5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL

5.1 PRODUCTION

The commercial production of polybrominated biphenyls (PBBs) generally involves bromination of biphenyl, a process involving a much more specific reaction and that produces a smaller number of product mixtures than chlorination (Sundstrom et al. 1976a). In one process, biphenyl is brominated with 0–20% stoichiometric excess of bromine chloride (e.g., slightly more than 10 mol of bromine chloride may be reacted with 1 mol of biphenyl to obtain decabromobiphenyl) in the presence of iron or a Friedel-Crafts catalyst (e.g., aluminum chloride). In another process, biphenyl is dissolved in ethylene bromide solvent and reacted with bromine in the presence of a catalyst (either aluminum chloride or bromide) (Neufeld et al. 1977). Research quantities of PBBs can be synthesized by the diazo coupling of brominated aniline with an excess of the corresponding bromobenzene. For example, 2,3,3',4,4',5'-hexabromobiphenyl can be synthesized by the diazo coupling of 3,4,5-tribromoaniline with 1,2,3-tribromobenzene (Kubiczak et al. 1989; Robertson et al. 1983b). Methods for laboratory scale synthesis of 42 congeners of brominated biphenyls are also available (Sundstrom et al. 1976b).

The commercial production of PBBs began in 1970. Approximately 13.3 million pounds of PBBs were produced in the United States from 1970 to 1976. Only three commercial PBB products were manufactured (i.e., hexabromobiphenyl, octabromobiphenyl, and decabromobiphenyl) and these three products were based on a limited number of congeners (Hardy 2002a). Hexabromobiphenyl constituted about 11.8 million pounds (ca 88%) and octa- and decabromobiphenyl constituted ≈ 1.5 million pounds together of this total (Neufeld et al. 1977). Over 98% of the hexabromobiphenyl was produced as FireMaster BP-6 and the residual as FireMaster FF-1 (Hesse and Powers 1978). Michigan Chemical Corporation, St. Louis, Michigan, the sole producer of hexabromobiphenyl in the United States, stopped producing this PBB in 1975. White Chemical Co., Bayonne, New Jersey, and Hexcel Corporation, Sayreville, New Jersey, manufactured octa- and decabromobiphenyl in the United States until 1979 (IARC 1986; Neufeld et al. 1977). Shortly after the 1973–1974 agriculture contamination episode in Michigan (see Section 3.2), PBB production in the United States was voluntarily discontinued (Hardy 2000a); PBBs are no longer produced in the United States (SRI 2001). Re-initiation of manufacture of PBBs requires approval from the EPA. Production of decaPBB in Great Britain was discontinued in 1977 and highly brominated PBBs were produced in Germany until mid-1985. Until the year 2000, the only PBB in commercial production was decabromobiphenyl, which was manufactured by one company (Atochem) in France (Hardy 2000a).

5.2 IMPORT/EXPORT

PBBs are no longer being imported or exported except possibly in small quantities for laboratory uses. PBBs have not been imported from other countries into the United States, except in finished products (Neufeld et al. 1977). The two companies that manufactured octa- and decabromobiphenyl in the United States between 1976 (0.805 million pounds) and 1978 exported all of their products to Europe (Neufeld et al. 1977).

5.3 USE

PBBs are no longer used in the United States. In the past, PBBs were used as additive flame retardants to suppress or delay combustion. Additive flame retardants are added to the polymer material, but are not chemically incorporated into the polymer matrix. Because PBBs are not chemically bound to the polymer matrix, they may migrate out of the matrix with time (WHO 1994b). PBB applications were almost exclusively limited to a particular thermoplastic (arylonitrile-butadiene-styrene, ABS) used in electronic equipment housings (Hardy 2002a). Prior to termination of production, hexabromobiphenyl was used as a fire retardant mainly in thermoplastics for constructing business machine housings and in industrial (e.g., motor housing), and electrical (e.g., radio and TV parts) products. Smaller amounts were used as a fire retardant in coating and lacquers, and in polyurethane foam for auto upholstery (Neufeld et al. 1977). PBDEs and other flame retardants replaced hexabromobiphenyl after its voluntary ban in the late 1970s. Octabromobiphenyl and decabromobiphenyl were never used in the United States, probably because the hexabromobiphenyl was less expensive and equally effective as a fire retardant (Neufeld et al. 1977).

5.4 DISPOSAL

PBBs are no longer commercially produced in the United States. In the past, an estimated 0.0046 pounds have been lost to sewers for every 1,000,000 pounds of PBBs produced at manufacturing sites (Neufeld et al. 1977). The Michigan Chemical Corporation discharged an estimated 0.25 pounds of PBBs/day to the Pine River as effluent (Di Carlo et al. 1978). The Michigan Chemical Corporation estimated that the solid waste generated during the manufacture of FireMaster BP-6 was 5% of the FireMaster BP-6 and FireMaster FF-1 produced (Di Carlo et al. 1978). Since Michigan Chemical Corporation produced \approx 11.8 million pounds of FireMaster BP-6 and FireMaster FF-1 from 1970 to 1974 (Di Carlo et al. 1978), solid wastes containing a total of 590,000 pounds of PBBs would have been sent to disposal. About onehalf of this waste was deposited in the Gratiot County landfill in St. Louis, Michigan (Di Carlo et al. 1978), and the rest was possibly landfilled at other locations. Contaminated animal carcasses, poultry and eggs, animal feed, butter, cheese, and other milk products following the Michigan agriculture contamination episode were disposed of in a sanitary landfill in Cadillac, Michigan (Dunckel 1975).

Approximately 11.8 million pounds of hexabromobiphenyl were used in commercial and consumer products in the United States, most in the production of plastic products with an estimated use life of 5–10 years (Neufeld et al. 1977). Since the cessation of production, all of these products, such as TV cabinet and business machine housings, must have been disposed of by land filling or incineration (Neufeld et al. 1977). The formation of polybrominated dioxins (PBDDs) and polybrominated dibenzo-furans (PBDFs) during the incineration of plastics containing PBBs remains a distinct possibility (Luijk and Govers 1992; O'Keefe 1978).