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In this study a multi-objective optimization model is developed for water sensor 
network design in water distribution systems. In this model the three criteria used for 
evaluating the performance of the water sensor placement designed are directly used 
as the objectives of the optimization problem. These include minimizing the expected 
water volume contaminated, minimizing the expected time of detection and 
maximizing the detection likelihood. Due to the difficulty of determining sensor 
placement locations within thousands of junction combinations in the system, the 
sub-domain concept is introduced, which identifies a subset of junctions for candidate 
sensor locations. The sub-domains are determined using the roulette wheel method 
based on junction water demand values. The junctions with larger water demand have 
higher probabilities to be selected to the candidate sensor subset. For solution of the 
model an improved approach that is based on the non-dominated sorting genetic 
algorithm (NSGA-II) is used. The approach works over the sub-domain and the final 
Pareto optimal front is obtained through the sub-domain iteration process. The two 
water distribution systems provided in BWSN 2006 are chosen as examples to 
demonstrate the performance of the model and algorithm proposed. The impact of the 
non-detected scenarios in calculating objectives on the Pareto optimal front is also 
addressed in this study. The results show that the proposed model and the algorithm 
are effective in solving this problem. 

Keywords: sensor network, water distribution system, sub-domain, non-dominated 
sorting genetic algorithm. 

Introduction 

The challenge to design a monitoring network that is comprised of a limited number 
of water sensors to detect the accidental or intentional contaminant intrusion events in 
a water distribution system has attracted significant attention in recent years. For this 
purpose, in 2006, a water distribution system analysis symposium, entitled as the 
Battle of Water Sensor Network (BWSN), was hosted by the University of 
Cincinnati. In this symposium a variety of optimization models and solution 
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algorithms were proposed using different metrics to find an optimal solution to this 
problem. Based on the objectives used, these models can be divided into two 
categories: (i) single objective; and, (ii) multi-objective optimization models. In the 
former category the design of water sensor network is formulated as an optimization 
problem based on a single objective [Berry et al., 2006; Ghimire and Barkdoll, 
2006a; b; Guan et al., 2006; Krause et al., 2006; Propato and Piller, 2006]. In the 
latter category the problem is solved using multi-objective optimization approach to 
satisfy the four criteria that were used to evaluate the performance of the network 
design in the BWSN [Dorini et al., 2006; Eliades and Polycarpou, 2006; Gueli, 
2006; Huang et al., 2006; Preis and Ostfeld, 2006; Wu and Walski, 2006]. The 
solution algorithms for these models include integer programming methods [Berry et 
al., 2006; Ghimire and Barkdoll, 2006a; b; Guan et al., 2006; Krause et al., 2006; 
Propato and Piller, 2006]and heuristic approaches such as genetic algorithms or 
other approaches[Berry et al., 2006; Ghimire and Barkdoll, 2006a; b; Guan et al., 
2006; Krause et al., 2006; Propato and Piller, 2006]. No matter which algorithm is 
used, the efficiency of the solution process is a common obstacle that seriously 
constrains its application for the solution of large-scale water distribution systems. 
The main reason lies in the difficulty of finding an optimal sensor placement pattern 
from thousands of junction combinations that is in the system within a reasonable 
computational time and computer memory availability. In that symposium the way to 
handle the non-detect scenarios in the evaluation of performance for designed 
networks was also considered to be an important issue. In this study, a multi-
objective optimization model is formulated for the optimal design of water sensor 
network in the water distribution systems. To improve the efficiency of the solution 
algorithm, the sub-domain concept is introduced to reduce the number of candidate 
sensor locations based on water demand magnitudes of junctions, and then an 
improved approach based on the non-dominated sorting genetic algorithm (NSGA-II) 
based on an iterative solution strategy is proposed. The two water distribution 
systems provided by BWSN 2006 are selected to demonstrate the use of the proposed 
algorithm. The impact of the non-detect scenarios in calculating objectives on the 
Pareto optimal solution is also explored. 

Mathematical Model 

In the BWSN [BWSN, 2006], four criteria were used to evaluate the performance of 
the designed water sensor network. These include the expected time of detection, the 
expected population affected prior to detection, the expected volume of contaminated 
water prior to detection and detection likelihood or reliability of the sensor placement 
pattern [BWSN, 2006]. Among these measures, the population affected is correlated 
with the water volume contaminated and the detection time. The larger contaminated 
volume and longer detection time results in larger effected populations, and vice 
versa. This implies that the population affected can be reflected by the contaminated 
volume and the detection time. Therefore, in this study we just select three objectives 
for the design of the water sensor network, which are mathematically stated as 
follows. 

2 







 
 

 


 
   
 

 



 



 


 



 
 





  

i. Minimizing the expected time of detection, expressed by: 
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where Ns is the number of contamination events, X is the decision vector and defined 
as X = [x , x ,L, x ], xi is an integer parameter which takes on values of “one” or 1 2 n 

“zero” depending on the presence of a sensor at the junction i, n is the number of 
candidate junctions, td

s is the detection time of the contamination event s using 
sdecision vector X which is defined as t (X ) = Min {t (x )}, td(xi) is the detection d d i 

xi =1 

time at candidate junction i. 

ii. Minimizing the expected water volume contaminated, expressed by: 
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V swhere N is the number of junctions in the system, i (t) is the water volume 

contaminated in junction i in time step t for the contamination event s, as estimated 
by, 
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where qi(t) is the actual water demand at junction i at time step t, Δt is the time step 
interval, Cmin is a predefined threshold hazard concentration in the water distribution 
system. 

iii. Maximizing the detection likelihood is expressed by: 
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where ds = 1 if the contamination event s is detected using decision vector X, and zero 
otherwise. The detection likelihood is an important measure and directly reflects the 
reliability of the system. 

When the number of sensors placed in the system is specified as M, the decision 
variable should satisfy the constraint, 

∑ xi = M (5) 

Equations (1) through (5) can be used to construct the multi-objective optimization 
problem for the design of water sensor network in the water distribution system. 

Solution Algorithm 

The non-dominated sorting genetic algorithm-II (NSGA-II) is a novel algorithms for 
solving the multi-objective optimization problem [Deb et al., 2002] and has obtained 
widespread applications. Preis and Ostfeld applied the NSGA-II algorithm to the two 
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BWSN network examples and demonstrated the effectiveness of the multi-objective 
approach [Preis and Ostfeld, 2006]. However, the optimality of the solutions obtained 
using the NSGA-II in the Pareto front sense needs to be further explored. The results 
presented in Preis and Ostfeld will be taken as reference solution in the numerical 
application discussed below. It is well known that finding an optimal solution from 
thousands of combinations of junctions is difficult. The most efficient way to find the 
optimal solution is to reduce number of candidate junctions, in other words, reducing 
candidate junctions may improve the efficiency of algorithm. For this purpose, the 
sub-domain approach was introduced into the genetic algorithm for solving the 
optimal water sensor placement with a single objective by Guan et al. [2006]. The 
sub-domain was selected using roulette wheel method based on the water demands of 
junctions for all scenarios. The results in that study show that the algorithm proposed 
is effective and efficient. In this study the NSGA-II and sub-domain concept are 
combined to form an improved algorithm to find optimal sensor placement. First, a 
sub-domain is determined by the roulette wheel method based on the water demands 
of junctions, and the NSGA-II works over the sub-domain. After the Pareto optimal 
front is obtained, the sub-domain needs to be updated. The junctions on the Pareto 
optimal fronts are selected to directly enter the next sub-domain, and then the roulette 
wheel method is used to choose the remaining candidate sensor junctions until next 
sub-domain is full. Using this method, the junctions with larger water demands have 
a higher probability to be selected as candidate sensor locations to fill the remaining 
slots. The final Pareto optimal front is obtained through an iterative process. In the 
proposed algorithm, the EPANET software is an important component [Rossman, 
2000]. It is used to calculate the data needed in optimization such as the contaminated 
water volume, the time of detection and contaminant concentration at each junction 
for all scenarios. The complete optimization process is illustrated in the flowchart 
shown in Figure 1. 

Yes 

Run EPANET to obtain data needed in 
optimization for all scenarios 

Generate contaminant scenarios 

Generate initial population 

Select initial sub-domain 

Find Pareto optimal front using 
NSGA-II within the sub-domain 

Update the sub-domain 

Stop 

Stopping iteration 
condition is satisfied 

Get all junctions and solutions 
in Pareto optimal front 

No 

Figure 1. Flowchart of NSGA-II process 
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Numerical Applications 

The model and the algorithm proposed above are demonstrated using two water 
distribution systems provided in BWSN [2006]. Prior to the optimization a set of 
contamination scenarios are randomly generated according to the specified 
requirements of the BWSN [2006]. The resulting optimal water sensor network needs 
to be tested using another set of contamination scenarios, which are independently 
generated. Based on this new set of scenarios, the performance of the water sensor 
network designed is synthetically evaluated using the four criteria that include 
expected time of detection, expected population affected by contamination, expected 
volume of contaminated water prior to detection and the reliability of the system, 
denoted as measures Z1, Z2, Z3 and Z4 respectively in BWSN [2006]. In optimization, 
the non-detected scenarios were included in calculation of objectives by taking the 
length of simulation duration as their time of detection. For comparison purpose, the 
case with exclusion of the scenarios not detected in calculating time of detection and 
contaminated water volume was explored to analyze the impact of this approach on 
the Pareto optimal front. For simplicity without loss of generality, the cases with five 
water sensors are solved below. 

Water distribution system 1 

The water distribution system 1 in BWSN 2006 consists of 169 pipes, 129 junctions, 
a reservoir, two elevated storage tanks and two pumping stations. The system 
operates subject to two 48-hour demand patterns. The simulation duration is four days 
and the time step intervals used for hydraulic and water quality simulations are 30 
minutes and 5 minutes. In the design phase of the water sensor network, within first 
24 hours of operation, 20 contamination scenarios for each junction are randomly 
generated. This results in a total number of scenarios of 2580. In testing the water 
sensor network designed the same number of contamination scenarios is 
independently generated. During optimization, the number of candidate junctions in a 
sub-domain was set as 30 and the number of sub-domains was selected as 20. During 
the sub-domain iteration process, the junctions to be included in the next sub-domain 
are obtained from the Pareto optimal front of the prior solution. In the NSGA-II, 
population size, maximum generations for each sub-domain, crossover, new member 
generation ratios and mutation and are respectively 100 and 30, 0.8, 0.2, 0.2. 

Case 1: In this case the minimization of the expected time of detection Equation (1), 
the minimization of expected water volume contaminated Equation (2) and the 
maximization of detection likelihood Equation (4) are selected as the design 
objectives. The resulting Pareto optimal front in 100 iterations is shown in Figure 2. 
Four representative solutions from the Pareto optimal front are chosen to analyze their 
optimality and the performance of these solutions with respect to four measures are 
given in Table 1. In this table Junction ID is identified with the letter “J” and a 
number which indicates the junction name used in the EPANET file in both water 
distribution systems. For example, J100 indicates JUNCTION-100. From Table 1, it 
can be clearly seen that although Solution 1 yields the highest detection likelihood 
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(Z4), it has longest time of detection (Z1), the most affected population (Z2) and the 
largest contaminated water volume (Z3). The detection likelihood of Solution 2 is 
slightly smaller than that of Solution 1, but its other three measures are much smaller 
than those of Solution 1. 

Figure 2. The Pareto optimal front in Case 1. 

Thus, considering the trade-off among the four measures, the Solution 2 yields a 
better performance. Solution 3 has the lower detection likelihood than Solution 2, but 
it yields better measures for the other three when compared to the results of Solution 
2. Solution 4 has the lowest detection likelihood, but it also yields the lowest values 
for the other three measures. In the decision-making process, the decision-maker will 
make a decision by considering a trade-off among the four measures according to a 
decision criterion reflecting the requirements of decision makers. This outcome does 
reflect the advantages of the multi-objective optimization over single objective 
optimization. Among the four solutions given in Table 1, if we synthetically consider 
equal weight for all four measures, we would recommend Solutions 2 or 3. 

Table 1. Optimal solutions and performance in case 1. 

Z1 Z2 Z3 Z4 

Solution Junction ID (minutes) (Gal) (%) 
1 JJ1100,, JJ4455,, JJ8833,, JJ110000,, JJ112266 11,,226633..44 672.5 43,065.1 83.80 
2 JJ1100,, JJ4455,, JJ8833,, JJ110000,, JJ111188 1,050.1 388.3 12,879.6 83.02 
3 JJ1100,, JJ6688,, JJ8833,, JJ111188,, JJ112222 919.1 301.8 5,416.5 78.49 
4 JJ1177,, JJ4499,, JJ6688,, JJ8833,, JJ110022 715.5 148.3 2,780.6 70.16 

Case 2: In this case the minimization of the expected time of detection Equation (1) 
and the maximization of detection likelihood Equation (4) are selected as the design 
objectives. This case was solved using the NSGA-II directly by Preis and Ostfeld, 
identified as Case 1 in [Preis and Ostfeld, 2006]. In order to test the effectiveness and 
efficiency of the algorithms proposed, this case is also explored here. For consistency 
with Preis and Ostfeld, the non–detected scenarios are also excluded in calculation of 
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the time of detection. The resulting Pareto optimal front is shown in Figure 3. The 
four special solutions obtained and their performances are given in Table 2. 
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Figure 3. The Pareto optimal front in Case 2. 

In Preis and Ostfeld [2006], three representative solutions were given and their 
performances was calculated by the software of BWSN [BWSN, 2006] using the same 
scenarios, listed in Table 3. In comparison of solutions with the lowest detection 
likelihood, Solution 4 in Table 2 yields much better performance than the Solution 1 
in Table 3. The Solution 3 given in Table 3 is a solution with the highest detection 
likelihood (66.04%) in its Pareto optimal front. In its detection likelihood measure, 
this solution is close to that of Solution 3 (70.70%) given in Table 2. However, the 
other measures of the Preis and Ostfeld solution are obviously worse than those of the 
Solution 3 given in Table 2. Furthermore, by comparing the Pareto optimal fronts, as 
shown in Figure 3 above and the Figure 3 given in Preis and Ostfeld, the algorithm 
proposed yields a better Pareto optimal front than the NSGA-II that is used directly 
[Preis and Ostfeld, 2006]]. Furthermore, in Figure 3 we show the results obtained 
after 70 generations while Figure 3 given in Preis and Ostfeld is the solutions 
obtained after 440 generations. This outcome also demonstrates that the algorithm 
proposed here is more efficient than the direct use of NSGA-II in the solution of 
multi-objective optimal design problems. 

Table 2. Optimal solutions and performance for Case 2. 
Z1 Z2 Z3 Z4 

Solution Junction ID (minutes) (Gal) (%) 
1 JJ1100,, JJ4455,, JJ8833,, JJ110000,, JJ112266 11,,226633..44 672.5 43,065.1 83.80 
2 JJ1100,, JJ4455,, JJ8833,, JJ110000,, JJ111188 1,050.1 388.3 12,879.6 83.02 
3 JJ2211,, JJ6688,, JJ8833,, JJ9999,, JJ111188 597.4 190.2 2,695.5 70.70 
4 JJ2211,, JJ3311,, JJ4433,, JJ5588,, JJ9933 394.6 138.1 6,649.3 26.55 

Table 3. Optimal solutions and performance in Preis and Ostfeld. 
Z1 Z2 Z3 Z4 

Solution Junction ID (minutes) (Gal) (%) 
1 JJ2299,, JJ3300,, JJ3344,, JJ4433,, JJ4499 551177..99 212.6 18,447.1 14.46 
2 JJ2211,, JJ4466,, JJ6688,, JJ110011,, JJ111166 436.1 154.8 7,106.6 47.56 
3 JJ4455,, JJ7700,, JJ8833,, JJ110011,, JJ111166 682.1 241.6 8,165.2 66.04 
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Effect of non-detected scenarios on the Pareto optimal front 

Whether the non-detected scenarios are included or excluded in the evaluation 
algorithms was discussed during the BWSN session at the conference held at 
Cincinnati [BWSN, 2006]. Obviously, this consideration directly and significantly 
affects the optimal solution for both the single objective and the multi-objective 
models. In this study the Case 1 was chosen as an example to illustrate how this 
influences the Pareto optimal front. Figure 4 shows the Pareto optimal fronts obtained 
by excluding and including the non-detected scenarios in calculation of the 
objectives. 

It can be clearly noticed that the Pareto optimal front when we exclude the non-detect 
scenarios, indicated by “x” symbol, spreads over a wider range and contains many 
solutions with low detection likelihood. Such solutions do not satisfy the purpose in 
the optimal design of water sensor networks and should be eliminated in the 
optimization process. However, because the non-detected scenarios are excluded in 
the calculation of the objectives, the expected water volume contaminated and time of 
detection of such solutions would decrease as their detection likelihood decreases, 
resulting in such solutions become non-dominated ones in the Pareto optimal front 
according to non-domination principle of the multi-objective optimization. This result 
is obviously not acceptable in the decision-making process. On the contrary, all 
solutions in the Pareto optimal front when we include the non-detected scenarios 
concentrate in the high detection likelihood region. In this case, the length of 
simulation duration is chosen as the time of detection when the scenarios are not 
detected. For these cases the corresponding expected time of detection and water 
volume contaminated would increase. In evolution process, the solutions with lower 
detection likelihood are naturally eliminated. Based on this analysis, it is 
recommended that the non-detected scenarios should be included in the calculation of 
objectives of the optimization problem and the performance evaluation of networks 
designed. For the non-detect scenarios, taking the length of simulation duration as 
the time of detection is a reasonable method to incorporate the impact of the non-
detected scenarios on optimal solutions. 

Water distribution system 2 

The water distribution system 2 in BWSN 2006 is a more complicated one. It consists 
of 14,822 pipes, 12,523 junctions, two reservoirs, two elevated storage tanks and four 
pumping stations. Its structure can be found in BWSN 2006. The system operates 
subject to five 48-hour demand patterns. The simulation duration is two days and the 
time step intervals for hydraulic and water quality simulations are 60 minutes and 5 
minutes respectively. In this case a total of 3000 scenarios are randomly generated for 
the junctions with largest water demands during the design phase. The performance 
of the sensor network designed is evaluated using 3000 verification scenarios. The 
parameters used in the NSGA-II are the same as the System 1 except the population 
size of 200 and the sub-domain size of 100 is selected. 
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Figure 4. The Pareto optimal fronts in Case 1 obtained by excluding and including 
the non-detected scenarios. 

For further comparison, the case with two objectives, minimizing the expected time 
of detection and maximizing detection likelihood, is chosen to analyze the 
effectiveness of the algorithm. The Pareto optimal front for this case is shown in 
Figure 5 and the three representative solutions and their performances are given in 
Table 4. The same case was studied in [Preis and Ostfeld, 2006]]. Two representative 
solutions, given in Case 8 there, and their performances, calculated by the software of 
BWSN [BWSN, 2006] using the same verification scenarios, are listed in Table 5. 
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Figure 5. The Pareto optimal front in the System 2. 

It can be easily seen that the solutions obtained by the approach proposed here are 
much better than ones obtained using NSGA-II directly. It is also noticed that there is 
a large difference in detection likelihood between the results given in Preis and 
Ostfeld [2006] and the measures calculated using the given sensor locations by the 
software [BWSN, 2006], which are respectively 34.5% and 16.8% for Solution 1. This 
implies that the solutions obtained by using the NSGA-II directly lack the 
adaptability to different scenarios. For the large water distribution system the 
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contaminant scenarios may just be generated for a part of junctions due to the 
limitation of computational time and computer memory. It probably results in that the 
solutions have high detection likelihood for the scenarios used in optimal design but 
show poor performance for different scenarios. However, the detection likelihoods 
listed in Table 4 are basically consistent with that shown in Figure 6 using the 
approach proposed. Because the sub-domain contains the junctions with most 
importance and the scenarios are generated for junctions with larger water demands, 
the resulting sensor placement is robust for different scenarios. 

Table 4. Optimal solutions and their performance for system 2. 
Z1 Z2 Z3 Z4 

Solution Junction ID (minutes) (Gal) (%) 
1 J1486, J3747, J4247, J8452, J10874 11,,005555..22 2,338.1 206,837.3 28.03 
2 J1486, J3301, J4247, J4684, J10393 769.9 1865.0 122,546.8 17.33 
3 J32, J4247, J4562, J4771, J13349 427.5 1,083.2 48,201.9 4.60 

Table 5. Optimal solutions and their performance for system 2 in Preis and Ostfeld. 
Z1 Z2 Z3 Z4 

Solution Junction ID (minutes) (Gal) (%) 
1 J871, J1917, J2024, J4115, J4247 880077..22 1,700.1 122,986.8 16.80 
2 J336, J470, J690, J723, J913 522.97 1,486.0 72,446.9 3.03 

Conclusions 

In this study, an algorithm is proposed for solution of multi-objective optimization 
model in design of water sensor network in water distribution systems. The two water 
distribution systems supplied in BSWN are used to demonstrate the performance of 
the model and the algorithm proposed. Based on the computational results, the 
following conclusions may be drawn. 
•	 The multi-objective optimization model proposed can be effectively used in the 

solution of the design of water sensor network in the water distribution system. 
The resultant Pareto optimal fronts provide more information in the decision 
process. 

•	 The algorithm, based on NSGA-II and sub-domain concept, is an effective 
approach for solving the multi-objective optimization model. It not only improves 
the efficiency of solution process, but also increases the optimality and 
adaptability of the optimal solutions. 

•	 The non-detect scenarios should be included in the calculation of objectives in 
both design and evaluation phases. Taking the length of simulation duration as the 
time of detection for non-detected scenarios is a reasonable approach to include 
the impact of the non-detect scenarios. 

Disclaimer 

The findings presented in this paper are those of the authors and do not necessarily 
represent the views of the Agency for Toxic Substances and Disease Registry or the 
U.S. Department of Health and Human Services. 
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