupational and environmental issues. Contact:
The American College of Occupational and Environmental Medicine (ACOEM) is an association of physicians and other health care providers specializing in the field of occupational and environmental medicine. Contact: ACOEM, 55 West Seegers Road, Arlington Heights, IL 60005 • Phone: 847-818-1800 • FAX: 847-818-9266.
CONTRIBUTORS

CHEMICAL MANAGER(S)/AUTHOR(S):

Obaid M. Faroon, D.V.M., Ph.D.
ATSDR, Division of Toxicology, Atlanta, GA

Henry Abadin, M.S.P.H.
ATSDR, Division of Toxicology, Atlanta, GA

Sam Keith, M.S., C.H.P.
ATSDR, Division of Toxicology, Atlanta, GA

Mark Osier, Ph.D., D.A.B.T.
Syracuse Research Corporation, North Syracuse, NY

Lara L. Chappell, Ph.D.
Syracuse Research Corporation, North Syracuse, NY

Gary Diamond, Ph.D.
Syracuse Research Corporation, North Syracuse, NY

Gloria Sage, Ph.D.
Syracuse Research Corporation, North Syracuse, NY

THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS:

1. Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points.

2. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs.

3. Data Needs Review. The Research Implementation Branch reviews data needs sections to assure consistency across profiles and adherence to instructions in the Guidance.
PEER REVIEW

A peer review panel was assembled for cobalt. The panel consisted of the following members:

1. Dr. Herman Cember, C.H.P., Ph.D., PE., Adjunct Professor, School of Health Sciences, Purdue University, Lafayette, Indiana;

2. Dr. James Hansen, Ph.D., Environmental Contaminant Specialist, U.S. Fish and Wildlife Service, Spokane, WA;

3. Dr. Dominique Lison, M.D., Ph.D., Vice-Chairman of the Doctoral School in Genetics and Immunology, Catholic University of Louvain, Brussels, Belgium, and

4. Dr. Nancy Pedigo, Ph.D., Research Assistant Professor, Department of Pharmacology, University of Kentucky Medical Center, Lexington, KY.

These experts collectively have knowledge of cobalt's physical and chemical properties, toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and quantification of risk to humans. All reviewers were selected in conformity with the conditions for peer review specified in Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as amended.

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer reviewers' comments and determined which comments will be included in the profile. A listing of the peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their exclusion, exists as part of the administrative record for this compound. A list of databases reviewed and a list of unpublished documents cited are also included in the administrative record.

The citation of the peer review panel should not be understood to imply its approval of the profile's final content. The responsibility for the content of this profile lies with the ATSDR.
CONTENTS

DISCLAIMER .. ii
UPDATE STATEMENT .. iii
FOREWORD ... v
QUICK REFERENCE FOR HEALTH CARE PROVIDERS .. vii
CONTRIBUTORS ... xi
PEER REVIEW ... xiii
CONTENTS .. xv
LIST OF FIGURES ... xix
LIST OF TABLES ... xxi

1. PUBLIC HEALTH STATEMENT .. 1
 1.1 WHAT IS COBALT? ... 2
 1.2 WHAT HAPPENS TO COBALT WHEN IT ENTERS THE ENVIRONMENT? ... 4
 1.3 HOW MIGHT I BE EXPOSED TO COBALT? ... 6
 1.4 HOW CAN COBALT ENTER AND LEAVE MY BODY? ... 8
 1.5 HOW CAN COBALT AFFECT MY HEALTH? ... 8
 1.6 HOW CAN COBALT AFFECT CHILDREN? ... 12
 1.7 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO COBALT? .. 12
 1.8 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO COBALT? 13
 1.9 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT HUMAN HEALTH? ... 14
 1.10 WHERE CAN I GET MORE INFORMATION? ... 15

2. RELEVANCE TO PUBLIC HEALTH ... 17
 2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO COBALT IN THE UNITED STATES 17
 2.2 SUMMARY OF HEALTH EFFECTS ... 18
 2.3 MINIMAL RISK LEVELS (MRLs) ... 24

3. HEALTH EFFECTS ... 27
 3.1 INTRODUCTION .. 27
 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE ... 27
 3.2.1 Inhalation Exposure .. 29
 3.2.1.1 Death .. 29
 3.2.1.2 Systemic Effects ... 30
 3.2.1.3 Immunological and Lymphoreticular Effects .. 50
 3.2.1.4 Neurological Effects .. 51
 3.2.1.5 Reproductive Effects ... 51
 3.2.1.6 Developmental Effects .. 52
 3.2.1.7 Cancer ... 52
 3.2.2 Oral Exposure .. 54
 3.2.2.1 Death .. 54
 3.2.2.2 Systemic Effects ... 55
 3.2.2.3 Immunological and Lymphoreticular Effects .. 79
 3.2.2.4 Neurological Effects .. 80
3.2.5 Reproductive Effects
3.2.6 Developmental Effects
3.2.7 Cancer
3.3.3.4 External Exposure
3.3.3.2 Systemic Effects
3.3.3.3 Immunological and Lymphoreticular Effects
3.3.3.4 Neurological Effects
3.3.3.5 Reproductive Effects
3.3.3.6 Developmental Effects
3.3.3.7 Cancer
3.3.3.8 Other Routes of Exposure
3.3.4 Oral Exposure
3.3.5 Death
3.3.6 Systemic Effects
3.3.7 Immunological and Lymphoreticular Effects
3.3.8 Neurological Effects
3.3.9 Reproductive Effects
3.3.10 Developmental Effects
3.3.11 Cancer
3.3.12 Other Routes of Exposure
3.4 Genotoxicity
3.5 Toxicokinetics
3.5.1 Absorption
3.5.2 Distribution
3.5.3 Inhalation Exposure
3.5.4 Oral Exposure
3.5.5 Other Routes of Exposure
LIST OF FIGURES

3-1. Levels of Significant Exposure to Cobalt—Chemical Toxicity—Inhalation 41
3-2. Levels of Significant Exposure to Cobalt—Chemical Toxicity—Oral 71
3-3. Levels of Significant Exposure to Cobalt—Radiation Toxicity—External Radiation 102
3-4. Transfer Parameters for Cobalt Following Inhalation of Cobalt Oxide (CO₃O₄) Particles, Showing the Fractions of the Lung Content, L(t), and Time, t, Cleared Per Day by Each Route 124
3-5. Conceptual Representation of a Physiologically Based Pharmacokinetic (PBPK) Model for a Hypothetical Chemical Substance 139
3-6. Compartment Model to Represent Particle Deposition and Time-Dependent Particle Transport in the Respiratory Tract 141
3-7. Reaction of Gases or Vapors at Various Levels of the Gas-Blood Interface 144
3-8. The Human Respiratory Tract Model: Absorption into Blood 149
3-9. ICRP Biokinetics Model for Cobalt 151
3-10. Relation Between Mean Cobalt Exposure and Mean Blood Concentration of Cobalt in Exposed Workers 165
3-11. Existing Information on Health Effects of Stable Cobalt 172
3-12. Existing Information on Health Effects of Radioactive Cobalt 173
6-1. Frequency of NPL Sites with Cobalt Contamination 208
6-2. Frequency of NPL Sites with ⁶⁰Co Cobalt Contamination 209
LIST OF TABLES

3-1. Levels of Significant Exposure to Cobalt—Chemical Toxicity—Inhalation ...31
3-2. Levels of Significant Exposure to Cobalt—Chemical Toxicity—Oral ...56
3-3. Levels of Significant Exposure to Cobalt—Chemical Toxicity—Dermal ..85
3.4. Levels of Significant Exposure to Cobalt—Radiation Toxicity—External Radiation89
3-5. Genotoxicity of Cobalt In Vitro ..119
3-6. Initial (Day 3) Lung Deposits of Cobalt Oxide and Summary of Lung Retention at 90 and 180 Days ...125
3-7. Summary of Measurements of Retention and Excretion After Intragastric Administration of Cobalt Oxide (Co3O4) Particles (Mean Percentage of Recovered Activity at 7 Days After Administration) ...127
3-8. Peak Translocation and Average Mechanical Clearance Rates After Inhalation of Cobalt Oxide ..133
3-9. Summary of Measurements of Retention and Excretion of Cobalt Following Injection of Cobalt Nitrate Co(NO3)2 Solution (Mean Percent Recovery) ..136
3-10. Reference Respiratory Values for a General Caucasian Population at Different Levels of Activity143
3-11. Reference Values of Parameters for the Compartment Model to Represent Time-dependent Particle Transport from the Human Respiratory Tract ..145
3-12. Cobalt Exposure Concentrations and Amounts in the Blood and Urine of Subjects Examined ..164
4-1. Chemical Identity of Cobalt and Selected Compounds ..184
4-2. Physical and Chemical Properties of Cobalt and Selected Compounds ..188
4-3. Principal Radioactive Cobalt Isotopes ...192
5-1. Current U.S. Manufacturers of Cobalt Metal and Selected Cobalt Compounds197
5-2. Facilities that Produce, Process, or Use Cobalt and Cobalt Compounds ...199
6-1. Releases to the Environment from Facilities that Produce, Process, or Use Cobalt and Cobalt Compounds ..214
6-2. Concentration of Cobalt in the Atmosphere ..232
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-3</td>
<td>Cobalt Levels in Water</td>
<td>236</td>
</tr>
<tr>
<td>6-4</td>
<td>Cobalt Levels in Sediment</td>
<td>240</td>
</tr>
<tr>
<td>6-5</td>
<td>Cobalt Levels in Food</td>
<td>244</td>
</tr>
<tr>
<td>6-6</td>
<td>Cobalt Content of Miscellaneous Substances</td>
<td>247</td>
</tr>
<tr>
<td>6-7</td>
<td>Mean Daily Dietary Intake of Cobalt for Selected Population Groups in Canada</td>
<td>248</td>
</tr>
<tr>
<td>6-8</td>
<td>Cobalt Levels in Human Tissues and Fluids</td>
<td>250</td>
</tr>
<tr>
<td>6-9</td>
<td>Ongoing Studies on Cobalt</td>
<td>263</td>
</tr>
<tr>
<td>7-1</td>
<td>Analytical Methods for Determining Stable Cobalt in Biological Materials</td>
<td>266</td>
</tr>
<tr>
<td>7-2</td>
<td>Analytical Methods for Determining Radioactive Cobalt in Biological Samples</td>
<td>268</td>
</tr>
<tr>
<td>7-3</td>
<td>Analytical Methods for Determining Stable Cobalt in Environmental Samples</td>
<td>274</td>
</tr>
<tr>
<td>7-4</td>
<td>Analytical Methods for Determining Radioactive Cobalt in Environmental Samples</td>
<td>276</td>
</tr>
<tr>
<td>8-1</td>
<td>Regulations and Guidelines Applicable to Stable Cobalt</td>
<td>282</td>
</tr>
<tr>
<td>8-2</td>
<td>Regulations and Guidelines Applicable to Radioactive Cobalt</td>
<td></td>
</tr>
</tbody>
</table>