UNA EVALUACION DE LOS DATOS AMBIENTALES, BIOLOGICOS Y DE SALUD DE LA ISLA DE VIEQUES, PUERTO RICO

FECHA DE PUBLICACION: 19 DE MARZO DE 2013

DEPARTAMENTO DE SALUD Y SERVICIOS HUMANOS DE LOS EE.UU.
Agencia para Sustancias Tóxicas y el Registro de Enfermedades
División de Investigaciones de Salud de la Comunidad
Atlanta, Georgia 30333
Este documento se presenta en inglés y español para la conveniencia del lector. Hemos realizado todo esfuerzo para asegurar la exactitud de la traducción. Sin embargo, los lectores deben tener en cuenta que la versión en inglés del texto es la versión oficial.
Índice de contenidos

Capítulo 1 Introducción .. 1
Capítulo 2 Consumo de pescado de los arrecifes frente a la costa de Vieques 19
Capítulo 3 Biomonitorio ... 67
Capítulo 4 Datos de resultados de salud .. 113
Capítulo 5 Vía de productos agrícolas y ganados locales ... 123
Capítulo 6 Vía del aire ... 139
Capítulo 7 Vía del suelo .. 157
Capítulo 8 Vía del agua potable ... 175
Capítulo 9 Conclusiones y Recomendaciones ... 187
Apéndice A Resúmenes de los estudios .. A-1
Apéndice B Resúmenes de documentos previos de la ATSDR .. B-1
Apéndice C Comentarios de la revisión por expertos y respuestas de la ATSDR ... C-1
Apéndice D Comentarios Públicos y Respuestas de la ATSDR ... D-1

Figuras y tablas

Figura 1-1. Puerto Rico y la Isla de Vieques ... 3
Figura 1-2. Área de uso de la tierra de Vieques ... 3
Figura 1-3. Mapa topográfico de Vieques que muestra las direcciones del flujo de agua 4
Tabla 2-1. Tipo de pescados que comían los 51 encuestados según lo informa la Dra. Doris Caro en su encuesta de los viequenses ... 29
Tabla 2-2. Niveles promedio de mercurio en los peces obtenidos en mercados de pescado del norte de Vieques, el sur de Vieques (Esperanza) y la Parguera, Puerto Rico (Caro 2000) 30
Tabla 2-3. Niveles promedio de mercurio en los peces: Vieques .. 32
Tabla 2-4. Peces y mariscos obtenidos por la ATSDR .. 34
Figura 2-1. Localizaciones donde se tomaron las muestras de peces y mariscos de la ATSDR 36
Tabla 2-6. Tamaño de la porción de pescado para mujeres y niñas de diversas edades por percentiles 50, 95 y 99.* ... 46
Figura 2A-1. Mercurio total presente en los peces por familia ... 56
Tabla C1 del informe de la EPA de los EE.UU. (USEPA 2001) para las localizaciones 1 a 6 60
Figuras 2A-2a y 2A-2b. Peso (en onzas) versus la concentración de mercurio (ppm) 62
Tabla 2A-1. Dosis de mercurio estimada para mujeres y niños de distinto peso corporal por comer pescado de arrecife de Vieques.

Tabla 3-1. Estudio de biomonitorio en seres humanos en Vieques.

Tabla 3A-1. Estudio de biomonitorio en seres humanos en Vieques.

Tabla 3A-2. Resultados de la fase 1 del estudio del Departamento de Salud de Puerto Rico del análisis de metales pesados en residentes de Vieques.

Tabla 9 del Estudio de prevalencia de metales pesados, Vieques, 2004.

Tabla 3A-3. Resultados de biomonitoreo de 10 personas en la fase 2 del estudio de biomonitoreo del Departamento de Salud de Puerto Rico.

Tabla 3A-6. Análisis de mercurio en el cabello de mujeres y niños viequenses en comparación con los Estados Unidos.

Tabla 3A-7. Resumen del análisis de cabello de 30 muestras según se informó en un manuscrito no publicado de la Dra. Colón de Jorge (Colón de Jorge, sin fecha).

Tabla 3A-8. Resumen de los resultados del análisis de materia fecal según se informó en un manuscrito no publicado de la Dra. Colón de Jorge (Colón de Jorge, sin fecha).

Tabla 3B-1. Cuarto informe nacional sobre exposición en seres humanos a sustancias químicas ambientales: Toxicidad en los niveles de orina y sangre.

Tabla 4-1. Condiciones de salud informadas por los viequenses.

Tabla 4-2. Resumen de la razón de incidencia estandarizada estadísticamente significativa para cáncer.

Tabla 4-3. Resumen de la razón de mortalidad estandarizada estadísticamente significativa para cáncer.

Tabla 6-1. Concentraciones anuales promedio de PM10 y metales: Vieques y Fajardo, PR.

Tabla A-3. Muestras de agua de lagunas del LIA ... A-10
Tabla A-4. Muestras de sedimento de las lagunas Gato y Anones .. A-13
Tabla A-5. Resultados de las muestras de vegetación del LIA ... A-15
Tabla A-6. Muestras de vegetación .. A-20

TABLA 1. Análisis elemental de las muestras de hojas recolectadas en dos ubicaciones en Puerto Rico .. A-23

TABLA 2. Composición de oligoelementos en forraje del área civil de Vieques y la isla principal de Puerto Rico .. A-23

TABLA 3. Elementos químicos en hojas y frutos de Cajanus cajans recolectados en 1Monte Carmelo (Vieques, Puerto Rico) [µg/g peso seco] ... A-24

Tabla 2: Análisis elemental de Syringodium filiforme recolectada en la AFWTF y Bosque Estatal de Guánica .. A-26

Tabla A-7. Niveles de metales pesados en la vegetación y guía de salud de un estudio de 1999 ... A-28

Tabla A-8. Metales pesados en piña y suelo .. A-30

Tabla A-9. Metales detectados en pelo de cabra .. A-32

Tabla A-10. Metales detectados en cangrejos violinistas ... A-38

Tabla A-11. Metales pesados en pescados de mercado ... A-42

Tabla A-12. Resultados de la toma de muestras de aguas costeras marinas A-46

Tabla A-13. Resultados de las muestras de agua del NSWC ... A-52

Tabla A-14. Resultados de las muestras de suelo del NSWC .. A-53

Tabla A-15. Resultados de los análisis de metales en muestras de cabello recogidas de viequenses desde enero de 2000 a julio de 2001 ... A-60

Tabla A-16. Resultados de mercurio en el cabello de mujeres publicados por la Dra. Ortiz Roque en 2004 ... A-63
Resumen ejecutivo

Alcance de la revisión

La ATSDR reconoce que a los viequenses les preocupa la salud de todos los que viven en su Isla. La ATSDR también reconoce que a los viequenses les preocupa si los pasados ejercicios militares realizados en Vieques podrían haber contribuido a las condiciones de salud que han informado algunas personas de la Isla.

La ATSDR desea ser receptiva ante esas preocupaciones. Hemos trabajado para asegurarnos de que este análisis de los datos ambientales de Vieques sea exhaustivo; que considere todas las investigaciones que ya están disponibles, en especial las investigaciones finalizadas desde la publicación de nuestras evaluaciones de salud pública (public health assessments, PHA) del 2001-2003.3 En términos simples, los nueve capítulos de este informe tienen por finalidad el 1) evaluar en forma crítica toda la información disponible sobre exposición y salud relevante para los problemas de salud pública de Vieques, 2) establecer conclusiones—si bien a menudo tienen cierto grado de incertidumbre, y 3) hacer recomendaciones para las agencias ambientales y de salud pública así como para los investigadores científicos que colaborarán para reducir esa incertidumbre.

Las circunstancias de Vieques son típicas de muchas de las dificultades que enfrentan el público y los funcionarios de salud pública al responder a preocupaciones sobre los efectos de sustancias peligrosas. Si bien surgen numerosas preguntas sobre la exposición y la salud de las personas, los medios para responder esas preguntas en forma definitiva son limitados. Al establecer conclusiones sobre los desperdicios peligrosos y la salud pública, siempre quedará un grado de incertidumbre. Por lo tanto, en esta evaluación, la ATSDR identifica los datos disponibles y también los datos que hacen falta.

El foco principal de este informe es revisar y actualizar los datos ambientales sobre el aire, el agua, el suelo, los alimentos de origen marino y los alimentos cultivados en el lugar de Vieques. Además, este informe añade datos sobre biomonitoreo en seres humanos y datos de resultados de salud. El informe comienza con una revisión y una actualización de los datos de la PHA de la ATSDR, del 2003, acerca del consumo de peces capturados frente a la costa de Vieques. A continuación se incluyen dos capítulos sobre datos de biomonitoreo en seres humanos y datos de resultados de salud. Esos son los capítulos cuyos temas no se incluyeron en los informes anteriores de la ATSDR sobre Vieques. Al final de cada capítulo, se brindan conclusiones, recomendaciones y referencias específicas para ese capítulo. Cuatro

1 En todo este documento, el sustantivo español “viequenses” se refiere a los residentes de Vieques, y el adjetivo “viequense” se refiere a los viequenses y a Vieques.

2 La frase “ejercicios militares” abarca todas las formas de operaciones navales, de infantería, de Marina y demás operaciones de servicio militar —incluida la práctica de bombardeo aéreo y artillería naval— realizadas en Vieques y sus alrededores.

3 Una Evaluación de salud pública (PHA) es un documento de la ATSDR que examina las sustancias peligrosas, los resultados de salud y las preocupaciones de la comunidad respecto de un centro de desperdicios peligrosos a fin de determinar si las personas podrían verse perjudicadas al tener contacto con esas sustancias. La PHA también enumera medidas que deben tomarse para proteger la salud pública.
capítulos están dedicados a la discusión de las vías de exposición a través de alimentos, aire, suelo y agua. El capítulo 9 resume todas las conclusiones y recomendaciones de cada capítulo.

La pregunta relativa a la salud pública en los capítulos sobre los alimentos, el aire, el suelo y el agua es si los residentes estuvieron o están expuestos a contaminantes relacionados con bombardeos y si hubo o hay alguna consecuencia para la salud pública. El capítulo sobre el consumo de alimentos de origen marino se centró en la presencia de mercurio en los alimentos de origen marino, ya que los científicos puertorriqueños y los viequenses lo plantearon como una inquietud. El mercurio en los alimentos de origen marino no se debe a actividades relacionadas con bombardeos. La pregunta de salud pública que se plantea en los capítulos sobre biomonitoreo y resultados de salud es diferente. No pudimos utilizar estos datos para evaluar si hay contaminantes relacionados con bombardeos en los viequenses o si esos contaminantes están causando morbilidad o mortalidad. El propósito del capítulo sobre biomonitorio es identificar si existe una exposición excesiva a metales en los residentes de Vieques y si existe un riesgo de sufrir efectos perjudiciales debido a la carga corporal de metales. El propósito del capítulo sobre datos de resultados de salud es evaluar el estado general de salud de la población viequense. Por último, el informe incluye cuatro apéndices. En el Apéndice A se resume los estudios revisados previamente por la ATSDR o para este informe. El Apéndice B contiene resúmenes de documentos anteriores de la ATSDR en los que se evaluán datos ambientales relacionados con Vieques, además de resúmenes de dos comités de evaluación financiadas por la ATSDR: ecocardiogramas cardíacos y análisis básico de cabello. El Apéndice C contiene los comentarios recibidos por expertos y las respuestas de la ATSDR a esos comentarios. El Apéndice D contiene las respuestas de la ATSDR a los comentarios del público luego de que este informe fuera publicado en diciembre del 2011.

Antecedentes

La Isla de Vieques es una extensión de tierra de 55 millas cuadradas, a 7 millas de la costa este del Estado Libre Asociado de Puerto Rico. Aproximadamente 10,000 personas viven en los 7,000 acres centrales, o alrededor del 20% de la Isla, principalmente en los pueblos de Isabel Segunda y Esperanza.

En el 1941, cuando los Estados Unidos ingresaron a la Segunda Guerra Mundial, la Marina de los EE.UU. comenzó a adquirir propiedades en Vieques mediante la confiscación de tierras privadas. Para el 1950, la Marina era dueña de la totalidad de las regiones del este y del oeste de la Isla. Con sus amplias playas, sus vías de entrada poco profundas y la temperatura cálida del agua, así como la distancia de rutas aéreas y marítimas comerciales, la Marina creía que Vieques no solo era ideal para el adiestramiento en combate naval y de infantería de la Marina, sino que también era uno de los pocos lugares del hemisferio occidental que cumplía con todos los requisitos de la Marina.

La Instalación de Adiestramiento en Armas de la Flota del Atlántico (Atlantic Fleet Weapons Training Facility, AFWTF) de la Marina estableció lo que se dio a llamar como el Campo Interior de Vieques, el cual comprendía el Área al Este de Maniobras (Eastern Maneuver Area, EMA) y el Área de Impacto de Proyectiles Activos (Live Impact Area, LIA) (vea la Figura 1-2). Los infantes de la Marina llevaban a cabo ejercicios con fuego real en el EMA. La práctica con artefactos explosivos aéreos y artillería naval se
limitaba al área LIA de 900 acres, en el extremo más al este de la Isla. El Campamento García,4 el principal campamento del Cuerpo de infantes de la Marina de Vieques, también estaba dentro de la sección sur del EMA.

Durante décadas—en especial después de mediados de la década de 1970— desde buques y aeronaves se dispararon, lanzaron y arrojaron balas, descargas de artillería, proyectiles, misiles y bombas en el LIA. En los años posteriores a la Segunda Guerra Mundial, los viequenses, otros puertorriqueños, científicos, y activistas, comenzaron a oponerse cada vez más a las actividades de la Marina en Vieques, ya que alegaban que esas actividades privaban a muchos residentes de su sustento (principalmente, la pesca), los exponía a lesiones y, debido a las sustancias químicas de los explosivos, a enfermedades a largo plazo.

La resistencia aumentó después de abril de 1999, cuando un piloto de F-18 confundió una torre de observación fuera del LIA con un objetivo. La explosión de la bomba mató al observador civil de la torre y llevó a la ocupación del LIA por parte de manifestantes. Todos los ejercicios con fuego real se interrumpieron. Tras prolongadas negociaciones entre el gobierno federal y el Estado Libre Asociado de Puerto Rico, a principios del 2003, el entonces presidente George W. Bush ordenó el cese de todas las actividades militares en Vieques. Las antiguas propiedades de la Marina sobre los extremos al este y oeste de la Isla, que ahora están en su mayor parte bajo jurisdicción de la Dirección de Pesca y Fauna Silvestre (Fish and Wildlife Service, FWS) de los EE.UU., son refugios nacionales de fauna silvestre. En agosto de 2005, la Agencia de Protección Ambiental de los EE.UU. (U.S. Environmental Protection Agency, USEPA) agregó sitios del antiguo Polígono interior de la AFWTF a la Lista Nacional de Prioridades, con lo cual el área quedó sujeta a una remediación con supervisión federal que continúa hasta la actualidad.

Las investigaciones en el lugar y las evaluaciones ambientales comenzaron cuando la Marina todavía operaba en Vieques. Tras la partida de la Marina, se inició una evaluación exhaustiva y profunda de los riesgos actuales y a largo plazo para la salud humana que representan los artefactos explosivos detonados y sin detonar.5 La Marina también analizó los riesgos que, en general, los ejercicios militares podían suponer para el aire, el agua y la fauna y flora de Vieques y para los viequenses mismos. La última de esas evaluaciones es la revisión de la ATSDR de los datos ambientales de Vieques que comenzó en el 2009. En este informe se describen y analizan los resultados de nuestra revisión. Además, la ATSDR examina algunos estudios de biomonitorio y datos de resultados de salud que no estaban disponibles durante las investigaciones anteriores.

Investigaciones y evaluaciones anteriores sobre Vieques
Entre el 2001 y el 2003, la ATSDR publicó cuatro PHAs relacionadas con Vieques. Para investigar la posible exposición a sustancias químicas que emanan de artefactos explosivos detonados y sin detonar,

4 Llamado así en honor al infante de Marina PFC nativo de Puerto Rico Fernando García, que recibió la Medalla de Honor por la Guerra de Corea.
5 En todo este documento, “artefactos explosivos detonados y sin detonar” se refiere a proyectiles de artillería naval, bombas aéreas y proyectiles de otras armas disparados, lanzados o arrojados principalmente en el Área de Impacto de Proyectiles Activos (LIA) de Vieques.
cada PHA evaluó una vía de exposición específica: alimentos de origen marino (p. ej., pescados, mariscos y cangrejos de tierra), agua potable, aire, y suelo. Tras el análisis de los datos y la realización de numerosos modelos, cada PHA llegó a la conclusión de que, con la excepción en específico de un pozo local, los contaminantes en las vías evaluadas no estaban presentes a niveles en los que se esperen efectos a la salud. Pero esas PHA no evaluaron el riesgo de sufrir una lesión física a causa de un artefacto explosivo sin detonar ni consideraron los efectos acumulados de la exposición a múltiples contaminantes a través de múltiples vías. Desafortunadamente, la ciencia actual no respalda adecuadamente un análisis robusto de múltiples exposiciones a sustancias químicas y sus interacciones. En la comunidad científica todavía se debate el cómo evaluar mejor la exposición a una mezcla de sustancias químicas, tanto a través de una sola vía como a través de múltiples vías combinadas. Además, el poder estimar las dosis combinadas de múltiples vías sobre Vieques, se ve obstaculizado por la falta de conocimiento de los niveles de sustancias químicas a los que están expuestos los residentes a través de diversas vías (p. ej., comer alimentos de origen marino, ingerir suelo, beber agua y respirar aire).

Los viequenses y otros puertorriqueños —junto con algunos científicos, funcionarios electos, y grupos de ciudadanos— no estuvieron de acuerdo con los hallazgos de la ATSDR. Creían que la presencia de la Marina durante décadas en la Isla había dejado amenazas de residuos ambientales que afectaban en forma directa e indirecta la salud de los viequenses. Algunos científicos de Puerto Rico, por ejemplo, realizaron estudios del corazón y de cabello que ponían en duda los hallazgos de la ATSDR (Véase los capítulos 3 y 4 de este informe).

Para la revisión actual del sitio, la ATSDR no solo revisó los datos disponibles utilizados en sus informes anteriores, sino que también identificó nuevos datos ambientales, de biomonitoreo, y de resultados de salud, además, volvió a visitar a Vieques. En noviembre de 2009, la ATSDR celebró una reunión en Atlanta en la que científicos interesados discutieron los datos científicos disponibles sobre Vieques. Los científicos sugirieron maneras adicionales en que la ATSDR podría analizar los datos. Por ejemplo, el grupo sugirió que la ATSDR reconsiderara los escenarios de exposición para el consumo de pescado. También expresaron su preocupación por la falta de información sobre la posible exposición a contaminantes a través del consumo de productos agrícolas cultivados en el lugar. Ese tipo de conversaciones resultó en algunos análisis nuevos para este informe. Un resumen de la reunión celebrada en noviembre de 2009 está disponible en:

Las conclusiones y recomendaciones de este informe

Como parte de esta evaluación, la ATSDR volvió a examinar muchas de sus previas conclusiones y recomendaciones e identificó nuevos hallazgos. Nuevamente, el capítulo 9 contiene todas las conclusiones y recomendaciones de este informe según los temas descritos en cada capítulo. Ciertas conclusiones y recomendaciones están destacadas en este Resumen Ejecutivo.

6 En este aspecto, nótese que la Marina todavía participa en actividades de reparación en Vieques y que dichas actividades deben realizarse de forma tal que se garantice la protección de la salud pública de la exposición a contaminantes.
Conclusiones y recomendaciones basadas en datos ambientales

Consumo de pescado de los arrecifes frente a la costa de Vieques:

- La ATSDR identificó la exposición al mercurio debido al consumo frecuente de alimentos de origen marino como un riesgo potencial para la salud pública. El mercurio está presente en la mayoría de los alimentos de origen marino; su nivel es especialmente alto en algunas especies de peces y es bajo en otras especies. A causa del mercurio, los niños nacidos de mujeres que comen pescado a diario de las aguas que rodean a Vieques tienen un mayor riesgo de desarrollar problemas de lenguaje, de atención y memoria y, en menor medida, problemas de la función visual/espacial y de la función motora. Los niños que comen con frecuencia peces de las aguas que rodean a Vieques también tienen riesgo de desarrollar efectos perjudiciales similares. No obstante, no pudimos hallar una relación entre el mercurio en el pescado y las operaciones militares en Vieques. Una explicación más plausible para los niveles de mercurio encontrados en los peces es que se debieron al depósito global de mercurio que circula a través de este ámbito.

- Debido a sus muchos beneficios nutricionales, las mujeres y los niños pequeños en especial deben incluir en su dieta pescados y mariscos con un bajo nivel de mercurio. Los pescados y mariscos forman parte de una dieta saludable. Contienen proteínas de alta calidad, ácidos grasos omega 3, otros nutrientes esenciales, y tienen un nivel bajo de grasas saturadas. Una dieta bien balanceada, que incluya una variedad de pescados y de mariscos, puede contribuir a la salud del corazón y al crecimiento y desarrollo adecuado de los niños.

- El análisis estadístico mostró que algunos peces y mariscos de ciertos arrecifes alrededor de Vieques tenían niveles más altos de algunos metales y más bajos de otros. El hierro, aluminio, cobre, zinc, arsénico, bario, potasio y el selenio, estaban todos ligeramente más altos comparados con otros arrecifes que rodean a Vieques. Estos metales se encuentran en bombas y barcos de metal, lo que sugiere una posible contaminación localizada. Pero los niveles eran solo un poco más altos y la diferencia solo fue estadísticamente significativa cuando se comparó con algunos otros arrecifes que rodean la isla de Vieques.

- La ATSDR recomienda lo siguiente para la consideración por parte de agencias ambientales y de salud pública, y de los científicos:

 o Las personas que frecuentemente consumen alimentos de origen marino deben seguir los consejos sobre consumo de peces y las restricciones de pesca en Vieques. Mantener las restricciones de pesca en las aguas adyacentes al LIA.

 o Realizar una encuesta entre los residentes de Vieques para determinar los tipos, la frecuencia, y la cantidad de pescado consumido.

 o Realizar evaluaciones de riesgo y análisis estadísticos adicionales, utilizando la información nueva recopilada a partir de la encuesta sobre consumo de pescado recomendada anteriormente.

 o Si la propuesta encuesta y el análisis estadístico no aportan suficiente información sobre la salud pública, obtener y analizar más muestras de peces de Vieques.
Obtener suficientes muestras de peces para permitir un análisis por especies y por localización.

Biomonitorio

- Los datos de los estudios de biomonitorio de Vieques mostraron niveles elevados de algunos metales en la sangre, la orina, el cabello, o las heces fecales de los residentes. Si bien el consumo de cigarrillos y de alimentos de origen marino, o el uso de tintes para el cabello podrían explicar algunos de los niveles elevados en esos estudios, el manuscrito del Departamento de Salud de Puerto Rico reportó que no lo explican todo. Dado que no fue posible identificar la fuente de esos metales, los resultados de biomonitorio no permiten extraer ninguna conclusión acerca de si esos niveles elevados se debieron a la exposición a contaminantes relacionados con los ejercicios militares.

- Los viequenses podrían estar expuestos al mercurio en los peces y al cadmio en los gandules. Estas exposiciones pueden ameritar investigaciones ambientales adicionales, como la obtención de muestras de productos cultivados localmente para determinar el contenido de cadmio, el obtener más información sobre el consumo de pescado, y la posibilidad de que el pescado contenga mercurio. Se podría usar la información para decidir si se realizan pruebas en seres humanos para detectar mercurio y cadmio en sangre u orina. Si se identifican otras exposiciones ambientales, podrían considerarse investigaciones de biomonitorio en seres humanos adicionales. En el capítulo 2, sección 2.3.2 y en el capítulo 5, sección 5.3.2, respectivamente, se puede encontrar información más detallada sobre las recomendaciones de la ATSDR sobre el pescado y los productos cultivados localmente.

- La ATSDR no está recomendando un esfuerzo de biomonitorio completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomonitorio si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitorio humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitorio, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación.

- Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, deberán consultar con su proveedor de salud para analizar la necesidad de pruebas y los costos asociados a éstas. Un laboratorio cualificado deberá realizar las pruebas y análisis.

- CDC/ATSDR puede proporcionar una lista de aquellos laboratorios cualificados que puedan llevar a cabo las pruebas. Y si se requiere, el CDC/ATSDR puede proporcionar información a los proveedores de salud acerca de pruebas de detección de metales en muestras biológicas.
Datos de resultados de salud

- La elevada morbilidad y mortalidad en Vieques, junto con los problemas de acceso a los servicios de salud, presentan un cuadro de salud complejo para los viequenses.

- Los datos indican que hay aumentos en la prevalencia de enfermedad crónica, la incidencia de cáncer, y la mortalidad por cáncer en la población viequense en relación con el resto de Puerto Rico. Las limitaciones asociadas con estos análisis, en particular las preocupaciones metodológicas analizadas en este informe, introducen considerables incertidumbres y dificultan la interpretación.

Vía de productos agrícola y de ganado local

La ATSDR evaluó los datos y la información disponibles sobre los contaminantes detectados en productos de jardines y de ganaderías locales.

- Los datos generales son insuficientes para cuantificar la exposición humana o para poder establecer conclusiones de salud. Los datos limitados sobre la obtención de muestras sugieren que la toxicidad por cadmio podría ser una preocupación debido al consumo excesivo de gandules, pero no para los índices de consumo típico de gandules.

- La evaluación preliminar de los datos, completada para este informe, llegó a la conclusión de que el nivel de cadmio reportado en las pocas muestras de gandules local no deberá contribuir al consumo de cadmio excesivo en la dieta de los niños de edad preescolar que ingieran, por semana, menos de cinco de las porciones más grandes (6 onzas) de gandules cultivado localmente. Los adultos que comen los tamaños de porción más grandes (12 onzas) deberían limitar su ingesta a 11 porciones por semana. Los tamaños de porciones típicos para niños en edad preescolar (1.5 onzas) no contribuyen al exceso de cadmio en menos de 20 comidas por semana y los adultos que comen una porción típica (3 onzas) pueden comer hasta 44 comidas por semana sin exceder los niveles de ingesta de cadmio recomendados.

- La incertidumbre significativa en la evaluación de cadmio presente en los gandules destaca la necesidad de obtener más muestras. La evaluación preliminar sugiere que existe el potencial de absorción de metales del suelo en los cultivos para consumo. Los resultados justifican la realización de investigaciones adicionales.

Aire

- Revisamos los datos sobre contaminantes en el aire, provenientes de los ejercicios militares realizados en las antiguas Instalaciones de Adiestramiento Naval de Vieques. Esta revisión confirmó nuestros hallazgos previos e indicó que es muy poco probable que los contaminantes en el aire, provenientes de las pasadas operaciones militares, hayan tenido efectos en la salud de los viequenses.
Suelo

- Hay datos suficientes disponibles para concluir que las personas que vivieron en el LIA durante las protestas del 1999-2000 no estuvieron expuestas a contaminantes del suelo a niveles suficientemente altos para causar efectos adversos en la salud.

- Los datos recientes, y la presencia de artefactos explosivos sin detonar en el LIA, respaldan la necesidad de mantener el acceso restringido al LIA y a otras áreas potencialmente contaminadas en las que se realizaban ejercicios militares. La evaluación del ambiente y las actividades de remediaciòn deben continuar.

- En las áreas residenciales de la Isla, no existen datos adecuados sobre el suelo para caracterizar las posibles exposiciones en forma completa. A fin de tratar las incertidumbres que subsisten acerca de los problemas de contaminación del suelo en áreas residenciales, la ATSDR recomienda el muestreo de suelo superficial en las áreas residenciales de la Isla.

Agua potable

- Con la posible excepción de un pozo privado que demostró contener niveles nocivos de nitrato-nitrito, todos los suministros de agua potable de Vieques son aceptables para sus usos actuales. La ATSDR recomienda que nadie beba de ese pozo privado, hasta que análisis adicionales confirmen que su agua es segura.

- Es necesario el monitoreo continuo del agua proveniente de la tubería de distribución actual para garantizar que el suministro cumpla con los estándares de agua potable. Repetir la previa toma de muestras de tanques de almacenamiento, de grifos residenciales, y de pozos que aún se utilizan, podría hacerse cargo de cualquier incertidumbre restante.

Revisión por expertos y comentarios del público

Científicos del Estado Libre Asociado de Puerto Rico y de los Estados Unidos revisaron el informe sobre Vieques antes de publicarlo para comentarios públicos. El Apéndice C de este informe contiene los comentarios de los expertos y las respuestas de la ATSDR. Miembros del público tuvieron la oportunidad de revisar el informe y hacer comentarios por el periodo de 90 días entre diciembre 8 de 2011 y marzo
11 de 2012. La ATSDR revisó todos los comentarios y corrigió el texto de este informe. La ATSDR preparó respuestas para cada comentario recibido del público. Los comentarios y sus respectivas respuestas pueden ser encontrados en el Apéndice D de este informe.
Capítulo 1 Introducción

1.1. Descripción general de la Isla .. 3
1.2. Vieques y la Marina de los EE.UU. ... 3
1.3. Sustancias químicas en municiones y subproductos de detonaciones ... 5
 1.3.1. Compuestos orgánicos en municiones y subproductos de detonaciones .. 7
 1.3.2. Compuestos inorgánicos en municiones y subproductos de detonaciones ... 8
 1.3.3. Qué compuestos relacionados con bombas se encontraron en Vieques ... 9
 1.3.4. Conexión de los contaminantes en Vieques con vías de exposición en seres humanos .. 12
1.4. La población civil de Vieques .. 13
1.6. Evaluación de Vieques de la ATSDR ... 13
1.7. El informe .. 14
1.8. Bibliografía .. 15
1.1 Descripción general de la Isla

Vieques es la isla más grande de la costa del Estado Libre Asociado de Puerto Rico (vea la Figura 1-1). Con veinte millas de largo y 4.5 millas de ancho en su punto más amplio, Vieques abarca unos 33,000 acres ó 51 millas cuadradas. Puerto Rico, la isla más oriental de las Antillas Mayores, se encuentra aproximadamente a 7 millas al oeste de Vieques. Las Islas Vírgenes de los EE.UU., incluyendo a St. Thomas, St. John y St. Croix, se encuentran a 20 millas o más hacia el noreste y el sureste. El agua potable de la Isla es suministrada por una tubería de distribución proveniente de la isla principal de Puerto Rico; el agua subterránea de Vieques no se utiliza para beber. La Figura 1-3 contiene un mapa topográfico que muestra el flujo de agua subterránea en la Isla.

1.2 Vieques y la Marina de los EE.UU.

Desde el 1941 hasta el 2003, la Marina de los EE.UU. era propietaria de gran parte de Vieques; los residentes estaban en su mayoría confinados a áreas ligeramente hacia el oeste del centro de la Isla (ver la Figura 1-2). En la mitad al este de la Isla, la Instalación de Adiestramiento en Armas de la Flota del Atlántico (AFWTF) de la Marina administraba el Área Oriental de Maniobras (EMA) y, en el extremo más al este de la Isla, el Área de Impacto de Proyectiles Activos (LIA). El adiestramiento más importante generalmente se limitaba a dos periodos de 90 días por año. Mientras operaban desde el Campamento García en la sección más al sur del EMA, los infantes de la Marina ensayaban ataques anfibios en las playas de Vieques, hacían maniobras tierra adentro con vehículos.
Figura 1-3. Mapa topográfico de Vieques que muestra las direcciones del flujo de agua.

Las flechas muestran las direcciones del agua superficial, corrientes y flujo de aguas subterráneas poco profundas. Los contaminantes acuáticos no pueden fluir del LIA al área residencial.
blindados y de otro tipo y, en general, trabajaban con fuerzas navales para garantizar la preparación para el combate antes de embarcarse en grandes despliegues militares.

En la costa este de Vieques y frente a ella, la Marina utilizaba el LIA para realizar ejercicios de adiestramiento en artillería naval. Las flechas en la Figura 1-3 muestran las direcciones del agua superficial, corrientes, y flujo de aguas subterráneas poco profundas, en relación a los ejercicios con artefactos explosivos aire-tierra (CH2MHIll y Baker 1999). Después del cierre de la base de la Isla de Culebra a mediados de la década de 1970 (vea la Figura 1-1), las actividades de adiestramiento aire-tierra y barco-costa aumentaron en el LIA. Los ejercicios más importantes generalmente se realizaban en la primavera y el otoño, pero los ejercicios menores se realizaban durante todo el año (IT 2000). Los artefactos sin detonar (unexploded ordnance, UXO), es decir, bombas o artefactos explosivos y otras municiones militares residuales, eran tratados y detonados en el LIA. En la actualidad, cuando se identifican UXO, se les transporta a un área autorizada y se les detona con una carga por control remoto. Los UXO que no pueden transportarse en forma segura al área de quema abierta/detonación abierta se detonan en el lugar, de acuerdo con los procedimientos establecidos.

La Marina aún está involucrada en actividades de remediación en Vieques. Estas actividades deben llevarse a cabo de manera tal que se garantice la protección de la salud pública contra la exposición a contaminantes. En el 2001, la Marina transfirió la propiedad de aproximadamente 7,500 acres de tierra en el extremo oeste de la Isla a la municipalidad de Vieques, al Fideicomiso de Conservación de Puerto Rico (Puerto Rico Conservation Trust) y a la Dirección de Pesca y Fauna Silvestre (FWS) de los EE.UU., pero conservó alrededor de 100 acres de las antiguas tierras del Destacamento de Apoyo de Municiones Navales (Naval Ammunition Support Detachment, NASD) para establecimientos de radar y de comunicación (US Navy 2001). Algunas áreas del NASD fueron rentadas a granjeros locales para el pastoreo de ganado y otros fines agrícolas (USEPA 2004). El 1 de mayo de 2003, tras protestas civiles y negociaciones entre el gobierno federal y el gobierno de Puerto Rico, todas las operaciones militares en la Isla y sus alrededores cesaron. La Marina transfirió sus 14,500 acres de propiedad restantes ubicados en el extremo este de la Isla a la FWS (USEPA 2004). En la actualidad, las tierras de los extremos este y oeste de la Isla son un refugio nacional de fauna silvestre. La Marina inició investigaciones en el lugar y acciones de limpieza de acuerdo con la Ley de Recuperación y Conservación de Recursos (Resource Conservation and Recovery Act, RCRA) y con la Ley Integral de Respuesta, Compensación y Responsabilidad Ambiental (Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA), que en ocasiones se denominan Ley de Superfondo (Superfund Act).

1.3 Sustancias químicas en municiones y subproductos de detonaciones

Durante el proceso de revisión por expertos, varios de los expertos señalaron que el informe falló en discutir cualquier enlace entre contaminantes históricamente relacionados con actividades militares que puedan haber entrado al medio ambiente de Vieques y cualquier exposición humana que haya resultado de esos contaminantes. PHAs anteriores evaluaron esta situación; sus hallazgos están resumidos en los siguientes puntos:

- La PHA de la ATSDR sobre el agua reconoció que pudo haber habido niveles muy bajos de RDX, tetrilo, amoniaco y nitrato, más nitrato, en las muestras de agua potable tomadas por la Marina en el 1978, pero también expresó dudas respecto a la validez de esos datos. Además, las muestras de agua del acuífero de Esperanza contenían metales, altos niveles de sólidos disueltos totales (total dissolved solids, TDS) y un alto nivel de sal. Dos de los metales
encontrados en los pozos de Sun Bay (hierro y manganeso) y los TDS de todos los pozos eran superiores a sus niveles máximos de contaminantes secundarios (secondary maximum contaminant levels, SMCL) establecidos por la EPA como reglamentación secundaria nacional sobre el agua potable. Los SMCL se establecen solamente como pautas para ayudar a los sistemas públicos de distribución de agua a controlar el agua potable respecto a consideraciones estéticas, como el sabor, el color y el olor. Los TDS —incluyendo al hierro, el manganeso y el sodio— comúnmente se encuentran en el agua subterránea. La presencia de estos metales fue considerada como directamente relacionada a los altos niveles de TDS en el agua y, probablemente, fue un reflejo de la geología natural de la Isla, dado que las rocas ígneas y volcánicas que componen el lecho de roca de Vieques son una fuente común de hierro y manganeso (ATSDR 2001).

La PHA de la ATSDR sobre el suelo concluyó que, al parecer, las actividades de la Marina influyeron en los suelos del LIA. Las concentraciones de metales pesados halladas en el LIA fueron de 1.4 a 2.9 veces mayores que las concentraciones de trasfondo halladas en el extremo este de la Isla. Los datos actuales sobre el suelo del área residencial de Vieques no estaban disponibles; por lo tanto, la ATSDR realizó una evaluación de salud muy cautelosa que incluyó concentraciones de metales detectadas en áreas en las que el acceso estaba restringido (es decir, las tierras que antiguamente eran propiedad de la Marina, incluyendo el LIA) (ATSDR 2003a).

La PHA de la ATSDR sobre el aire estableció que los pasados ejercicios militares de la Marina en Vieques liberaron contaminantes al aire, incluyendo polvos, subproductos químicos de explosiones, y metales. Utilizando datos de monitoreo de partículas en el aire en el ambiente de las áreas residenciales de la Isla, la PHA concluyó que el polvo proveniente del LIA, y soplado por el viento, no constituía un peligro para la salud durante los días en que no se realizaban ejercicios de bombardeo y que los pasados ejercicios de adiestramiento militar de la Marina, con bombas de práctica, no representaban un peligro para la salud. La PHA sobre el análisis del modelo de aire predijo que las sustancias químicas emitidas por ejercicios de bombardeo con proyectiles activos se dispersaron y llegaron a niveles extremadamente bajos en las 7.9 millas que separan la fuente de emisiones (el LIA) y el área residencial de Vieques. En el caso de la mayoría de los contaminantes liberados, las concentraciones estimadas en las áreas residenciales son tan bajas que incluso los altamente sensibles dispositivos, de toma de muestras de aire, probablemente no podrían medirlas (ATSDR 2003b).

Como parte de la PHA sobre peces y mariscos de la ATSDR, se analizaron peces y mariscos para detectar compuestos explosivos y metales pesados. Algunos indicios mostraron que los compuestos explosivos podrían haber contaminado el ambiente marino. Se detectó HMX y una sustancia química similar a la RDX\(^7\) en cangrejos violinistas recolectados en el LIA. Dado que los cangrejos violinistas no habían sido lavados antes de la toma de muestras, no quedó claro si los residuos de explosivos estaban presentes en los cangrejos violinistas o se debían a la contaminación externa de arena y polvo. Se descubrió que un chapín del mercado de pescado contenía trazas de una sustancia química similar a la RDX. No se detectaron

\(^7\) El laboratorio que realizó los análisis no pudo confirmar una identificación concluyente.
compuestos explosivos en ninguna de las otras 142 muestras de peces o mariscos comestibles. Se detectaron varios metales pesados en los peces y mariscos (ATSDR 2003c).

- El análisis estadístico mostró que algunos peces y mariscos de ciertos arrecifes que rodean a Vieques tenían niveles más altos de algunos metales y más bajos de otros– hierro, aluminio, cobre, zinc, arsénico, bario, potasio y selenio estaban todos ligeramente más altos-comparados con otros arrecifes que rodean a Vieques. Estos metales se encuentran en bombas y barcos de metal, lo que sugiere una posible contaminación localizada. Pero los niveles eran apenas más altos y la diferencia solo fue estadísticamente significativa cuando se comparó con algunos otros arrecifes que rodean la isla de Vieques.

La ATSDR evaluó los datos ambientales disponibles asociados con actividades militares. Nuestra evaluación muestra que los residentes que viven en la porción central de la isla no tuvieron contacto directo con el suelo de la LIA a niveles que pudieran causar daños a su salud. Si bien compuestos explosivos fueron encontrados en algunos de los animales marinos muestreados, los residentes de Vieques no consumen estos animales. Por lo tanto, los datos disponibles indican que no ocurrió exposición a niveles que pudieran causar daño.

Las siguientes subsecciones describen en forma breve 1) los compuestos orgánicos e inorgánicos y los elementos presentes en municiones y detonaciones, 2) qué se sabe sobre esos componentes en el ambiente de Vieques y 3) si esos componentes pueden relacionarse con la exposición de seres humanos en la Isla.

1.3.1 Compuestos orgánicos en municiones y subproductos de detonaciones

En la región este de Vieques, diversas dependencias de las fuerzas militares de los EE.UU. utilizaron muchos tipos de artefactos explosivos diferentes (p. ej., bombas de fuego, bengalas con paracaídas, misiles, misiles inertes, ametalladoras, bombas de práctica y explosivos de proyectiles activos) (Young 1978). Los compuestos orgánicos normalmente se encuentran en la carga de explosivos de los artefactos explosivos militares, y no en el cartucho. Los componentes explosivos de las bombas variaron a través de los años, pero en general incluían una combinación de

- 2,4,6-trinitrotolueno (TNT),
- Trinitramina de ciclotrimetileno (RDX),
- Metilo-2,4,6-trinitrofenil nitramina (Tetrilo),
- Tetranitramina de ciclotetrametileno (HMX) o
- Picrato de amonio (explosivo D).

Cuando los artefactos explosivos detonan, los explosivos orgánicos se consumen rápidamente y liberan grandes cantidades de energía. En el proceso de detonación, gran parte de los explosivos orgánicos —pero no todos— se destruyen. Así, forman otros compuestos. El conocimiento científico acerca de los subproductos de la detonación de explosiones ha avanzado con el paso de los años. Por ejemplo, algunas publicaciones iniciales de la Marina (Young 1978) enumeraban varios subproductos de detonaciones, previstos según los tipos de explosivos orgánicos utilizados en Vieques. Estas estimaciones incluían los siguientes compuestos y composiciones: dióxido de carbono (35%), nitrógeno (27%), monóxido de carbono (16%), agua (8%), etano (5%), carbono (6%), propano (2%), más varios subproductos menores (p. ej., amoniaco, hidrógeno, cianuro de hidrógeno, metano,
metanol, formaldehído) formados en cantidades vestigiales (<1%). Estas estimaciones se basan en cálculos teóricos, y no en la evaluación en el campo de las detonaciones reales.

Desde entonces los científicos han desarrollado procedimientos de evaluación más sofisticados y rigurosos para identificar y medir los subproductos de las detonaciones. Los estudios con “BangBox” (caja de detonaciones) (p. ej., US Army 1992a, 1999b, 1992c) han sido particularmente útiles para medir en forma directa las sustancias químicas orgánicas liberadas tras las detonaciones. El “BangBox” se refiere a una estructura flexible en la que se detonan artefactos explosivos. Dado que una caja BangBox está completamente cerrada, los subproductos formados durante la detonación no salen de la estructura. El equipo de toma de muestras de aire puede medirlos. Los científicos han utilizado el sistema BangBox para estimar los factores de emisión de diversos tipos de artefactos explosivos, muchos de los cuales son similares o idénticos a los utilizados en Vieques. Los estudios con BangBox han identificado más de 50 compuestos orgánicos en los que se espera se emitan al aire trazas de ellos, como subproductos de detonaciones. Además de los subproductos enumerados en el párrafo anterior, los estudios con BangBox detectaron los siguientes subproductos en cantidades mayores (pero todas eran inferiores al 0.1% de las emisiones totales): dióxido de azufre, benceno, naftaleno, acetileno, ftalato de dibutilo y diversos compuestos aromáticos. El análisis del modelo de aire en la PHA consideró las tasas de emisión de cada uno de los subproductos orgánicos identificados en los estudios con BangBox, para los tipos de artefactos explosivos más similares a los que la Marina utilizó en Vieques.

1.3.2 Compuestos inorgánicos en municiones y subproductos de detonaciones

Los compuestos inorgánicos en municiones, incluidos los metales, se encuentran en las cubiertas de metal de las bombas y, en ocasiones, en la carga de explosivos. Ambas fuentes de compuestos inorgánicos (principalmente metales) se revisan aquí.

La PHA de la ATSDR sobre el aire caracterizó la composición de la artillería arrojada en el LIA y emitida al aire debido a los ejercicios de adiestramiento. Los elementos más abundantes en las cubiertas de las bombas fueron hierro (93%), aluminio (5%), cobre (2%), manganeso (2%) y zinc (0.5%). Los porcentajes mostrados llegan a un total de más del 100%, lo cual no es poco común cuando se expresa el contenido de metales en las mezclas de aleación (es decir, suele utilizarse una concentración de límite superior para caracterizar la composición de los componentes individuales). Mucho otros metales estaban presentes en las cubiertas de las bombas en concentraciones inferiores al 0.02%, incluidos boro, cromo, molibdeno, níquel y titanio (ATSDR 2003b). El metal predominante en las cargas de explosivos fue el aluminio, que representó hasta un 21% de la carga de explosivos en algunas bombas activas (ATSDR 2003b).

Los factores de emisión de los estudios con BangBox identificaron los siguientes cinco metales como aquellos con emisiones más altas, en orden descendente: cobre, zinc, aluminio, calcio y plomo. Se detectaron otros once metales en esos estudios, pero en niveles inferiores. Se debe tener en cuenta que estos estudios no midieron las concentraciones de ciertos metales (p. ej., hierro, manganeso) hallados en concentraciones más altas en las cubiertas de las bombas (ATSDR 2003b).

Dada la revisión previa, el hierro, el aluminio, el cobre, el manganeso, el zinc y el plomo son los metales que tienen mayor probabilidad de estar elevados en los suelos del LIA por la actividad militar, aunque también se encontraron otros metales en las bombas. Debe tenerse en cuenta que...

Dado que el mercurio se utilizó históricamente en ciertos detonadores, el mercurio se ha mencionado como un contaminante de interés (García et ál. 2000). Los datos sobre la composición de la cubierta de las bombas, proporcionados originalmente por la Marina, indicaban que las cubiertas no contenían mercurio, lo cual es congruente con la información incluida en las Hojas de Datos de Seguridad de los Materiales disponibles para el acero (Material Safety Data Sheets). La PHA sobre el aire indicó que las emisiones totales anuales estimadas de mercurio, proveniente de artefactos altamente explosivos utilizados en el LIA, fueron muy bajas (es decir, menos de 0.5 kg por año). Tras la detonación, el mercurio supuestamente se encontraba en trazas en la carga de explosivos y en el suelo expulsado al aire. El estimado de la emisión de mercurio de menos de 0.5 kg por año puede ser comparada con el mercurio de la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (National Emission Standard for Hazardous Air Pollutants (NESHAP)) desarrollada por la EPA de los E.E.U.U. El valor de la emisiones de aire de NESHAP para mercurio en una planta chlor-alkali es de 844 kg por año. Hay más información disponible en: http://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol8/xml/CFR-2011-title40-vol8-part61.xml#seqnum61.52.

Por lo tanto, la artillería activa que se arrojó en el LIA no parece ser una fuente significativa de mercurio en el ambiente de Vieques.

1.3.3 Qué compuestos relacionados con bombas se encontraron en Vieques

Vieques ha visto numerosos esfuerzos de muestreos ambientales durante las últimas décadas. Esta sección revisa la evidencia de compuestos relacionados con artillería en el ambiente local. La información se presenta primero para los compuestos explosivos, luego para los metales.

A continuación es un resumen de los compuestos explosivos hallados en diversos medios en Vieques. Debido a que los compuestos explosivos no ocurren de forma natural, la presencia de estos contaminantes en el medio ambiente indica que las actividades militares pasadas son la fuente más probable.

En el 2000, las muestras de suelo superficial recolectadas del LIA mostraron detecciones poco frecuentes de HMX, RDX, 2-amino-DNT y TNT (CH2MHIll 2000).

En el 2003, las muestras de agua de mar provenientes del interior de una bomba de 2000 libras y de lugares cercanos a ella en Bahía del Sur, mostraron compuestos explosivos, pero los explosivos no se detectaron en muestras cercanas al navío hundido que servía como objetivo, el antiguo USS Killen (Barton y Porter 2004).

En el 2003, las muestras de sedimentos recolectadas en un radio de 2 metros de una bomba de 2000 libras en Bahía Salina del Sur mostraron TNT. A una mayor distancia, la concentración disminuyó a niveles no detectables. Las muestras de sedimentos recolectadas de los alrededores del antiguo USS Killen no contenían residuos de explosivos detectables (Barton y Porter 2004).

En el 2001, se recolectaron peces y mariscos y se analizaron sus tejidos para detectar compuestos explosivos. No se detectaron residuos de explosivos en los tejidos de los peces de ninguna especie ni localización de muestras, excepto en el chapín. Se descubrió que un chapín del mercado de pescado contenía trazas de una sustancia química similar a la RDX. De las cuatro especies de mariscos de las
que se tomaron muestras, solos los cangrejos violinistas demostraron contener el compuesto explosivo HMX. También se detectó una sustancia química similar a la RDX\(^8\) en cangrejos violinistas, pero el nivel de ésta fue tan bajo que no pudo realizarse una determinación precisa. Debido a que los cangrejos violinistas no habían sido lavados antes de la toma de muestras, no quedó claro si los residuos de explosivos estaban presentes en los cangrejos o se debieron a contaminación externa de arena y polvo (ATSDR 2003c).

En el 2003, otros organismos marinos (una damisela, un plumero de mar y un erizo de mar) recogidos cerca de una bomba de 2000 libras en Bahía Salina del Sur presentaron residuos explosivos. Se detectó 1,3,5-trinitrobenceno en una muestra de damisela y se halló TNT en un plumero de mar y en un erizo de mar. No se detectaron residuos de explosivos en muestras de peces y langostas recogidos cerca del antiguo USS Killen. Una muestra de coral obtenida del área del USS Killen contenía residuos detectables de TNT (Barton y Porter 2004).

Los resultados anteriores muestran que persisten pequeñas cantidades de compuestos explosivos en el medio marino y en el medio terrestre de Vieques. Si bien se han detectado explosivos en algunos organismos o sobre ellos (p. ej., plumero de mar, erizo de mar, cangrejo violinista), casi ninguna de las muestras de tejido de peces analizadas hasta la fecha contenía niveles detectables de explosivos; la única excepción fue una sola muestra de tejido de damisela —una especie que no suele ser consumida por las personas— y, posiblemente, una muestra de chapín.

En el resto de esta sección se evalúa la presencia de metales relacionados con municiones en el ambiente de Vieques. Claramente, las bombas arrojadas por la Marina sobre la Isla y en el océano cercano contenían metales. Los metales que cayeron en el ambiente de Vieques podrían cambiar su forma química con el tiempo, pero los metales en sí no se degradarían ni descompondrían. No obstante, dado que muchos metales están presentes en forma natural en el suelo y el sedimento, a menudo resulta difícil distinguir las concentraciones naturales de las concentraciones derivadas de la actividad humana. En el texto que sigue se considera si se ha hallado el que los metales de los suelos del LIA están en niveles por encima de los niveles de trasfondo.

En el 2006, el contratista de la Marina (CH2MHILL) llevó a cabo un estudio de sustancias inorgánicas del suelo en el este de Vieques (CH2MHILL 2007). El objetivo del estudio fue establecer los niveles de trasfondo dentro de las áreas de adiestramiento naval, los cuales pudiesen ser usados para determinar si otras muestras de suelo de áreas sospechadas de estar contaminadas, superaban los niveles de trasfondo. En los casos en los que los resultados de las muestras superaron los rangos de trasfondo, una inferencia lógica es que las mediciones elevadas reflejan aportes de las actividades militares del pasado o de alguna otra fuente artificial. Por cada metal y elemento del informe, se desarrolló un límite superior de tolerancia (upper tolerance limit, UTL) para los diversos tipos de suelo del este de Vieques. El UTL es un valor derivado estadísticamente, y la derivación exacta depende de la forma de la distribución de los resultados de las muestras (p. ej., normal frente a lognormal). La inferencia que se extrae de los UTL es que las concentraciones en suelos medidos que se encuentran por debajo de esos valores no se pueden distinguir de las concentraciones de trasfondo. No sorprende que los UTL más altos fueran para los elementos predominantes del suelo, incluyendo al aluminio (35,000 ppm para todos los tipos de suelo), al hierro (38,100 - 43,200 ppm),

\(^8\) El laboratorio que realizó los análisis no pudo confirmar una identificación concluyente.
según el tipo de suelo) y al magnesio (3,710 - 22,200 ppm, según el tipo de suelo). Otros elementos del suelo tuvieron UTLs con los siguientes rangos, según el tipo de suelo (CH2MHIll 2007):

- Arsénico 1.6 - 9.2 ppm
- Berilio 0.27 - 0.95 ppm
- Cadmio 2.2 - 2.4 ppm
- Cromo 70 - 72 ppm
- Cobalto 16 - 26 ppm
- Cobre 53 - 94 ppm
- Plomo 5.4 - 16 ppm
- Mercurio 0.057 - 0.31 ppm
- Níquel 22 - 41 ppm
- Vanadio 56 - 144 ppm
- Zinc 32 ppm para todos los tipos de suelo

A fin de identificar metales posiblemente asociados con los ejercicios militares, la ATSDR comparó muestras de suelo obtenidas en el 2000 en el LIA (CH2MHILL 2000) con los UTL enumerados anteriormente. En el caso de los siguientes metales, por lo menos el 30% de las concentraciones medidas superaba los niveles de trasfondo en los suelos del LIA, caracterizados según los UTL. A continuación se dan las concentraciones máximas en suelo de cada metal:

- Arsénico 20 ppm
- Berilio 0.48 ppm
- Cromo 120 ppm
- Cobalto 32 ppm
- Hierro 59,000 ppm
- Plomo 33 ppm
- Vanadio 220 ppm
- Zinc 180 ppm

También se consideró al mercurio en esta comparación de datos. Aun así, el nivel promedio de mercurio en suelos del LIA del conjunto de datos del año 2000 fue 0.02 ppm, y el nivel más alto fue 0.086 ppm (CH2MHILL 2000). Solo una de 29 muestras de suelo tenía un nivel de mercurio que podría considerarse por encima de los niveles naturales comparado con los UTL de trasfondo (0.057 - 0.31 ppm; CH2MHILL 2007).

En mayo y octubre de 2007, la Organización Nacional de Océanos y ATMósfera (National Oceanic and Atmospheric Administration, NOAA) recogió aleatoriamente 78 muestras de sedimento y 35 muestras de coral de aguas cercanas a la costa y de varias lagunas internas (solo sedimentos) de Vieques (Bauer y Kendall 2010). Las muestras se agruparon según el uso de la tierra adyacente. Se realizó una serie de pruebas estadísticas para comprender la distribución de las sustancias químicas en los sedimentos. Las concentraciones de cadmio obtenidas de los sedimentos del LIA y cercanos al LIA fueron significativamente más altas que las de los sedimentos recolectados en el área residencial.
de la Isla. También se halló que las concentraciones de cadmio fueron significativamente más altas en los tejidos de coral que en los sedimentos (Bauer y Kendall 2010). Además, las concentraciones de arsénico, cobre, y cromo en los sedimentos de las lagunas internas del LIA fueron, en promedio, más altas que las concentraciones de esos metales en los sedimentos hallados en otras lagunas internas, de las que se obtuvieron muestras en otras partes de Vieques.

En conclusión, las concentraciones de arsénico, berilio, cadmio, cromo, cobalto, cobre, hierro, plomo, vanadio, y zinc, en suelos o sedimentos, parecen ser más altas que los niveles naturales en algunas áreas del LIA y de sus alrededores. La presencia de concentraciones de esos metales por encima del nivel de trasfondo podría reflejar la influencia de las actividades militares, dada la ausencia de otras fuentes de contaminación en el LIA.

1.3.4 Conexión de los contaminantes en Vieques con vías de exposición en seres humanos

La PHA de la ATSDR sobre el suelo evaluó la forma en que los niveles elevados de metales en los suelos del LIA podrían afectar a los viequenses. Las personas que viven en la zona residencial de la Isla no tienen contacto directo con los suelos del LIA, a 7 u 8 millas de distancia. Así que, la exposición de cualquier nivel elevado de metales en los suelos del LIA no puede afectar su salud. La obtención de muestras ambientales específicas mostró que los viequenses que acamparon en partes del LIA entre el 2000 y el 2001 no estuvieron expuestos a metales (u a otros contaminantes) en el suelo a niveles que pudieran perjudicar su salud. Asimismo, la PHA sobre el aire llegó a la conclusión de que los metales en el aire derivados de actividades militares podrían llegar a zonas residenciales de la Isla, pero no a niveles que pudieran perjudicar la salud de las personas.

Sin dudas se produce cierta migración de los contaminantes de los suelos al ambiente marino en Vieques, así como la erosión natural de los suelos ocurre en prácticamente cualquier zona costera. La precipitación y el viento arrastran los suelos del LIA—y las sustancias químicas que se hallan en esos suelos— ya sea directamente a las aguas del mar o a las lagunas internas. Y esas lagunas tienen el potencial de desbordarse y pasar al ambiente marino. Con el tiempo, los procesos de degradación ambiental pueden transformar gradualmente los explosivos del LIA en otras sustancias y, de esa forma, reducir la posible migración de esas sustancias químicas a las aguas del mar. Pero estos procesos de degradación química no descomponen los metales en el LIA. Desde una perspectiva de salud ambiental, si bien es claro que se produce una migración de contaminantes, la tasa y la cantidad de migración de sustancias químicas es más importante.

Las actividades militares en Vieques contaminaron directamente el ambiente marino con compuestos explosivos tales como HMX y RDX. Algunos de los artefactos detonados en el LIA en el pasado cayeron en el océano en lugar de alcanzar objetivos terrestres. El Dr. James Porter aportó evidencia directa de esto, en fotografías mostradas durante una reunión en la ATSDR celebrada en noviembre de 2009. Algunos artefactos hallados en aguas de Vieques aparentemente incluían material sin detonar. Si bien se hallaron compuestos orgánicos explosivos en algunas especies marinas, estas especies no se utilizan para consumo humano; por lo tanto, los datos disponibles de las muestras indican que no se está dando una exposición elevada en seres humanos. No se hallaron compuestos explosivos en los 104 peces comestibles de los que se obtuvieron muestras en el 2001, excepto por una sustancia química similar a la RDX en un chapín obtenido en el mercado de pescado.
Dos observaciones sugieren que el LIA no es en la actualidad la principal fuente de mercurio en los tejidos de los peces. En primer lugar, la mayoría de los niveles de mercurio en los suelos del LIA parecen estar en los niveles naturales, y no hay una variación espacial significativa que sugiera que los niveles de mercurio son más altos en el LIA. En segundo lugar, el estudio de muestras de pescado realizado por la ATSDR no detectó concentraciones de mercurio, insusualmente elevadas, en peces de arrecife de Vieques. Una explicación más viable para los niveles de mercurio hallados en el pescado es que se produjeron a causa de la reserva global de mercurio que circula por el ambiente y no por el mercurio presente en algunas bombas y otras municiones.

En conclusión, la ATSDR evaluó los datos ambientales conocidos asociados con actividades militares. Nuestra evaluación muestra que los residentes que viven en la parte central de la Isla no tuvieron contacto directo con los suelos del LIA a niveles que pudieran perjudicar su salud. Tampoco es probable que los residentes hayan estado expuestos a contaminantes en el aire a niveles que pudieran perjudicar su salud. Si bien se hallaron compuestos explosivos en unas pocas muestras de animales marinos, los residentes no consumieron estos animales. Por lo tanto, los datos disponibles indican que no se produjo exposición a niveles que pudieran perjudicar la salud. La ATSDR concluyó en este informe que algunos residentes que comían con frecuencia peces de arrecife estuvieron expuestos a niveles de mercurio que podrían perjudicar a un feto en desarrollo (vea el capítulo 2).

1.4 La población civil de Vieques

Toda la población civil de la Isla, de alrededor de 10,000 habitantes ——mentionados aquí como viequenses— reside en los 7,000 acres centrales de la Isla, principalmente en los pueblos de Isabel Segunda y Esperanza. Las zonas residenciales están a aproximadamente 7 millas del LIA. Las zonas civiles comprenden residencias y actividades agrícolas, comerciales e industriales. En el pasado, el cultivo principal era la caña de azúcar; otros cultivos incluían coco, granos, batata, aguacate, plátano y papaya. La construcción de una planta de General Electric en el 1969 estimuló el empleo en fábricas en la década del 1970 y liberó 1,1,1-tricloroetano y pequeñas cantidades de cobre al aire exterior (Bermúdez 1998, ATSDR 2003b). Actualmente, sin embargo, la actividad manufacturera en la Isla es mínima. Las flotas pesqueras comerciales tienen su puerto de amarre en Isabel Segunda y Esperanza. Recientemente, el turismo ha crecido en importancia económica. El censo del 2000 indica que el 65% de los residentes de Vieques vive en la pobreza en comparación con el 48% de todo Puerto Rico9. Los resultados del censo de 1990 fueron similares, con el 73% de los residentes de Vieques viviendo en la pobreza en comparación con el 59% en todo Puerto Rico. De acuerdo con el censo del 2000, alrededor de 19% de la población consiste de mujeres en edad de reproducción (15 a 44 años). El 11% de la población son niños de 6 años de edad o menos.

1.5 Evaluación de Vieques de la ATSDR

La evaluación de la agencia con respecto a las preocupaciones de salud pública en Vieques es la última de una serie de investigaciones sobre Vieques. En 1999, un residente de Vieques solicitó a la ATSDR una evaluación respecto a si el uso de artefactos explosivos detonados y sin detonar por parte de la Marina había producido riesgos para la salud. Entre el 2001 y el 2003, la ATSDR publicó

9 Utilizando datos del Censo 2000, el umbral de pobreza en el 2000 fue de $17,603 dólares para una familia de cuatro miembros y $13,738 dólares para una familia de tres.
cuatro evaluaciones de salud pública (PHA). Cada PHA evaluó una vía específica de posible exposición a sustancias químicas: alimentos de origen marino (p. ej., pescados, mariscos y cangrejos de tierra), agua potable, aire, y suelo. Cada una de esas evaluaciones está disponible en: http://www.atsdr.cdc.gov/sites/vieques/publications.html. La ATSDR siguió los procedimientos para evaluaciones de salud pública descritos en el manual Guía Sobre Evaluaciones de Salud Pública (Public Health Assessment Guidance Manual).¹⁰ Científicos expertos revisaron cada una de las PHA antes de su publicación final. Tras el análisis de datos y la realización de modelos, cada una de las PHA concluyó, con una excepción específica, que no había ningún peligro para la salud asociado con ninguna de las vías evaluadas. La excepción fue el agua potable de un pozo local que estaba contaminada con nitratos y no era apta para el consumo.

Sin embargo, algunos científicos de la Universidad de Puerto Rico, Universidad de Georgia y la Universidad de Yale, así como algunos viequenses, no estuvieron de acuerdo con los hallazgos de la ATSDR. La mayoría de los científicos y residentes creían que la presencia durante décadas de la Marina en la Isla había dejado amenazas de residuos ambientales que afectaban la salud pública de Vieques.

Desde el 2009, la ATSDR ha recopilado más de 75 documentos relacionados con la obtención de muestras ambientales, datos de resultados de salud, y biomonitorio. La mayoría de esos documentos estaban disponibles cuando la ATSDR publicó las evaluaciones de salud pública del 2001–2003, pero algunos fueron completados con posterioridad.

En agosto de 2009, científicos y personal de la ATSDR visitaron a Vieques y se reunieron con líderes de la comunidad, con científicos puertorriqueños, y con funcionarios de salud. A partir de esas reuniones, surgió un compromiso de incluir a expertos locales en la revisión realizada por la ATSDR sobre los datos ambientales de Vieques. La ATSDR invitó a científicos puertorriqueños y a otras personas que habían estudiado a Vieques a una reunión celebrada en Atlanta, Georgia, el 5 y 6 de noviembre de 2009. Los participantes se incorporaron en una revisión exhaustiva de múltiples estudios, identificaron las fortalezas y las limitaciones de muchos de ellos, e hicieron recomendaciones para continuar el trabajo. El grupo sugirió que la ATSDR reconsiderara los escenarios de exposición para el consumo de pescado. El grupo también expresó su preocupación por la posible exposición a contaminantes a través del consumo de productos agrícolas cultivados localmente. Este tipo de conversaciones dieron como resultado el que la ATSDR realizara nuevos análisis para este informe. Un resumen de esa reunión está disponible en http://www.atsdr.cdc.gov/sites/vieques/notes_vsc_toc.html.

1.6 El informe

La ATSDR preparó este informe tras una revisión de todos los datos relevantes y disponibles y de la información relacionada, después de la reunión de noviembre con los científicos invitados. Hemos dividido el informe en secciones sobre datos ambientales (es decir, aire, suelo, agua potable y consumo de alimentos), datos de biomonitorio en seres humanos, y datos de resultados de salud. En cada capítulo se formulan conclusiones y recomendaciones, las cuales vuelven a resumirse en el capítulo 9.

Las circunstancias de Vieques son típicas de muchas de las dificultades que enfrentan el público y los funcionarios preocupados por los efectos de las sustancias peligrosas. Son muchas las preguntas que surgen sobre la exposición y la salud de las personas y, en ocasiones, se dispone de relativamente pocos medios para responder a esas preguntas en forma directa. Los datos ambientales a menudo son limitados respecto a la distribución espacial, la cantidad, o la documentación analítica sobre el control de calidad. En consecuencia, siempre existe cierto grado de incertidumbre. Eso significa que una parte clave de cualquier revisión es considerar, antes de sacar conclusiones sobre la salud pública, cuán adecuados son los datos disponibles. Obsérvese, no obstante, que a menudo es posible establecer conclusiones sobre la salud pública a partir de datos limitados siempre y cuando se reconozcan las incertidumbres. Las conclusiones de la ATSDR podrán volverse a evaluar si surge una nueva y mejor información. Por lo tanto, en esta evaluación, la ATSDR identifica los datos disponibles y también los datos que hacen falta.

A diferencia de los datos ambientales, el biomonitoreo en seres humanos puede demostrar cuánto de una sustancia química ha ingresado al cuerpo humano. Los niveles de metales y sustancias químicas orgánicas en sangre y orina pueden ser útiles, en el sentido comparativo, en el que grupos potencialmente expuestos pueden ser comparados con grupos que no están expuestos o que tienen menor exposición, a fin de evaluar si el grupo estudiado presenta una exposición inusual o más alta que la esperada. Las limitaciones del biomonitoreo incluyen el momento apropiado de obtención y la recolección apropiada de las muestras, lo que afectará la interpretación de los datos. Además, en la mayoría de las situaciones, el biomonitoreo aporta información sobre una exposición actual o reciente; solo en ciertas situaciones, cuando una sustancia química puede permanecer en el cuerpo (p. ej., el plomo en los huesos), el biomonitoreo aporta información acerca de exposiciones que ocurrieron hace mucho tiempo.

La reunión celebrada en Atlanta en el 2009 resultó en que la ATSDR realizara nuevos análisis, según se detalla en los capítulos de este informe. El Apéndice A incluye resúmenes breves de cada informe analizado como parte de esta evaluación. Tras una examinación atenta de los datos informados con anterioridad, de los datos nuevos, y de nuevos conocimientos científicos, la ATSDR llegó a las conclusiones y recomendaciones incluidas al final de cada capítulo sobre datos ambientales, el capítulo sobre resultados de salud, los capítulos sobre datos de biomonitoreo, y el capítulo 9.

Dado que han sido completados la revisión externa por expertos científicos y el periodo de comentarios públicos, el documento está finalizado. La ATSDR espera que el informe guíe futuros trabajos de las agencias ambientales y de salud pública, y de los científicos en Vieques.

1.7 Bibliografía

Bauer, L.J. and M.S. Kendall (eds.). 2010. An Ecological Characterization of the Marine Resources of Vieques, Puerto Rico Part II: Field Studies of Habitats, Nutrients, Contaminants, Fish, and Benthic Communities. NOAA Technical Memorandum NOS NCCOS 110. Silver Spring, MD.

US Army. 1992c, Development of methodology and techniques for identifying and quantifying products from open burning and open detonation thermal treatment methods-BangBox Test Series, Volume 3, Quality Control and Quality Assurance. Rock Island, IL: AMMCOM, 61299-6000; enero.

Capítulo 2 Consumo de pescado de los arrecifes frente a la costa de Vieques

2.1. Introducción al consumo de pescado viequense ... 23
 2.1.1. Una revisión breve del mercurio .. 23
 2.1.2. Resumen de la PHA sobre peces del 2003 de la ATSDR .. 24
 2.1.3. Aviso nacional conjunto de la EPA y la FDA sobre el consumo de pescado 24
 2.1.4. El ambiente marino de Vieques .. 26

2.2. Evaluación de los datos disponibles sobre peces ... 27
 2.2.1. Datos sobre peces de la Universidad Metropolitana .. 27
 2.2.2. Datos de peces y alimentos de origen marino de la ATSDR 32
 2.2.3. Fortalezas y limitaciones de los datos sobre peces y alimentos de origen marino de la ATSDR de 2001 .. 36
 2.2.4. Niveles de mercurio en peces de arrecife de Vieques .. 38
 2.2.5. Evaluación toxicológica de mercurio en el pescado de Vieques 44
 2.2.6. Posibles efectos combinados de sustancias químicas presentes en peces y otra fauna y flora ... 47

2.3. Conclusiones y recomendaciones ... 47
 2.3.1. Conclusiones ... 47
 2.3.2. Recomendaciones .. 50

2.4. Bibliografía ... 51

2.5. Apéndice 2A-1: Análisis estadístico de los datos sobre peces de la ATSDR 55
 2.5.1. Evaluación de las pruebas estadísticas y el número de muestras 55
 2.5.2. Diseño de la muestra .. 55
 2.5.3. Resumen de las estadísticas para la prueba de la hipótesis relacionada con la salud ... 56
 2.5.4. Limitaciones de las pruebas .. 58
 2.5.5. Resumen estadístico para las pruebas por localización ... 58
 2.5.6. Resultados de las pruebas (enfocadas en el mercurio) .. 58
 2.5.7. Limitaciones de las pruebas .. 61
 2.5.8. Mercurio: Tres estudios en seres humanos y la dosis de referencia de la EPA de los EE.UU ... 62

2.6. Apéndice 2A-2: Dosis estimadas en los residentes por comer pescado de Vieques 64

2.7. Apéndice 2A-3: El aviso nacional conjunto sobre el consumo de pescado de la EPA de los EE.UU. y la FDA ... 65
Resumen del capítulo 2

Ante la solicitud de los científicos que visitaron la ATSDR en el 2009, la ATSDR evaluó el riesgo del mercurio presente en peces y mariscos comparando los estimados de la ingesta de mercurio con las guías recomendadas por la Academia Nacional de Ciencias (National Academy of Sciences, NAS) y la EPA de los EE.UU.

ATSDR identificó la exposición a mercurio por el consumo frecuente de alimentos de origen marino como un riesgo potencial para la salud pública. Tras una revisión de las ingestas estimadas de mercurio por el consumo de alimentos de origen marino, la ATSDR llegó a la conclusión de que los niños nacidos de mujeres que comen pescado a diario de las aguas que rodean a Vieques tienen un mayor riesgo de presentar efectos adversos en la salud. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora. Además, incluso si los niños no estuvieron expuestos en el útero, algunos niños que comen con frecuencia pescados de las aguas que rodean a Vieques también tienen riesgo de presentar efectos perjudiciales. Esta conclusión acerca del riesgo de efectos perjudiciales para los fetos y niños es, en cierto modo, incierta, principalmente porque la respuesta de una persona al mercurio es, de por sí, algo incierta. Algunos factores que aportan a la incertidumbre son la forma en que el cuerpo maneja el mercurio, el género, la genética, la salud y el estado nutricional de la persona que come el pescado. Asimismo, la estimación de la ingesta de mercurio a partir del consumo de peces de arrecife también es incierta. La ingesta podría variar según el tipo, la frecuencia y la cantidad de pescado consumido. Información actualizada de los hábitos de consumo de pescado de los viequenses y de los niveles de mercurio en el pescado podría reducir esta incertidumbre.

El análisis estadístico mostró que algunos peces y mariscos de ciertos arrecifes que rodean a Vieques tenían niveles más altos de algunos metales y menores niveles de otros metales, hierro, alumino, cobre, zinc, arsénico, bario, potasio y selenio estaban todos ligeramente más altos comparados con otros arrecifes alrededor de Vieques. Estos metales son materiales encontrados en bombas y en barcos de metal, lo que sugiere una posible contaminación localizada. Pero los niveles fueron ligeramente más elevados y la diferencia estadística solo fue significativa para algunos arrecifes comparada con otros arrecifes que rodean a Vieques.

La ATSDR recomienda lo siguiente para la consideración por parte de las agencias ambientales y de salud pública, y de los científicos:

- Seguir los avisos disponibles sobre peces y mantener las restricciones de pesca cerca del LIA;
- Realizar una encuesta para determinar el tipo, frecuencia y cantidad de pescado consumido;
Realizar evaluaciones de riesgo y análisis estadísticos adicionales con la información obtenida de la encuesta sobre consumo de pescado recomendada anteriormente;

Obtener y analizar muestras adicionales de peces de Vieques si la encuesta propuesta y el análisis estadístico no proporcionan información de salud pública suficiente. Obtener muestras suficientes de peces para permitir el análisis por especies y por localización; y

Elaborar un programa educativo acerca del mercurio en los peces que incorpore los hábitos locales e información sobre el consumo de alimentos de origen marino de los viequenses.
2.1 Introducción al consumo de pescado viequense

A muchos viequenses les sigue preocupando que los ejercicios militares que la Marina de los EE.UU. realizó en el pasado puedan haber contaminado los peces y otras formas de vida marina cerca de la isla. Los peces y otras especies provenientes de las aguas de Vieques constituyen una parte importante de la dieta de los viequenses. La presencia de niveles altos de contaminantes en los peces y otros animales marinos podría afectar la salud de las personas que los consumen. Pero no es infrecuente que haya metales pesados en peces y mariscos. Según la geología y composición química de un área, los peces y mariscos asimilan metales variados en diversas concentraciones. Por lo tanto, en poblaciones que comen cantidades considerables de pescado, es bastante razonable realizar una evaluación de la exposición a metales pesados.

Durante la reunión de la ATSDR celebrada en Atlanta en noviembre de 2009, varios científicos hicieron preguntas acerca de los niveles de mercurio en los peces. Informaron que hallaron residentes con niveles elevados de mercurio en el cabello. Si esos niveles de mercurio son indicativos de la carga corporal de mercurio, podrían implicar un riesgo de efectos neurológicos para un feto en desarrollo. Los científicos estaban preocupados de que las conclusiones de la PHA sobre peces del 2003 de la ATSDR eran incompatibles con el aviso nacional del 2004 de la EPA de los EE.UU. y la Administración de Alimentos y Medicamentos (Food and Drug Administration, FDA) sobre el consumo de pescado y el mercurio. También les preocupaba que la ATSDR no utilizara las recomendaciones de la Academia Nacional de Ciencias a la EPA de los EE.UU. sobre la toxicidad del mercurio. Por lo tanto, la ATSDR está reevaluando sus conclusiones y recomendaciones de 2003 acerca del mercurio en los peces de los arrecifes que rodean a Vieques.

La evaluación de mercurio realizada por la ATSDR en el medio ambiente de Vieques indica que es más probable que el mercurio provenga de la reserva global de mercurio presente en el ambiente y no de los ejercicios militares del pasado. En el capítulo 1, sección 1.3, hay un análisis más detallado de este tema. No obstante, debido a que se mantienen las preocupaciones con respecto a la salud pública, la ATSDR revisó su evaluación de mercurio en los peces.

2.1.1 Una revisión breve del mercurio

El mercurio se halla en varias formas químicas: mercurio elemental, mercurio inorgánico y metilmercurio. El mercurio elemental es el material plateado conocido que se encuentra en algunos termómetros. El mercurio presente en el suelo suele ser mercurio inorgánico, mientras que el mercurio presente en peces y mariscos es predominantemente metilmercurio, con pequeñas cantidades de mercurio inorgánico. Cuando el mercurio elemental o inorgánico entra a ambientes de agua dulce o agua salada, una parte se transforma en metilmercurio, que se acumula en los peces y alimentos de origen marino. La forma metilmercurio en los peces es la forma perjudicial para los fetos en desarrollo y para los niños pequeños. En los análisis de detección de mercurio en pescados, sin embargo, suelen estar presentes todas las formas de mercurio. Se hace referencia a estos análisis como concentración total de mercurio o, simplemente, concentración de mercurio. Para la identificación de concentraciones de metilmercurio solo o mercurio inorgánico en peces se requieren análisis específicos.
2.1.2 **Resumen de la PHA sobre peces del 2003 de la ATSDR**

En julio de 2001, la ATSDR recolectó 104 muestras de peces y 42 muestras de mariscos. La ATSDR analizó los tejidos comestibles para detectar metales y compuestos explosivos. Las 42 muestras de mariscos consistían en 20 carruchos, 7 langostas, 11 cangrejos azules de tierra y 4 cangrejos violinistas. De 25 cangrejos azules de tierra se obtuvieron 11 muestras combinadas, y de 146 cangrejos violinistas se obtuvieron cuatro muestras combinadas. Todas las muestras se analizaron en forma individual excepto por los cangrejos azules (unidos en 11 muestras combinadas) y los cangrejos violinistas (combinados en cuatro muestras). Como se esperaba, los resultados mostraron diversos metales en el tejido de peces y mariscos. Por lo tanto, en su PHA sobre peces de 2003, la ATSDR evaluó si el tejido muscular de peces y mariscos contenía niveles de metales pesados que representaran un riesgo para la salud. En su PHA sobre peces de 2003, la ATSDR utilizó tasas de ingesta de pescado centradas en personas que consumían grandes cantidades (es decir, 8 onzas para los adultos y 4 onzas para los niños) y que comían pescado todos los días. La agencia también utilizó pesos corporales estándares de 70 kilogramos (kg) (o 154 libras) para los adultos y 16 kg (35 libras) para los niños. La ATSDR también dio por sentado que todo el mercurio detectado en peces y mariscos era metilmercurio; numerosos estudios sobre peces confirman eso (ATSDR 1999; Greib et al. 1990; Bloom 1992). En la PHA sobre peces de 2003, las dosis estimadas se compararon con el nivel mínimo de riesgo (minimal risk level, MRL) crónico de la ATSDR para metilmercurio. En junio de 2003, la ATSDR publicó su evaluación de esos datos como una evaluación de salud pública, con las siguientes conclusiones:

- Diversos pescados y mariscos se podían consumir con seguridad todos los días;
- El consumo de pescados y mariscos de cualquiera de las localizaciones de las que se obtuvieron muestras era seguro, incluyendo las localizaciones que rodean el LIA y el navío hundido USS Killen que fue usado como blanco de tiro; y
- El pargo, la especie consumida más comúnmente, es seguro para el consumo diario.

Estas recomendaciones se basaron en el bajo nivel de mercurio y de otros metales detectado en los peces capturados en los arrecifes, en el navío hundido y en un mercado de pescado comercial de la isla. La presencia de sustancias químicas orgánicas asociadas con actividades militares del pasado se detectó con muy poca frecuencia en las muestras de alimentos de origen marino, y sus niveles fueron bajos.

2.1.3 **Aviso nacional conjunto de la EPA y la FDA sobre el consumo de pescado**

En marzo de 2004, un año después de la Evaluación de Salud Pública, la EPA y la Administración de Alimentos y Medicamentos (FDA) publicaron un aviso nacional conjunto sobre el pescado. En él se destacaba que los pescados y mariscos eran una parte importante de una dieta saludable. El aviso señalaba que los pescados y mariscos contienen proteínas de alta calidad y otros nutrientes esenciales, un nivel bajo de grasas saturadas y aportan ácidos grasos omega 3, una sustancia química saludable para el corazón. Una dieta bien balanceada que incluyera diversos pescados y mariscos podía contribuir a la salud del corazón y a un crecimiento y desarrollo apropiados en los niños. El aviso concluía que las
mujeres y niños pequeños en particular debían incluir pescados o mariscos en la dieta (USEPA 2004; FDA 2004).

El aviso conjunto de la FDA/USEPA admitía que casi todos los pescados y mariscos contienen trazas de mercurio. Para la mayoría de las personas, el riesgo de efectos en la salud relacionados con el mercurio por comer pescados y mariscos no era una preocupación. Sin embargo, algunos pescados y mariscos pueden contener niveles de mercurio que se consideran perjudiciales para la salud. Se recomienda a las mujeres y a los niños pequeños no consumirlos, en especial en grandes cantidades. Los riesgos derivados del mercurio en pescados y mariscos dependen de los niveles de mercurio presentes en los pescados y mariscos consumidos y de la cantidad que se consuma. La FDA y la EPA de los EE.UU. recomendaron a las mujeres que pudieran quedar embarazadas, a las mujeres embarazadas, a las madres en periodo de lactancia y a los niños pequeños evitar algunos tipos de pescados y mariscos, y comer pescados y mariscos que han demostrado tener niveles de mercurio más bajos (USEPA 2004; FDA 2004).

El aviso conjunto indicaba que al seguir estas recomendaciones para seleccionar y consumir pescados o mariscos, las mujeres y los niños pequeños tendrían beneficios en la dieta. A la misma vez, reducirían su exposición a los efectos perjudiciales del mercurio. La EPA y la FDA hicieron las siguientes recomendaciones y declaraciones:

- No comer tiburón, pez espada, pez sierra ni blanquillo, ya que contienen altos niveles de mercurio.
- Comer hasta 12 onzas (2 comidas promedio) por semana de diversos pescados y mariscos con bajo contenido de mercurio.
- En los Estados Unidos continentales, cinco de los peces más consumidos con bajo nivel de mercurio son camarón (0.012 ppm)\(^{11}\), atún claro enlatado (0.12 ppm), salmón (0.01 ppm), abadejo (0.04 ppm) y bagre (0.05 ppm). Otro pescado que es de consumo habitual en los Estados Unidos continentales es el albacora ("atún blanco") (0.36 ppm) que tiene más mercurio que el atún claro enlatado. La EPA de los EE.UU. y la FDA recomendaron limitar el consumo de albacora a una sola comida de 6 onzas (una comida promedio) por semana.
- La EPA y la FDA recomendaron revisar los avisos locales sobre la seguridad de los peces capturados por familiares y amigos en ríos, lagos y áreas costeras locales. Si no existe un aviso local, comer solo hasta 6 onzas (una comida promedio) por semana de peces capturados en aguas locales, pero no consumir ningún otro pescado durante la semana.
- La EPA y la FDA sugieren seguir las mismas recomendaciones al servir pescados y mariscos a los niños pequeños, pero con porciones más pequeñas (USEPA 2004; FDA 2004).

Obsérvese que la FDA actualmente compara el riesgo de pescados con mercurio con los beneficios de comer pescado (FDA 2009). Según la evaluación preliminar de riesgos y beneficios, la FDA calculó el efecto neto del consumo de distintas cantidades de pescado. Los resultados indicaron que, en función

\(^{11}\) Nivel promedio de mercurio informado por la FDA (FDA 2004).
del desarrollo verbal, el consumo de especies de peces con bajo nivel de metilmercurio probablemente podía producir un beneficio neto modesto. Cuando la FDA modeló el consumo real para el rango de concentraciones de metilmercurio (baja a alta) en los peces, la probabilidad de un efecto adverso en los niños fue pequeña. Además, la FDA llegó a la conclusión de que el consumo de pescado previene una cantidad significativa de muertes por enfermedades coronarias del corazón y derrames cerebrales (accidente cerebrovascular) cada año en los adultos. No obstante, la FDA señaló que no se debe interpretar que su evaluación de riesgos y beneficios alterara el entonces existente aviso sobre consumo de pescado emitido por el organismo (FDA 2009). Hay más información sobre la evaluación de riesgos y beneficios de la FDA disponible en: http://www.fda.gov/Food/FoodSafety/ProductSpecificInformation/Seafood/FoodbornePathogensContaminants/Methylmercury/ucm088794.htm.

2.1.4 El ambiente marino de Vieques

Las siguientes descripciones breves proveen información sobre los efectos ecológicos en los arrecifes de coral que rodean a Vieques.

- En julio de 2001, el Equipo de respuesta ambiental de la EPA de los EE.UU. (Environmental Protection Agency’s Environmental Response Team, USEPA/ERT), recolectó peces y mariscos de los arrecifes cercanos a la costa de Vieques para la evaluación de salud pública de la ATSDR. Los buzos que obtuvieron las muestras informaron que la presencia de artefactos sin detonar (UXO) era algo común cerca del antiguo USS Killen (un navío de la Marina hundido intencionalmente al sur del LIA que fue usado como blanco de tiro) y que se los podía ver ocasionalmente en una pradera marina al norte del LIA. A pesar de la presencia de UXO, los buzos observaron que todos los lugares en los que obtuvieron muestras permitían la existencia de poblaciones diversas y sanas de organismos marinos y que los arrecifes visitados estaban en buen estado. Los buzos también observaron que, con unas pocas excepciones, los peces y mariscos recolectados parecían sanos (USEPA 2001).

- En noviembre de 2001, un contratista de la Marina (Geo-Marine) caracterizó los organismos biológicos hallados en el antiguo USS Killen y en sus alrededores. El propósito era evaluar la salud de las especies marinas y evaluar los posibles efectos en la fauna y flora circundante. La conclusión general fue que el navío hundido y sus contenidos no tenían ningún efecto negativo en el ecosistema del arrecife de coral; más bien actuaban como un productivo hábitat de arrecife artificial (Geo-Marine 2002).

- En junio de 2003, investigadores de la Universidad de Georgia y de la Recuperación de Municiones Submarinas (Underwater Ordnance Recovery) recopilaron datos sobre la integridad ambiental y la salud del ecosistema de los arrecifes de coral de Vieques. Informaron la presencia de UXO submarinos y de numerosos barriles de 55 galones en Bahía Salina del Sur (la bahía que está al suroeste del antiguo LIA) y documentaron daños en los arrecifes de coral (Barton y Porter 2004).

- En mayo y octubre de 2007, la Organización Nacional de Océanos y Atmósfera (NOAA) realizó una caracterización ecológica de los recursos marinos de Vieques. Se halló poca evidencia de que hubiera diferencias en los recursos marinos, los nutrientes o los contaminantes entre las
zonas para diferentes usos de la tierra del pasado. La fauna y flora, los nutrientes y los niveles de contaminantes alrededor de Vieques concuerdan, en general, con otros ecosistemas de arrecifes de coral (Puerto Rico y las Islas Vírgenes de los EE.UU.) y parecen estar moldeados por procesos que tienen lugar a escala regional más que por factores locales. Los resultados de este estudio no respaldaron la hipótesis de que las actividades militares afectaron en forma negativa el ambiente marino en los alrededores de Vieques. Este estudio tampoco respaldó la hipótesis opuesta: que la ausencia de desarrollo en dos tercios de la isla haya influido en forma positiva en el ambiente marino (Bauer y Kendall 2010).

En julio de 2008, el Instituto Nacional de Arrecifes de Coral (National Coral Reef Institute) publicó los resultados de un estudio que investigó si los arrecifes de coral en los alrededores de Vieques estaban en mejor o peor estado que los arrecifes que rodean St. Croix. Aunque los investigadores observaron evidencia de actividad militar pasada en Vieques (p. ej., bombas sin detonar, cartuchos y vainas de municiones al norte y al sur del LIA), no hallaron diferencias en la cubierta béntica viva y la estructura de ensamblaje de los corales entre las dos islas. Se llegó a la conclusión de que los efectos de las alteraciones naturales presentes en todo el Caribe (enfermedad y tormentas) tienen un mayor impacto en los arrecifes de coral que el que tuvieron las actividades militares del pasado en Vieques (Riegl et ál. 2008).

2.2 Evaluación de los datos disponibles sobre peces

Se dispone de dos conjuntos de datos sobre niveles de metales en los peces. Uno es de la Universidad Metropolitana de Puerto Rico, el otro es de la ATSDR. Ambos conjuntos de datos se originaron de muestreos realizados entre 1999 y 2000 o en 2001.

2.2.1 Datos sobre peces de la Universidad Metropolitana

Entre diciembre de 1999 y abril de 2000, la Dra. Doris Caro, junto con la Escuela de Asuntos Ambientales de la Universidad Metropolitana, recolectaron 52 peces de dos mercados de Vieques (norte de Vieques y Esperanza) y compararon los resultados con 26 peces recolectados de mercados de pescado del área de la Parguera en la isla principal de Puerto Rico (Caro 2000). La doctora también encuestó a 51 residentes y pescadores de Vieques para determinar cuál era el pescado consumido con mayor frecuencia. Entre los 51 residentes encuestados, la Dra. Caro informó las siguientes frecuencias de consumo de pescado:

- 20% nunca come pescado,
- 47% come pescado 1 a 2 veces por semana,
- 18% come pescado 3 a 4 veces por semana y
- 16% come pescado cinco veces a la semana o más (Caro 2000).

Así, la Dra. Caro informó que el 34% de los viequenses comía pescado 3 a 4 veces o más por semana. La encuesta más extensa y aleatorizada del Departamento de Salud de Puerto Rico realizada en 2004

12 Los porcentajes se redondearon a números enteros.
respaldó los hallazgos de la doctora. El manuscrito del Departamento de Salud de Puerto Rico informó que el 38% de los viequenses comía pescado tres o más veces por semana. Ambas encuestas muestran que una parte significativa de los viequenses comen pescado regularmente. Por lo tanto, la suposición de la ATSDR de que una proporción significativa de viequenses come pescado a diario parece razonable, aunque se desconozca el porcentaje exacto.

La Dra. Caro también proveyó información sobre el tipo de pescado que comían los 51 encuestados. La Tabla 2-1 muestra estos resultados de la encuesta de la Dra. Caro junto con la cantidad de encuestados que comen ciertos pescados (Caro 2000).

La Dra. Caro llegó a la conclusión de que las concentraciones de metal detectadas en los peces de Vieques no mostraban que hubiera bioacumulación de metales en el pez, lo que indicaba la ausencia de una relación definida entre el peso y el tamaño del pez y el contenido en metales (Caro 2000). Sin embargo, los datos de la ATSDR mostraron bioacumulación en algunas especies.

Las concentraciones de mercurio en peces que obtuvo la Dra. Caro se muestran en la Tabla 2-2 como ppm, aunque no hay certeza de que las concentraciones informadas sean peso seco o peso húmedo. Hemos intentado comunicarnos con el laboratorio para verificar cómo se reportaron los datos, pero no hemos recibido una respuesta. El método descrito produce resultados sin procesar en peso seco. Las concentraciones de mercurio fueron extremadamente bajas (inferiores a los resultados de la ATSDR en base a peso seco o húmedo), pero este último hecho podría explicarse por los pesos muy bajos de los peces. Por ende se mantiene la incertidumbre acerca de si los resultados son peso seco o húmedo. Independientemente de esto, la Dra. Caro llegó a la conclusión de que los resultados muestran que las concentraciones de mercurio son mayores en peces de mercados en Vieques en comparación con la población control de la Parguera (Caro 2000).

Se llegó a estas conclusiones mediante promedios calculados de una manera no consistente con los métodos de la EPA de EE.UU. La Dra. Caro declara que los resultados justifican con toda claridad la necesidad de más muestreos. Estamos de acuerdo con esta última afirmación.
Tabla 2-1. Tipo de pescados que comían los 51 encuestados según lo informa la Dra. Doris Caro en su encuesta de los viequenses.

<table>
<thead>
<tr>
<th>Cantidad de encuestados</th>
<th>Nombre común en español</th>
<th>Nombre científico</th>
<th>Nombre común en inglés</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Colirrubia</td>
<td>Ocyurus chrysurus</td>
<td>Yellowtail snapper</td>
</tr>
<tr>
<td>32</td>
<td>Mero cabrilla</td>
<td>Epinephelus adscensionis</td>
<td>Rock hind (spotted grouper)</td>
</tr>
<tr>
<td>29</td>
<td>Langosta</td>
<td>Palinurus argus</td>
<td>Spiny lobster</td>
</tr>
<tr>
<td>26</td>
<td>Peje puerco</td>
<td>Balistes vetula</td>
<td>Queen triggerfish</td>
</tr>
<tr>
<td>24</td>
<td>Sierra</td>
<td>Scomberomorus maculatus</td>
<td>Spanish mackerel</td>
</tr>
<tr>
<td>23</td>
<td>Capitán</td>
<td>Lachnolaimus maximus</td>
<td>Hogfish</td>
</tr>
<tr>
<td>21</td>
<td>Cotorro</td>
<td>Sparisoma sp.</td>
<td>Parrotfish</td>
</tr>
<tr>
<td>20</td>
<td>Chapín</td>
<td>Lactophrys trigonus</td>
<td>Trunkfish</td>
</tr>
<tr>
<td>13</td>
<td>Bonito</td>
<td>Euthynnus aleteratus</td>
<td>Little tunny</td>
</tr>
<tr>
<td>11</td>
<td>Negra</td>
<td>Lutjanus bucanella</td>
<td>Blackfin snapper</td>
</tr>
<tr>
<td>11</td>
<td>Dorado</td>
<td>Coryphaena hippurus</td>
<td>Dolphinfish (Mahi-mahi)</td>
</tr>
<tr>
<td>11</td>
<td>Chillo</td>
<td>Lutjanus vivanus</td>
<td>Silk snapper</td>
</tr>
<tr>
<td>11</td>
<td>Boquicolora’o</td>
<td>Haemulon plumier</td>
<td>Striped (white) grunt</td>
</tr>
<tr>
<td>10</td>
<td>Common dentex</td>
<td>Dentex sp.</td>
<td>Dentex</td>
</tr>
<tr>
<td>8</td>
<td>Atún</td>
<td>Thunnus</td>
<td>Tuna</td>
</tr>
<tr>
<td>8</td>
<td>Tiburón</td>
<td>Numerosos géneros (p. ej., Etmopterus, Carcharhinus)</td>
<td>Shark</td>
</tr>
<tr>
<td>5</td>
<td>Sharpsnout*</td>
<td>No se sabe</td>
<td>Sharpsnout</td>
</tr>
<tr>
<td>4</td>
<td>Abanico†</td>
<td>Makaira nigricans</td>
<td>Blue Marlin</td>
</tr>
<tr>
<td>4</td>
<td>Salmón</td>
<td>Salmo y Oncorhynchus</td>
<td>Salmon</td>
</tr>
<tr>
<td>3</td>
<td>Carrucho</td>
<td>Strombus</td>
<td>Conch</td>
</tr>
<tr>
<td>1</td>
<td>Snook</td>
<td>Centropomus</td>
<td>Snook</td>
</tr>
<tr>
<td>1</td>
<td>Salmonete</td>
<td>Mullloidichthys</td>
<td>Goatfish</td>
</tr>
<tr>
<td>1</td>
<td>Arrayao</td>
<td>Lutjanus synagris</td>
<td>Lane snapper</td>
</tr>
<tr>
<td>1</td>
<td>Jurel aleta amarilla</td>
<td>Caranx hippos</td>
<td>Crevalle Jack</td>
</tr>
</tbody>
</table>

*Como no se proporciona el género, no queda claro si sharpsnout se refiere a la raya, el sargo picudo o el peluda.
†La ATSDR no conoce con seguridad el nombre en español utilizado por los viequenses para referirse al blue marlin. Otros nombres posibles son aguja, castero, prieta y voladora.

La Dra. Caro también declara que su informe debe considerarse como un punto de partida para una encuesta más abarcadora. La doctora recomienda lo siguiente:

1. Elegir especies centinela, incluyendo algunas cercanas a sedimentos.
2. Obtener muestras de peces de otras áreas de la isla, principalmente de áreas en las que no haya artefactos militares.
3. Obtener muestras de peces después del inicio de los ejercicios militares y analizarlas de forma adecuada.

4. Obtener muestras de crustáceos y analizarlas (p. ej., cangrejos, langostas), y de otras especies marinas, como caracoles.

5. Asignar fondos adicionales para ampliar el estudio propuesto.

6. Realizar un estudio de evaluación de riesgo de las especies analizadas y los resultados obtenidos.

Tabla 2-2. Niveles promedio de mercurio en los peces obtenidos en mercados de pescado del norte de Vieques, el sur de Vieques (Esperanza) y la Parguera, Puerto Rico (Caro 2000).

<table>
<thead>
<tr>
<th>Pez</th>
<th>Norte de Vieques (n) ppm</th>
<th>Sur de Vieques (Esperanza) (n) ppm</th>
<th>Parguera (n) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrayao (lane snapper)</td>
<td>0.048 (3)</td>
<td>0.018 (2)†</td>
<td>0.000 (1)</td>
</tr>
<tr>
<td>Boquicoloró (striped grunt)</td>
<td>0.029 (6)</td>
<td>0.024 (6)‡</td>
<td>0.008 (4)</td>
</tr>
<tr>
<td>Colirrubia (yellow tail snapper)</td>
<td>0.019 (7)</td>
<td>0.022 (3)</td>
<td>0.004 (2)</td>
</tr>
<tr>
<td>Cotorro azul (blue parrotfish)</td>
<td>0.002 (3)</td>
<td>NA</td>
<td>0.001 (2)</td>
</tr>
<tr>
<td>Cotorro rojo (stoplight parrotfish)</td>
<td>0.000</td>
<td>NA</td>
<td>0.001 (3)</td>
</tr>
<tr>
<td>Cotorro verde (redband parrotfish)</td>
<td>0.010 (1)</td>
<td>NA</td>
<td>0.007 (5)</td>
</tr>
<tr>
<td>Salmonete de altura (goatfish)</td>
<td>0.038 (1)</td>
<td>NA</td>
<td>0.001 (2)</td>
</tr>
<tr>
<td>Pluma (dogfish)</td>
<td>NA</td>
<td>0.018 (3)</td>
<td>0.008 (2)</td>
</tr>
<tr>
<td>Mero cabrilla (Red hind)</td>
<td>0.010 (4)</td>
<td>0.015 (1)</td>
<td>0.011 (3)</td>
</tr>
</tbody>
</table>

*n = cantidad de muestras
NA = ninguna muestra disponible

*Se desconoce si las concentraciones representan el peso húmedo o el peso seco; ni el laboratorio ni el informe de la Dra. Caro lo indican. En esta tabla se utilizan los valores calculados por Caro et ál. 2000, del Apéndice 10. Esos promedios incluyen valores que están por debajo del nivel de detección del instrumento.

† En la tabla original del cuerpo del texto del informe de la Dra. Caro hay un error tipográfico evidente. Los datos del Apéndice 10 del informe muestran que el promedio es 0.018 ppm, no 0.048 ppm.

‡ En la tabla original del cuerpo del texto del informe de la Dra. Caro hay un error tipográfico evidente. Los datos del Apéndice 10 del informe muestran que el promedio es 0.024 ppm, no 0.029 ppm.

Los datos de la Universidad Metropolitana tienen varias fortalezas pero también algunas limitaciones. Para asegurarse de que las concentraciones de metales en los peces fueran las que las personas consumían, los investigadores recolectaron las muestras de pescado de dos mercados locales. Los investigadores entrevistaron a 51 residentes y pescadores acerca de sus hábitos de consumo de pescado y dónde los compraban o los pescaban. Los investigadores averiguaron que las muestras de los mercados de pescado incluían peces de los arrecifes y de océano abierto. Por lo tanto, las

13 Nótese que ya no es posible obtener muestras de peces después del comienzo de los ejercicios militares porque han cesado todos los ejercicios.
concentraciones de metales en los pescados de mercado de Vieques no necesariamente representan las concentraciones de metales de los peces de arrecife cerca de Vieques. Además, los participantes no fueron seleccionados aleatoriamente y solo se realizó una cantidad limitada de encuestas (es decir, 51). Todo esto agrega cierta incertidumbre a la identificación de todas las especies de pescado que consumen los viequenses y a la frecuencia de consumo de pescado por parte de los viequenses. Y, como se señaló, con respecto a los resultados de la obtención de muestras de peces, los autores no especificaron si los resultados se referían a peso húmedo o peso seco. Esto impide hacer un estimado confiable de las dosis humanas derivadas del consumo de pescado. No obstante, a pesar de estas limitaciones, uno de los expertos que revisó este informe solicitó un análisis adicional de los datos de la Dra. Caro.

Por lo tanto, con una modificación, después de reagrupar y volver a promediar los datos de la Dra. Caro, dichos datos pueden compararse con los de la ATSDR. Dado que la Dra. Caro reportó promedios por pez según la especie en lugar de la familia, en algunas localizaciones solo hay uno o dos peces para comparar. Además, al calcular los promedios, la Dra. Caro utilizó valores que se encuentran por debajo del límite de detección.

La ATSDR utilizó los datos crudos u originales informados en el Apéndice 10 del informe de la Dra. Caro para agrupar las especies de peces en familias de ambos mercados de Vieques. De esa forma, los resultados proveen números estadísticamente significativos que pueden compararse con los datos de la ATSDR:

- El arrayao se combinó con la colirrubia para representar a la familia de los pargos en ambos mercados de Vieques.
- El cotorro rojo se combinó con el cotorro azul y el cotorro verde para representar a la familia de los cotorros en ambos mercados de Vieques.
- El mero mantequilla se combinó con el mero cabrilla para representar a la familia de los meros en ambos mercados de Vieques.
- El boquicolorao se combinó con el pluma para representar a la familia de los roncos en ambos mercados de Vieques.

Para calcular promedios, todos los resultados de laboratorio por debajo de los niveles de detección analítica se ajustaron a la mitad de los niveles de detección. La Tabla 2-3 muestra los niveles promedio de mercurio en diversas familias de peces utilizando los datos de la Dra. Caro del año 2000 (reagrupados) y los datos de la ATSDR de 2001. Los datos de la Dra. Caro muestran niveles promedio de mercurio por familia de peces que se encuentran por debajo de los niveles promedio informados por la ATSDR, tanto para el peso húmedo como el peso seco. Nótese que si los datos de la Dra. Caro se refieren a peso seco, la concentración para peso húmedo sería menor.

Aunque en el caso de los datos de la Dra. Caro se desconoce la base de las concentraciones de mercurio (peso húmedo versus peso seco), las posiciones relativas de las familias de peces en la lista proveen información de las evaluaciones de exposición. Las familias de peces que se muestran en la Tabla 2-3 se presentan en orden creciente de concentración promedio de mercurio (según el orden de la ATSDR). Tres de cinco familias del estudio de la Dra. Caro tienen posiciones relativas similares en la lista de la
ATSDR. Los salmonetes posiblemente tengan una posición relativa más alta en la lista del estudio de la Dra. Caro debido al número pequeño (4) de muestras de salmonete. Es posible que los pargos recolectados por la Dra. Caro tuvieran una posición relativa más alta, pero los roncos y meros que recolectó eran mucho más pequeños que los de la ATSDR. A continuación hay algunas conclusiones extraídas de estos datos combinados:

- Los cotorros tienen bajos niveles de mercurio.
- Todas las familias de peces de la Dra. Caro tienen niveles promedio de mercurio que están por debajo del nivel de detección de la EPA de los EE.UU. de 0.049 ppm (peso húmedo). Esta conclusión se mantiene ya sea que el promedio obtenido por la Dra. Caro se base en peso seco o peso húmedo.
- La ATSDR identificó tres familias (salmonete, mero y ronco) con niveles por encima del nivel de detección de 0.049 ppm (peso húmedo) de la EPA de los EE.UU.

Dado que los roncos y los meros recolectados por la Dra. Caro eran mucho más pequeños (~30%) que los roncos o meros de la ATSDR y dado que se sabe que el mercurio se acumula en peces más grandes, es probable que todos estos peces de Vieques tengan niveles muy bajos, esto es, hasta que crezcan. Además, los roncos y los meros son dos familias que acumulan más mercurio cuando son más grandes.

Tabla 2-3. Niveles promedio de mercurio en los peces: Vieques

<table>
<thead>
<tr>
<th>Pez</th>
<th>Caro et ál. (ppm)*</th>
<th>ATSDR (ppm-húmedo)</th>
<th>ATSDR (ppm-seco)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotorro</td>
<td>0.004</td>
<td>0.009</td>
<td>0.046</td>
</tr>
<tr>
<td>Pargo</td>
<td>0.026</td>
<td>0.048</td>
<td>0.218</td>
</tr>
<tr>
<td>Salmonete</td>
<td>0.038</td>
<td>0.080</td>
<td>0.344</td>
</tr>
<tr>
<td>Mero</td>
<td>0.016</td>
<td>0.116</td>
<td>0.551</td>
</tr>
<tr>
<td>Ronco</td>
<td>0.024</td>
<td>0.185</td>
<td>0.887</td>
</tr>
<tr>
<td>Todos los peces</td>
<td>0.020</td>
<td>0.091</td>
<td>0.427</td>
</tr>
</tbody>
</table>

*Se desconoce si los resultados de la Dra. Caro se refieren a peso húmedo o peso seco.

2.2.2 Datos de peces y alimentos de origen marino de la ATSDR

Las actividades de muestreo y análisis de muestras realizadas por la ATSDR en el 2001 se enfocaron en si el tejido muscular de peces y mariscos de consumo común contenía niveles de metales pesados y compuestos explosivos que pudieran causar efectos en la salud. Para colaborar con estas actividades, la ATSDR solicitó asesoramiento al Equipo de respuesta ambiental de la EPA (EPA/ERT) y trabajó con ellos para recolectar y analizar peces y mariscos de las aguas costeras que rodean a Vieques y de tierras y playas cercanas a la costa.

14 Utilizando la dosis de referencia (Reference Dose, RfD) para metilmercurio, la EPA de los EE. UU. estableció un nivel de detección en peces de 0.049 ppm de mercurio para la pesca recreativa y de subsistencia. En esta dirección de Internet se encuentra más información sobre los niveles de detección de la EPA de los EE. UU.: http://water.epa.gov/scitech/swguidance/fishshellfish/techguidance/risk/volume2_index.cfm.
La ATSDR recolectó peces y mariscos de cinco arrecifes que rodean a Vieques y de un mercado de pescado local. Dos arrecifes se encuentran frente a la parte este de la isla, cerca del Área de Impacto de Proyectiles Activos, donde anteriormente se realizaban los ejercicios militares, y una de esas localizaciones incluyó el área en la que se encuentra el USS Killen. Los otros tres arrecifes se encuentran frente a las zonas central y oeste de la isla. Se recolectaron cangrejos de tierra de dos localizaciones dentro del Área de Impacto de Proyectiles Activos y de una localización de la parte oeste de la isla. Se hizo lo posible por recolectar de cada arrecife y del mercado de pescado muestras de cinco peces dentro de una familia (p. ej., roncos y meros del género *Epinephelus* de la familia *Serranidae* o pargos de los géneros *Lutjanus* y *Ocyurus* de la familia *Lutjanidae*). En la mayoría de las localizaciones, la ATSDR pudo recolectar cinco peces de cada familia (p. ej., las familias *Epinephelus*, *Sparisoma* y *Haemulon*). Pero en varias localizaciones, no fue posible recolectar cinco peces de algunas familias (vea la Tabla 2-4).
<table>
<thead>
<tr>
<th>Nombre común y familia taxonómica</th>
<th>Género y especie</th>
<th>N.º de especies y familiar</th>
<th>Loc. n.º 1 Arrecife norte LIA</th>
<th>Loc. n.º 2 Arrecife Sur LIA</th>
<th>Loc. n.º 3 Arrecife Sur Esperanza</th>
<th>Loc. n.º 4 Arrecife NO Isabel Segunda</th>
<th>Loc. n.º 5 Mercado de pescado</th>
<th>Loc. n.º 6 Extremo Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mero cabrilla</td>
<td>Epinephelus guttatus</td>
<td>19</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cabra mora</td>
<td>Epinephelus adscensionis</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cherna enjambre</td>
<td>Epinephelus cruentatus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mero mantequilla</td>
<td>Epinephelus cruentatus</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cant. total de la familia Serranidae</td>
<td></td>
<td>Total = 30</td>
<td>Total = 5</td>
</tr>
<tr>
<td>Pargo amarillo</td>
<td>Lutjanus apodus</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pargo prieto</td>
<td>Lutjanus griseus</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colirrubia</td>
<td>Ocyurus chrysurus</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cant. total de la familia Lutjanidae</td>
<td></td>
<td>Total = 19</td>
<td>Total = 0</td>
<td>Total = 5</td>
<td>Total = 4</td>
<td>Total = 2</td>
<td>Total = 5</td>
<td>Total = 3</td>
</tr>
<tr>
<td>Cotorro rojo</td>
<td>Sparisoma viride</td>
<td>19</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Cotorro verde</td>
<td>Sparisoma aurofrenatum</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cotorro aletirrojo</td>
<td>Sparisoma rubripinna</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cant. total de la familia Scaridae</td>
<td></td>
<td>Total = 25</td>
<td>Total = 5</td>
<td>Total = 5</td>
<td>Total = 5</td>
<td>Total = 5</td>
<td>Total = 0</td>
<td>Total = 5</td>
</tr>
<tr>
<td>Boquicolora’o</td>
<td>Haemulan plumier</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Colombiano</td>
<td>Haemulan macrostomum</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ronco amarillo</td>
<td>Haemulan sciusus</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ronco francés</td>
<td>Haemulan flavolineatum</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Cant. total de la familia Haemulidae</td>
<td></td>
<td>Total = 24</td>
<td>Total = 5</td>
<td>Total = 5</td>
<td>Total = 5</td>
<td>Total = 0</td>
<td>Total = 5</td>
<td>Total = 4</td>
</tr>
<tr>
<td>Salmonete amarillo</td>
<td>Mulloidichthys martinecus</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salmonete manchado</td>
<td>Pseudupeneus maculatus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cant. total de la familia Mullidae</td>
<td></td>
<td>Total = 5</td>
<td>Total = 1</td>
<td>Total = 0</td>
<td>Total = 3</td>
<td>Total = 0</td>
<td>Total = 0</td>
<td>Total = 1</td>
</tr>
</tbody>
</table>
Se analizaron los tejidos de peces y mariscos para detectar compuestos explosivos. No se detectaron residuos de explosivos en los tejidos de los peces de ninguna de las localizaciones donde se tomaron muestras. De las cuatro especies de mariscos, solo los cangrejos violinistas contenían el compuesto explosivo HMX. Se detectó RDX en cangrejos violinistas, pero el nivel era tan bajo que no se pudo medir una concentración precisa. Cabe destacar que el análisis de laboratorio identificó niveles de trazas de una sustancia química con las mismas características (es decir, tiempo de retención) de la RDX (hexahidro-1,3,5-triazina) en dos muestras: los cangrejos violinistas y chapines. Esos niveles de trazas se ubicaron muy por debajo del nivel de detección de RDX y las dosis estimadas estaban muy por debajo de lo indicado en la guía de salud sobre RDX. Asimismo, las toxinas naturales presentes en el chapín tienen el mismo tiempo de retención en la cromatografía de gases que la RDX. Por lo tanto, no es posible determinar en forma concluyente si había RDX presente en los tejidos de chapín. La PHA sobre peces de 2003 concluyó que, dado que los residentes no comen cangrejo violinista, la HMX presente en cangrejos violinistas no causaría efectos perjudiciales en las personas. No se detectaron compuestos explosivos en las muestras de carrucho, langosta o cangrejo de tierra de ninguna localización. Los cangrejos violinistas y los cangrejos de tierra se recolectaron de las localizaciones 1 y 2 del extremo este de la isla, y se recolectaron cangrejos de tierra de la localización 6 en el extremo oeste de la isla (vea la Figura 2-1).
Además de compuestos explosivos, la ATSDR analizó los mismos tejidos de peces y mariscos para detectar metales pesados. La ATSDR recolectó 104 muestras de peces y 42 muestras de mariscos y analizó el tejido comestible para detectar metales y compuestos explosivos. Las muestras de peces representaban 17 especies diferentes y se pueden agrupar en las siguientes familias: 30 meros, 19 pargos, 25 cotorros, 24 roncos, 5 salmonetes y 1 chapín. Las 42 muestras de mariscos consistían en 20 carruchos, 7 langostas, 11 muestras combinadas de cangrejos azules de tierra y 4 muestras combinadas de cangrejos violinistas. De 25 cangrejos azules de tierra se obtuvieron 11 muestras combinadas, y de 146 cangrejos violinistas se obtuvieron cuatro muestras combinadas. Todas las muestras se analizaron en forma individual excepto por los cangrejos azules (unidos en 11 muestras combinadas) y los cangrejos violinistas (combinados en cuatro muestras). Aquí se hace referencia colectivamente de las muestras.

2.2.3 Fortalezas y limitaciones de los datos sobre peces y alimentos de origen marino de la ATSDR de 2001

El muestreo de la ATSDR efectuado en el 2001 incluyó varios puntos fuertes:

- La ATSDR utilizó múltiples fuentes de información para identificar los tipos preferidos de pescados y mariscos para la recolección. Una fuerte importante fue un informe de una universidad de Puerto Rico que contenía información de una encuesta acerca de la frecuencia y los tipos de pescado consumido (Caro 2000). La ATSDR corroboró los resultados de la encuesta con información del peticionario y de otros residentes, el Informe de la Comisión Especial de Vieques y visitas a los mercados de pescado locales de Vieques.

- La ATSDR identificó el pargo (especies de *Lutjanus* y *Ocyurus*) como el pescado consumido con mayor frecuencia, seguido del merlo (especies de *Epinephelus*) y el ronco (especies de *Haemulon*).
Se recolectaron peces y mariscos de cinco localizaciones marinas y de un mercado de pescado comercial de la isla. Los cangrejos de tierra se recolectaron en tres localizaciones terrestres (vea la Figura 2-1).

Para diseñar el plan de muestreo y recolectar las muestras, la ATSDR se alió con el Equipo de respuesta ambiental de la EPA de los EE. UU, que tiene una vasta experiencia en el muestreo de peces y su análisis. La EPA de los EE.UU. recomendó que la ATSDR recolectara cinco peces por grupo familiar.

La ATSDR recolectó 104 muestras de peces y 42 muestras de mariscos. Si bien la mayoría de las muestras representaban un solo organismo, las muestras de cangrejos representaban una combinación de tres o más organismos.

La ATSDR utilizó ingestas estándares de consumo de pescado predefinidas. Estas incluyeron tasas de ingesta que se concentraron en consumidores de grandes cantidades de pescado y en pesos corporales estándares para adultos y niños. La ATSDR también utilizó su MRL para la exposición crónica de mercurio por vía oral. Este MRL fue sometido a una rigurosa revisión científica y revisión por expertos externos cuando fue elaborado.

La ATSDR siguió muchos de los criterios descritos en la Guía para evaluar datos de contaminantes químicos para el uso en avisos de consumo de pescado (Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories), de la EPA de los EE.UU., Volumen 1, Fish Sampling and Analysis, tercera edición (USEPA 2000). Esas guías describen, entre otras técnicas, cómo identificar los peces que deben ser muestreados, cómo identificar los tejidos de los peces que deben analizarse y cómo combinar el tejido de los peces.

En retrospectiva, el muestreo de la ATSDR realizado en el 2001 también tuvo limitaciones. La EPA de los EE.UU. y el Estado de California recomiendan el uso de esos criterios más nuevos al elaborar avisos sobre el consumo de pescado. Respecto a la cantidad apropiada de peces para incluir en la muestra, el Estado de California considera que el diseño de la muestra debe incluir 1) un mínimo de tres muestras combinadas en las que cada combinación conste de tres peces o, preferentemente, 2) nueve muestras individuales de peces por cada especie de análisis de cada cuerpo de agua. Cuando una especie tiene un amplio rango de tamaños, se deben obtener muestras de peces de múltiples tamaños autorizados o comestibles cuando sea posible. El seguir este protocolo de muestreo permite la estimación del rango y la variación de las concentraciones de contaminantes en un sitio en particular y la derivación de una concentración media representativa para la elaboración de avisos sobre consumo de pescado (Estado de California 2009). La EPA de los EE.UU. recomienda actualmente un análisis estadístico para determinar cuál es la cantidad más apropiada de peces en una muestra combinada y cuál es la cantidad más apropiada de muestras combinadas. Como mínimo, la EPA de los EE.UU. indica que el diseño de la muestra debe constar de tres muestras combinadas, con tres peces por muestra. Si la concentración de contaminantes en una especie de peces es altamente variable, se necesitan más muestras combinadas y más peces en cada combinación para calcular la concentración promedio del contaminante en esa especie. Estas recomendaciones se elaboraron para determinar si los niveles promedio de mercurio en una especie de peces superaba el nivel de detección de 0.049 ppm (peso húmedo) de la EPA de los EE.UU.
EE.UU. para mercurio en peces. Al estimar la exposición a mercurio en seres humanos, otros diseños de muestra también pueden aportar datos confiables.

2.2.4 **Niveles de mercurio en peces de arrecife de Vieques**

Utilizando los resultados de las muestras de peces de la ATSDR obtenidas en 2001, la agencia decidió analizar los niveles de contaminantes en peces individuales, lo cual es aceptable cuando se obtiene una cantidad suficiente de peces de cada especie o de cada familia de cada localización y se las analiza. La cantidad máxima de peces individuales capturados y analizados por cada especie en cada localización fue cinco. La Tabla 2-4 resume la cantidad de especies de peces y la cantidad de peces de cada familia analizadas en cada localización.

Si bien la EPA de los EE.UU. no recomienda combinar especies al determinar los niveles de contaminantes, el Estado de California indica que se pueden combinar especies similares (p. ej., lubina) porque es probable que las especies de un grupo familiar tengan estilos de vida similares. Y dado que se recolectaron más de nueve peces de cada familia, había suficientes muestras para evaluar el mero (especies de *Epinephelus*), el pargo (especies de *Lutjanus* y *Ocyurus*), el cotorro (especies de *Sparisoma*) y el ronco (especies de *Haemulon*) al combinar los datos de todas las localizaciones. Pero agrupar los datos de esa manera introduciría una mayor incertidumbre o parcialidad. Por ejemplo, ciertas especies de una familia tenían niveles de contaminantes más altos o más bajos que el promedio para esa familia. De modo que demasiados condenados introducirían un alto grado de parcialidad para todos los roncos. Esto era importante para los peces que la ATSDR recolectó en Vieques: las concentraciones de mercurio dependieron en gran medida de la especie (y la familia). Agrupar los datos también limitó la evaluación de los datos de peces por localización. La Tabla 2-4, arriba, identifica las localizaciones en las que se obtuvieron más muestras de una especie u otra. Esta tabla ayuda a identificar dónde se pueden hacer comparaciones por especies y dónde las comparaciones solo son posibles al combinar especies dentro de una familia. Por ejemplo, en la Tabla 2-4, se recolectaron cinco meros cabrilla (primera hilera de datos) en las localizaciones 1, 4 y 5; esto sugiere que el mero cabrilla puede compararse entre las localizaciones 1, 4 y 5. Por lo tanto, si se quiere comparar otras localizaciones, deberíamos basarnos en otras especies de mero, lo cual agrega más incertidumbre debido a las diferencias entre las especies de mero.

La ATSDR compensó esa incertidumbre, en parte, mediante un análisis estadístico de los datos sobre peces del 2001. La Tabla 2-5 proporciona las concentraciones promedio de cada especie y familia recolectadas en las seis localizaciones.

La Tabla 2-5 permite hacer una comparación de los niveles de mercurio en los alimentos de origen marino por familia, por localización y, en algunos casos, por especies individuales en una localización. La evaluación de la ATSDR de los datos sobre peces arrojó nuevas conclusiones. Una de las principales conclusiones nuevas fue que los datos sobre peces representaban suficientes peces para hacer numerosas determinaciones estadísticamente significativas. Las pruebas estadísticas que se proporcionan en el capítulo 2, sección 2.5, apéndice 2A-1 indican que las concentraciones de mercurio dependieron en gran medida de la familia, las especies dentro de algunas familias y el tamaño de los peces dentro de algunas especies. Pero los niveles de mercurio de los peces cerca del LIA no fueron estadísticamente diferentes a los de otras localizaciones.
Otras conclusiones nuevas de este informe incluyen:

- El nivel de mercurio fue más bajo en los mariscos y más alto en los peces.

- El nivel de mercurio de los peces dependió en gran medida de la familia y la especie de pez. El nivel de mercurio fue más alto en dos familias de peces (es decir, roncos y meros, 0.18 ppm y 0.12 ppm, respectivamente) en comparación con otras familias analizadas (p. ej., cotorros y pargos, 0.01 ppm, y 0.05 ppm, respectivamente).

- El nivel de mercurio en los meros se asoció con el peso de los peces; generalmente, los meros más grandes presentaban más mercurio.

- La concentración de mercurio promedio en roncos y meros fue más alta que el nivel de detección de 0.049 ppm de la EPA de los EE.UU. Los niveles de mercurio en cotorros fueron estadísticamente inferiores al nivel de detección de 0.049 ppm de la EPA de los EE.UU e inferiores al promedio general de 0.1 ppm.

- El nivel promedio en pargos fue inferior al nivel de detección de 0.049 ppm de la EPA de los EE.UU., aunque no fue estadísticamente significativo, y sí fue estadísticamente inferior a 0.1 ppm.
<table>
<thead>
<tr>
<th>Nombre común y familia taxonómica</th>
<th>Género y especie</th>
<th>Media aritmética de los niveles de mercurio (peso húmedo en ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Todas las Localizaciones</td>
</tr>
<tr>
<td>Mero cabrilla</td>
<td>Epinephelus guttatus</td>
<td>0.091</td>
</tr>
<tr>
<td>Cabra mora</td>
<td>Epinephelus adscensionis</td>
<td>0.15</td>
</tr>
<tr>
<td>Cherna enjambre</td>
<td>Epinephelus cruentatus</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Mero mantequilla</td>
<td>Epinephelus fulvus</td>
<td>0.21</td>
</tr>
<tr>
<td>Promedio total de la familia Serranidae</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Pargo amarillo</td>
<td>Lutjanus apodus</td>
<td>0.045</td>
</tr>
<tr>
<td>Pargo prieto</td>
<td>Lutjanus griseus</td>
<td>0.061</td>
</tr>
<tr>
<td>Colirrubia</td>
<td>Ocyurus chrysurus</td>
<td>0.046</td>
</tr>
<tr>
<td>Cant. total de la familia Lutjanidae</td>
<td></td>
<td>0.048</td>
</tr>
<tr>
<td>Boquicolora'o</td>
<td>Haemulon plumieri</td>
<td>0.098</td>
</tr>
<tr>
<td>Colombiano</td>
<td>Haemulon macrostomum</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Ronco amarillo</td>
<td>Haemulon sciurus</td>
<td>0.22</td>
</tr>
<tr>
<td>Condenado</td>
<td>Haemulon flavolineatum</td>
<td>0.22</td>
</tr>
<tr>
<td>Cant. total de la familia Haemulidae</td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Cotorro rojo</td>
<td>Sparisoma viride</td>
<td>ND*</td>
</tr>
<tr>
<td>Cotorro verde</td>
<td>Sparisoma aurofrenatum</td>
<td>0.015**</td>
</tr>
<tr>
<td>Nombre común y familia taxonómica</td>
<td>Género y especie</td>
<td>Media aritmética de los niveles de mercurio (peso húmedo en ppm)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Cotorro aleterrojo</td>
<td>Sparisoma rubripinna</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Cant. total de la familia Scaridae</td>
<td></td>
<td>0.023M</td>
</tr>
<tr>
<td>Salmonete amarillo</td>
<td>Mullolichthys martinicus</td>
<td>0.088</td>
</tr>
<tr>
<td>Salmonete moteado</td>
<td>Pseudupenius maculatus</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Cant. total de la familia Mullidae</td>
<td></td>
<td>(0.080)</td>
</tr>
<tr>
<td>Chapín panal</td>
<td>Lactophrys polygonia</td>
<td>(0.0082)</td>
</tr>
<tr>
<td>Carrucho</td>
<td>Strombus gigas</td>
<td>0.016**</td>
</tr>
<tr>
<td>Langosta espinosa</td>
<td>Panulirius argus</td>
<td>0.031</td>
</tr>
<tr>
<td>Cangrejo azul de tierra</td>
<td>Cardisma guanhumi</td>
<td>0.028M</td>
</tr>
<tr>
<td>Cangrejo violinista</td>
<td>Uca sp.</td>
<td>ND*</td>
</tr>
</tbody>
</table>

NS = No se obtuvieron muestras de la especie en el lugar especificado
ND = No detectado (el rango de los niveles de detección en organismos marinos osciló entre 0.0039 y 0.0085)
(#) = Un valor entre paréntesis connota una única medición en lugar de un promedio
* = Todos los resultados de las muestras para esta especie en esta localización fueron ND
** = El valor se calculó con por lo menos dos muestras que fueron ND
M = El valor precedente representa el máximo recogido en las localizaciones determinadas, dado que la mayoría de las muestras fueron ND
Las evaluaciones de la ATSDR mejorarían si tuvieran más información sobre la frecuencia de consumo de:

- Peces de arrecife, peces de alta mar y pescado enlatado, por sexo y grupo de edad,
- Distintas especies de pescado, por sexo y grupo de edad y
- Tamaño de la porción, por sexo y grupo de edad

El informe analítico de la EPA de los EE.UU. del 2001 sobre las muestras de peces y mariscos proveyó resultados químicos y análisis estadístico de metales (USEPA 2001). El análisis estadístico de la EPA sobre los datos de peces y mariscos identificó que algunas especies de peces y mariscos tenían niveles ligeramente más altos de hierro, aluminio, cobre, zinc, arsénico, bario, selenio, potasio y hierro en las muestras recogidas cerca de las bombas sumergidas frente a las costas del LIA. Pero los niveles solo fueron ligeramente más altos y la diferencia fue estadísticamente significativa solo cuando se la comparó con unas pocas localizaciones en arrecifes.

El informe de la EPA de los EE.UU. no estudió en mayor profundidad las fuentes específicas de estos leves aumentos (USEPA 2001). El informe de la EPA de los EE.UU. sí proporcionó resultados de numerosas sustancias químicas orgánicas explosivas comunes, pero las sustancias químicas explosivas se degradan rápidamente en otras sustancias químicas que pueden no detectarse tan fácilmente.

De todos modos, los resultados de las sustancias químicas indicaron la presencia de HMX y la posible presencia de RDX en cangrejos violinistas. Se sabe que estas dos sustancias químicas se descomponen rápidamente en el ambiente marino. Para la mayoría de los peces, la absorción de estas sustancias químicas es baja; el nivel más bajo se da en peces con un alto contenido de aceite, y la mayoría de las especies excretan las sustancias químicas rápidamente (Ownby et ál. 2005; Yoo et ál. 2002; Helene et ál. 2003; Lotufo et ál. 2005; Lotufo y Lydy 2005; Houston y Lutufo 2005; Blackburn et ál. 2004). Al revisar la información de una sustancia química que no había sido excluida, se identificó el ácido pícrico como un posible componente de bombas en algunas zonas de bombardeo; sin embargo, no pudimos verificar que se haya utilizado en Vieques. Algunas muestras se obtuvieron del agua subterránea y del suelo pero o bien no se detectó ácido pícrico o la muestra se rechazó por problemas en el análisis. El ácido pícrico es un compuesto explosivo que no se descompone rápidamente en el ambiente marino. Si bien por lo general no se utiliza ácido pícrico en las bombas, es un compuesto explosivo utilizado por las fuerzas armadas. No se degrada rápidamente en el sedimento, pero los peces lo metabolizan y excretan rápidamente (Yost et ál. 2007; Nipper et ál. 2001; Burton et ál. 1983 y 1984; Cooper et ál. 1984).

En algunos alimentos de origen marino del área al sur del LIA se encontraron niveles un poco mayores, pero si estadísticamente significativos de sustancias químicas relacionadas con ejercicios militares en comparación con otras áreas, tales como:

- Se encontró HMX y niveles de trazas de compuestos explosivos con RDX en cangrejos violinistas del LIA;
- El aluminio y el potasio fueron ligeramente más altos en algunos peces del LIA (roncos, cotorros) en comparación con otras localizaciones en arrecifes:
 - Aluminio en roncos del sur del LIA en comparación con el extremo oeste y el mercado;
 - Aluminio en cotorros del norte del LIA en comparación con el extremo oeste;
 - Aluminio en cotorros del sur del LIA en comparación con todas las localizaciones, excepto Esperanza;
 - Potasio en roncos del sur del LIA en comparación con el extremo oeste;
 - Potasio en cotorros del sur del LIA en comparación con Isabel Segunda;
- El cobre fue ligeramente más alto en algunas especies del LIA (roncos, carruchos) en comparación con otras localizaciones en arrecifes:
 - Cobre en carruchos del sur del LIA en comparación con el norte del LIA, Esperanza y el extremo oeste;
 - Cobre en carruchos del norte del LIA en comparación con Esperanza y el extremo oeste;
 - Cobre en roncos del sur del LIA en comparación con el norte del LIA y Esperanza.
- El hierro fue ligeramente más alto en algunas especies del LIA (cangrejos de tierra, pargos) en comparación con otras localizaciones en arrecifes:
 - Hierro en pargos en el sur del LIA en comparación con el extremo oeste;
 - Hierro en pargos en el sur del LIA en comparación con el norte del LIA;
 - Hierro en cangrejos en el sur del LIA en comparación con el norte del LIA (USEPA 2001).
Los niveles de mercurio hallados en los peces del LIA no fueron significativamente distintos de los niveles de mercurio de peces de otros arrecifes de Vieques. El mercurio se ha mencionado como un contaminante de interés porque el mercurio se ha utilizado históricamente en ciertos detonadores (García et ál. 2000). Los datos proporcionados originalmente por la Marina acerca de la composición de las cubiertas de las bombas indicaban que éstas no contenían mercurio. Esto concuerda con la información incluida en las Hojas de Datos de Seguridad de los Materiales disponibles para el acero (Material Safety Data Sheets). La PHA sobre el aire indicó que el estimado de las emisiones totales de mercurio por año eran muy bajas (es decir, 0.06 kg por año). Esta emisión estimada de mercurio de 0.06 kg al año se puede comparar con la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (NESHAP) desarrollado por la EPA de los EE.UU. La tasa de emisión de aire para el mercurio NESHAP para una planta de cloro-álcali es 844 kg por año. Hay más información disponible en la página de internet: Code of Federal Regulations [link].

El nivel promedio de mercurio en los suelos del LIA fue de 0.02 ppm, y el nivel más alto detectado fue 0.086 ppm. La NOAA determinó que una de las 29 muestras de suelo tenía un nivel de mercurio que podría ser considerado superior a los niveles de origen natural (NOAA 2010). Pero dos observaciones sugieren que el LIA no es en la actualidad la principal fuente de mercurio en los tejidos de los peces. En primer lugar, la mayoría de los niveles de mercurio en los suelos del LIA parecen estar a niveles de origen natural, y no hay una variación espacial significativa que sugiera que los niveles de mercurio son...
más altos en el LIA. En segundo lugar, el estudio de muestras de peces realizado por la ATSDR no pareció
detectar concentraciones en tejidos inusualmente elevadas de mercurio en peces de arrecife de
Vieques. Una explicación más viable para los niveles de mercurio hallados en el pescado es que se
produjeron a causa de la reserva global de mercurio que circula por el medio ambiente.

2.2.5 Evaluación toxicológica de mercurio en el pescado de Vieques

Se desconoce si los datos de peces de la Universidad Metropolitana están expresados en peso húmedo o
peso seco. Por ende, esos datos solo brindan información especulativa sobre los niveles de
contaminantes. Es decir, los datos solo pueden compararse con los peces de la Parguera, la población de
control del estudio. Para las estimaciones cuantitativas de la dosis, los datos son inservibles;\(^{15}\) las dosis
calculadas con estos datos no serían confiables. Por lo tanto, una evaluación toxicológica incluirá los
datos sobre peces de la ATSDR, que fueron convertidos de peso seco en ppm a peso húmedo en ppm.
Comparados con los datos de la Dra. Caro (vea la Tabla 2-3), los datos de la ATSDR brindarán una
estimación más alta de exposición a mercurio porque los peces eran más grandes y las concentraciones
de mercurio son más altas. También comparados con los datos de la Dra. Caro, las concentraciones más
altas de mercurio en los datos de la ATSDR posiblemente se deban a que la ATSDR recolectó peces más
grandes, que tienden a acumular niveles más altos de mercurio.

Varios científicos que asistieron a la reunión de la ATSDR realizada en noviembre de 2009 sobre Vieques
plantearon inquietudes con relación a que la ATSDR no utilizaba la dosis de referencia (RfD) de la EPA de
los EE.UU. para metilmercurio y no consideraba las recomendaciones de la Academia Nacional de
Ciencias (NAS) respecto al metilmercurio. Los científicos señalaron que los puertorriqueños
normalmente tienen un peso corporal más bajo y que los viequenses tienen altas tasas de consumo de
pescado. Por lo tanto, sugirieron que la ATSDR evaluara el riesgo de los residentes utilizando un peso
corporal más bajo y una ingesta de pescado más grande. La ATSDR utilizó los siguientes parámetros para
recalcula las dosis para mujeres en edad fértil y para niños:

1. Un rango de pesos corporales de 4.5 a 100 kg (9.9 a 220 libras):
 a. Niños (1-2 años; 3-5 años; 6-8 años; 9-14 años; 15-18 años); y

2. Un rango de tamaños de porción de comida específicos por edad, que incluyó los percentiles 50,
 95 y 99.
 a. Los tamaños de la porción para mujeres adultas fueron de 3 oz, 8 oz y 13.9 oz.

\(^{15}\) Los resultados de laboratorio de detección de sustancias químicas en el pescado se miden inicialmente como
peso seco porque antes de analizarlo se elimina la humedad del tejido de los peces. Una vez que se eliminó la
humedad, una muestra de pescado podría contener 1 ppm de una sustancia química como peso seco. Para estimar
la exposición, la concentración en peso seco suele convertirse a una concentración en peso húmedo; el consumo
de pescado suele medirse en onzas de pescado fresco (húmedo) consumido. Por consiguiente, es importante saber
si los resultados se reportan como peso húmedo o como peso seco.
b. El tamaño de la porción para niños varió según la edad (vea la Tabla 2-6). Por ejemplo, las niñas de 3 a 5 años de edad consumen tamaños de porción de 2.5 oz, 6 oz y 8.5 oz en los percentiles 50, 95 y 99, respectivamente (USEPA 1997).

3. Los niveles promedio de mercurio se recalcularon utilizando la mitad del límite de detección de aproximadamente el 25% del pescado que tuvo niveles de mercurio no detectables (ATSDR 2005). La mayoría de los niveles de mercurio no detectables se hallaron en cotorros. El nivel promedio de mercurio de todos los peces fue de 0.1066 ppm utilizando el 95 límite de confianza superior (upper confidence limit, UCL) del promedio, con un nivel máximo de mercurio en un ronco amarillo de 0.33 ppm.

4. Algunos científicos estaban preocupados porque la PHA sobre peces de 2003 usó pesos promedio nacionales para representar la dosis de exposición. Este informe provee estimados de exposición utilizando una amplia variedad de pesos para diversas edades. Las dosis estimadas también se calcularon según un perfil de peso continuo de 9.9 a 220 libras y un tamaño creciente de la porción de comida hasta el percentil 99 (vea la Tabla 2A-1 en el capítulo 2, sección 2.6, apéndice 2A-2).

5. Las dosis estimadas para metilmercurio se compararon con la RfD de la EPA de los EE.UU. de 0.1 µg/kg/día. En el capítulo 2, sección 2.2.5 se brinda más información sobre los efectos tóxicos del metilmercurio.

La ATSDR también consideró las recomendaciones que le dio la Academia Nacional de Ciencias a la EPA de los EE.UU. La NAS recomendó que la EPA de los EE.UU. use el estudio de las Islas Feroe para desarrollar la dosis de referencia de la agencia. También sugirió el estudio y los niveles de efectos que deben considerarse.
Tabla 2-6. Tamaño de la porción de pescado para mujeres y niñas de diversas edades por percentiles 50, 95 y 99.*

<table>
<thead>
<tr>
<th>Grupo de edad</th>
<th>50</th>
<th>95</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niñas de 1 a 2 años de edad</td>
<td>1.5</td>
<td>4.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Niñas de 3 a 5 años de edad</td>
<td>2</td>
<td>6</td>
<td>8.5</td>
</tr>
<tr>
<td>Niñas de 6 a 8 años de edad</td>
<td>2.5</td>
<td>6</td>
<td>10.2</td>
</tr>
<tr>
<td>Niñas de 9 a 14 años de edad</td>
<td>2.8</td>
<td>7.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Niñas de 15 a 18 años de edad</td>
<td>3</td>
<td>9.5</td>
<td>20</td>
</tr>
<tr>
<td>Mujeres adultas</td>
<td>3</td>
<td>8</td>
<td>13.9</td>
</tr>
</tbody>
</table>

La Tabla 2A-1 (capítulo 2, sección 2.6, apéndice 2A-2) muestra las dosis estimadas de mercurio para mujeres y niños que consumen hasta 20 onzas de pescados por día y que pesan hasta 220 libras. Se proporcionan los grupos de edad aproximados para diversos pesos corporales que oscilan entre 10 y 220 libras (4.5-100 kg). Por ejemplo, en el caso de mujeres que pesan 143 libras (65 kg) y que comen 4 onzas de pescado de arrecife por día, la dosis estimada es de 0.19 µg/kg/día. De manera similar, en el caso de mujeres que pesan 121 libras (55 kg) y que comen 4 onzas de pescado de arrecife por día, la dosis estimada de mercurio es de 0.22 µg/kg/día. Estas dosis estimadas superan la RfD de la EPA de los EE.UU. de 0.1 µg/kg/día. El tamaño de la porción del percentil 99 se utiliza para calcular la dosis máxima de cada grupo de edad. Las dosis no se calculan más allá de ese punto y aparecen en negro en la Tabla 2A-1.

La Tabla 2-6 muestra el tamaño de la porción de pescado de los percentiles 50, 95 y 99 para diversos grupos de edad. La precisión es difícil respecto de lo que constituye el consumo promedio de pescado para los viequenses. Usando la información de la encuesta de la Dra. Caro, la ingesta típica de pescado de una mujer adulta podría ser tres comidas por semana, con un tamaño de porción de 4 onzas y un peso corporal promedio de 55 kg (121 libras). Esa persona recibiría una dosis de mercurio estimada de 0.094 µg/kg/día, que es inferior a la RfD de la EPA de los EE.UU. de 0.1 µg/kg/día. Las dosis estimadas inferiores a la RfD de la EPA de los EE.UU. (0.1 µg/kg/día) se muestran con fondo blanco. Los residentes con esas dosis estimadas no tienen riesgo de sufrir efectos perjudiciales por el mercurio presente en el pescado. Las dosis estimadas que superan la Rfd de la EPA de los EE.UU. para residentes que comen pescado a diario se muestran en tres tonos de azul (claro, medio y oscuro). Las mujeres con dosis estimadas indicadas en color azul claro (gris claro en blanco y negro) presentan un pequeño aumento del riesgo de daño para el feto en desarrollo si quedan embarazadas. El riesgo es mayor para las mujeres con dosis estimadas indicadas en color azul medio. Esas dosis estimadas se acercan a la dosis de 1.1 µg/kg/día identificada por la Academia Nacional de Ciencias como una dosis que provoca un aumento del 5% en la incidencia de puntuaciones anormales en la prueba de denominación de Boston (Boston Naming Test) (una prueba de vocabulario para decir el nombre de imágenes). El nivel de efectos de la NAS es consistente con el rango de 0.85 a 1.5 µg/kg/día identificado por la EPA de los EE.UU. como el límite inferior de dosis de referencia (benchmark dose lower limit, BMDL05).
De modo similar, la mayoría de las dosis estimadas en niños superan la RfD de la EPA de los EE.UU. como se indica en azul claro, medio y oscuro en la Tabla 2A-1 (capítulo 2, sección 2.6, (Apéndice 2A-2). Los niños pequeños con una mayor ingesta diaria de pescado consumen dosis estimadas que superan el nivel de efectos de 1.1 µg/kg/día. Esas dosis se presentan en azul oscuro. No se sabe con seguridad si los niños son tan sensibles a los efectos neurotóxicos del mercurio como el feto. Con el fin de proteger, el aviso nacional sobre el consumo de pescado de la EPA de los EE. UU y la FDA incluye una advertencia para niños y para mujeres que están embarazadas, que planean quedar embarazadas y para madres en periodo de lactancia.

Estas conclusiones sobre el riesgo de sufrir efectos perjudiciales también son algo inciertas; conocer la dosis exacta que podría provocar efectos neurológicos perjudiciales en el feto y en niños es difícil. Esta incertidumbre surge de las limitaciones inherentes en estudios de seres humanos y porque la predisposición de una persona puede variar. Por último, estimar la dosis de mercurio que una persona puede recibir es igualmente incierto. Si los residentes comen más pargo y cotorro, que tienen menor cantidad de mercurio, su dosis estimada de mercurio será más baja; probablemente presenten menor riesgo de sufrir efectos perjudiciales o no tener ningún riesgo. Si los residentes comen más ronco y mero, que tienen mayor cantidad de mercurio, su dosis estimada de mercurio será más alta y podrían presentar mayor riesgo de sufrir efectos perjudiciales.

Las conclusiones y las recomendaciones de la evaluación de la ATSDR de los datos sobre peces y mariscos aparecen al final de este capítulo (sección 2.3) y en el capítulo 9 de este informe.

2.2.6 Posibles efectos combinados de sustancias químicas presentes en peces y otra fauna y flora.

En la PHA sobre peces de 2003 de la ATSDR, las concentraciones de metales individuales en los peces de arrecife de Vieques no estaban a niveles preocupantes para la salud. En su evaluación de estos datos sobre peces para este informe, la ATSDR concluyó que el mercurio presente en el pescado es un problema para los niños y para los fetos en desarrollo en mujeres que comen grandes cantidades de pescado frecuentemente. Desafortunadamente, la ciencia actual no respalda adecuadamente un análisis robusto de múltiples exposiciones a sustancias químicas y sus interacciones. En la comunidad científica todavía se debate cuáles son los mejores métodos para evaluar la exposición a una mezcla de sustancias químicas, tanto a través de una sola vía como de múltiples vías combinadas. Además, el hecho de calcular las dosis combinadas de múltiples vías en Vieques se ve obstaculizado por la falta de conocimiento de los niveles de sustancias químicas a los que están expuestos los residentes a través de diversas vías (p. ej., comer alimentos de origen marino, ingerir suelo, beber agua y respirar aire). Debido a esta complejidad y falta de conocimiento, cualquier riesgo adicional de cualquier de los que se conocen como posibles efectos de la combinación de sustancias químicas asumido por los residentes que comen alimentos de origen marino es igual de incierto.

2.3 Conclusiones y recomendaciones

2.3.1 Conclusiones

Durante la reunión de la ATSDR celebrada en noviembre del 2009, varios científicos plantearon inquietudes acerca de los niveles de mercurio en los peces. En particular, les preocupaba que las
conclusiones obtenidas en la PHA sobre peces del 2003 de la ATSDR no fueran consistentes con el aviso nacional de la EPA de los EE.UU./FDA del 2004 con relación al mercurio. Por lo tanto, la ATSDR revisó sus conclusiones y recomendaciones del 2003 acerca del mercurio presente en los peces de los arrecifes que rodean Vieques.

En su evaluación de salud pública del 2003 acerca del consumo de pescado, la ATSDR usó tasas de ingesta de pescado que se enfocaban en adultos que comían 8 onzas de pescado por día y que pesaban 70 kg (o 154 libras). Las tasas de ingesta diaria de pescado en niños eran de 4 onzas y se asumió que los niños pesaban 16 kg (o 35 libras). Las dosis estimadas se compararon con el MRL de la ATSDR de 0.3 µg/kg/día, que se derivó de un análisis de estudios realizados en las Islas Seychelles y Faroe. En la evaluación de la ATSDR tal como se presenta en este informe, la ATSDR usó una amplia variedad de ingestas diarias de pescado y pesos corporales. Utilizando la información del Manual de Factores de exposición (Exposure Factor Handbook) de la EPA de los EE.UU., la ATSDR asumió que la ingesta diaria de pescado de mujeres adultas era de hasta 14 onzas —el percentil 99— y que las mujeres podían tener un peso de tan solo 46 kg (o 100 libras). En el caso de los niños, la ATSDR asumió que la ingesta diaria de pescado era de hasta 6 onzas para niños de 1 a 2 años de edad, 8 onzas para niños de 3 a 5 años de edad, 10 onzas para niños de 6 a 14 años de edad y de 20 onzas para niños de 15 a 18 años de edad. Las ingestas más altas en niños representan el tamaño de la porción del percentil 99 para las edades mencionadas. Además, la ATSDR utilizó las recomendaciones de la NAS y la dosis de referencia (RfD) de la EPA de los EE.UU. sobre el mercurio así como los estudios de toxicidad en seres humanos realizados en las Islas Feroe. A partir de su evaluación del mercurio en los peces de Vieques, la ATSDR llegó a estas nuevas conclusiones:

1. La ATSDR ha identificado la exposición al mercurio del consumo frecuente de alimentos de origen marino como un riesgo potencial para la salud pública. Las mujeres con una dieta variada de pescado que normalmente comen más de 2 oz de pescado por día reciben dosis estimadas de mercurio que superan la RfD crónica de la EPA de los EE.UU. A medida que aumenta el tamaño de la porción, las dosis estimadas se acercan al nivel más bajo que ha demostrado provocar efectos perjudiciales en el feto en desarrollo. La ATSDR concluye que si esas mujeres están embarazadas, el bebé en desarrollo tiene un pequeño aumento de riesgo de tener efectos neurológicos más adelante en la vida. El riesgo de tener efectos perjudiciales aumenta a medida que aumenta el tamaño de la porción. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

2. Las mujeres que comen ronco o mero con mayor frecuencia que otros peces de arrecife y que normalmente comen más de 2 onzas de pescado por día reciben dosis estimadas de mercurio dos veces más altas que las mujeres que comen una dieta variada de pescados. A medida que aumenta el tamaño de la porción, las dosis estimadas se acercan o exceden el nivel más bajo que ha demostrado provocar efectos perjudiciales en el feto en desarrollo. La ATSDR concluye que si esas mujeres están embarazadas, el bebé en desarrollo tiene un pequeño aumento de riesgo de tener efectos neurológicos más adelante en la vida. El riesgo de tener efectos perjudiciales aumenta a medida que aumenta el tamaño de la porción. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.
incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

3. Los niños con una dieta variada de pescado que normalmente comen más de 0.5 oz de pescado por día reciben dosis estimadas de mercurio que superan la RfD crónica de la EPA de los EE.UU. Estos niños tienen un pequeño riesgo de sufrir efectos neurológicos. Pero a medida que aumenta el tamaño de la porción, aumenta el riesgo de tener efectos perjudiciales. Según la edad, los niños de tan solo 1 año que comen 3 o 4 onzas de pescado por día reciben dosis estimadas que superan las dosis que han demostrado provocar efectos neurológicos y tienen el mayor riesgo de desarrollar efectos neurológicos perjudiciales. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

4. Al igual que las mujeres, los niños que comen ronco y mero con mayor frecuencia que otros peces de arrecife reciben dosis estimadas dos veces mayores que los niños que comen una dieta variada de pescados. Las dosis estimadas en estos niños superan las dosis asociadas con efectos neurológicos.

5. Existe cierta incertidumbre asociada con estos hallazgos porque la respuesta de una persona al mercurio es algo incierta de por sí. La incertidumbre podría deberse al sexo, la genética, la salud y el estado nutricional o a cómo el cuerpo maneja el mercurio. En los tres estudios en seres humanos que se enfocaron en la exposición a mercurio por comer pescados y alimentos de origen marino, la identificación de los niveles de menor efecto fue incierta. La estimación de la dosis de mercurio a partir de la ingesta de pescados de arrecife fue igual de incierta, dado que la dosis puede variar según el tipo, la frecuencia y la cantidad de pescado consumido.

6. Si bien la ATSDR respalda el aviso nacional de la EPA de los EE.UU. y la FDA sobre el consumo de pescado, partes del aviso no se aplican a los viequenses que dependen en gran medida de los alimentos de origen marino locales. Por ejemplo, el aviso se refiere a pescados que los viequenses no comen como el abadejo, el bagre y el blanquillo. Además, el aviso recomienda que si no hay un aviso local disponible, las personas no deben comer más de 6 onzas de pescado local y no deben consumir ningún otro pescado durante la semana. Incluimos enlaces al aviso para uso informativo y recomendamos un programa educativo sobre el mercurio en los pescados de consumo local.

7. Los residentes necesitan información a fin de que puedan seleccionar los alimentos de origen marino con menor cantidad de mercurio sobre los que tengan mayor cantidad de mercurio. Esto protegerá a los fetos en desarrollo y a los niños pequeños del mercurio presente en el pescado. Con fines informativos, el aviso e información relacionada, están disponibles en: http://www.epa.gov/waterscience/fish/advice; http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/Seafood/FoodbornePathogensContaminants/Methylmercury/ucm115662.htm y en el capítulo 2, sección 2.7 de este informe, apéndice 2A-3.

8. En las 104 muestras de peces recolectadas de las áreas marinas cercanas a Vieques y obtenidas en el mercado comercial de pescado, el nivel promedio de mercurio fue de 0.1 ppm y el rango no fue detectable hasta 0.33 ppm. Los niveles de mercurio detectados en pescados de arrecife
de Vieques son similares a los niveles informados por la FDA (FDA 2010). Los niveles de mercurio se encuentran en el rango bajo (0.02-0.2 ppm) a medio (0.2-0.6 ppm) de mercurio identificado por la FDA en su reciente evaluación de riesgos y beneficios (FDA 2009).

9. La ATSDR también llevó a cabo un análisis estadístico de los datos sobre peces de 2001 y llegó a las siguientes conclusiones:
 a. El mercurio detectado en los alimentos de origen marino es más alto en dos familias de peces (ronco y mero) comparadas con otras familias de las que se tomaron muestras (p. ej., cotorro y pargo). La concentración de mercurio promedio en el ronco y el mero fue más alta que el nivel de detección de 0.049 ppm de la EPA de los EE.UU. Al evaluar algunas de las hipótesis, la ATSDR utilizó el promedio general de 0.1 ppm para determinar qué familias de peces de arrecife tenían probabilidades de superar el promedio general.
 b. Los niveles de mercurio en cotorro fueron estadísticamente inferiores al nivel de detección de 0.049 ppm de la EPA de los EE.UU. e inferiores al promedio general de 0.1 ppm.
 c. Todos los pargos tuvieron un valor inferior al valor de detección de 0.049 ppm de la EPA de los EE.UU. Sin embargo, se recolectó una cantidad insuficiente de pargos para determinar si el nivel promedio de mercurio en pargos era estadísticamente diferente del nivel de detección de 0.049 ppm de la EPA de los EE.UU. Se recolectó una cantidad suficiente de pargos para determinar que el nivel promedio de mercurio es estadísticamente inferior al promedio general de 0.1 ppm.

10. El mercurio está presente en la mayoría de los alimentos de origen marino y es particularmente alto en algunas especies de peces y bajo en otras especies. Si bien el mercurio era un componente de los detonadores de algunas bombas, solo se introdujeron pequeñas cantidades de mercurio en el ambiente de Vieques de esta fuente. Esta conclusión es respaldada por los niveles bajos de mercurio en los suelos del LIA, que parecen ser niveles de origen natural. Los niveles de mercurio en peces del LIA y sus alrededores muy probablemente sean consecuencia de la reserva global de mercurio que circula en el ambiente.

11. El análisis estadístico mostró que algunas especies de peces y mariscos en arrecifes alrededor de Vieques tenían niveles más altos de algunos metales y más bajos de otros- hierro, aluminio, cobre, zinc, arsénico, bario, potasio y selenio, estaban todos ligeramente más altos- comparados con otros arrecifes alrededor de Vieques. Estos metales se encuentran en bombas y barcos de metal, lo que sugiere una posible contaminación localizada. Pero los niveles solo fueron un poco más altos y la diferencia fue estadísticamente significativa solo para algunos arrecifes comparados con otros arrecifes que rodean a Vieques.

2.3.2 Recomendaciones

La ATSDR recomienda a las agencias ambientales y de salud pública y a los científicos que consideren lo siguiente:
1. Las personas que frecuentemente consumen alimentos de origen marino deben seguir los avisos sobre peces y las restricciones de pesca en Vieques. Mantener las restricciones de pesca en las aguas adyacentes al LIA.

2. Realizar una encuesta de los residentes de Vieques para determinar los tipos, frecuencia y cantidad de pescado consumido.

3. Realizar evaluaciones de riesgo y análisis estadísticos adicionales utilizando información nueva recopilada a partir de la encuesta sobre consumo de pescado recomendada anteriormente.

4. Obtener y analizar más muestras de peces de Vieques si la encuesta propuesta y el análisis estadístico no aportan suficiente información sobre la salud pública. Obtener suficientes muestras de peces para permitir un análisis por especies y por localización.

5. Elaborar un programa educativo acerca del mercurio en los peces que incorpore los hábitos locales e información sobre el consumo de alimentos de origen marino de los viequenses. Los beneficios que se acumulan en el feto en desarrollo con la ingesta materna de nutrientes presentes en los alimentos de origen marino (FDA 2009) pueden superar la ingesta asociada de pequeñas cantidades de mercurio. El objetivo de este programa educativo específico para el lugar debe ser educar a los viequenses sobre los beneficios de comer alimentos de origen marino de modo que puedan elegir peces con menor cantidad de mercurio y así mantener las costumbres alimentarias saludables de consumir alimentos de origen marino locales.

2.4 Bibliografía

Bauer, L.J. and M.S. Kendall (eds.). 2010. An Ecological Characterization of the Marine Resources of Vieques, Puerto Rico Part II: Field Studies of Habitats, Nutrients, Contaminants, Fish, and Benthic Communities. NOAA Technical Memorandum NOS NCCOS 110. Silver Spring, MD.

Burton DT, Goodfellow WL, Cooper KR. Uptake, elimination, and metabolism of 14C-picric acid and 14C-picramic acid in the American oyster (Crassostrea virginica) Arch Environ Contam Toxicol. 1984 V 13, N.º 6, noviembre de 1984.

Risher J. 2010. Correo electrónico del 23 de marzo enviado por John Risher, ATSDR/DTEM al Dr. David Mellard, ATSDR/DHAC.

2.5 Apéndice 2A-1: Análisis estadístico de los datos sobre peces de la ATSDR

2.5.1 Evaluación de las pruebas estadísticas y el número de muestras

Toda investigación tiene fortalezas y debilidades. Las fortalezas del muestreo del 2001 respaldado por la ATSDR fueron:

- Repitió el análisis de metales en pescados de mercado realizado por la Universidad Metropolitana, Escuela de Asuntos Ambientales (Caro et ál. 2000).
- Proporcionó información específica y anteriormente no disponible sobre el pescado. Dicha información incluyó mediciones de compuestos explosivos en peces, mediciones de contaminantes en peces capturados en arrecifes específicos alrededor de la isla (incluidos arrecifes con signos visibles de presencia militar) y mediciones de contaminantes en mariscos capturados en la isla o sus alrededores.

Las limitaciones fueron:

- Al recolectar solamente especies más grandes de las especies de arrecifes populares, las concentraciones promedio pueden haber estado parcializadas de forma alta, lo que podría haber provocado una sobreestimación del mercurio.
- Dado que el objetivo fueron los peces más grandes y que en los arrecifes solo había algunas especies grandes, debieron combinarse peces de la misma familia para proporcionar significancia estadística. En consecuencia, estos datos no pudieron establecer diferencias en la concentración entre la mayoría de las especies de una familia. Los peces de una misma familia se agruparon para proporcionar una cantidad suficiente para representar a cada familia en una localización de muestreo. Si bien eso fue adecuado para representar las concentraciones de la mayoría de los metales en las familias, existen maneras más apropiadas de analizar el mercurio. Determinamos que las concentraciones de mercurio dependían en gran medida de las especies de una familia. Por ejemplo, el boquicolor a'o tenía concentraciones de mercurio más bajas que el resto de los peces de la familia de los roncos y el mero cebra tenía concentraciones de mercurio más bajas que otros miembros de la familia de los meros.

2.5.2 Diseño de la muestra

El diseño original de la muestra no se enfocó solamente en el mercurio, pero éste fue incluido. La ATSDR y la EPA de los EE.UU. propusieron una estrategia de muestreo para 1) evaluar muchos metales y sustancias químicas explosivas presentes en los peces y 2) comparar las sustancias químicas presentes en peces capturados en diversos arrecifes con pescados adquiridos en el mercado (USEPA 2001). En cada localización, las muestras recolectadas fueron aproximadamente del mismo tamaño. La Escuela de Asuntos Ambientales recolectó 52 peces de diversos tamaños, con pocas variaciones en los resultados. Cada uno de estos conjuntos de datos proporcionó información única y significativa sobre el mercurio y otros metales.

Las pruebas estadísticas confirmaron que había una cantidad suficiente de peces para realizar numerosas evaluaciones. La EPA de los EE.UU. proporcionó pruebas estadísticas para comparar los
peces por localización y por familia para todos los metales (USEPA 2001), y la ATSDR proporcionó estadísticas para comparar las familias de peces con concentraciones de mercurio relacionadas con la salud. A continuación se presenta un resumen de las pruebas de la ATSDR.

2.5.3 Resumen de las estadísticas para la prueba de la hipótesis relacionada con la salud

Las pruebas de la hipótesis fueron diseñadas para determinar si las concentraciones promedio de mercurio estaban por encima o por debajo de 0.1 ppm y por encima o por debajo de 0.049 ppm. La Figura 2A-1 acerca del mercurio total presente en los peces por familia ilustra muchos de los resultados de las pruebas estadísticas.

Figura 2A-1. Mercurio total presente en los peces por familia

![Gráfico de mercurio total presente en peces por familia](image)

Los cuadrados azules representan las concentraciones de muestras individuales de filetes. La línea punteada horizontal en 0.049 ppm (cerca de la leyenda 0.05) denota el valor de detección de la EPA para poblaciones de subsistencia. La línea punteada horizontal en 0.1 ppm denota la media del valor de metilmercurio en los peces de Vieques específico para el lugar, calculada utilizando los datos de peces del 2001 de la ATSDR.

1. La mayoría de los salmonetes, meros y roncos tenían concentraciones de mercurio totales por encima de los niveles de detección de la EPA de 0.049 ppm;
 a. La concentración promedio en el salmonete de 0.0797 ppm fue estadísticamente superior a 0.049 ppm;
 b. La concentración promedio en el mero de 0.116 ppm fue estadísticamente superior a 0.049 ppm;
 c. La concentración promedio en el ronco de 0.185 ppm fue estadísticamente superior a 0.049 ppm;
2. Muchos de los meros y roncos tenían concentraciones de mercurio totales por encima del nivel promedio de mercurio detectado en todos los peces de Vieques que fueron analizados para este informe, 0.1 ppm.
 a. Pero la concentración promedio en el mero de 0.116 ppm no fue estadísticamente diferente de 0.1 ppm;
 b. La revisión de seguimiento de las especies muestra que el mero cabrilla está por debajo (con una concentración promedio de 0.091 ppm, que tampoco es estadísticamente diferente de 0.1 ppm)
 c. La concentración promedio en roncos de 0.185 ppm fue estadísticamente superior a 0.1 ppm;
 d. La revisión de seguimiento de las especies muestra que el ronco amarillo y el condenado estaban por encima con concentraciones promedio de 0.22 ppm (cada uno) y que el boquicolorao alcanzó un promedio de 0.098 ppm (por ende, el boquicolorao no fue estadísticamente diferente de 0.1 ppm).

3. Muchos de los pargos y salmonetes tenían niveles de mercurio totales en el rango entre los dos niveles (es decir, 0.049 ppm y 0.1 ppm):
 a. La concentración en pargos de 0.0478 ppm no fue estadísticamente diferente de 0.049 ppm, pero fue estadísticamente inferior a 0.1 ppm;
 b. La concentración promedio en salmonetes de 0.0797 ppm fue estadísticamente superior a 0.049 ppm, pero no fue estadísticamente diferente de 0.1 ppm;

4. Las familias de peces restantes tuvieron niveles de mercurio totales por debajo del nivel de 0.049 ppm (muchos de estos resultados fueron estadísticamente significativos):
 a. La concentración promedio en langostas de 0.0317 ppm fue estadísticamente inferior a 0.049 ppm.
 b. La concentración más alta de mercurio en 25 cotorros fue de 0.0231 ppm, menos de la mitad del nivel de detección de 0.049 ppm. Debido a que no se detectó mercurio en la mayoría de las muestras, las concentraciones no se distribuyeron en forma normal; por lo tanto realizamos pruebas no paramétricas utilizando la mediana. La mediana de 0.00767 ppm tiene límites de confianza del 95% de 0.00747 y 0.00801 ppm, con una cobertura del 95.7%, inferior a 0.049 ppm.
 c. La concentración más alta de mercurio en 11 muestras combinadas de cangrejos de tierra fue de 0.0287 ppm, inferior al nivel de detección de 0.049 ppm. Las concentraciones no se distribuyeron en forma normal; en muchas muestras no se detectó mercurio. En consecuencia, identificamos que la mediana de 0.00823 ppm (con sus límites de confianza del 95% de 0.00725 y 0.0216 ppm y cobertura del 96.1%) fue inferior a 0.049 ppm.
 d. La concentración más alta de mercurio en 20 muestras de carrucho fue de 0.0486 ppm, inferior a 0.049 ppm. Las concentraciones en carruchos no se distribuyeron en forma normal; en muchas muestras no se detectó mercurio. En consecuencia, hallamos que la
mediana de 0.008277 ppm (con sus límites de confianza del 95% de 0.00803 y 0.0179 ppm y cobertura del 95.9%) fue inferior a 0.049 ppm.
e. Cuatro muestras combinadas de cangrejos violinistas se distribuyeron en forma normal, con una concentración promedio de 0.0077 ppm, estadísticamente inferior a 0.049 ppm.
f. Solo obtuvimos una muestra de chapín, cantidad insuficiente para realizar un análisis estadístico.

2.5.4 Limitaciones de las pruebas

La prueba de los umbrales tuvo un alto grado de parcialidad: se utilizaron pescados más grandes y se utilizó el mercurio total para representar el metilmercurio. Obtener más muestras en algunas localizaciones proporcionaría resultados más sólidos. Pero recolectar suficientes muestras para los niveles de prueba elegidos (0.049 y 0.1 ppm) podría tener un costo prohibitivo, dado que algunas familias tuvieron promedios muy cercanos a esos niveles.

2.5.4.1 Resumen estadístico para las pruebas por localización

Se realizaron análisis estadísticos sobre los niveles de mercurio (y otros metales) en tejidos de peces e invertebrados para determinar si las localizaciones eran estadísticamente diferentes (USEPA 2001). En los análisis se incluyó el tejido de meros, roncos, cotorros, pargos, carruchos y cangrejos de tierra. Debido a las cantidades limitadas recolectadas en la mayoría de las localizaciones de muestreo, el cangrejo violinista, el salmonete y la langosta no fueron evaluados.

En la prueba estadística de mercurio se halló una alta influencia de las especies y el tamaño. Incluso con esas influencias, el rango de concentraciones dentro de las familias fue relativamente pequeño. Por lo tanto, las diferencias por localización son difíciles de determinar. Dado que el rango de concentraciones de mercurio fue pequeño y que la influencia de las especies y el tamaño fue grande, no podemos predecir la cantidad de muestras necesaria para determinar alguna diferencia entre los niveles encontrados en los peces de cada localización. A continuación se proporcionan más pruebas estadísticas.

2.5.5 Resultados de las pruebas (enfocadas en el mercurio)

Se computó un análisis de varianza multifactorial (multivariate analysis of variance, MANOVA) sobre el mercurio (y otros metales). Los resultados del análisis de varianza (analysis of variance, ANOVA) individual indicaron una significancia estadística entre varios metales en varias localizaciones. Para mercurio, la EPA encontró niveles de mercurio estadísticamente bajos cerca del LIA comparado con otras localizaciones. Sin embargo, luego encontramos que la significancia era debido a diferencias entre especies dentro de los grupos. La Tabla C1 del Apéndice C de la EPA de los EE.UU. (2001) incluye un resumen completo de todas las comparaciones entre las localizaciones, paramétricas y no paramétricas, de todas las familias. La siguiente es una lista abreviada del resumen de las pruebas estadísticas sobre mercurio proporcionadas por la EPA de los EE.UU. en el Apéndice C de EPA de los EE.UU. (2001):

- Meros: Se computó un MANOVA para mercurio. Los resultados del ANOVA individual indicaron una significancia estadística entre las localizaciones para otros metales, pero no para el

- Roncos: Se computó un MANOVA para mercurio. Los resultados del ANOVA individual indicaron una significancia estadística entre las localizaciones para algunos metales, pero no para el mercurio.

- Pargos: Se computó un MANOVA para mercurio. Los resultados del ANOVA individual indicaron una significancia estadística entre las localizaciones para algunos metales, pero no para el mercurio.

- Cotorros: La comparación no paramétrica de Kruskal-Wallis de las localizaciones no indicó diferencia significativa alguna (p<0.05) para el mercurio en las comparaciones entre localizaciones.

- Carruchos: El mercurio en Esperanza fue más alto que en el norte del LIA, el sur del LIA y el extremo oeste. La comparación no paramétrica de Kruskal-Wallis de las localizaciones generó valores de probabilidad significativos (p<0.05) de las comparaciones entre las localizaciones de mercurio. Las múltiples comparaciones de Tukey de las categorías generaron dos patrones distintos para el mercurio: El norte del LIA (1), el sur del LIA (2) y el extremo oeste (6) fueron agrupados juntos; Esperanza (3) se agrupó por separado.

- Cangrejos de tierra: Dado que más del 50% de los resultados de mercurio estuvieron por debajo del nivel de detección, se les evaluó utilizando métodos no paramétricos. Las pruebas no paramétricas no indicaron diferencia significativa alguna entre los niveles de mercurio en las localizaciones.
Tabla C1 del informe de la EPA de los EE.UU. (USEPA 2001) para las localizaciones 1 a 6.

Tabla C1. Resultados de comparaciones estadísticas entre localizaciones de muestreo, especies buscadas y analitos

Evaluaciones de los peces de Vieques
Vieques, Puerto Rico

<table>
<thead>
<tr>
<th>Especies: Localizaciones comparadas:</th>
<th>Valores de probabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carrucho 1,2,3,6</td>
</tr>
<tr>
<td>Aluminio</td>
<td>0.0103*</td>
</tr>
<tr>
<td>Antimónico</td>
<td>NE</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bario</td>
<td>0.0069</td>
</tr>
<tr>
<td>Berilio</td>
<td>0.0102*</td>
</tr>
<tr>
<td>Cobre</td>
<td>0.0435</td>
</tr>
<tr>
<td>Calcio</td>
<td>0.0452</td>
</tr>
<tr>
<td>Cromo</td>
<td>0.6119</td>
</tr>
<tr>
<td>Cobalto</td>
<td>0.1436*</td>
</tr>
<tr>
<td>Cobre</td>
<td>0.0103</td>
</tr>
<tr>
<td>Hierro</td>
<td>NU</td>
</tr>
<tr>
<td>Plomo</td>
<td>0.0086*</td>
</tr>
<tr>
<td>Magnesio</td>
<td>0.0413</td>
</tr>
<tr>
<td>Manganeso</td>
<td>0.6318</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0.0195*</td>
</tr>
<tr>
<td>Níquel</td>
<td>NE</td>
</tr>
<tr>
<td>Potasio</td>
<td>0.8085</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.1064</td>
</tr>
<tr>
<td>Plata</td>
<td>0.0558</td>
</tr>
<tr>
<td>Sodio</td>
<td>0.0028</td>
</tr>
<tr>
<td>Talio</td>
<td>NE</td>
</tr>
<tr>
<td>Vanadio</td>
<td>0.6715*</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.4960</td>
</tr>
</tbody>
</table>

* – Análisis no paramétricos realizados
NE – no evaluados – 100% de los resultados analíticos estaban por debajo del límite de detección del método
NU – los resultados analíticos no eran utilizables

Analisi estadístico realizados a un nivel alfa- de 0.05. Valores de probabilidad <0.05 listados en letra negrita.
2.5.6 Limitaciones de las pruebas

Debido a comentarios de la revisión por expertos externos, se realizaron pruebas adicionales. Debido a que la familia de los roncos tuvo un promedio superior a 0.1 ppm, se realizaron pruebas para determinar si todas las especies de roncos tenían valores más altos. Se capturaron cuatro condenados cerca del extremo oeste y en ningún otro lugar; todos estaban encima de 0.1 y la muestra más baja tenía 0.14 ppm y el intervalo de confianza del 95% era de 0.13 ppm. Estos condenados eran mucho más pequeños que las otras especies de roncos. El condenado, incluso cuando alcanza su mayor tamaño, es pequeño y tiende a buscar comida más cerca de la arena que de los pastos marinos por la noche, cuando deja el arrecife, lo cual produce exposiciones diferentes de los otros roncos. Como el condenado tuvo niveles de mercurio relativamente altos para su tamaño, esto introduce parcialidad en la familia de los roncos. Esto redujo nuestra capacidad de comparar a todos los roncos de todos los arrecifes. Se capturaron roncos amarillos en tres arrecifes, al norte del LIA, sur del LIA y Esperanza, con promedios similares (entre 0.21-0.24 ppm). Además, el boquicolora'o tuvo un valor estadísticamente más bajo que el ronco amarillo y el condenado. El mercado solamente tenía boquicolora'o para la investigación. No encontramos diferencias estadísticas entre el ronco amarillo en las dos localizaciones del LIA en comparación con aquellos capturados en Esperanza.

En el capítulo 2, sección 2.2.2 se analiza la familia de los meros como un caso en el que parecía que una localización (localización 1) tenía concentraciones diferentes (en este caso más bajas) que otras localizaciones. También mencionamos pruebas estadísticas adicionales para determinar otras razones por las que la localización 1 tenía niveles más bajos. Al analizar esta familia, queremos comparar otros factores de especies y determinar si el peso podría haber influido en los resultados.

Teníamos muestras suficientes dentro de la familia de los meros para seguir evaluando el mero cabrilla y el cabra mora solamente. El mero cabrilla del mercado, de Isabel Segunda y del norte del LIA tuvo un promedio menor que la cabra mora de Esperanza y del sur del LIA (en la Tabla 2-5). Los tres cabra mora del extremo oeste tuvieron los niveles promedio de mercurio más bajos para esa especie (0.057 ppm). Se encontró cabra mora en dos arrecifes, al sur del LIA (0.13 ppm en promedio) y Esperanza (0.16 ppm en promedio). Después de tomar en cuenta las diferencias de especies, podemos determinar si el peso influye en las concentraciones al analizar las concentraciones dentro de una especie. La Figura 2A-2 es un diagrama de dispersión de todos los pesos de cabra mora en comparación con sus concentraciones de mercurio.
Las gráficas sugieren una relación entre el tamaño del pez y la concentración de mercurio. Esto no fue evidente en los peces recogidos por la Dra. Caro. Dado que la ATSDR seleccionó peces más grandes intencionalmente, la variación de tamaño es insuficiente para hacer esta comparación para todos los peces.

A partir de los análisis de mercurio, concluimos que solo el carrucho mostró diferencias estadísticas por localización. Estas diferencias fueron que el carrucho del norte del LIA, el sur del LIA y el extremo oeste tuvieron estadísticamente menos mercurio que el carrucho recogido en Esperanza. No obstante, incluso el carrucho de Esperanza estuvo por debajo de los niveles de detección.

2.5.7 Mercurio: Tres estudios en seres humanos y la dosis de referencia de la EPA de los EE.UU.

Varios estudios en seres humanos evaluaron los efectos neurológicos de la exposición a metilméricurio en niños. En el 1986 comenzó un estudio a largo plazo en seres humanos realizado en niños de las Islas Feroe, un pequeño grupo de islas en el Océano Atlántico Norte afiliadas a Dinamarca, y se enfocó en niños nacidos de mujeres que vivían en las islas. Esta población depende en gran medida de los alimentos de origen marino y de las ballenas como fuente de proteínas. Los investigadores utilizaron diversas pruebas que monitorean el desarrollo infantil. Concluyeron que al momento del nacimiento, los niveles de mercurio en la sangre del cordón umbilical en la madre se asociaban con efectos perjudiciales en los niños a la edad de 7 años que incluían el lenguaje, la atención y la memoria, y, en menor medida, las funciones visual/espacial y motora (Grandjean et ál. 1997). Estudios de seguimiento realizados a los 14 años de edad mostraron hallazgos similares (Debes et ál. 2006).

En el 1978, Nueva Zelanda fue el lugar de otro estudio en seres humanos. Se enfocó en 61 niños que estuvieron expuestos en el útero a niveles altos de mercurio como resultado del consumo materno de cuatro o más comidas con pescado por semana. Omitiendo un valor atípico obtenido por los autores, los datos mostraron una disminución en el coeficiente intelectual de los niños a los 6 años de edad con una exposición creciente al metilméricurio medida por los niveles de mercurio en el cabello de la madre al...
momento del nacimiento (Crump 1998). El tercer estudio provino de la República de las Seychelles, donde el 85% de la población dependía de alimentos de origen marino locales para obtener proteínas. El consumo promedio de pescados de mar en esta población era de 12 comidas por semana (Davidson 1998). Inicialmente, el estudio realizado en las Seychelles no encontró efectos perjudiciales en los niños a medida que crecían. En una publicación reciente, los investigadores informaron que dos de las 21 variables analizadas (una positiva y una negativa) se asociaron con exposición prenatal a metilmercurio. Los autores indicaron que probablemente estos resultados se debieran al azar. Concluyeron que sus datos no respaldaban la existencia de un riesgo para el desarrollo neurológico a partir de la exposición prenatal al metilmercurio por el consumo de pescado (Myers 2003). En otro trabajo, los autores informaron que hallaron varias asociaciones entre la exposición posnatal al metilmercurio y las variables analizadas del desarrollo de los niños. Sin embargo, los investigadores concluyeron que no surgió ningún patrón consistente de asociaciones que justificara una relación causal (Myers 2009). En algunos casos en los que se utilizaron varias pruebas para evaluar un único dominio y solo una de esas pruebas fue positiva, los investigadores de Seychelles creyeron que no podían basar una conclusión firme en solo una de varias pruebas para ese dominio. Por el contrario, creyeron que si un dominio estaba afectado perjudicialmente, más de una prueba debía mostrarlo (Risher 2010).

Hay más información disponible sobre los efectos perjudiciales del metilmercurio en el Perfil Toxicológico del Mercurio de la ATSDR (ATSDR 1999).

La EPA de los EE.UU. desarrolló una dosis de referencia de metilmercurio mediante un modelo matemático que estimó una respuesta adversa del 5% en niños para efectos neurológicos.16 Usando el estudio de las Islas de Feroe, la EPA de los EE.UU. concluyó que la concentración de metilmercurio en la sangre materna del cordón umbilical que causó una respuesta adversa del 5% en niños osciló entre 46 y 79 ppb. Esta concentración de metilmercurio en la sangre materna fue equivalente a un rango de 0.8 a 1.5 µg de metilmercurio por kilogramo por día (µg/kg/día) como ingesta dietaria. Las dosis se dividieron por un factor de incertidumbre de 10 para llegar a la dosis de referencia de 0.1 µg/kg/día. El enfoque de la EPA de los EE.UU. es consistente con el enfoque utilizado por la Academia Nacional de Ciencias. La NAS recomendó que la EPA de los EE.UU. utilizara el estudio de las Islas Feroe y 58 ppb de metilmercurio en la sangre del cordón umbilical para derivar sus guías de salud (NRC 2000). Los métodos de la EPA de los EE.UU. para derivar la RfD de la agencia se describen en detalle en http://www.epa.gov/iris/subst/0073.htm (EPA de los EE.UU. 2012).

La Academia Nacional de Ciencias concluyó que es posible cierto riesgo con relación a los efectos perjudiciales anticipados en niños expuestos en el útero a 58 ppb de metilmercurio en la sangre del cordón umbilical. La concentración en la sangre del cordón de 58 ppb de metilmercurio equivale a 12 ppm de metilmercurio en el cabello materno (NRC 2000).

16 Más precisamente, la EPA de los EE. UU. calculó el límite de confianza del 95 más bajo de la concentración de metilmercurio en sangre materna que dio una respuesta del 5% para efectos neurológicos en los niños a los 7 años de edad.
2.6 Apéndice 2A-2: Dosis estimadas en los residentes por comer pescado de Vieques

Tabla 2A-1. Dosis de mercurio estimada para mujeres y niños de distinto peso corporal por comer pescado de arrecife de Vieques *

<table>
<thead>
<tr>
<th>Edad aproximada</th>
<th>Peso corporal, libras</th>
<th>Peso corporal, kg</th>
<th>Dosis estimada de mercurio en µg/kg/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 año</td>
<td>188</td>
<td>82.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>2 años</td>
<td>198</td>
<td>89.6</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>3 años</td>
<td>208</td>
<td>97.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>4 años</td>
<td>218</td>
<td>104.6</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>5 años</td>
<td>228</td>
<td>112.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>6 años</td>
<td>238</td>
<td>120.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>7 años</td>
<td>248</td>
<td>128.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>8 años</td>
<td>258</td>
<td>136.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>9 años</td>
<td>268</td>
<td>144.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>10 años</td>
<td>278</td>
<td>152.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>11 años</td>
<td>288</td>
<td>160.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>12 años</td>
<td>298</td>
<td>168.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>13 años</td>
<td>308</td>
<td>176.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>14 años</td>
<td>318</td>
<td>184.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>15 años</td>
<td>328</td>
<td>192.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>16 años</td>
<td>338</td>
<td>200.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>17 años</td>
<td>348</td>
<td>208.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
<tr>
<td>18 años</td>
<td>358</td>
<td>216.1</td>
<td>0.04 0.05 0.09 0.10 0.15 0.20 0.25 0.28 0.30 0.33 0.37 0.42 0.45 0.50 0.58 0.66 0.77 0.84 0.93 1.04</td>
</tr>
</tbody>
</table>

* Los hombres con el mismo peso e ingesta de pescado tienen la misma dosis estimada que las mujeres. *Estas dosis estimadas son para adolescentes de 15 a 18 años que tienen un percentil 99 de la porción de comida de pescado de 20 onzas. El percentil 99 de la porción de comida de pescado para mujeres adultas es de 14 onzas.
2.7 Apéndice 2A-3: El aviso nacional conjunto sobre el consumo de pescado de la EPA de los EE.UU. y la FDA

Lo que usted necesita saber sobre el mercurio en el pescado y los mariscos, marzo del 2004:

Aviso de la EPA y la FDA del 2004 para las mujeres en edad fértil, las mujeres embarazadas, las madres en período de lactancia y los niños pequeños

El pescado y el marisco son una parte importante de una dieta saludable. El pescado y el marisco contienen proteínas de alta calidad y otros nutrientes esenciales, son bajos en grasas saturadas y contienen ácidos grasos omega 3. Una dieta bien balanceada que incluya pescados y mariscos variados puede contribuir a la salud del corazón y al crecimiento y desarrollo adecuado de los niños. Por tanto, las mujeres y los niños pequeños en particular deben incluir pescados o mariscos en sus dietas debido a sus muchos beneficios nutricionales.

Sin embargo, casi todos los pescados y mariscos contienen algunas trazas de mercurio. Para la mayoría de las personas, el riesgo del mercurio proveniente del pescado y del marisco no es una preocupación de salud. No obstante, algunos pescados y mariscos contienen altos niveles de mercurio que pueden perjudicar a los fetos o el sistema nervioso en vías de desarrollo de un niño pequeño. Los riesgos del mercurio en el pescado y el marisco dependen de la cantidad de pescado y marisco que se coma, y de los niveles del mercurio en el pescado y el marisco. Por lo tanto, la Administración de Alimentos y Medicamentos (FDA) y la Agencia de Protección Ambiental (EPA) aconsejan a las mujeres en edad fértil, a las mujeres embarazadas, a las madres en período de lactancia y a los niños pequeños que eviten comer algunos tipos de pescado, y que coman pescados y mariscos más bajos en mercurio.

Al seguir estas tres recomendaciones al seleccionar y comer el pescado o marisco, las mujeres y los niños recibirán los beneficios de comer pescado y mariscos, y podrán confiar en que habrán reducido su exposición a los efectos perjudiciales del mercurio.

1. No coma carne de tiburón, pez espada, carite (King Mackerel) o blanquillos (Tilefish) porque contienen altos niveles de mercurio.

2. Puede comer hasta 12 onzas (2 comidas promedio) a la semana de diferentes pescados o mariscos que sean bajos en mercurio
 a. Cinco de los pescados que se comen con mayor frecuencia y que son bajos en mercurio son los camarones, el atún enlatado claro, el salmón, el gado (pollock) y el pez gato.
 b. Otro pescado que se come comúnmente es el atún albacora (“blanco”), que tiene más mercurio que el atún enlatado claro. Por lo tanto, cuando escoja sus dos comidas de pescado y mariscos, puede comer hasta 6 onzas (una comida promedio) de atún albacora por semana.

3. Consulte los avisos locales sobre la seguridad del pescado capturado por sus familiares y amigos en los lagos, ríos y áreas costeras locales. Si no hay ninguna información disponible, puede comer por semana hasta 6 onzas (una comida promedio) de pescado de sus aguas locales, pero no consuma ningún otro tipo de pescado durante la semana.
Siga estas recomendaciones cuando alimente a sus hijos pequeños con pescado o mariscos, pero sírvales porciones menores.
Capítulo 3 Biomonitorio

3.1. Introducción al biomonitorio

3.2. Evaluación de los datos disponibles de estudios de biomonitorio en seres humanos realizados en Vieques

3.3. Ventajas y limitaciones del biomonitorio de seres humanos en Vieques

3.4. El caso especial de análisis del cabello para detectar metales y otros elementos
 3.4.1. Panel sobre cabello de la ATSDR 2001
 3.4.2. Estado actual de la validez del análisis del cabello

3.5. Conclusiones y recomendaciones
 3.5.1. Conclusiones
 3.5.2. Recomendaciones

3.6. Bibliografía

3.7. Apéndice 3-A. Biomonitorio
 3.7.1. Resúmenes de los estudios de biomonitorio en seres humanos asociados con Vieques, Puerto Rico
 3.7.2. Estudio de biomonitorio del Departamento de Salud de Puerto Rico
 3.7.3. Estudio del Departamento de Salud de Puerto Rico, fase 1
 3.7.4. Estudio del Departamento de Salud de Puerto Rico, fase 2
 3.7.5. Hallazgos del Departamento de Salud de Puerto Rico
 3.7.6. Medidas del Departamento de Salud de Puerto Rico tomadas después de la fase 1 y la fase 2
 3.7.7. Actividades de seguimiento sugeridas por el Departamento de Salud de Puerto Rico
 3.7.8. Seguimiento con un programa de monitoreo para niños menores de 6 años de edad
 3.7.9. Investigaciones realizadas por la Dra. Carmen Ortiz Roque

3.8. Resumen del artículo de la Dra. Ortiz Roque publicado en 2004 en una revista científica
 3.8.1. Resumen del manuscrito no publicado de 2002 de la Dra. Ortiz Roque
 3.8.2. Investigaciones realizadas por la Dra. Carmen Colón de Jorge
 3.8.3. Investigaciones del Dr. Carlos Rodríguez Sierra

3.9. Apéndice 3-B. Biomonitorio
Capítulo 3 Resumen

El siguiente capítulo describe y evalúa los estudios disponibles de biomonitorio de los residentes de Vieques. Estos estudios fueron realizados desde 1999 por científicos y médicos puertorriqueños o por el Departamento de Salud del Estado Libre Asociado de Puerto Rico. Consisten en mediciones de distintos metales en la sangre, orina, cabello o heces de los residentes. Los datos de estos estudios informaron niveles elevados de algunos metales en la sangre, orina o cabello de los residentes. Si bien algunos de estos niveles elevados pueden explicarse por el consumo de cigarrillos, alimentos de origen marino o tinturas para el cabello, no dan cuenta de todos los niveles elevados. Estos estudios no pudieron investigar el ambiente de cada persona para identificar la fuente de los metales en los residentes que tenían niveles excesivos en cabello, orina o sangre. El estudio del Departamento de Salud de Puerto Rico fue el que más cerca estuvo de identificar las posibles fuentes, pero admite la imposibilidad de identificar la fuente o fuentes para todos los residentes con una exposición excesiva a metales.

Los viequenses podrían estar expuestos al mercurio en los peces y al cadmio en el gandul. Estas exposiciones pueden ameritar más investigaciones ambientales, como la obtención de muestras de productos cultivados localmente para determinar el contenido de cadmio y obtener más información sobre el consumo de pescado y la posibilidad de que contenga mercurio. Se podría usar la información para decidir si se realizan pruebas en seres humanos para detectar mercurio y cadmio en sangre u orina. Si se identifican otras exposiciones ambientales, podrán considerarse más investigaciones de biomonitorio en seres humanos. Se puede encontrar información más detallada sobre las recomendaciones de la ATSDR sobre el pescado y los productos cultivados localmente en el capítulo 2, sección 2.3.2 y en el capítulo 5, sección 5.3.2, respectivamente.

La ATSDR no está recomendando un esfuerzo de biomonitorio completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomonitorio si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitorio humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitorio, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, expertos de los CDC / ATSDR brindarán asistencia técnica y apoyo a los funcionarios de salud pública o científicos en la planificación y la realización de dicha investigación. Los viequenses que estén preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, deberán consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis. Un laboratorio calificado deberá realizar las pruebas y análisis. El CDC/ATSDR puede proporcionar una lista de laboratorios cualificados que pueden llevar a cabo las pruebas. Si se requiere, el CDC/ATSDR puede proporcionar información a los proveedores de atención médica sobre las pruebas para metales en muestras biológicas.
3.1 Introducción al biomonitoreo

El biomonitoreo es la medición de metales o sustancias químicas en una matriz biológica, como sangre, orina o cabello. A veces puede ser un método útil para evaluar la exposición ambiental a sustancias químicas en las personas. Algunos ejemplos de biomonitoreo incluyen medir el plomo en sangre, el cadmio en orina y el mercurio en el cabello. La concentración de sustancias químicas ambientales en una matriz biológica puede permitir la evaluación de una exposición excesiva. En algunos casos, los niveles de sustancias químicas ambientales podrían predecir el riesgo de que ocurran efectos perjudiciales en la población. Según la sustancia química, los estudios de biomonitoreo pueden dar luz sobre la exposición poblacional en los días, semanas, meses e incluso años previos. Los científicos suelen usar el biomonitoreo para evaluar poblaciones con riesgo de exposición (p. ej., exposiciones promedio o la prevalencia de exposiciones inusualmente altas). Con menos frecuencia, el biomonitoreo puede ser útil para evaluar la exposición de una única persona.

Sin embargo, como todas las evaluaciones de exposiciones, el biomonitoreo tiene limitaciones y requisitos. Estos se clasifican en cinco categorías:

- Muchas sustancias químicas no pueden medirse con la tecnología actual.
- Las mediciones requieren de una precisión y exactitud definidas para ser aplicables.
- Se requiere el momento y la técnica de recolección apropiados. De hecho, son esenciales para la interpretación, la comparación adecuada o la identificación de los grupos de referencia.
- Aunque el biomonitoreo puede asistir en la evaluación de las exposiciones, a veces no es posible alcanzar la significancia toxicológica de sus resultados.

Los resultados de biomonitoreo de Vieques puede compararse con datos nacionales, como el Cuarto Informe Nacional sobre Exposición en Seres Humanos a Sustancias Químicas Ambientales (Fourth National Report on Human Exposure to Environmental Chemicals) (CDC 2009). Pero comparaciones más apropiadas deberían incluir una comparación con datos de biomonitoreo de residentes de la isla principal de Puerto Rico. Estas limitaciones se describen en mayor detalle más adelante en este capítulo.

3.2 Evaluación de los datos disponibles de estudios de biomonitoreo en seres humanos realizados en Vieques

Como las evaluaciones de salud pública anteriores de la ATSDR no revisaron datos de biomonitoreo de Vieques, este capítulo y sus apéndices describen los datos de biomonitoreo en detalle. Debido a cuestiones de confidencialidad, la ATSDR no tiene acceso a resultados individuales. Así, nuestra evaluación depende de la información proporcionada por los investigadores. De todos modos, lo importante es que los datos disponibles de biomonitoreo de los viequenses no pueden usarse para determinar si los residentes de Vieques estuvieron expuestos a compuestos relacionados con los ejercicios militares del pasado.

Desde 1999, el Departamento de Salud de Puerto Rico o científicos y médicos puertorriqueños han realizado varios estudios de biomonitoreo en seres humanos en Vieques. Estos estudios se han focalizado en medir metales en muestras de cabello, orina sangre o materia fecal. Se presentan en la
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Tabla 3-1 (Colón de Jorge sin fecha; Ortiz Roque 2004; Ortiz Roque 2002; Departamento de Salud de Puerto Rico 2006; Rodríguez Sierra 2009). Aquí presentamos lo más destacable. Los estudios se describen en más detalle en el Apéndice 3-A.

La Dra. Carmen Colón de Jorge realizó uno de los primeros estudios. Analizó las muestras de cabello de 30 residentes con afecciones preexistentes de salud y analizó siete muestras de materia fecal para detectar metales. Aproximadamente en la misma época, el estudio de la Dra. Carmen Ortiz Roque analizó muestras de cabello de unos 200 viequenses para detectar diversos metales. Los médicos concluyeron que sus datos mostraban que los viequenses estuvieron expuestos a metales pesados y que esa exposición había provocado efectos perjudiciales para la salud (Colón de Jorge; Ortiz Roque 2002, 2004).

La Dra. Colón de Jorge informó la presencia de numerosos metales en el cabello. Ese informe indicó que, de acuerdo con los rangos proporcionados por el laboratorio del servicio que hizo las mediciones (es decir, Doctor's Data, Chicago, Illinois), un porcentaje considerable de los 30 residentes analizados superaban el rango de referencia establecido por Doctor's Data. La Dra. Colón de Jorge observó que en alrededor del 70% de los 30 residentes analizados, el arsénico y el antimonio encontrados en el cabello superaban los rangos de referencia seleccionados por el laboratorio que emitió el informe. El informe de la Dra. Colón de Jorge indicó que como los niveles de antimonio de las bombas son altos, los excesos de antimonio demostraban que los residentes estuvieron expuestos a metales de las municiones. Sin embargo, el informe no explicó cómo los residentes podrían haber estado expuestos al antimonio o a otros metales.

Tabla 3-1. Estudio de biomonitoreo en seres humanos en Vieques

<table>
<thead>
<tr>
<th>Fuente:</th>
<th>Título</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento de Salud de Puerto Rico</td>
<td>Resumen ejecutivo del estudio de prevalencia de metales pesados en Vieques, 2006, manuscrito preliminar no publicado</td>
</tr>
<tr>
<td>Dra. Carmen Ortiz Roque</td>
<td>Heavy metal exposure and disease in the proximity of a military base. Manuscrito no publicado, 29 de enero de 2002</td>
</tr>
<tr>
<td>Dra. Carmen Colón de Jorge</td>
<td>Innocence battered on Vieques, scientific investigation of toxic metals present in the biological terrain of Vieques children and adults and their effects on nutrient minerals utilizing hair and feces analysis (preliminary report). Manuscrito no publicado, sin fecha</td>
</tr>
<tr>
<td>Dr. Carlos Rodríguez Sierra</td>
<td>Transmisión por Internet, 30 de octubre de 2009, New look at the opening of the case of Vieques, www.telecoqui.net</td>
</tr>
</tbody>
</table>

La mayoría de los laboratorios comerciales que informan resultados tienen su propio rango de referencia para lo que consideran concentraciones normales o típicas de una sustancia química en una matriz biológica. Pero dichos rangos pueden variar según las poblaciones analizadas. Inevitablemente, las exposiciones varían de una población a otra de acuerdo con factores como la edad, el sexo, la raza/origen étnico y las afecciones de salud subyacentes. Los laboratorios a veces establecen una concentración que consideran superior al rango esperado o que, en ocasiones, consideran incluso
tóxica. A menudo, el fundamento para estos rangos (y, si se los informa, para los niveles tóxicos) es la experiencia acumulada por la propia compañía durante muchos años de análisis de laboratorio. Dichos rangos de referencia o niveles tóxicos identificados no están regulados por el gobierno ni aprobados por una organización médica o científica.

El estudio de la Dra. Ortiz Roque identificó varios residentes con niveles de mercurio en el cabello superiores a 12 ppm, el nivel que el Consejo Nacional de Investigación (National Research Council) identificó como causante de un aumento del 5% en los resultados anormales en una prueba neurocognitiva (es decir, la prueba de denominación de Boston) en niños que estuvieron expuestos en el útero (NRC 2000).

La Dra. Ortiz Roque mostró que los niveles más altos de mercurio estaban asociados con el mayor consumo de pescado de los viequenses (Ortiz Roque 2002, 2004); pero los pacientes de esta investigación no fueron seleccionados aleatoriamente. Por lo tanto, en lo que respecta a la prevalencia de los niveles elevados de mercurio en los viequenses es difícil sacar conclusiones firmes. Dicho esto, la identificación de la Dra. Ortiz Roque de tres residentes con niveles de mercurio en el cabello superiores a 12 ppm es un hallazgo importante. Una gran limitación del análisis del cabello en una población libre es la dificultad al discernir si el metal se depositó internamente por el torrente sanguíneo o se depositó externamente por el aire o el uso de productos en el cabello. Si bien las mediciones de mercurio en el cabello se utilizaron en estudios poblacionales previos, generalmente se investigan los esfuerzos para comprender o controlar los depósitos externos.

Desde 2006 hasta 2008, el Dr. Carlos Rodríguez Sierra recolectó muestras de cabello, uñas y orina de 52 adultos viequenses. Dividió a los sujetos del estudio en grupos de consumo alto y bajo de pescado. Esta división es necesaria porque las personas que comen pescado regularmente tendrán niveles altos de arsénico en orina. Este tipo de arsénico es predominantemente arsenobetaina, una forma no tóxica de arsénico. Una transmisión por Internet del 30 de octubre de 2009 patrocinada por Casa Pueblo de Adjuntas presentó un informe de que niveles altos de arsénico en el cabello, las uñas y la orina no se habían detectados al momento de la toma de muestras. Los niveles de la muestra de cabello y uñas eran inferiores a 1 µg/g (microgramo por gramo), que el Dr. Rodríguez Sierra utilizó como valor de referencia (Rodríguez Sierra C. 2009). En la transmisión por Internet también se informó que la suma de especies de arsénico inorgánico y sus metabolitos en orina fue inferior a 50 µg/g de creatinina, que el Dr. Rodríguez Sierra también utilizó como valor de referencia. Ese valor probablemente provenga de los estudios de exposición ocupacional que antes utilizaron este valor para evaluar la exposición excesiva al arsénico (ACGIH 2000, WHO 2001). La Conferencia Estadounidense sobre Higiene Industrial Gubernamental (American Conference of Governmental Industrial Hygiene, ACGIH) actualmente recomienda 35 µg/g de creatinina como un nivel de acción de la suma de especies de arsénico inorgánico y sus metabolitos para análisis ocupacional (ATSDR 2007).

El Dr. Rodríguez Sierra informó que la mediana y el percentil 95 de los niveles de arsénico inorgánico total (As V, As III, DMA, MMA) en la orina de los viequenses eran ligeramente superiores a los niveles respectivos informados en el Cuarto Informe Nacional sobre Exposición en Seres Humanos a Sustancias Químicas Ambientales (Fourth National Report on Human Exposure to Environmental Chemicals) de
2003-2004. Las fuentes dietarias de arsénico inorgánico incluyen el pollo y también el arroz, en particular cuando el arroz se siembra en suelos contaminados con arsénico (Lasky et al. 2004; Potera 2007; Williams et al. 2007). Sin embargo, es imposible determinar si estos niveles ligeramente más altos de arsénico inorgánico en orina se asocian con efectos perjudiciales.

Como seguimiento de estos estudios, el Departamento de Salud de Puerto Rico llevó a cabo un estudio exhaustivo de biomonitorio en el que recolectaron muestras de cabello, orina o sangre de 500 viequenses seleccionados aleatoriamente. Los resultados se compartieron con algunos de los que participaron, pero nunca se publicó un informe público (Departamento de Salud de Puerto Rico 2006). En agosto de 2009, la ATSDR obtuvo un manuscrito preliminar no publicado. La ATSDR halló que se utilizaron unidades inapropiadas en algunos de los resultados y eso generó algunas mediciones inciertas.

No obstante, el manuscrito del Departamento de Salud de Puerto Rico informó que en el 20% de los participantes el aluminio, el plomo o el mercurio en sangre; el uranio, el cadmio o el níquel en orina; o el níquel o el arsénico en el cabello superaban el rango de referencia de Quest Laboratories. En algunos casos —pero no todos— de niveles elevados, el manuscrito del Departamento de Salud de Puerto Rico identificó como posibles fuentes los cigarrillos, las tinturas para el cabello, los productos alimenticios de origen marino. En otros residentes, no fue posible identificar el origen de los altos niveles de metales en orina, cabello y sangre. Como se mencionó anteriormente, los niveles elevados de metales (excepto el mercurio) en cabello son difíciles de interpretar. El análisis de cabello no responde la inquietud de si los metales se ingirieron y se unieron al cabello a partir del contacto directo. También se debe tener en cuenta que el manuscrito del Departamento de Salud de Puerto Rico indicó que no se analizaron a niños de 4 años de edad o menos.

Dicho esto, no obstante, los estudios de biomonitorio realizados por la Dra. Colón de Jorge y la Dra. Ortiz Roque respaldaron las conclusiones del manuscrito del Departamento de Salud de Puerto Rico.

3.3 Ventajas y limitaciones del biomonitorio de seres humanos en Vieques

El uso de los resultados del biomonitorio para evaluar cuestiones de salud pública requiere la consideración de las ventajas y las limitaciones del biomonitorio enumeradas anteriormente. Los datos de biomonitorio permitirán al investigador revisar los marcadores de exposición y los marcadores de efecto. Cuando existe información toxicológica, los marcadores de efecto permiten que el investigador determine si las consecuencias perjudiciales podrían al nivel medido de una sustancia química o su metabolito. Numerosos datos sobre toxicología respaldan la investigación actual sobre plomo en sangre, cadmio en orina y mercurio en cabello. Una vez conocida la concentración, los científicos de la salud pueden sacar conclusiones acerca de la presencia o la ausencia de riesgo. En el caso de otros metales presentes en sangre u orina, los datos toxicológicos y la investigación son limitados, y de ese modo

18 Si bien el manuscrito preliminar del Departamento de Salud de Puerto Rico indica que Quest Laboratories en San Juan, PR, realizó los análisis clínicos, el nombre correcto muy probablemente sea Quest Diagnostics.
reducen la capacidad para sacar conclusiones firmes. Por ejemplo, no hay datos de toxicidad en seres humanos disponibles para los niveles de antimonio, berilio, cesio, molibdeno, platino y tungsteno en orina. Por ende, si bien el biomonitorio puede identificar poblaciones con una exposición excesiva, tal vez no sea posible evaluar el riesgo de los efectos perjudiciales de esa exposición (CDC 2009).

Pero una ventaja particular del biomonitorio es la disponibilidad de los datos de comparación para una muestra representativa de la población de los EE.UU. Esos datos de comparación están en los Informes nacionales sobre exposición en seres humanos a sustancias químicas ambientales, en http://www.cdc.gov/exposurereport/ (CDC 2009). También hay datos nacionales disponibles sobre mercurio en el cabello (McDowell 2004).

Una consideración importante al utilizar los datos de biomonitorio de la Encuesta Nacional para la Evaluación de la Salud y la Nutrición (National Health and Nutrition Examination Survey, NHANES) es que es probable que haya diferencias en los niveles entre las poblaciones (p. ej., regionales, culturales y étnicas) debido a las diferencias en las exposiciones, la farmacocinética y otros factores. De ese modo, los datos sobre la población de los EE.UU. solo pueden aplicarse con cautela al Estado Libre Asociado de Puerto Rico. Si se llevan a cabo investigaciones de biomonitorización en el futuro para la población de Vieques, quizás sea más apropiada una población de comparación perteneciente al Estado Libre Asociado de Puerto Rico u otra población de una isla cercana.

A fin de comprender las posibles fuentes de exposición, se debe investigar a los sujetos con concentración elevada de metales o sustancias químicas posteriormente para hallar fuentes atribuibles de exposición.

3.4 El caso especial de análisis del cabello para detectar metales y otros elementos

3.4.1 Panel sobre cabello de la ATSDR 2001

Durante la reunión de noviembre de 2009 de la ATSDR con científicos invitados, se nos pidió que reconsideráramos la posición de la agencia respecto del análisis de metales en el cabello. En 2001, la ATSDR patrocinó un taller e invitó a investigadores del campo médico, ambiental y toxicológico para hacer recomendaciones a la agencia sobre la utilidad de medir metales y sustancias químicas orgánicas en el cabello. Los panelistas del taller llegaron a un acuerdo respecto de la siguiente declaración sumaria relacionada con la utilidad general del análisis del cabello en la evaluación de exposiciones ambientales:

> Para la mayoría de las sustancias, actualmente no existen datos suficientes que permitan prever un efecto en la salud a partir de la concentración de la sustancia en el cabello. La presencia de una sustancia en el cabello puede indicar exposición (tanto interna como externa), pero no necesariamente indica la fuente de exposición (ATSDR 2001).

Los panelistas acordaron que una relación entre las concentraciones de contaminantes en el cabello y cualquier tipo de resultado mensurable —siempre y cuando se pueda descartar la contaminación externa— solo se estableció para el metilmercurio y, en un grado limitado, el arsénico (p. ej., el análisis

Los panelistas identificaron varios factores que limitan la interpretación de incluso los resultados de laboratorio más precisos, confiables y reproducibles. Estos incluyen

- Falta de rangos de referencia (o base) que permitan enmarcar la interpretación de los resultados.
- Dificultades para distinguir la contaminación endógena (interna) de la exógena (externa) en el cabello.
- Algunos panelistas consideraron que la bibliografía actual en ese momento sugería que no existía ningún método confiable de lavado capaz de separar la contaminación externa del depósito interno del elemento. Un posible remedio fue que, en los casos posibles, identificar los metabolitos —u otros marcadores únicos de exposición interna— de sustancias de interés sería muy útil para distinguir la contaminación interna y la externa.
- Falta de comprensión de cómo y en qué medida los contaminantes ambientales se incorporan al cabello.
- Falta de correlación entre los niveles presentes en el cabello y la sangre y otros tejidos de interés, así como falta de datos epidemiológicos que vinculen los niveles de una sustancia específica en el cabello con efectos adversos en la salud.
- Hay poca información pertinente disponible para estudiar los compuestos orgánicos relevantes desde el punto de vista ambiental en el cabello. El panel recomendó sacar provecho de lo que se conoce sobre el análisis del cabello para evaluar las drogas de abuso (ATSDR 2001).

3.4.2 Estado actual de la validez del análisis del cabello

El personal de la ATSDR consultó a varias fuentes para determinar la validez actual del análisis del cabello. La Asociación Médica de Estados Unidos (American Medical Association, AMA) respalda las conclusiones de los panelistas que participaron en el taller de la ATSDR realizado en 2001 (AMA 2009). La Agencia Federal Ambiental de Alemania (German Federal Environment Agency, GFEA 2005) tiene una recomendación similar. Una excepción son las muestras de cabello analizadas detenidamente para detectar mercurio. La encuesta NHANES incluye la medición de mercurio en el cabello de una población nacional en un período de 2 años (1999-2000). Por lo tanto, la comparación de los niveles de mercurio en el cabello con un grupo nacional es posible. Esto podría ayudar a identificar a personas con exposición excesiva al mercurio.

3.5 Conclusiones y recomendaciones

3.5.1 Conclusiones

1. Desde 1999, se han realizado al menos cinco investigaciones de biomonitorio en seres humanos en Vieques. Todas ellas estuvieron a cargo de científicos y médicos puertorriqueños o del Departamento de Salud de Puerto Rico. El Departamento de Salud de Puerto Rico ha llevado a
cabo la iniciativa de toma de muestras más abarcadora que recolectó muestras biológicas de 500 viequenses seleccionados aleatoriamente. El manuscrito del Departamento de Salud de Puerto Rico informó que en el 20% de los participantes

a. el aluminio, el plomo o el mercurio en sangre;

b. el uranio, el cadmio o el níquel en orina; o

c. el níquel o el arsénico en el cabello

superaban el rango de referencia del laboratorio. El manuscrito del Departamento de Salud de Puerto Rico identificó el uso de cigarrillos y de tinturas para el cabello, así como el consumo de alimentos de origen marino, como posibles fuentes de algunos de los niveles elevados pero no de todos. El manuscrito del Departamento de Salud de Puerto Rico reconoció que, en el caso de algunos residentes, no se pudo identificar la fuente de niveles altos de metal en orina, cabello y sangre. El manuscrito del Departamento de Salud de Puerto Rico no informó niveles de mercurio en el cabello. Los resultados de las investigaciones de la Dra. Ortiz Roque demostraron que algunos residentes tenían niveles elevados de mercurio en el cabello, y que muy probablemente la fuente era el consumo de pescado; sin embargo, no se descartaron por completo otras posibles fuentes.

2. Los datos de estos estudios demostraron que en la sangre, la orina, el cabello o las heces de algunos residentes de Vieques contenían niveles elevados de diversos metales. Si bien algunos de estos niveles elevados pueden explicarse por el consumo de cigarrillos, alimentos de origen marino o tinturas para el cabello, no dan cuenta de todos los niveles elevados. En particular, los resultados de biomonitoreo de la Dra. Ortiz Roque demostraron que algunos viequenses tenían un nivel elevado de mercurio en el cabello superior a 12 ppm, el nivel identificado por la NAS como agente perjudicial en el 5% de los fetos expuestos en el útero. La Dra. Ortiz Roque también demostró que el mercurio presente en el cabello se asoció con el consumo de pescado. En cambio, el estudio del Departamento de Salud de Puerto Rico no encontró niveles excesivos de mercurio en sangre, aunque el estudio no midió ni informó niveles de mercurio en el cabello. Por ende, existe algo de incertidumbre respecto de la prevalencia de altos niveles de mercurio en los viequenses. Excepto por el mercurio, el contenido de metales en el cabello es difícil de interpretar. Los metales pueden unirse directamente al cabello por el uso de productos comerciales para el cabello, lo cual dificulta toda distinción entre la exposición interna a metales mediante la ingestión y la inhalación frente a la exposición externa que resulta del contacto con el metal en el ambiente (p. ej., champú, tinturas, polvo).

3. Estos estudios no pudieron investigar el ambiente de cada persona para identificar la fuente en aquellos que tenían niveles excesivos en cabello, orina o sangre. El estudio del Departamento de Salud de Puerto Rico fue el que más cerca estuvo de identificar las posibles fuentes (p. ej., consumo de cigarrillos y uso de tinturas para el cabello, consumo de alimentos de origen marino), pero admitió la imposibilidad de identificar la fuente o fuentes para todos los residentes con una exposición excesiva a metales. Ya sea mediante el instrumento de la encuesta o mediante una visita al hogar, puede ser posible identificar otras fuentes que
aumentan la exposición a metales, tales como los utensilios de cocina, los residuos metálicos en los alimentos (p. ej., té y vegetales), el consumo de bebidas con envases metálicos, ritos religiosos que usan cápsulas que contienen mercurio, cremas para la piel, y las formulaciones de antiácidos y de antitranspirantes.

4. La ATSDR sigue siendo cautelosa respecto de la toma de decisiones sobre el uso del cabello como indicador de la exposición a contaminantes ambientales y como indicador del riesgo de efectos perjudiciales. Un problema importante a la hora de interpretar las concentraciones de metales en el cabello es si el contenido de metal surgió de una exposición interna (p. ej., de la ingestión o inhalación) o de una exposición externa (p. ej., el cabello que entra en contacto con un producto que contiene metal). En la actualidad, no existe ningún método de lavado capaz de eliminar los contaminantes de metales exógenos y, a la vez, conservar los metales endógenos sin alteraciones. Las sustancias químicas tales como el metilmercurio, que se originan generalmente de fuentes dietarias, son menos susceptibles a esa desventaja dado que las fuentes inusuales de mercurio inorgánico no complican la situación (p. ej., vapor de mercurio en ámbitos ocupacionales o domésticos).

5. Estos resultados de biomonitoreo no permiten sacar conclusiones acerca de la exposición a los contaminantes relacionados con los bombardeos.

3.5.2 Recomendaciones

1. Los viequenses podrían estar expuestos al mercurio en los peces y al cadmio en el gandul. Estas exposiciones pueden ameritar más investigaciones ambientales, como la obtención de muestras de productos cultivados localmente para determinar el contenido de cadmio y obtener más información sobre el consumo de pescado y la posibilidad de que contenga mercurio. Se podría usar la información para decidir si se realizan pruebas en seres humanos para detectar mercurio y cadmio en sangre u orina. Si se identifican otras exposiciones ambientales, podrán considerarse más investigaciones de biomonitoreo en seres humanos. Se puede encontrar información más detallada sobre las recomendaciones de la ATSDR sobre el pescado y los productos cultivados localmente en el capítulo 2, sección 2.3.2 y en el capítulo 5, sección 5.3.2, respectivamente.

2. La ATSDR no está recomendando un esfuerzo de biomonitoreo completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomonitoreo si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitoreo humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitoreo, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación. Los viequenses que sigan preocupados sobre la exposición al mercurio,
cadmio, otros metales o metaloides, deberán consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis. Un laboratorio cualificado deberá realizar las pruebas y análisis.

3. CDC/ATSDR pueden proporcionar una lista de laboratorios cualificados que pueden llevar a cabo las pruebas. Si se solicita, CDC/ATSDR puede proporcionar información a los proveedores de atención médica acerca de los análisis de detección de metales en muestras biológicas.

3.6 Bibliografía

[ACGIH] 2000. Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

children and adults and their effects on nutrient minerals utilizing hair and feces analysis (preliminary report). (Manuscrito no publicado).

Ortiz Roque C. 2002. Heavy metal exposure and disease in the proximity of a military base. (Manuscrito no publicado), 29 de enero de 2002

3.7 Apéndice 3-A. Biomonitorio

3.7.1 Resúmenes de los estudios de biomonitorio en seres humanos asociados con Vieques, Puerto Rico

Se han llevado a cabo varias investigaciones de biomonitorio en Vieques, donde las primeras muestras se recolectaron en 1999 (vea la Tabla 3A-1). Estas investigaciones se resumen en la Tabla 3A-1 y se describen en detalle en el texto de este apéndice. (Colón de Jorge (sin fecha); Ortiz Roque 2004; Ortiz Roque 2002; Departamento de Salud de Puerto Rico 2006; Rodríguez Sierra 2009).

Tabla 3A-1. Estudio de biomonitorio en seres humanos en Vieques

<table>
<thead>
<tr>
<th>Fuente:</th>
<th>Título</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento de Salud de Puerto Rico</td>
<td>Resumen ejecutivo del estudio de prevalencia de metales pesados en Vieques, 2006, manuscrito preliminar no publicado</td>
</tr>
<tr>
<td>Dra. Carmen Ortiz Roque</td>
<td>Heavy metal exposure and disease in the proximity of a military base. Manuscrito no publicado, 29 de enero de 2002</td>
</tr>
<tr>
<td>Dra. Carmen Colón de Jorge</td>
<td>Innocence battered on Vieques, scientific investigation of toxic metals present in the biological terrain of Vieques children and adults and their effects on nutrient minerals utilizing hair and feces analysis (preliminary report). Manuscrito no publicado, sin fecha</td>
</tr>
<tr>
<td>Dr. Carlos Rodríguez Sierra</td>
<td>Transmisión por Internet, 30 de octubre de 2009, New look at the opening of the case of Vieques, www.telecoqui.net</td>
</tr>
</tbody>
</table>

3.7.2 Estudio de biomonitorio del Departamento de Salud de Puerto Rico

El estudio más amplio de biomonitorio en seres humanos realizado hasta la fecha es un estudio de dos fases de 500 residentes de Vieques que llevó a cabo el Departamento de Salud de Puerto Rico y comenzó en mayo de 2004. Este estudio se realizó después de que se publicaran las evaluaciones de salud pública de la ATSDR y, por ende, representa nuevos datos que se deben considerar. Por ese motivo, el estudio se describe en detalle.

En la primera fase, el manuscrito del Departamento de Salud de Puerto Rico informó que se había entrevistado a 500 residentes de Vieques, que se recolectaron muestras biológicas y se analizaron para detectar lo siguiente:

- Arsénico, cadmio y níquel en cabello y orina,
- Aluminio, plomo y mercurio en sangre, y
- Uranio en orina.

Tal como se señaló en el manuscrito del Departamento de Salud de Puerto Rico, la segunda fase involucró la recolección y el análisis de muestras de sangre de participantes de la fase 1 con concentraciones de metales consideradas tóxicas según los valores de referencia provistos por el
laboratorio analítico. La fase II se extendió desde diciembre de 2005 hasta marzo de 2006. El manuscrito del Departamento de Salud de Puerto Rico se indicó que la información obtenida de este estudio se utilizaría para determinar la magnitud y el alcance del problema, generar hipótesis e identificar áreas que justifiquen la intervención desde una perspectiva de salud pública. El informe del Departamento de Salud de Puerto Rico incluye recomendaciones para actividades de seguimiento.

3.7.2.1 Estudio del Departamento de Salud de Puerto Rico, fase 1

Se seleccionaron en forma aleatoria 500 personas entre los residentes de 5 años de edad o más que vivían en Vieques antes del año 2000. La entrevista recopiló información sobre la edad, el sexo, los antecedentes de residencia, fumar, empleo, consumo y uso de agua, preparación y consumo de alimentos, medicamentos, pasatiempos y uso de sustancias químicas/solventes. En particular, se recopiló información acerca del consumo de pescados y mariscos 3 días antes de la toma de muestras.

A fin de reducir la contaminación externa del medio ambiente, se recolectaron muestras de vello de la región pública o, si eso no era posible, una muestra de 1 pulgada de cabello del cuero cabelludo extraída cerca de la raíz. La Tabla 3A-2 brinda un resumen de las concentraciones de metales presentes en sangre, orina y cabello de la fase 1. Nótese que comparar los resultados obtenidos con vello público con los del cabello del cuero cabelludo quizás no sea apropiado.
Tabla 3A-2. Resultados de la fase 1 del estudio del Departamento de Salud de Puerto Rico del análisis de metales pesados en residentes de Vieques. Nota: Las medias geométricas de algunos metales (p. ej., uranio) en la población del estudio parecen ser el promedio de las concentraciones detectables. En el caso de otros metales (p. ej., mercurio), los niveles no detectables fueron reemplazados por cero, mientras que en otros metales (p. ej., aluminio) los niveles no detectables fueron reemplazados por 1 µg/L. En el caso del cadmio, el informe señala que los niveles no detectables fueron reemplazados por un valor pero no se especificó el valor. El tratamiento de niveles no detectables es muy importante al calcular las medias y al comparar esas medias con un valor de referencia o de toxicidad o con un promedio nacional. Para complicar aún más las comparaciones, el límite de detección para algunos metales era alto. Cuando los niveles no detectables forman parte de la base de datos, el cálculo de una media geométrica puede tener una inclinación hacia arriba o hacia abajo, según qué valor se haya presentado para los niveles no detectables. En consecuencia, se justifica ser cautos al comparar las medias de la población de este estudio con las medias de las poblaciones de referencia, que probablemente hayan manejado las concentraciones no detectables de manera diferente o hayan tenido límites de detección más bajos. Por ejemplo, las medias de la NHANES reemplazan las concentraciones no detectables por el límite de detección dividido por la raíz cuadrada de dos. En el caso de algunos metales, se admiten las limitaciones del límite de detección en el informe del Departamento de Salud de Puerto Rico.

<table>
<thead>
<tr>
<th>% de detección</th>
<th>Media geométrica de la muestra del Departamento de Salud de Puerto Rico (n = 500)</th>
<th>Media geométrica de la población general seleccionada por el Departamento de Salud de Puerto Rico</th>
<th>Media geométrica 2003-2004 NHANES²</th>
<th>Nivel de posible toxicidad (como lo informó el laboratorio de servicio)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio en sangre µg/L</td>
<td>93</td>
<td>17.6 (no confiable, vea los comentarios)</td>
<td>1-4²</td>
<td>NA</td>
<td>≥60³</td>
</tr>
<tr>
<td>Plomo en sangre µg/dL</td>
<td>99</td>
<td>3.53</td>
<td>1.66²</td>
<td>1.43</td>
<td>20 µg/dL³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% de detección</td>
<td>Media geométrica de la muestra del Departamento de Salud de Puerto Rico (n = 500)</td>
<td>Media geométrica de la población general seleccionada por el Departamento de Salud de Puerto Rico</td>
<td>Media geométrica 2003-2004 NHANES²</td>
<td>Nivel de posible toxicidad (como lo informó el laboratorio de servicio)</td>
<td>Comentarios</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Mercurio en sangre µg/L</td>
<td>99</td>
<td>5.02 (no confiable, vea los comentarios)</td>
<td>1.02⁶</td>
<td>0.797</td>
<td>46-79⁷</td>
</tr>
<tr>
<td>Arsénico total en orina, µg/L</td>
<td>95</td>
<td>33.6</td>
<td>38.2⁷</td>
<td>8.3</td>
<td>>50 µg/L⁸</td>
</tr>
<tr>
<td>Arsénico en el cabello, ppm</td>
<td>65</td>
<td>0.15</td>
<td>0.15⁹</td>
<td>NA</td>
<td>--</td>
</tr>
<tr>
<td>Uranio en orina, µg/L</td>
<td>1</td>
<td>0.14 (6 personas)</td>
<td>0.007⁴</td>
<td>0.008</td>
<td>--</td>
</tr>
<tr>
<td>Cadmio en el cabello, ppm</td>
<td>82</td>
<td>0.14</td>
<td><0.15⁴</td>
<td>NA</td>
<td>> 3.4⁵</td>
</tr>
<tr>
<td>Cadmio en orina, µg/g</td>
<td>87</td>
<td>0.43</td>
<td>0.307⁶⁸</td>
<td>0.211</td>
<td>>2⁶</td>
</tr>
</tbody>
</table>

10 ug/dL

El informe del Departamento de Salud de Puerto Rico indica que el límite de detección (5 µg/L) era demasiado alto para calcular una media poblacional confiable; el nivel máximo detectado fue 13 µg/L. Si bien el informe preliminar indica que se utilizó cero para los niveles no detectables, no se sabe con seguridad si eso realmente fue así en el caso del promedio de 5.02 ug/L como se informó en el manuscrito del Departamento de Salud de Puerto Rico.

23% >50 µg/L (117 de 500)
Treinta y nueve de las 257 personas que no comían pescado tuvieron un valor de arsénico en orina >50 µg/L. Otra posible fuente de arsénico urinario es el arroz.

Una persona >3 ppm

Seis mujeres con niveles detectables. La media de estas 6 mujeres es de 0.14 µg/L. Las concentraciones no detectables no se incluyeron al calcular la media.

Ningún participante superó los 3.4 µg/L

Once personas >1.03 ug/g

Dos personas > niveles de toxicidad del laboratorio de
% de detección

<table>
<thead>
<tr>
<th>% de detección</th>
<th>Media geométrica de la muestra del Departamento de Salud de Puerto Rico ($n = 500$)</th>
<th>Media geométrica de la población general seleccionada por el Departamento de Salud de Puerto Rico</th>
<th>Media geométrica 2003-2004 NHANES2</th>
<th>Nivel de posible toxicidad (como lo informó el laboratorio de servicio)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Níquel en orina</td>
<td>79</td>
<td>2.05</td>
<td><24</td>
<td>NA</td>
<td>2 µg/g; en algunas personas, probablemente relacionado con el fumar.</td>
</tr>
</tbody>
</table>
| Níquel en el cabello | 97 | 0.64 | 0.393 | NA | Tres personas superaron el rango de referencia umbral del laboratorio.
Ningún participante superó los niveles de toxicidad de laboratorio de 100 µg/g de creatinina |

1 Las muestras no detectables se manejaron de diferentes maneras para diversos promedios. En el caso del aluminio, 35 valores faltantes fueron reemplazados por 1, que es la concentración mínima esperada en una población. En el caso del cadmio en orina, 64 valores fueron reemplazados por un valor, aunque el valor real no se indicó en el informe. En el caso del uranio, el promedio está compuesto por solo las seis muestras con concentraciones detectables. Un bajo porcentaje de detección indica que muchas personas tuvieron niveles no detectables, de ese modo, la media de los niveles detectables es incierta.

3 Informe de 2006 del Departamento de Salud de Puerto Rico. Niveles informados por la Línea de ayuda ante intoxicaciones (Poison Line) de Puerto Rico.

4 Informe de 2006 del Departamento de Salud de Puerto Rico, fuente no identificada.

5 Fuente = Quest Laboratories

7 bmdl05, Fuente = EPA de los EE.UU. (IRIS, metilmercurio)

8 El valor 0.307 µg/L no pudo confirmarse con la NHANES.

NA = No disponible
Aluminio: La media geométrica de aluminio en sangre fue 17.6 µg/L (CI 95%, 17.02 - 18.34); sin embargo, Quest Laboratories informó que el límite de detección de aluminio en sangre era de 10 µg/L. Dado que el manuscrito del Departamento de Salud de Puerto Rico informó que utilizó 1 µg/L para 35 niveles no detectables, hay algo de incertidumbre respecto de la media geométrica de 17.6 µg/L. El manuscrito del Departamento de Salud de Puerto Rico informó que utilizó una media geométrica para aluminio en sangre en los Estados Unidos de 1 a 4 µg/L, que fue provista por la Línea de ayuda ante intoxicaciones de Puerto Rico. El 22% (109 personas) mostró niveles de 40 µg/L o más, el nivel umbral superior del rango de referencia del laboratorio para una población. El 2% (10 personas) tuvo niveles superiores a 60 µg/L, el umbral de toxicidad del laboratorio. Las personas de entre 20 y 44 años de edad mostraron cinco veces más probabilidades de tener niveles de aluminio superiores a 40 µg/L que las personas de 65 años en adelante (PRR = 4.99, p < 0.05). Los medicamentos y el empleo no se identificaron como posibles fuentes.

Plomo: La media geométrica del nivel de plomo en sangre para todas las edades en la población del estudio fue 3.53 µg/dL comparada con la media geométrica de 1.66 µg/dL de la encuesta NHANES de 1999-2000 (como se informó en el manuscrito del Departamento de Salud de Puerto Rico) y de 1.42 µg/dL de la encuesta NHANES de 2003-2004. Además, el 16% (81/500) de los participantes (de todas las edades) tuvo valores de plomo en sangre superiores a 5 µg/dL comparados con el 5% en la NHANES. Los participantes mayores (46 - 64 años y 65+) mostraron más probabilidades de tener niveles superiores a 5 µg/dL que los del grupo más joven evaluado (5 a 19 años). Los participantes que trabajaban con metales y con productos derivados del petróleo, y los que no contaban con un sistema de purificación de agua mostraron más probabilidades de tener niveles elevados de plomo en sangre. Por ejemplo, las siguientes ocupaciones o pasatiempos mostraron una relación alta de riesgo de prevalencia para niveles elevados de plomo en sangre: mantenimiento de autos/camiones, reparaciones eléctricas, trabajo con metales, uso de solventes, uso de productos del petróleo o uso de metales. Los fumadores y los participantes que habían consumido alimentos de origen marino dentro de los 3 días previos a la prueba mostraron mayor probabilidad de tener niveles elevados de plomo en sangre. Sin embargo, el manuscrito del Departamento de Salud de Puerto Rico indicó que el fumar no daba cuenta de todos los participantes con niveles elevados de plomo en sangre. Esa conclusión es respaldada por la observación de que la media geométrica de niveles de plomo en sangre de los no fumadores fue dos veces el promedio nacional. La ATSDR está de acuerdo con esta conclusión.

Mercurio: Una comparación de los niveles promedio de mercurio en sangre en los residentes de Vieques con otras poblaciones no es confiable, el límite de detección de mercurio en sangre era demasiado alto (es decir, 5 µg/L). La encuesta NHANES halla que el nivel promedio de mercurio en sangre para la población de los EE.UU. es de 1 µg/L. Pero las poblaciones costeras tienen una mayor ingestión de pescado y una mayor frecuencia de mujeres con niveles elevados de mercurio en sangre en comparación con el promedio nacional y las áreas interiores. Por ejemplo, el 8% de las mujeres que residen en áreas costeras tiene niveles de mercurio en sangre mayores a 5.8 µg/L comparado con el 2% de las mujeres que residen en áreas interiores (Mahaffey 2009). Cabe destacar que Mahaffey informó también niveles de mercurio en sangre según la raza/origen étnico: casi el 16% de las mujeres de procedencia asiática, de indígenas americanos, de las islas del Pacífico y las islas del Caribe tiene un nivel
de mercurio en sangre mayor a 5.8 µg/L. El nivel más alto en sangre que se detectó en el estudio del Departamento de Salud de Puerto Rico fue 13 µg/L.

Para ofrecer perspectiva, la EPA de los EE.UU. calculó una dosis de referencia, un límite de confianza inferior de un 5% (BMDL05) de tasa de respuestas adversas en el desarrollo fetal. La EPA de los EE.UU. identificó el BMDL05 de nivel de mercurio en sangre del cordón en mujeres entre 46 y 79 µg/L (USEPA 2012). La EPA de los EE.UU. derivó este rango de niveles de mercurio en sangre utilizando datos de seres humanos del estudio de consumo de pescado en las Islas Feroe y los métodos de dosis de referencia de la agencia (USEPA 2012). Los valores de la EPA de los EE.UU. son similares a los derivados por el Comité sobre los efectos toxicológicos del metilmercurio de la Academia Nacional de Ciencias (NAS). Utilizando un abordaje de dosis de referencia similar, la NAS identificó el nivel de efectos adversos del 5% (es decir, una dosis de referencia, \([\text{benchmark dose}, \text{BMD}]\)) de 85 µg/L como nivel de mercurio en sangre del cordón y calculó un límite de confianza inferior del 5% de 58 µg/L (BMDL05). La NAS indicó que los valores correspondientes en cabello generan una dosis de referencia de 17 ppm y un BMDL05 de 12 ppm (NRC 2000).

Arsénico: El manuscrito del Departamento de Salud de Puerto Rico indicó que la media geométrica de arsénico en orina fue inferior a la esperada (vea la Tabla 3A-2, 33.6 frente a 38.2 µg/L). El informe no indicó la fuente de los niveles de referencia. La media geométrica de la población del estudio es mayor que la media geométrica de la encuesta NHANES de 2003-2004 (33.6 frente a 8.3 µg/L). Los niveles de arsénico total en orina fueron superiores a 50 µg/L en el 25% de los participantes (es decir, 117/473). La mediana de edad de los participantes con niveles superiores a 50 µg/L fue de 50 años (rango = 5 a 90 años). El manuscrito del Departamento de Salud de Puerto Rico indicó que los factores de riesgo asociados con el nivel elevado de arsénico en orina fueron los grupos etarios de 45 a 64 años y más de 65 años de edad, los fumadores, los consumidores de alimentos de origen marino, el consumo de alimentos de origen marino dentro de los 3 días previos al análisis, el contacto regular con animales y los que trabajaban con metales.

De todos modos, el análisis de arsénico en orina no distinguió entre arsénico inorgánico y arsénico orgánico. Cuando las personas comen pescado algunos días antes de proporcionar una muestra de orina, se suele encontrar arsénico orgánico no perjudicial, arsenobetaina, en la orina en altos niveles. Los pescados de agua dulce y agua salada contienen tipos de arsénico orgánico, arsenobetaina y, en mucho menor grado, arsenocolina.

Cuando los niveles de arsénico total superan los 50 µg/L y las personas comen pescado, los altos niveles de arsénico total probablemente surjan de la medición de la arsenobetaina y la arsenocolina y, por lo tanto, no indican toxicidad (Caldwell et ál., 2009). La arsenobetaina y la arsenocolina se excretan en forma muy rápida por los riñones sin ser metabolizadas y son relativamente no tóxicas para los seres humanos. Algunos mariscos contienen pequeñas cantidades de arsénico inorgánico además de arsénico orgánico; en consecuencia, es probable que los niveles de arsénico informados en el estudio del Departamento de Salud de Puerto Rico correspondan a arsénico orgánico, principalmente, con algo de arsénico inorgánico.

El informe del Departamento de Salud de Puerto Rico dijo que 267 participantes no comían alimentos de origen marino y que 39 de esos participantes tuvieron niveles de arsénico total en orina superiores a 50
µg/L. Ese resultado indica otra fuente de arsénico o indica problemas de memoria respecto de la dieta. Otras fuentes alimentarias de arsénico en la dieta de los seres humanos incluyen pollo y arroz, en particular cuando el arroz se siembra en suelos contaminados con arsénico (Lasky et ál. 2004; Potera 2007; Williams et ál. 2007).

Uranio: Seis de los 500 participantes tuvieron niveles detectables de uranio en orina. La media geométrica del nivel de uranio en orina en estos seis participantes fue de 0.14 µg/L, lo que es mayor que la media geométrica de 0.008 µg/L de la NHANES 2003-2004 y el percentil 95 de 0.031 µg/L. Los seis participantes eran mujeres y cinco no estaban empleadas cuando se las entrevistó. La mediana de edad fue de 57 años. Ninguno de los niveles de uranio superó el nivel umbral o el nivel tóxico de Quest Laboratories. Se desconoce la fuente de uranio.

Cadmio: La media geométrica del nivel de cadmio en el cabello en la población del estudio (n = 429) fue 0.14 ppm. El informe del Departamento de Salud de Puerto Rico indica que este valor es similar a su valor de referencia de menos de 0.15 ppm. Pero el informe no identifica la fuente del valor de referencia de menos de 0.15 ppm. En cualquier caso, ningún participante superó el umbral de toxicidad en el cabello de Quest Laboratories de 3.4 ppm.

El informe del Departamento de Salud de Puerto Rico indicó que la media geométrica del nivel de cadmio en orina de la población del estudio fue más alta que la media geométrica de la NHANES de 1999-2000 (0.43 frente a 0.31 µg/g). Debido a la interferencia del óxido de molibdeno, el CDC ha corregido desde entonces el valor de la NHANES de 1999-2000. La media geométrica corregida de la NHANES de 1999-2000 es 0.181 µg/g. La media geométrica de la NHANES de 2003-2004 es 0.21 µg/g. Once participantes tuvieron niveles de cadmio en orina superior a 1.03 µg/g, el percentil 95 de la NHANES de 1999-2000 (no corregida para óxido de molibdeno). Dos participantes mostraron niveles de cadmio en orina superiores al nivel tóxico del laboratorio de 2 µg/g de creatinina. El nivel de acción de los trabajadores según la OSHA es de 3 µg/g de creatinina. La mediana de edad de los participantes con niveles de cadmio en orina superiores a 1.03 µg/g de creatinina fue de 55 años. Los fumadores mostraron niveles de cadmio en orina cinco veces más altos que los no fumadores.

Níquel: La media geométrica de los niveles de níquel en orina de los participantes (2.05 µg/g de creatinina) fue similar al valor de referencia (menos de 2 µg/g de creatinina). El informe no identifica la fuente del valor de referencia. Tres participantes (2 mujeres y 1 hombre) tuvieron niveles de níquel en orina que superaron el umbral de Quest Laboratories de 6.2 µg/g de creatinina en mujeres y de 10.2 µg/g de creatinina en hombres. Ninguno de los niveles de níquel en orina superó el umbral de toxicidad de Quest Laboratories de 100 µg/g de creatinina.

La media geométrica de los niveles de níquel en el cabello de los participantes (0.64 ppm) fue mucho mayor que el nivel de referencia (0.39 ppm) informado en el manuscrito del Departamento de Salud de Puerto Rico. El manuscrito del Departamento de Salud de Puerto Rico no identificó la fuente de este nivel de referencia. Sesenta y tres participantes tuvieron niveles de níquel en el cabello que superaban el nivel umbral del laboratorio de 2 ppm. De estos, el 80% eran mujeres. Asimismo, los participantes de los grupos etarios de 5 - 19 años y 20 - 44 años mostraron niveles más altos que las personas mayores de 65 años. Los factores de riesgo asociados con niveles más altos de níquel en el cabello incluyen el cabello teñido, el uso de colorantes y pigmentos, y el uso de solventes. La mayoría de los niveles
elevados de níquel en el cabello probablemente se debieran al contacto externo por tratamientos capilares.

3.7.2.2 Análisis de la fase 1 del Departamento de Salud de Puerto Rico

Al nivel de la población total, la concentración promedio de algunos metales fue superior a las normas esperadas, según lo establecido por Quest Laboratories (es decir, el valor de referencia del laboratorio), pero las concentraciones promedio de la población no superaron los niveles tóxicos, también según lo indicado por Quest Laboratories. El manuscrito del Departamento de Salud de Puerto Rico indicó que esto sugiere la necesidad de profundizar la investigación referente a los distintos factores de riesgo, prestando atención especial a la manera en que el fumar contribuye a la carga corporal de metales. Asimismo, se necesita una mayor comprensión de cómo el consumo de pescado afecta la carga corporal de metales, especialmente en el caso del arsénico y el mercurio. El manuscrito del Departamento de Salud de Puerto Rico indicó que comer pescado dentro de los 3 días previos a un análisis o fumar podrían explicar parte, pero no la totalidad, de las cargas corporales de metales elevadas en los participantes. El manuscrito del Departamento de Salud de Puerto Rico indicó que el fumar estaba asociado con la presencia de plomo en sangre y de arsénico y cadmio en orina. Además, el consumo de alimentos de origen marino se asoció con la presencia de mercurio en sangre y de arsénico en el cabello y la orina.

El manuscrito del Departamento de Salud de Puerto Rico señaló que el porcentaje de personas con niveles altos de metales que no estuvieron expuestas al humo de tabaco ni al consumo de alimentos de origen marino todavía fue mayor a lo esperado. Por ejemplo, el manuscrito del Departamento de Salud de Puerto Rico indicó que el 10% de los no fumadores tenía niveles de cadmio en orina superiores a 5 µg de cadmio por gramo de creatinina, cuando solo se esperaba un 5%. El informe del Departamento de Salud de Puerto Rico no aclaró si estos no fumadores vivían con fumadores. Usando la información de la encuesta, el manuscrito del Departamento de Salud de Puerto Rico identificó factores o fuentes que estaban asociados con niveles elevados de metales. Estos factores o fuentes incluyen edad, sexo, tintura para el cabello, la cantidad de años de residencia en Vieques y el contacto con el suelo, además de trabajar con productos de petróleo, solventes, metales o animales. La Tabla 9 del manuscrito del Departamento de Salud de Puerto Rico brinda información sobre la cantidad estimada de residentes con niveles elevados de metales en sangre, orina o cabello.

El manuscrito del Departamento de Salud de Puerto Rico indicó lo siguiente:

- Ser un adulto de entre 20 y 65 años de edad se asoció con niveles más altos de aluminio en sangre.
- Ser un adulto mayor de 61 años y trabajar con animales se asoció con un nivel más alto de arsénico en orina.
- Trabajar con productos de petróleo se asoció con niveles más altos de plomo en sangre.
- Estar en contacto con la corteza terrestre y trabajar con solventes se asoció con un nivel más alto de cadmio en orina.
Ser mujer, teñirse el pelo, usar colorantes, pigmentos y solventes, y la cantidad años de residir en Vieques se asociaron con niveles más altos de níquel en el cabello.

A continuación se presenta la Tabla 9 del manuscrito del Departamento de Salud de Puerto Rico.

Tabla 9 del Estudio de prevalencia de metales pesados, Vieques, 2004

<table>
<thead>
<tr>
<th>METAL</th>
<th>Prevalence n (%)</th>
<th>Estimate of Persons with Above-Normal Levels in the Community Universe=9,106</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum in Blood</td>
<td>23(4.6)</td>
<td>419</td>
<td>Age 20-65</td>
</tr>
<tr>
<td>Lead in Blood</td>
<td>6 (1.2)</td>
<td>109</td>
<td>Petroleum products Smoking</td>
</tr>
<tr>
<td>Mercury in Blood</td>
<td>7 (1.4)</td>
<td>127</td>
<td>Consumption of fish</td>
</tr>
<tr>
<td>Arsenic in Urine</td>
<td>117 (23.4)</td>
<td>2,130</td>
<td>Older than age 61 Smoking</td>
</tr>
<tr>
<td>Cadmium in Urine</td>
<td>22 (4.4)</td>
<td>401</td>
<td>Use of metals Earth’s crust Use of metals</td>
</tr>
<tr>
<td>Nickel in Urine</td>
<td>3 (0.60)</td>
<td>55</td>
<td>Working with animals Smoke</td>
</tr>
<tr>
<td>Uranium in Urine</td>
<td>6 (1.2)</td>
<td>109</td>
<td>Consumption of fish</td>
</tr>
<tr>
<td>Arsenic in Hair</td>
<td>1 (0.23)</td>
<td>21</td>
<td>Consumption of fish</td>
</tr>
</tbody>
</table>

El manuscrito del Departamento de Salud de Puerto Rico indicó que se necesitaba profundizar la investigación para entender cómo se comparaba la carga corporal de metales de los residentes de Vieques con los de Puerto Rico. Además, se necesitaba investigar los posibles efectos a largo plazo de las altas cargas corporales de metales en algunos viequenses.

A nivel individual, el manuscrito del Departamento de Salud de Puerto Rico indicó que, según a Quest Laboratories, 15 personas mostraron niveles tóxicos de metales:

- Diez tuvieron niveles tóxicos de aluminio en sangre,
- Dos tuvieron niveles tóxicos de plomo en sangre,
- Dos tuvieron niveles tóxicos de cadmio en orina y
- Una tuvo niveles tóxicos de mercurio en sangre.

Quest recomendó el seguimiento de estas personas con análisis y exámenes médicos y la investigación de sus ambientes para encontrar las posibles fuentes de metales.

No está claro si el manuscrito del Departamento de Salud de Puerto Rico no incluyó a las 117 personas que tenían niveles de arsénico en orina que superaban los 50 µg/L (vea la Tabla 3A-2).

Página | 89
3.7.3 Estudio del Departamento de Salud de Puerto Rico, fase 2

En la fase 2, desde diciembre de 2005 a marzo de 2006, el estudio del Departamento de Salud de Puerto Rico realizó actividades de seguimiento en 15 adultos cuyas cargas corporales de metales superaron los niveles de toxicidad de acuerdo con lo que identificara Quest Laboratories. Diez de los 15 aceptaron participar. Se recogieron muestras de sangre y se midió el aluminio (6 personas), el arsénico (3 personas), el plomo (2 personas) y el mercurio (1 persona). Los análisis de sangre para detectar arsénico incluyeron arsénico inorgánico. No está claro por qué el estudio del Departamento de Salud de Puerto Rico no analizó el cadmio en orina en las dos personas que tenían cadmio elevado en orina en la fase 1. De modo similar, tampoco está claro por qué el estudio del Departamento de Salud de Puerto Rico no midió el arsénico especiado en orina en las 117 personas que tuvieron un nivel elevado de arsénico en orina en la fase 1. LabCorp realizó los análisis y brindó los niveles de referencia.

De las seis personas de la fase 1 que tuvieron aluminio elevado en sangre y aceptaron repetir el análisis, ninguna lo tenía elevado en la fase 2. Igualmente, la única persona que tuvo mercurio elevado en sangre en la fase 1 no lo tuvo elevado en la fase 2. De los dos participantes de la fase 1 con niveles elevados de plomo en sangre, uno lo tenía elevado en la fase 2. El manuscrito del Departamento de Salud de Puerto Rico indicó que se realizaría una investigación de seguimiento del ambiente de la vivienda de esta persona. La Tabla 3A-3 muestra los resultados de la fase 2, aunque por motivos de confidencialidad, el manuscrito del Departamento de Salud de Puerto Rico no informó los valores específicos.

Además de las 10 personas que participaron en la fase 2 porque tenían niveles altos de metales, el manuscrito del Departamento de Salud de Puerto Rico incluyó a cuatro residentes adicionales que no formaron parte de la fase 1. Estos cuatro residentes se ofrecieron como voluntarios para los análisis de sangre porque estaban interesados en realizarse los análisis. El manuscrito del Departamento de Salud de Puerto Rico proporciona sus resultados en el informe pero indica que ninguno mostró niveles considerados potencialmente tóxicos.

19 Tenga en cuenta que la cantidad de análisis es 12; aparentemente algunas personas se les realizaron análisis de detección de más de un metal.
Tabla 3A-3. Resultados de biomonitorio de 10 personas en la fase 2 del estudio de biomonitorio del Departamento de Salud de Puerto Rico

<table>
<thead>
<tr>
<th>Metal (Muestras de sangre)</th>
<th>Nivel umbral de referencia</th>
<th>NHANES (4.° informe)</th>
<th>Cantidad de personas con un valor superior al nivel de toxicidad, fase 1</th>
<th>Cantidad de personas con un valor superior al nivel de toxicidad, fase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Media geométrica</td>
<td>Percentil 95</td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td>0 - 9 µg/L</td>
<td>No medido</td>
<td>No medido</td>
<td>6</td>
</tr>
<tr>
<td>Arsénico total</td>
<td><50° µg/L</td>
<td>No medido</td>
<td>No medido</td>
<td>3</td>
</tr>
<tr>
<td>Arsénico inorgánico</td>
<td>0 - 19 µg/L</td>
<td>No medido</td>
<td>No medido</td>
<td>No disponible</td>
</tr>
<tr>
<td>Plomo</td>
<td>0 - 19 µg/dL</td>
<td>1.2 µg/dL</td>
<td>3.7 µg/dL</td>
<td>2</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0 - 14.9 µg/L</td>
<td>0.77 µg/L</td>
<td>4.6 µg/L</td>
<td>1</td>
</tr>
</tbody>
</table>

+ La Tabla 1 (fase II) del informe del Departamento de Salud de Puerto Rico es la fuente de los niveles umbrales de referencia informados en la Tabla 3A-3. El valor de 50 µg/L parece ser un error ya que ese nivel a menudo se utiliza para el arsénico total en orina.

3.7.4 Hallazgos del Departamento de Salud de Puerto Rico

El manuscrito del Departamento de Salud de Puerto Rico informó que los principales hallazgos de este estudio fueron:

- En más del 90% de la población se hallaron niveles detectables de al menos un metal pesado.
- En más del 20% de los participantes del estudio, los niveles de aluminio en sangre, arsénico en orina o níquel en cabello fueron superiores al umbral de referencia del laboratorio.
- Las medias geométricas de uranio en orina, mercurio en sangre, plomo en sangre, aluminio en sangre, níquel en cabello y cadmio en orina fueron significativamente más altas que las medias geométricas de la encuesta NHANES de 1999. Pero las medias geométricas de mercurio y aluminio en sangre informadas en el manuscrito del Departamento de Salud de Puerto Rico no fueron confiables por el alto límite de detección informado por el laboratorio.
- Ninguna de las medias geométricas identificadas fueron superiores al umbral de toxicidad identificado por el laboratorio informante.
- El consumo de cigarrillos, el uso de tinturas para el cabello y el consumo de alimentos de origen marino fueron identificados como factores de riesgo para los niveles superiores al umbral del laboratorio en el caso del arsénico, el cadmio y el níquel.
- Se identificaron quince personas (3%) con niveles superiores al umbral de toxicidad para aluminio en sangre (10 personas), plomo en sangre (2 personas), mercurio en sangre (1 persona) y cadmio en orina (2 personas).
En el estudio de seguimiento a 10 personas con cargas corporales de metales que superaron los niveles de toxicidad, solo se identificó una persona con niveles superiores al umbral de toxicidad.

Menos del 4% de los participantes mostraron niveles elevados de metales asociados con un posible desarrollo de signos y síntomas relacionados con la exposición aguda. Entre los metales estudiados, los niveles de aluminio en sangre, níquel en cabello y arsénico en orina fueron informados con mayor frecuencia como aquellos niveles superiores al umbral de detección de referencia del laboratorio. Pero el análisis de arsénico midió el arsénico total, que incluye formas no tóxicas de arsénico por comer alimentos de origen marino (es decir, arsenobetaina y arsenocolina).

Existen múltiples factores que podrían explicar estas observaciones de metales elevados en sangre, cabello y orina. Por ejemplo, el aluminio es abundante en el suelo en todo el mundo. Los niveles promedio de aluminio en los suelos del LIA son de 16,200 ppm comparado con el aluminio promedio en el suelo de los EE.UU. que es de 57,000 ppm. La ausencia de poblaciones de referencia de Puerto Rico o de información sobre los niveles de aluminio en los suelos de las áreas residenciales de Vieques limita la interpretación de los resultados del aluminio. El manuscrito del Departamento de Salud de Puerto Rico también evaluó posibles factores de riesgo asociados con los niveles elevados de metales inferiores al nivel de toxicidad del laboratorio; de hecho, se hallaron factores de riesgo significativos. El manuscrito del Departamento de Salud de Puerto Rico, sin embargo, señala que el estudio no consideró los posibles factores de riesgo como la exposición a explosivos, armamentos, uso de utensilios de cocina metálicos, residuos metálicos que podrían encontrarse en alimentos como té y vegetales, consumo de bebidas con envases metálicos, ritos religiosos que usan capsules que contiene mercurio, cremas para la piel, formulaciones de antiácidos y antitranspirantes.

En la fase 1, el estudio del Departamento de Salud de Puerto Rico midió el arsénico total en la orina, que está compuesto de arsénico orgánico e inorgánico. Debido a que es probable que haya niveles altos de arsénico orgánico no tóxico por el consumo de alimentos de origen marino, en la fase 2 el estudio del Departamento de Salud de Puerto Rico midió el arsénico total e inorgánico de las tres personas que tuvieron un nivel de arsénico total elevado en la fase 1. No se halló evidencia de arsénico inorgánico. El manuscrito del Departamento de Salud de Puerto Rico señaló que los niveles de arsénico en el cabello de los participantes del estudio fueron similares al promedio nacional.

Los niveles de níquel en la orina de los participantes del estudio fueron similares al promedio nacional. Sesenta y tres (63) personas tuvieron niveles de níquel en el cabello superiores al umbral de referencia del laboratorio. La tintura para el cabello, utilizada por 27 de estas 63 personas (43%) y el uso de colorantes y solventes se identificaron como factores de riesgo y, por ende, como posibles fuentes de níquel en el cabello. El manuscrito del Departamento de Salud de Puerto Rico mencionó que el análisis del cabello no fue capaz de brindar información sobre la exposición interna (es decir, la ingestión) a metales en comparación con el contacto externo (excepto por el mercurio). Asimismo, las mediciones de níquel en el cabello no predicen que la exposición produzca efectos adversos para la salud.

El manuscrito del Departamento de Salud de Puerto Rico también informó que las medias geométricas de aluminio (sangre), mercurio (sangre), plomo (sangre), uranio (orina), cadmio (orina) y níquel (cabello)
fueron más altas que el promedio nacional (según la NHANES y otras fuentes de referencia); sin embargo, los niveles promedio no estuvieron por encima de los niveles de toxicidad citados por Quest Laboratories. El manuscrito del Departamento de Salud de Puerto Rico identificó tres factores asociados con el aumento de arsénico, cadmio y níquel en el cabello, la orina o la sangre: cigarrillos, tintura para el cabello y consumo de pescado. Al momento del estudio, setenta (15%) participantes informaron que eran fumadores. Los fumadores presentaron 4.75% más de probabilidades de tener niveles elevados de plomo, y también casi el doble de probabilidades de tener niveles elevados de arsénico y níquel. El manuscrito del Departamento de Salud de Puerto Rico agregó que el porcentaje de personas con niveles elevados de esos metales que no estuvieron expuestas al consumo de cigarrillos o de alimentos de origen marino fue, de todos modos, más alto que lo esperado.

El diseño del estudio intentó usar una muestra aleatoria estratificada de viequenses que representara la población de la isla. Pero el manuscrito del Departamento de Salud de Puerto Rico admitió que la muestra tenía un porcentaje más alto de mujeres, personas de edad avanzada y desocupados en comparación con la población de la isla. El manuscrito del Departamento de Salud de Puerto Rico indicó que esto podría deberse a que las entrevistas se realizaban durante el día. No obstante, el estudio del Departamento de Salud de Puerto Rico podría haber subrepresentado a los pescadores y residentes de la isla que trabajan durante el día. El manuscrito del Departamento de Salud de Puerto Rico aceptó que la diferencia entre las características de la población del estudio y las características de la isla limitaban las generalizaciones a todos los residentes de la isla a partir de los datos.

El manuscrito del Departamento de Salud de Puerto Rico también reconoció que algunos de los análisis no hicieron una distinción entre las distintas formas de un metal. Como se mencionó previamente, los análisis de arsénico en orina de la fase 1 no hicieron una distinción entre arsénico orgánico e inorgánico. Esto también sucedió con el mercurio. En el caso del uranio, los análisis de laboratorio no hicieron una distinción entre el uranio natural y el uranio empobrecido.

3.7.5 Medidas del Departamento de Salud de Puerto Rico tomadas después de la fase 1 y la fase 2

Luego de completar la fase 1, se tomaron las siguientes medidas:

- El Dr. Luis Santiago dio una presentación de los resultados preliminares a un grupo de alrededor de 15 líderes de la comunidad de Vieques.
- Se entregaron los resultados de los participantes al Dr. Mackenzie de la clínica de Vieques. De los 500 participantes, 182 recogieron sus resultados.
- El Dr. Braulio Jiménez, un toxicólogo de la Universidad de Puerto Rico, dio tres charlas en Vieques sobre los signos y los síntomas asociados con la exposición a metales pesados.
- En la fase 2 se realizó una toma de muestras para hacer un seguimiento de los residentes que tenían niveles tóxicos de metales.
- Se formó un grupo de trabajo para analizar los estudios realizados por el departamento de salud. Este grupo elaboró las sugerencias para las actividades de continuidad y seguimiento enumeradas aquí.
3.7.6 Actividades de seguimiento sugeridas por el Departamento de Salud de Puerto Rico

El manuscrito del Departamento de Salud de Puerto Rico sugirió un seguimiento con:

- Personas en las que se identificaron niveles tóxicos de metales pesados,
- Personas con posible exposición aguda a metales pesados,
- Personas con posible exposición crónica a metales pesados, y
- Grupos de alto riesgo.

El estudio del Departamento de Salud de Puerto Rico utilizó las recomendaciones provistas por el CDC para decidir actividades de seguimiento para la única persona restante con niveles elevados de plomo en sangre después del análisis de la fase 2 (CDC 1997; CDC 2002). El estudio del Departamento de Salud de Puerto Rico ofreció análisis adicionales de arsénico en orina a aquellas personas que tenían un nivel de arsénico total elevado en orina en la fase 1. Los análisis de seguimiento midieron el arsénico inorgánico. Los niveles de arsénico inorgánico en orina estuvieron dentro de los niveles de referencia del laboratorio (Departamento de Salud de Puerto Rico 2006).

3.7.6.1 Seguimiento para personas con posible exposición aguda a metales pesados

El manuscrito del Departamento de Salud de Puerto Rico indicó que se desarrollará un protocolo para el manejo de personas con sospecha de intoxicación aguda por metales pesados, para el que usarán como base las pautas de los CDC (CDC 1997; CDC 2002). Cabe destacar que las pautas de los CDC se aplican únicamente al plomo. El protocolo contendrá 1) capacitación de los proveedores de atención médica locales, 2) maneras de promover análisis adicionales usando el laboratorio del Estado Libre Asociado de Puerto Rico, 3) uso del centro de intoxicaciones para brindar recomendaciones sobre el manejo de las víctimas de exposición aguda y 4) derivación de casos sospechosos al Centro Médico de Puerto Rico.

3.7.6.2 Seguimiento para personas con posible exposición crónica a metales pesados

El manuscrito del Departamento de Salud de Puerto Rico sugirió establecer un registro de salud voluntario para residentes de Vieques. Un registro de salud 1) permitiría la documentación sistemática de factores relacionados con riesgos potenciales, 2) identificaría personas con signos y síntomas tempranos que podrían estar asociados con enfermedades y 3) facilitaría la atención temprana y las necesidades de acceso al servicio de salud. El registro recopilaría información demográfica, antecedentes de riesgos, antecedentes familiares, antecedentes de enfermedades pasadas, estado actual y antecedentes de signos y síntomas asociados con la exposición crónica a metales pesados. Un registro de salud también podría proporcionar evaluaciones médicas integrales que incluyan exámenes físicos con, entre otras pruebas, un examen neurológico y análisis de laboratorio, incluidos análisis de la función renal, función hepática y hemograma completo.
3.7.6.3 Seguimiento con un programa de monitoreo para niños menores de 6 años de edad

Se desconocen los niveles de plomo en sangre de los 1,000 niños de Vieques de 6 años de edad o menos, un grupo de alto riesgo más vulnerable a la exposición al plomo que los adultos. Esta evaluación inicial propuesta en el manuscrito del Departamento de Salud de Puerto Rico incluirá a todos los niños de 6 años de edad o menos, con la posterior incorporación en los próximos años de una evaluación de los niños de 1 y 2 años de edad como parte de la atención primaria. En 2006, cuando se redactó el informe, el manuscrito del Departamento de Salud de Puerto Rico indicó que se nombraría un epidemiólogo para establecer este programa, el cual seguirá las pautas de los CDC para el manejo de casos (Departamento de Salud de Puerto Rico 2006).

Con el financiamiento de la USEPA, el Departamento de Salud de Puerto Rico y los CDC están realizando actualmente un estudio de prevalencia de niveles de plomo en sangre en niños de 1 a 5 años de edad de la isla principal de Puerto Rico.

3.7.7 Investigaciones realizadas por la Dra. Carmen Ortiz Roque

La Dra. Carmen Ortiz Roque es una médica que ha tratado pacientes y realizado investigaciones en Vieques. En 2000, comenzó a recoger muestras de cabello de los residentes e hizo analizar las muestras para detectar diversos metales. Ha informado algunos de sus resultados en manuscritos no publicados. En 2004 publicó un artículo revisado por pares en una revista científica.

3.7.7.1 Resumen del artículo de la Dra. Ortiz Roque publicado en 2004 en una revista científica

En 2004, la Dra. Ortiz Roque publicó los datos de su estudio de 2000/2001 en el que midió el nivel de mercurio en el cabello de residentes de Vieques (Ortiz Roque 2004). El estudio investigó los niveles de mercurio en el cabello de mujeres de 16 a 49 años de edad que vivían en la isla de Vieques y comparó esos niveles con los de mujeres de San Juan y Ceiba, Puerto Rico. Se excluyeron las mujeres que se hubieran tratado químicamente el cabello 3 meses antes del análisis. Uno de los dos laboratorios habilitados analizó una muestra proximal de cabello de 1.5 cm.

La Dra. Ortiz Roque informó datos estadísticos de 41 mujeres viequenses junto con información sobre el consumo de alimentos de origen marino y comparó esos datos con los de la isla principal de Puerto Rico y con los resultados de la encuesta NHANES de los Estados Unidos de 1999. La Tabla 3A-4 resume sus datos. La Dra. Ortiz Roque utilizó un margen de exposición (MOE) para definir los niveles de exposición inseguros. El enfoque del MOE utilizado por la Dra. Ortiz Roque provino de un artículo del MMWR de 2001 y del Consejo Nacional de Investigación. La fórmula para el MOE es un nivel de efecto del 5% para mercurio en el cabello/valor del percentil 90 para mercurio en cabello en la población del estudio.
Tabla 3A-4. Resultados de mercurio en el cabello de mujeres publicados por la Dra. Ortiz Roque en 2004.

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>Edad</th>
<th>Mercurio, en ppm</th>
<th>Consumo de alimentos de origen marino</th>
<th>% de mujeres > RfD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mediana</td>
<td>Media</td>
<td>Percentil 90</td>
</tr>
<tr>
<td>Vieques</td>
<td>41</td>
<td>31.8</td>
<td>0.66</td>
<td>4.4</td>
<td>8.96</td>
</tr>
<tr>
<td>PR</td>
<td>45</td>
<td>29.9</td>
<td>0.38</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>EE.UU. (1999 NHANES)</td>
<td>702</td>
<td>NA</td>
<td>0.2</td>
<td>1.4</td>
<td>8.6</td>
</tr>
</tbody>
</table>

El Consejo Nacional de Investigación (NRC) recomendó derivar el nivel de efecto del 5% del límite de confianza inferior del 95% de una dosis de referencia (BMDL₀₅) que provocó puntajes anormales en las pruebas de función cognitiva de niños expuestos a metilmercurio en el útero. El NRC recomendó que la EPA de los EE.UU. derive su dosis de referencia con un BMDL₀₅ de 58 ppb de metilmercurio en sangre de cordón, que se identificó como el nivel de efecto del 5% a partir de los modelos estadísticos del estudio de las islas Feroe. El valor de 58 ppb en sangre de cordón se traduce como 12 ppm en el cabello (NRC 2000). Por lo tanto, el MOE = 12 ppm/percentil 90 de mercurio en cabello. Un MOE inferior a 1 significa que para el 10% de la población del estudio, el nivel de mercurio en el cabello es superior al nivel de efecto del 5% de 12 ppm, mientras que un MOE superior a 1 significa que para el 90% de la población del estudio el nivel de mercurio en el cabello es inferior al nivel de efecto del 5% de 12 ppm (Ortiz Roque 2004; CDC 2001). Es importante mencionar que la Dra. Ortiz Roque encontró tres mujeres con niveles de mercurio en cabello superiores a 12 ppm, el nivel identificado por el NAS como el nivel que tiene un efecto sobre el feto en desarrollo.

Los resultados mostraron que el percentil 90 de la concentración de mercurio en el cabello de las mujeres de Vieques fue de 8.96 ppm comparado con 1 ppm en las mujeres de Puerto Rico y 1.4 ppm en las mujeres de los EE.UU. Con un MOE de 1.3, la Dra. Ortiz Roque concluyó que como los niveles de mercurio en el cabello se encontraban cercanos al nivel de efecto del 5% de 12 ppm, algunas mujeres viequenses en edad fértil estuvieron expuestas a concentraciones de mercurio inseguras para un feto en desarrollo. Si bien la ATSDR está de acuerdo con esta conclusión, cabe mencionar que es incierto el porcentaje de mujeres viequenses con niveles de mercurio en cabello superiores a 12 ppm debido a lo pequeño y parcializado del tamaño de la muestra en la investigación de la Dra. Ortiz Roque.

La Dra. Ortiz Roque también posee datos no publicados que muestran otras concentraciones de metales en el cabello de los residentes de Vieques. Estos datos se resumen en el capítulo 2.
3.7.8 Resumen del manuscrito no publicado de 2002 de la Dra. Ortiz Roque

3.7.8.1 Diseño del estudio

La Dra. Carmen Ortiz Roque recogió muestras de cabello de 203 viequenses desde enero de 2000 a julio de 2001 junto con una extensa encuesta sobre vivienda, ocupación, nutrición y salud. Se analizaron muestras de cabello para mercurio, aluminio, cadmio, plomo y arsénico. El grupo estuvo formado por 110 mujeres y 93 varones, y la edad fue de los 0.8 a los 81 años. Los participantes estaban distribuidos entre 18 barrios de la isla y luego se les informaron sus resultados individuales medidos en el cabello. En la mayoría de los casos, se obtuvieron muestras de pelo del cuero cabelludo. Sin embargo, en los casos en que el pelo del cuero cabelludo era limitado o no estaba disponible, o estaba tratado químicamente, se recogió vello púbico o del pecho (Ortiz 2002). Nótese que es posible que no sea apropiado comparar los resultados de vello público o vello del pecho con los del pelo del cuero cabelludo. El análisis de cabello fue realizado por el Mayo Medical Laboratory (Rochester, MN) o el King James Medical Laboratory (Cleveland, OH).

3.7.8.2 Resultados del estudio de cabello

La Dra. Ortiz Roque informó los siguientes resultados con respecto a metales en el cabello (Tabla 3A-5)

<table>
<thead>
<tr>
<th>Metal (cantidad de muestras)</th>
<th>% elevado</th>
<th>Promedio en ppm</th>
<th>General (CI 95%)</th>
<th>Mujeres</th>
<th>Varones</th>
<th>Niños <10 años de edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercurio N = 205</td>
<td>33% > 1 ppm</td>
<td>2.07 (0-8.9)</td>
<td>2.87</td>
<td>1.08</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>Aluminio N = 145</td>
<td>56% > 17 ppm</td>
<td>25.74 (10.52 - 25.75)</td>
<td>26.45</td>
<td>24.18</td>
<td>34.94</td>
<td></td>
</tr>
<tr>
<td>Cadmio N = 205</td>
<td>26% > 0.47 ppm</td>
<td>0.65 (0 - 5.0)</td>
<td>0.75</td>
<td>0.55</td>
<td>No disponible</td>
<td></td>
</tr>
<tr>
<td>Plomo N = 205</td>
<td>2.9% > 25 ppm</td>
<td>8.07 (0 - 19.0)</td>
<td>4.28</td>
<td>12.47</td>
<td>No disponible</td>
<td></td>
</tr>
<tr>
<td>Arsénico N = 205</td>
<td>0 > 1 ppm</td>
<td>0.18 (0 - 3.0)</td>
<td>0.141</td>
<td>0.233</td>
<td>No disponible</td>
<td></td>
</tr>
</tbody>
</table>

La Dra. Ortiz Roque indicó que se hallaron niveles elevados de mercurio (33%), aluminio (56%), cadmio (26%) y plomo (2.9%) en las muestras de cabello de los residentes de Vieques. Los niveles de arsénico en el cabello no estaban elevados (Ortiz 2002).
La Dra. Ortiz Roque proporcionó información adicional acerca del mercurio en cabello de mujeres y niños, que se muestra en la Tabla 3A-6. La doctora informó que el 22% de las mujeres y el 60% de los niños de quienes se tomaron muestras en Vieques tenían niveles de mercurio superiores al percentil 90 de los Estados Unidos, según se identificó a partir de la encuesta nacional NHANES de 1999 (Ortiz 2002).

La Dra. Ortiz Roque analizó en mayor profundidad un subgrupo de 22 pares equiparados de madres e hijos de 5 años de edad o menos de Vieques. La Dra. Ortiz Roque informó una correlación significativa entre los niveles de mercurio en el cabello de las madres y los hijos (correlación de Pearson de 0.93, p = 0.0001). La Dra. Ortiz Roque publicó estos pares equiparados en 2003 (vea la Tabla 3A-4).

Tabla 3A-6. Análisis de mercurio en el cabello de mujeres y niños viequenses en comparación con los Estados Unidos

<table>
<thead>
<tr>
<th>Población</th>
<th>Cantidad</th>
<th>% de la población a la que se tomó muestras en 2000</th>
<th>Percentil 75, ppm en cabello</th>
<th>Percentil 90, ppm en cabello</th>
<th>% superior al percentil 90 para los EE.UU.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mujeres de los EE.UU. 16 - 49 años*</td>
<td>702</td>
<td>702/146,250,000 0.00048%</td>
<td>0.5</td>
<td>1.4</td>
<td>10%</td>
</tr>
<tr>
<td>Mujeres de Vieques</td>
<td>45</td>
<td>45/4,594 0.97%</td>
<td>1.14</td>
<td>7.54</td>
<td>22%</td>
</tr>
<tr>
<td>Niños de los EE.UU.* 1 - 5 años</td>
<td>338</td>
<td>338/19,175,798 0.00256%</td>
<td>0.4</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Niños de Vieques 1 - 5 años</td>
<td>38</td>
<td>38/771 4.9%</td>
<td>1.31</td>
<td>2.67</td>
<td>60%</td>
</tr>
</tbody>
</table>

* Los rangos de referencia se derivaron de la encuesta NHANES de 1999.

La Dra. Ortiz Roque indicó que la concentración promedio de aluminio en cabello de los viequenses fue de 25.74 ppm. Informó que esta concentración superó el límite superior de una población humana estándar, aunque el manuscrito no informa la fuente del límite superior. La Dra. Ortiz Roque indicó que los niveles de aluminio en el cabello de los niños fue más alto que en el de los adultos (Ortiz 2002). Como se mencionó anteriormente, no es posible determinar si los niveles elevados de aluminio, cadmio y plomo en el cabello provienen de la exposición interna mediante la ingestión o la inhalación o de la exposición externa por contacto directo del cabello con un producto comercial que contiene metal. Si bien los datos de la Dra. Ortiz Roque demostraron que esos metales son elevados en los viequenses en los percentiles 75 y 90, su población no fue elegida aleatoriamente de la población de Vieques. Esta selección no aleatoria de participantes podría explicar algún factor de confusión que eleva las tasas. Y en el caso de otros metales, la muestra no aleatoria podría explicar las concentraciones de metales inferiores a las esperadas.
3.7.8.3 Conclusiones de la Dra. Ortiz Roque

La Dra. Ortiz Roque sostuvo que sus datos demostraron que los viequenses tuvieron exposición interna a metales pesados, lo cual fue respaldado por el alto porcentaje de mujeres y niños con niveles de mercurio en el cabello por encima del percentil 90 en comparación con los Estados Unidos continentales. Si bien ninguna de las mujeres de la encuesta NHANES de 1999 presentó niveles de mercurio en el cabello superiores a 12 ppm, 3 de 45 mujeres viequenses presentaron niveles en cabello superiores a 12 ppm en la encuesta de la Dra. Ortiz Roque (es decir, 15.41, 25.26 y 101.3 ppm) (Ortiz 2002).

En su manuscrito preliminar de 2002, la Dra. Ortiz Roque también indicó que la correlación positiva entre el cabello de madres e hijos mostró que la exposición a mercurio se producía en el útero; que la exposición de los viequenses a mercurio era demasiado alta para ser considerada segura y que el mercurio se utilizaba en detonadores de artefactos explosivos (Ortiz 2002). La correlación entre el cabello de madres e hijos con el consumo de alimentos de origen marino es esperada y se demostró en numerosos estudios en seres humanos y por otra parte, esta indica que los alimentos de origen marino son una de las fuentes principales de mercurio en los seres humanos. La correlación de los niveles de mercurio en el cabello en madres e hijos no es una prueba concluyente de que esos niños hayan estado expuestos en el útero. Sería necesario realizar un estudio de madres y recién nacidos para que esa afirmación fuera concluyente. Suponiendo que las madres mantenían hábitos de consumo de pescado similares antes y durante el embarazo, la correlación positiva de mercurio en cabello entre madres e hijos sugiere que hubo exposición en el útero al mercurio que podría producirse en embarazos futuros. Si bien los pacientes de la Dra. Ortiz Roque no fueron seleccionados aleatoriamente, haber identificado a varias mujeres con niveles muy altos de mercurio en el cabello es un hallazgo importante.

3.7.9 Investigaciones realizadas por la Dra. Carmen Colón de Jorge

La Dra. Carmen Colón de Jorge también realizó un biomonitorio en seres humanos de metales presentes en el cabello y además analizó varias muestras de materia fecal para detectar metales. La Dra. Colón de Jorge recolectó muestras de cabello y materia fecal de residentes de Vieques en 1999 y 2000, y escribió un manuscrito que describe sus resultados y hallazgos (Colón de Jorge, sin fecha).

20 El manuscrito de la Dra. Colón de Jorge no proporciona una definición de nivel tóxico. Aparentemente la Dra. Colón de Jorge utilizó el término “nivel tóxico” porque se utiliza en el informe de laboratorio provisto por Doctor’s Data para elementos potencialmente tóxicos. Si bien Doctor’s Data, Inc. tampoco proporciona una definición de “nivel tóxico”, parece ser cualquier nivel superior al percentil 95 y se basa en la observación de laboratorio de más de 1 millón de muestras de cabello.
ocasión se observaron niveles tóxicos de cadmio y bismuto. El paciente también presentó niveles bajos de zinc y selenio y aumento de boro. La Dra. Colón de Jorge señaló que los niveles bajos de zinc y selenio confirmaban la intoxicación endógena con metales pesados. En representación del Comité científico de la Asociación de Naturópatas Profesionales de Puerto Rico (Association of Licensed Naturopaths of Puerto Rico), la Dra. Colón de Jorge recolectó muestras de cabello y materia fecal de los residentes de Vieques en 1999 y 2000. La doctora afirmó que el desequilibrio nutricional en los residentes demostrado por el análisis de cabello quedó en evidencia por deficiencias de calcio, fósforo y magnesio y exceso de boro en el cabello. También afirmó que la disminución de selenio, ocasionada por la contaminación con metales pesados, fue un factor de contribución con el desarrollo de cáncer.

3.7.9.1 Conclusiones de la Dra. Colón de Jorge

La Dra. Colón de Jorge mencionó que entre el 45% y el 50% de las personas evaluadas en Vieques presentaban intoxicación con mercurio. Utilizando los resultados de las muestras de materia fecal, halló que 3 de los 6 niños evaluados en Vieques tenían concentraciones de metales en la materia fecal por encima del rango de referencia provisto por el laboratorio clínico (es decir, Doctor’s Data) que llevó a cabo los análisis. También informó que 5 de cada 6 niños evaluados presentaban antimonio y arsénico en las muestras de materia fecal que superaban el rango de referencia del laboratorio. Señaló que los niños no pudieron haber estado expuestos a metales presentes en pintura, papel de cigarrillos, tabaco, ollas viejas, maquillaje y tinta para el cabello como los adultos. Los niveles de uranio en las muestras de materia fecal de los niños fueron inferiores al rango de referencia establecido por el laboratorio.

La Dra. Colón de Jorge informó que se recolectaron 30 muestras de cabello de residentes de Vieques con diversas afecciones de salud:

- el 50% de las personas evaluadas estaban contaminadas con antimonio comparado con el 29% de una población de control,
- el 50% de las personas evaluadas estaban contaminadas con arsénico comparado con el 29% de una población de control,
- el 50% de las personas evaluadas presentó un desequilibrio de selenio.
- La Dra. Colón de Jorge indicó que los niveles de antimonio eran altos porque el antimonio se utilizaba en artefactos explosivos en Vieques, lo cual señala que los ejercicios militares fueron el motivo por el cual los niveles de antimonio eran altos. No obstante, no se proporcionó evidencia de respaldo para demostrar cómo se expusieron los residentes.
- La Dra. Colón de Jorge también resumió los resultados de siete pacientes de control con las siguientes declaraciones:
 - Ninguno de los siete pacientes mostró niveles tóxicos.

21 La determinación de metales en las muestras de materia fecal no es un medio estandarizado o recomendado para determinar la exposición.

22 Sin embargo, se debe tener en cuenta que los niños pueden estar expuestos al plomo presente en la pintura cuando entran en contacto con superficies pintadas, tales como paredes, puertas, ventanas, escaleras y cercas.
Dos casos tenían un nivel de antimonio por encima del rango de referencia establecido por el laboratorio, comparado con el 29% de los investigados fuera de Vieques. El selenio fue normal para contaminación exógena.

Dos casos tenían un nivel de arsénico por encima del rango de referencia comparado con el 29% de los casos fuera de Vieques. El selenio es normal para contaminación exógena.

Los siete pacientes de control no presentaron contaminación endógena con metales pesados: el selenio fue normal y estuvo dentro del rango de referencia. De acuerdo con la Dra. Colón de Jorge, la contaminación con metales pesados en un paciente a menudo producirá niveles más bajos de selenio.

En resumen, la Dra. Colón de Jorge recogió muestras de cabello de siete personas al azar en Río Piedras, una comunidad de la isla principal de Puerto Rico. Continúa desconociéndose el estado de salud de estas personas. Ninguno de los resultados mostró niveles tóxicos de metales pesados, mientras que 21 de 30 personas (es decir, el 63%) de Vieques con afecciones de salud conocidas —y por ende no seleccionadas al azar— mostraron niveles tóxicos de distintos metales. Como se indicó previamente, la ciencia actual simplemente es incapaz de determinar si los niveles elevados de estos metales en el cabello se deben a la exposición interna por medio de ingestión o inhalación, a la exposición externa por medio de contacto directo del cabello con un producto comercial que contiene metales o a la acumulación secundaria a una enfermedad subyacente. La excepción es que la ciencia actual puede determinar si el mercurio en el cabello se debe a una exposición interna o externa.

En una sección de su informe, la Dra. Colón de Jorge describió la relación entre las toxicidades metálicas, que pueden causar deficiencias y excesos de minerales, y el riesgo de diversas enfermedades y afecciones de salud. Se describe esta relación, o patrón de riesgo, para 1) afecciones cardíacas, 2) afecciones cardiovasculares, 3) alteraciones emocionales, 4) violencia 5) mala absorción y 6) cáncer.

3.7.9.2 Resultados e interpretación de las muestras

La Dra. Colón de Jorge resumió los niveles elementales en las muestras de cabello (Tabla 3A-7) y materia fecal (Tabla 3A-8). El informe de la Dra. Colón de Jorge incluyó varios apéndices con información adicional, enfocada mayormente en cómo evaluar e interpretar los resultados elementales en el cabello. Uno de los apéndices contenía un informe de Doctor’s Data titulado Interpretaciones Integrales de Elementos en el Cabello, del Al al Zn (Comprehensive Interpretations for Hair Elements from Al to Zn).
Tabla 3A-7. Resumen del análisis de cabello de 30 muestras según se informó en un manuscrito no publicado de la Dra. Colón de Jorge (Colón de Jorge, sin fecha).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Rango de niveles en los pacientes de la Dra. Colón de Jorge en μg/g</th>
<th>Rango de referencia en el manuscrito de la Dra. Colón de Jorge*</th>
<th>Porcentaje por encima del nivel de referencia</th>
<th>Porcentaje por debajo del nivel de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio</td>
<td>4.4 - 68</td>
<td><7</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Antimonio</td>
<td>0.016 - 2.7</td>
<td><0.05</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Arsénico</td>
<td>0.028 - 2.8</td>
<td><0.06</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Bario</td>
<td>0.23 - 4.7</td>
<td>0.026 - 3; 0.16 - 1.6</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Berilio</td>
<td><0.001</td>
<td><0.02</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bismuto</td>
<td>0.011 - 2.4</td>
<td><0.06; <0.1</td>
<td>48</td>
<td>41</td>
</tr>
<tr>
<td>Boro</td>
<td>0.42 - 19</td>
<td>0.3 - 2; 0.4 - 3</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>Calcio</td>
<td>145 - 2240</td>
<td>300 - 1200; 200 - 750</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Cadmio</td>
<td>0.024 - 0.98</td>
<td><0.1; 0.15</td>
<td>69</td>
<td>52</td>
</tr>
<tr>
<td>Zinc</td>
<td>64 - 630</td>
<td>140 - 220; 130 - 200</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Zirconio</td>
<td>0.012 - 0.76</td>
<td>0.02 - 0.42; 0.02 - 0.44</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Cobalto</td>
<td>0.008 - 0.16</td>
<td>0.013 - 0.05; 0.013 - 0.035</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Cobre</td>
<td>8.9 - 110</td>
<td>12 - 35; 10 - 28</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Cromo</td>
<td>0.2 - 0.69</td>
<td>0.2 - 0.4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Estaño</td>
<td>0.08 - 1.3</td>
<td><0.3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Rango de niveles en los pacientes de la Dra. Colón de Jorge en μg/g</td>
<td>Rango de referencia en el manuscrito de la Dra. Colón de Jorge*</td>
<td>Porcentaje por encima del nivel de referencia</td>
<td>Porcentaje por debajo del nivel de referencia</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Estroncio</td>
<td>0.29 - 9
 0.5 - 7.6
 0.3 - 3.5</td>
<td>7
 28</td>
<td>17
 3</td>
<td></td>
</tr>
<tr>
<td>Germanio</td>
<td>0.022 - 0.082
(12 N/A)
 0.045 - 0.0.65 (sic)</td>
<td>18</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Hierro</td>
<td>6.4 - 70
 5.4 - 14
 5.4 - 13</td>
<td>52
 62</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Litio</td>
<td>0.005 - 0.056
 0.007 - 0.023</td>
<td>7</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Magnesio</td>
<td>23 - 560
 35 - 120
 25 - 75</td>
<td>31
 52</td>
<td>21
 3</td>
<td></td>
</tr>
<tr>
<td>Manganoso</td>
<td>0.21 - 4.8
 0.15 - 0.65</td>
<td>31</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercurio</td>
<td>0.06 - 3.1
 <1.1</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molibdeno</td>
<td>0.02 - 0.12</td>
<td>48
 31</td>
<td>10
 3</td>
<td></td>
</tr>
<tr>
<td>Níquel</td>
<td>0.05 - 2.9
 <0.4</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plata</td>
<td>0.01 - 1.7
 <0.14; <0.12</td>
<td>21
 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platino</td>
<td><0.003
 <0.005</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plomo</td>
<td>0.34 - 26
 <0.1;<2</td>
<td>55
 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubidio</td>
<td>0.018 - 0.38
 0.007 - 0.096; 0.11 - 0.12</td>
<td>28
 24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.52 - 2.5
 0.95 - 1.7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talio</td>
<td><0.001 - 0.005
 <0.01</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Torio</td>
<td><0.001
 <0.005</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Rango de niveles en los pacientes de la Dra. Colón de Jorge en μg/g</td>
<td>Rango de referencia en el manuscrito de la Dra. Colón de Jorge*</td>
<td>Porcentaje por encima del nivel de referencia</td>
<td>Porcentaje por debajo del nivel de referencia</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Uranio</td>
<td><0.001 - 0.021</td>
<td>(<0.06)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vanadio</td>
<td>0.013 - 1.2</td>
<td>(0.018 - 0.065)</td>
<td>38</td>
<td>3</td>
</tr>
</tbody>
</table>

* Valores de referencia proporcionados por Doctor’s Data, Inc, St. Charles, IL. Para varios elementos, el laboratorio informó dos rangos de referencia en muestras diferentes.
Tabla 3A-8. Resumen de los resultados del análisis de materia fecal según se informó en un manuscrito no publicado de la Dra. Colón de Jorge (Colón de Jorge, sin fecha).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Rango en los pacientes de la Dra. Colón de Jorge en μg/g (Rango de referencia)</th>
<th>Rango de referencia*</th>
<th>Porcentaje por encima del nivel de referencia</th>
<th>Porcentaje por debajo del nivel de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio</td>
<td>43 - 750</td>
<td>130</td>
<td>57</td>
<td>42</td>
</tr>
<tr>
<td>Antimonio</td>
<td>0.06 - 0.127</td>
<td>NA</td>
<td>83</td>
<td>16</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0.098 - 0.866</td>
<td>NA</td>
<td>83</td>
<td>16</td>
</tr>
<tr>
<td>Berilio</td>
<td>0.01 - 0.012 (2 < dl) *</td>
<td>NA</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Bismuto</td>
<td>0.014 - 0.55</td>
<td>NA</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cadmio</td>
<td>0.14 - 1</td>
<td>0.47</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>Cobre</td>
<td>17 - 68</td>
<td>50</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0.028 - 0.1 (0.02 sin amalgama) (0.26 con amalgama)</td>
<td>0.02 sin amalgama</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.26 con amalgama</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Níquel</td>
<td>3.4 - 7.5 (4.4)</td>
<td>4.4</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>Platino</td>
<td>2.92 (6 < dl) *</td>
<td>NA</td>
<td>16</td>
<td>84</td>
</tr>
<tr>
<td>Plomo</td>
<td>0.23 - 0.59</td>
<td>0.75</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Talio</td>
<td>0.005 - 0.015</td>
<td>NA</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Tungsteno</td>
<td>0.014 - 0 0.475</td>
<td>NA</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Uranio</td>
<td>0.025 - 0.061</td>
<td>NA</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

*Valores de referencia proporcionados por Doctor’s Data, Inc, St. Charles, IL.

**dl = límite de detección

NA = No disponible

3.7.10 Investigaciones del Dr. Carlos Rodríguez Sierra

El 30 de octubre de 2009, el Dr. Carlos Rodríguez Sierra dio una presentación en la Casa Pueblo de Ajuntas que fue transmitida por Internet. El Dr. Rodríguez Sierra se refirió al arsénico en los peces y a los datos de biomonitoreo relacionados con los niveles de arsénico en orina de los viequenses. Entre los 162 peces de 8 especies que se recogieron, dijo que, solo el arsénico superaba el criterio internacional de 2 μg de arsénico por gramo de peso húmedo de pescado.
En julio de 2006, también recogió muestras biológicas de 52 adultos, a quienes dividió en dos grupos: un grupo de alto consumo de pescado (n = 30) y un grupo de bajo consumo de pescado (n = 22). Recogió muestras de cabello, uñas y orina. En las muestras de orina se midió el arsénico total y diversas especies de arsénico:

- Arsénico trivalente (As III)
- Arsénico pentavalente (As V)
- Ácido monometilarsónico (MMA)
- Ácido dimetilarsónico (DMA) y
- Arsenobetaína

Las especies de arsénico inorgánico son AsIII y AsV y sus metabolitos orgánicos (MMA y DMA). Se presentaron los siguientes datos:

<table>
<thead>
<tr>
<th>Mínimo</th>
<th>Mediana</th>
<th>Percentil 75</th>
<th>Percentil 95</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>As total</td>
<td>5.33</td>
<td>22.54</td>
<td>33.7</td>
<td>161.69</td>
</tr>
<tr>
<td>Arsenobetaína, µg/g de creatinina</td>
<td>0</td>
<td>7.64</td>
<td>22.26</td>
<td>141.63</td>
</tr>
</tbody>
</table>

El arsénico inorgánico total se comparó con los resultados de la NHANES de 2003-2004 en la población de los EE.UU.:

<table>
<thead>
<tr>
<th>N</th>
<th>Mediana</th>
<th>Percentil 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vieques</td>
<td>52</td>
<td>10.3</td>
</tr>
<tr>
<td>NHANES</td>
<td>2557</td>
<td>6.0</td>
</tr>
</tbody>
</table>

El Dr. Rodríguez Sierra anunció las siguientes conclusiones a partir de su análisis de arsénico en los residentes de Vieques:

1. No se detectaron niveles altos de arsénico en cabello, uñas y orina al momento de tomar las muestras.
 a. Los niveles en las muestras de cabello y uñas estuvieron por debajo de los valores de referencia de 1 ug/g.
 b. La suma de las especies de arsénico inorgánico y sus metabolitos fue menor a 50 ug/g de creatinina, lo que se utilizó como valor de referencia.

\[23\] La ATSDR no está segura del nivel máximo de arsénico total y de arsenobetaína informados durante la presentación del Dr. Rodríguez Sierra.
2. Los niveles de arsénico inorgánico en las muestras de orina de Vieques son ligeramente superiores a la media y a los niveles del percentil 95 informados en la NHANES de 2003-2004.

El Dr. Rodríguez Sierra informó a la ATSDR que planea publicar estos datos; en ese momento deberá de haber disponible información más completa.
3.8 Apéndice 3-B. Biomonitorio

El Cuarto Informe Nacional sobre Exposición en Seres Humanos a Sustancias Químicas Ambientales de la NHANES (El 4° informe) proporciona datos de biomonitorio de la población de los EE.UU. de los años 1999-2004. El 4° informe proporciona también la media geométrica, los percentiles 50, 75, 90 y 95, además de datos estadísticos según los siguientes grupos etarios, sexo, raza y origen étnico:

- 6-11
- 12-19
- 20 años en adelante
- Mexicano-estadounidense
- Raza negra, no hispanos
- Raza blanca, no hispanos

<table>
<thead>
<tr>
<th>Metal</th>
<th>Media</th>
<th>Año</th>
<th>Media geométrica</th>
<th>Percentil 95</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orina</td>
<td>99 - 00</td>
<td>0.132 ug/L</td>
<td>0.42 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.134 ug/L</td>
<td>0.34 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04*</td>
<td>--</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>0.124 ug/g</td>
<td>0.382 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.126 ug/g</td>
<td>0.364 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04*</td>
<td>--</td>
<td>0.277 ug/g</td>
<td></td>
</tr>
<tr>
<td>Antimonio</td>
<td>Orina</td>
<td>03 - 04</td>
<td>8.3 ug/L</td>
<td>65.4 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>8.24 ug/g</td>
<td>50.4 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenobetaina</td>
<td>03 - 04</td>
<td>1.55 ug/g</td>
<td>35 ug/g</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>1.54 ug/g</td>
<td>29.4 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bario</td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
</tr>
<tr>
<td></td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berilio</td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
</tr>
<tr>
<td></td>
<td>Cadmio</td>
<td>Orina</td>
<td>99 - 00</td>
<td>0.193 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.210 ug/L</td>
<td>1.2 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.211 ug/L</td>
<td>1.15 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>0.181 ug/g</td>
<td>0.993 ug/g</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td>Sangre</td>
<td>01 - 02</td>
<td>0.199 ug/g</td>
<td>0.917 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.21 ug/g</td>
<td>0.94 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cesio</td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
</tr>
<tr>
<td></td>
<td>Cobalto</td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
</tr>
<tr>
<td></td>
<td>Plomo</td>
<td>Sangre</td>
<td>99 - 00</td>
<td>1.66 ug/dL</td>
<td>1 año en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>1.45 ug/dL</td>
<td>4.4 ug/dL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>1.43 ug/dL</td>
<td>4.2 ug/dL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orina</td>
<td>99 - 00</td>
<td>0.766 ug/L</td>
<td>2.9 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.304 ug/L</td>
<td>1.6 ug/L</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Media</td>
<td>Año</td>
<td>Media geométrica</td>
<td>Percentil 95</td>
<td>Edad</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Metal</td>
<td>Media</td>
<td>Año</td>
<td>Media geométrica</td>
<td>Percentil 95</td>
<td>Edad</td>
</tr>
<tr>
<td>Mezclaje</td>
<td>Sangre</td>
<td>99 - 00</td>
<td>0.343 ug/L</td>
<td>2.3 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.318 ug/L</td>
<td>1.9 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.326 ug/L</td>
<td>1.8 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>1.02 ug/L</td>
<td>7.1 ug/L, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.833 ug/L</td>
<td>4.6 ug/L, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>No disponible</td>
<td>No disponible</td>
<td>No disponible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.979 ug/L</td>
<td>4.9</td>
<td>1 año en adelante</td>
</tr>
<tr>
<td>Mercurio total**</td>
<td>Sangre</td>
<td>99 - 00</td>
<td>0.343 ug/L</td>
<td>2.3 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.318 ug/L</td>
<td>1.9 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04**</td>
<td>0.326 ug/L</td>
<td>1.8 ug/L</td>
<td>1 a 5 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>1.02 ug/L</td>
<td>7.1 ug/L, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.833 ug/L</td>
<td>4.6 ug/L, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>No disponible</td>
<td>No disponible</td>
<td>No disponible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.979 ug/L</td>
<td>4.9</td>
<td>1 año en adelante</td>
</tr>
<tr>
<td>Orina</td>
<td></td>
<td>99 - 00</td>
<td>0.719 ug/L</td>
<td>5.0 ug/L</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.606 ug/L</td>
<td>3.99 ug/L</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>No disponible</td>
<td>No disponible</td>
<td>No disponible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.447 ug/L</td>
<td>0.319 ug/L</td>
<td>1 año en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>0.71 ug/g</td>
<td>3.27 ug/g, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.62 ug/g</td>
<td>3.0 ug/g, mujeres</td>
<td>16 a 49 años</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>No disponible</td>
<td>No disponible</td>
<td>No disponible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.443 ug/g</td>
<td>2.35 ug/g</td>
<td>1 año en adelante</td>
</tr>
<tr>
<td>Platino</td>
<td>Orina</td>
<td><LOD</td>
<td><LOD</td>
<td><LOD</td>
<td></td>
</tr>
<tr>
<td>Talio</td>
<td>Orina</td>
<td>99 - 00</td>
<td>0.176 ug/L</td>
<td>0.45 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.165 ug/L</td>
<td>0.44 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.155 ug/L</td>
<td>0.44 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>0.166 ug/g</td>
<td>0.366 ug/g</td>
<td>6 años en</td>
</tr>
</tbody>
</table>

Página | 110
<table>
<thead>
<tr>
<th>Metal</th>
<th>Media</th>
<th>Año</th>
<th>Media geométrica</th>
<th>Percentil 95</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.156 ug/g</td>
<td>0.348 ug/g</td>
<td>adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.154 ug/g</td>
<td>0.350 ug/g</td>
<td></td>
</tr>
<tr>
<td>Tungsteno</td>
<td>Orina</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td>Consulte el informe.</td>
<td></td>
</tr>
<tr>
<td>Uranio</td>
<td>Orina</td>
<td>99 - 00</td>
<td>0.008 ug/L</td>
<td>0.046 ug/L</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.009 ug/L</td>
<td>0.046 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.008 ug/L</td>
<td>0.039 ug/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 - 00</td>
<td>0.007 ug/g</td>
<td>0.034 ug/g</td>
<td>6 años en adelante</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 - 02</td>
<td>0.008 ug/g</td>
<td>0.04 ug/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 - 04</td>
<td>0.008 ug/g</td>
<td>0.029 ug/g</td>
<td></td>
</tr>
</tbody>
</table>

* Un gran porcentaje de los participantes tenía un nivel < LOD, lo cual impide calcular una media general.

Capítulo 4 Datos de resultados de salud

4.1 Sistemas y programas de datos de salud pública

4.2 Evaluación de los datos disponibles de salud pública

4.2.1 Cáncer

4.2.2 Enfermedades distintas del cáncer

4.3 Hallazgos

4.4 Conclusiones y recomendaciones

4.4.1 Conclusiones

4.4.2 Recomendaciones

4.5 Bibliografía

Resumen del capítulo 4

Evaluar con precisión el estado de salud de los viequenses requiere cuantificar la morbilidad y la mortalidad y también identificar posibles factores que puedan conducir a resultados de salud adversos. Cuantificar la morbilidad y la mortalidad, y evaluar los posibles factores contribuyentes puede ayudar a identificar oportunidades específicas para la intervención en programas de salud pública o prestación de servicios médicos. Es necesario comprender los sistemas de recopilación e informe de datos de salud pública, los programas de salud pública y el sistema de servicios médicos de la isla de Vieques para determinar actividades futuras con el fin de mejorar el estado de salud de los viequenses.

En este capítulo, se revisan los sistemas de recopilación e informe de datos de salud pública utilizados para cuantificar la morbilidad y la mortalidad, se revisan varios informes publicados durante los últimos 10 años en los que se evalúa la morbilidad y la mortalidad en Vieques y se proporciona una breve revisión de los servicios médicos disponibles en Vieques. Todos esos estudios son de naturaleza descriptiva y proveen alguna información sobre la situación de la salud en Vieques. Los estudios no contienen análisis que relacionen posibles factores ambientales o de otro tipo con las condiciones de salud identificadas. Debido a la pequeña población, todos los estudios carecen, en cierta medida, de potencia estadística y tienen limitaciones metodológicas que dificultan su interpretación. A pesar de esas limitaciones, los estudios son valiosos para describir el estado de salud de los viequenses. Los estudios indican aumentos en la prevalencia de enfermedades crónicas, la incidencia de cáncer y la mortalidad por cáncer en Vieques comparado con el resto de Puerto Rico.

4.1 Sistemas y programas de datos de salud pública

Los sistemas de datos primarios usados para estimar la incidencia y la prevalencia de los resultados de salud en Puerto Rico son el Registro Central de Cáncer de Puerto Rico (RCCPR), el Sistema de Vigilancia de Factores de Riesgo del Comportamiento (Behavioral Risk Factor Surveillance System, BRFSS), el Sistema de Vigilancia de Defectos Congénitos (Birth Defects Surveillance System, BDSS) y la Oficina de Registro Demográfico de Puerto Rico (Puerto Rico Vital Records Office). Los CDC contribuyen con el financiamiento de estos sistemas de recopilación e informe de datos. Sus fortalezas y debilidades
afectan la calidad de los datos y la consecuente capacidad de elaborar acciones de salud pública apropiadas basadas en esa información.

Los datos reportados por el RCCPR tienen varios puntos fuertes. Los registros de cáncer suelen ser los mejores conjuntos de datos basados en una población cuando se les compara con sistemas de recopilación de datos y conjuntos de datos asociados con otras enfermedades crónicas. Los registros capturan la mayoría de los casos de cáncer debido a los requisitos legales de reportar los casos, redundancias en el sistema de informe (es decir, informes de laboratorios, clínicas, hospitales y oncólogos específicos) y la evolución clínica del cáncer que por lo general requiere un seguimiento considerable y visitas repetidas. Por tanto, el análisis de los datos del registro de cáncer debería representar la evaluación más precisa de la incidencia de cáncer en Vieques. Por último, mediante un acuerdo cooperativo en vigencia desde el 1998, los CDC han financiado en forma continua el registro de cáncer. Asimismo, la precisión de los datos del registro ha mejorado constantemente.

Dicho eso, cabe señalar varios puntos débiles de los datos del registro. En primer lugar, el financiamiento no ha sido consistente durante toda la existencia del registro, pero recientemente se ha vuelto más estable. El RCCPR fue financiado, en parte, por el Programa de Vigilancia, Epidemiología y Resultados Finales (Surveillance, Epidemiology, and End Results, SEER) del Instituto Nacional del Cáncer (National Cancer Institute) entre el 1973 al 1989. El contrato entre el RCCPR y el SEER no se renovó y hasta el 1997 el RCCPR funcionó con financiamiento local. En el 1997, el RCCPR solicitó y obtuvo financiamiento de los Centros para el Control y la Prevención de Enfermedades (Centers for Disease Control and Prevention, CDC) mediante un acuerdo cooperativo acordado por el Programa Nacional de Registros de Cáncer (National Program of Cancer Registries). El RCCPR proporcionó datos a los CDC comenzando con los casos de cáncer diagnosticados en el año calendario 1998. La exhaustividad y la puntualidad también han sido problemáticas debido a la falta de personal capacitado para realizar resúmenes de datos sobre cáncer y a demoras en el reporte de los casos por parte de los centros, debido a falta de fondos y de requisitos de comunicación de algunos centros. El RCCPR ha tenido un progreso significativo en lo que respecta a mejorar la exhaustividad. En el 2003, una revisión de los CDC concluyó que el 95.3% de todos los casos de cáncer diagnosticados o tratados en centros hospitalarios de Puerto Rico se habían reportado adecuadamente al RCCPR; un resultado comparable con la mediana de los EE.UU. (95%) (ORC MacroSM 2000).

El BRFSS es el principal sistema de vigilancia para estimar la prevalencia de enfermedades crónicas y comportamientos relativos a la salud en los Estados Unidos y Puerto Rico. El BRFSS es la principal fuente de datos para los estimados de prevalencia de asma, diabetes, hipertensión y enfermedad cardíaca. Una de las limitaciones del sistema es la capacidad de proporcionar estimados de prevalencia precisos en poblaciones pequeñas. Vieques tiene una población de menos de 10,000 residentes. Proveer estimados de prevalencia precisos en poblaciones tan pequeñas es difícil. En especial debido al complejo diseño de la encuesta y a los objetivos globales de producir estimados de prevalencia por estados y para todo el país. El proyecto Tendencias de Riesgo en Areas Metropolitanas/Micropolitanas Sseleccionadas (Selected Metropolitan/Micropolitan Area Risk Trends, SMART) se inició para desarrollar estimados de de prevalencia a nivel local. El proyecto SMART utiliza métodos para desarrollar estimados de prevalencia utilizando datos del BRFSS para áreas con 500 encuestados o más. Estos métodos pueden
representar una opción viable para utilizar el BRFSS con el fin de desarrollar estimados de prevalencia para Vieques.

Los CDC financian el BDSS de Puerto Rico, que lleva el registro de trece enfermedades congénitas diagnosticadas al nacer. Los objetivos actuales del programa incluyen ampliar la capacidad del sistema de vigilancia para identificar casos de defectos congénitos y elaborar legislación que exija la notificación al BDSS de los defectos congénitos en Puerto Rico. El BDSS es uno de los 14 sistemas de vigilancia de defectos congénitos financiados por los CDC. El sistema basado en la población utiliza la determinación de casos activos. Los encargados de crear los resúmenes en cada región de salud pública visitan los hospitales y otros centros para revisar los registros médicos con el fin de identificar casos de cada tipo específico de defecto congénito. Si bien este enfoque se considera el estándar de oro, consume muchos recursos. Una limitación de la vigilancia de los defectos congénitos en general es que algunos defectos no pueden diagnosticarse al nacer y, por ende, pasan desapercibidos.

Otra fuente de datos de morbilidad y mortalidad es la Oficina de Registro Demográfico de Puerto Rico. La Oficina de Registro Demográfico recopila datos de nacimientos y muertes de toda la población. Las ventajas de contar con datos de nacimientos y muertes incluyen su bajo costo, su disponibilidad y, gracias a los requisitos legales de reporte de casos, una cobertura casi completa. Las limitaciones de los datos de mortalidad incluyen múltiples causas de muerte, la exhaustividad de los registros y los cambios en las prácticas de diagnóstico a partir de mejoras en la tecnología médica (Rothman y Greenland 1998). Las limitaciones de los datos de los certificados de nacimiento incluyen cambios en los certificados de nacimiento con el tiempo, certificados de nacimientos incompletos e información autodeclarada.

4.2 Evaluación de los datos disponibles de salud pública

Varios estudios han evaluado la morbilidad y mortalidad en la población viequense. Todos ellos son de naturaleza descriptiva y proporcionan alguna información sobre la salud de esa población. Pero estos estudios no contienen análisis que relacionen posibles factores ambientales o de otro tipo con las condiciones de salud identificadas. Además, debido a la pequeña población de estudio, todos los estudios carecen de potencia estadística. A pesar de sus limitaciones, estos estudios son útiles para describir el estado de salud de los viequenses y dar pautas que guíen los pasos siguientes. En este capítulo se resume y analiza una evaluación de estudios publicados durante la última década. Las conclusiones y recomendaciones para acciones futuras se describen brevemente a continuación y en el capítulo 9. Estas recomendaciones se consideran como un punto de partida para el diálogo con la comunidad científica y los viequenses con el fin de desarrollar un plan de acción que ayude a mejorar la salud de los viequenses.

4.2.1 Cáncer

El RCCPR publicó informes en el 2006 y el 2009 en los que se detalla la incidencia de cáncer y la mortalidad por cáncer en Puerto Rico. El informe del 2006 evaluó la incidencia de cáncer y la mortalidad por cáncer del 1990 al 2001. Por el contrario, el informe del 2009 evaluó la incidencia de cáncer y la mortalidad por cáncer del 1990 al 2004. Ambos estudios evaluaron si, utilizando métodos similares, las tasas de incidencia de cáncer y mortalidad por cáncer eran más altas en Vieques que en la isla principal de Puerto Rico. Se calcularon las razones de incidencia y mortalidad estandarizadas con intervalos de
confianza del 95%. Los autores definieron la significancia estadística como un intervalo de confianza del 95% que no incluyó el 1. De forma similar, los autores definieron la significación del margen estadístico como un intervalo de confianza del 90% que no incluyó el 1.

Los análisis tienen varios puntos fuertes. Los registros capturan la mayoría de los casos de cáncer. Esto se debe a los requisitos legales de reporte de casos, redundancias en el sistema de informe (es decir, informes de laboratorios, clínicas, hospitales y oncólogos específicos) y a que la evolución clínica de la mayoría de los casos de cáncer requiere un seguimiento considerable y visitas repetidas. Por tanto, el análisis de los datos del registro de cáncer debería representar la evaluación más precisa de la incidencia de cáncer en Vieques.

Si bien los análisis tienen varios puntos fuertes, también se observaron varias limitaciones. Como se menciona brevemente en los informes del Departamento de Salud de Puerto Rico y como lo confirma el Dr. Figueroa (comunicación personal, julio de 2009), se realizó cierto seguimiento para identificar casos en Vieques que no se aplicó de manera uniforme en el resto de Puerto Rico. Un ejemplo se relaciona con la documentación de la edad para los casos del registro.

En ambas evaluaciones, todos los casos en los que se indicaba residencia en la Isla de Vieques tenían una confirmación de la edad. Esta práctica no se vio reflejada en la isla principal de Puerto Rico. Si no se conocía la edad de un caso, este no se incluía en ningún cálculo de tasas. Además, en Vieques se buscaron de manera activa los casos, pero no en el resto de Puerto Rico. Esto introduce un sesgo potencial; omite casos de la población de referencia (es decir, Puerto Rico) y aumenta la proporción de casos capturados por el registro en Vieques en relación con Puerto Rico, con lo cual existe la posibilidad de inflar artificialmente las razones de incidencia estandarizadas. Otros métodos diferenciales para buscar y revisar los casos en Vieques que no se aplicaron en la isla principal provocarían una parcialidad similar en los resultados (RCCPR 2006; 2009).

4.2.2 Enfermedades distintas al cáncer

Revisamos dos estudios en los que se evaluaron datos no relacionados con el cáncer. El estudio principal de morbilidad no relacionado con cáncer fue publicado en marzo del 2000 por Yadiris López y Crisarlin Carrosquillo (López y Carrosquillo 2002). También revisamos la mortalidad por causas distintas de cáncer en “Heavy metal exposure and disease in the proximity of a military base” de la Dra. Carmen Ortiz Roque (Ortiz Roque 2002).

La encuesta de López y Carrosquillo se llevó a cabo debido a una creciente preocupación sobre la contaminación ambiental a causa de las actividades militares pasadas y a sus posibles efectos adversos en la salud humana de los viequenses. La encuesta tuvo un diseño transversal, con un tamaño de muestra de 1,043. El trabajo de campo del estudio se realizó entre abril y noviembre de 2000. López y Carrosquillo intentaron incluir a todos los residentes de cada barrio y permitieron que la cabeza de la familia, por lo general la matriarca, respondiera en nombre de todos los integrantes de la familia. La encuesta recopiló datos demográficos, sobre antecedentes de empleo y hábitos alimentarios, además de prevalencia de enfermedades informada por los encuestados.

La distribución general de la edad en la muestra seleccionada, basada en datos de los censos de los EE.UU. de 1990 y 2000, parece ser mayor que la de la población de Vieques. López y Carrosquillo
informaron que el 36% de la muestra tenía 60 años en adelante. Los datos del censo de los EE.UU. de 1990 indican que el 16% de la población de Vieques tenía 60 años en adelante. Asimismo, los datos del censo de los EE.UU. del 2000 indican que el 19.5% de la población de Vieques tenía 60 años en adelante. Los participantes fueron seleccionados de Luján, Administración de Reconstrucción de Puerto Rico, Santa María y Esperanza. Los 132 residentes de Luján reportaron un rango de edad de 5 a 25 años, mientras que los 306 residentes de la Administración de Reconstrucción de Puerto Rico (Puerto Rico Reconstruction Administration, PRRA) reportaron un rango de edad de 59 a 70 años. Las distribuciones de la edad de Santa María y Esperanza no se informaron por separado. Estos barrios se describieron en conjunto, como "representativos" de la población de Vieques, pero parecen ser mayores.

Los encuestados identificaron 28 condiciones médicas. Estas condiciones se enumeran en la Tabla 4-1. De las 28 condiciones médicas identificadas por los participantes, los autores presentaron comparaciones utilizando razones de riesgo para seis condiciones de salud: cáncer, enfermedad cardíaca, hipertensión, diabetes, asma y artritis. La prevalencia de las condiciones de salud se comparó con la cantidad esperada de casos, que se calcula multiplicando la población de Vieques por el porcentaje de casos ocurridos en el Estudio de Morbilidad Crónica de Puerto Rico (Puerto Rico Chronic Morbidity Study, PRCMS) realizado en el 1994. Además de las condiciones médicas, los autores describieron la frecuencia del consumo de cigarrillos, consumo de alcohol, hábitos alimentarios y abortos. Los autores señalaron que el cáncer no se relacionó con el fumar o el consumo de alcohol; la frecuencia de cada factor en la encuesta fue similar a la de la totalidad de Puerto Rico. No se presentó la frecuencia de fumar y consumo de alcohol entre los participantes con las condiciones de salud más prevalentes (López y Carrosquillo 2002).
La Dra. Ortiz Roque presentó brevemente datos de mortalidad por causas distintas de cáncer y de mortalidad infantil en un informe. En enero de 2002, la Dra. Ortiz Roque, junto con el Colegio de Médicos y Cirujanos de San Juan, PR, publicó un informe titulado “Exposición a metales pesados y enfermedad en las proximidades de una base militar” (Heavy metal exposure and disease in the proximity of a military base). Este esfuerzo comenzó debido a la preocupación de la comunidad con respecto a que las actividades militares pasadas en la isla pudieran afectar en forma adversa la salud de los viequenses. Ortiz Roque reportó datos estadísticos de mortalidad del Departamento de Salud de Puerto Rico para el periodo 1991-1998. Se compararon datos de mortalidad estandarizados por edad

Tabla 4-1. Condiciones de salud informadas por los viequenses

<table>
<thead>
<tr>
<th>Condiciones de salud</th>
<th>Cantidad de casos</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión arterial alta</td>
<td>189</td>
<td>18.1</td>
</tr>
<tr>
<td>Asma</td>
<td>112</td>
<td>10.7</td>
</tr>
<tr>
<td>Diabetes</td>
<td>102</td>
<td>9.8</td>
</tr>
<tr>
<td>Artritis</td>
<td>89</td>
<td>8.5</td>
</tr>
<tr>
<td>Enfermedad cardiaca</td>
<td>77</td>
<td>7.4</td>
</tr>
<tr>
<td>Condiciones cutáneas</td>
<td>61</td>
<td>5.8</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>56</td>
<td>5.4</td>
</tr>
<tr>
<td>Colesterol alto</td>
<td>54</td>
<td>5.2</td>
</tr>
<tr>
<td>Espasmos musculares</td>
<td>52</td>
<td>5.0</td>
</tr>
<tr>
<td>Alergias</td>
<td>49</td>
<td>4.7</td>
</tr>
<tr>
<td>Otras</td>
<td>36</td>
<td>3.5</td>
</tr>
<tr>
<td>Circulación</td>
<td>36</td>
<td>3.5</td>
</tr>
<tr>
<td>Estrés</td>
<td>32</td>
<td>3.1</td>
</tr>
<tr>
<td>Migrañas</td>
<td>24</td>
<td>2.3</td>
</tr>
<tr>
<td>Cáncer</td>
<td>19</td>
<td>1.8</td>
</tr>
<tr>
<td>Anemia</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>Riñones</td>
<td>14</td>
<td>1.3</td>
</tr>
<tr>
<td>Ácido úrico</td>
<td>13</td>
<td>1.2</td>
</tr>
<tr>
<td>Epilepsia</td>
<td>11</td>
<td>1.1</td>
</tr>
<tr>
<td>Tumores</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>Próstata</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>Fatiga</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>Nódulos</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Neumonia</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>Plomo en sangre</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lupus</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Desviación de la columna vertebral</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
entre Vieques y la isla principal de Puerto Rico con las muertes totales y las muertes por causas específicas. Además, también se compararon las tasas de mortalidad infantil en Vieques con las tasas de Puerto Rico para el periodo 1975-1995 (Ortiz Roque 2002).

Los datos de mortalidad presentados no enumeraron todos los análisis realizados, solo los que fueran relevantes. Por último, la mortalidad infantil solo se menciona brevemente, y determinar momentos específicos resulta difícil, en especial aquellos para causas específicas.

Las encuestas sobre prevalencia de síntomas-enfermedades, como la encuesta de López y Carrosquillo, son herramientas útiles de generación de hipótesis. Eso es especialmente cierto cuando se dispone de escasos conocimientos previos sobre la posible exposición de la población y los efectos asociados en la salud. Otro punto fuerte de la encuesta de López y Carrosquillo fue el tamaño grande de la muestra (n = 1,043) en relación con una población de, aproximadamente, 10,000 habitantes. Los datos de mortalidad también pueden aportar datos significativos sobre el estado de salud de Vieques. Los análisis de patrones de mortalidad en una población pueden ser útiles para la generación de hipótesis; sin embargo, es difícil utilizar estos datos para cuantificar posibles relaciones en relaciones de exposición-enfermedad. Muchas variables de posible confusión no pueden evaluarse (p. ej., acceso a los servicios de salud, factores relacionados con el estilo de vida y hábitos alimentarios). Por lo general, los datos de mortalidad se basan en una población, con una cobertura casi universal y son menos propensos a los sesgos.

No obstante, a pesar de dichas fortalezas, las encuestas sobre prevalencia de síntomas-enfermedades y los datos de mortalidad revisados tienen varias limitaciones. Tienen una capacidad restringida para analizar inferencias relacionadas a las asociaciones entre exposición y estado de salud. Evalúan la exposición y la enfermedad en forma simultánea; por lo tanto, no es posible determinar si la exposición precedió a la enfermedad. Dado que estas encuestas rara vez contienen datos cuantitativos de exposición —ya sea mediante mediciones directas de contaminantes en el ambiente inmediato de un participante o mediante el biomonitordeo—, utilizar este método para comprender la relación entre exposición y estado de salud es inherentemente difícil. La encuesta de prevalencia de síntomas de López y Carrosquillo, por ejemplo, no incluyó información sobre exposición ambiental. Además, las encuestas transversales sobre prevalencia de síntomas-enfermedades a menudo se ven comprometidas severamente por el sesgo de información derivado de los problemas reales o percibidos por los participantes. En el caso de la encuesta de López y Carrosquillo, todos los datos fueron informados por los encuestados o por un representante, y no se hizo ningún intento por validar la información con registros médicos. En dichos casos, el análisis se beneficiaría con la revisión de los registros médicos con el fin de validar los datos informados por los encuestados.

Una tercera limitación de esta encuesta fue la falta de potencia estadística. El tamaño de la muestra fue grande en relación con la población, pero aun así es posible que le haya faltado la potencia necesaria para identificar diferencias en las frecuencias observadas y, en el caso de muchas condiciones de salud, en las frecuencias esperadas. No se presentaron intervalos de confianza con estimados de razones de riesgo para identificar diferencias.
4.3 Hallazgos

- Para tener acceso a atención de oncología y otros servicios especializados (es decir, neurología, cardiología), es necesario desplazarse hasta la isla principal de Puerto Rico.

- Los análisis de datos del RCCPR (incidencia de cáncer) y la oficina de Estadísticas vitales (mortalidad por cáncer) identificaron algunas elevaciones estadísticamente significativas. Los resultados estadísticamente significativos ($\alpha=0.05$) de estos análisis se presentan en las Tablas 4-2 y 4-3.

Tabla 4-2. Resumen de la razón de incidencia estandarizada estadísticamente significativa para cáncer

<table>
<thead>
<tr>
<th>Resultado</th>
<th>Período</th>
<th>Grupo</th>
<th>SIR, CI 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1990 - 1995</td>
<td>Varones y mujeres juntos</td>
<td>1.19 (1.02, 1.39)</td>
</tr>
<tr>
<td>Pulmón y bronquios</td>
<td>1990 - 1995</td>
<td>Varones y mujeres juntos</td>
<td>2.25 (1.35, 3.52)</td>
</tr>
<tr>
<td>Pulmón y bronquios</td>
<td>1990 - 1995</td>
<td>Varones</td>
<td>2.24 (1.19, 3.83)</td>
</tr>
<tr>
<td>Próstata</td>
<td>1990 - 1995</td>
<td>Varones</td>
<td>1.47 (1.03, 2.03)</td>
</tr>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1995 - 1999</td>
<td>Varones y mujeres juntos</td>
<td>1.26 (1.08, 1.47)</td>
</tr>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1995 - 1999</td>
<td>Varones</td>
<td>1.31 (1.07, 1.60)</td>
</tr>
<tr>
<td>Próstata</td>
<td>1995 - 1999</td>
<td>Varones</td>
<td>1.53 (1.09, 2.09)</td>
</tr>
</tbody>
</table>

Tabla 4-3. Resumen de la razón de mortalidad estandarizada estadísticamente significativa para cáncer

<table>
<thead>
<tr>
<th>Resultado</th>
<th>Período</th>
<th>Grupo</th>
<th>SMR, CI 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1990 - 1995</td>
<td>Varones y mujeres juntos</td>
<td>1.26 (1.01, 1.57)</td>
</tr>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1990 - 1995</td>
<td>Mujeres</td>
<td>1.43 (1.01, 1.96)</td>
</tr>
<tr>
<td>Mama</td>
<td>1990 - 1995</td>
<td>Mujeres</td>
<td>0.26 (0.03, 0.92)</td>
</tr>
<tr>
<td>Colorrectal</td>
<td>1990 - 1994</td>
<td>Mujeres</td>
<td>2.75 (1.11, 5.67)</td>
</tr>
<tr>
<td>Cavidad bucal y faringe</td>
<td>1990 - 1995</td>
<td>Varones</td>
<td>3.96 (1.08, 10.0)</td>
</tr>
<tr>
<td>Todos los tipos de cáncer</td>
<td>1995 - 1999</td>
<td>Varones y mujeres juntos</td>
<td>1.35 (1.08, 1.67)</td>
</tr>
<tr>
<td>Todos los tipos de cáncer</td>
<td>2000 - 2004</td>
<td>Varones</td>
<td>1.40 (1.07, 1.80)</td>
</tr>
<tr>
<td>Próstata</td>
<td>2000 - 2004</td>
<td>Varones</td>
<td>2.62 (1.66, 3.93)</td>
</tr>
</tbody>
</table>

- Al comparar con la totalidad de Puerto Rico, la encuesta de López y Carrosquillo indicó un aumento de los casos de hipertensión, asma, diabetes, enfermedad cardíaca y algunos tipos de cáncer en Vieques. Una limitación clave de la encuesta es la falta de inspección de registros médicos para respaldar las afirmaciones de los encuestados y reducir la posibilidad de una parcialidad informativa.

- También se informó un aumento en la mortalidad infantil y aumentos en la mortalidad por causas distintas de cáncer debido a hipertensión, cirrosis y diabetes.

Vieques tiene una población de aproximadamente 10,000 habitantes. Por lo general, se producen anualmente alrededor de 30 casos nuevos y 15 muertes para todos los tipos de cáncer combinados. Por lo tanto, la potencia estadística para detectar alguna diferencia significativa en la incidencia de cáncer en la isla es baja al evaluar sitios anatómicos específicos, plazos cortos o ambas cosas. Evaluar las tasas a
plazos más largos sería útil en lugar de los 5 años tradicionales, como en las publicaciones estándares de vigilancia del cáncer. Es posible que una determinación diferencial para los residentes de Vieques haya introducido un sesgo en las razones de incidencia estandarizadas presentadas; se deben aplicar métodos uniformes de identificación de casos en todas las poblaciones de estudio y de referencia.

4.4 Conclusiones y recomendaciones

4.4.1 Conclusiones

1. Los documentos que revisó la ATSDR ofrecen una perspectiva de salud compleja para los viequenses. Los hallazgos de estos informes indican que hay elevaciones en la prevalencia de enfermedad crónica, la incidencia de cáncer y la mortalidad por cáncer en la población de Vieques comparada con el resto de Puerto Rico. Además, el aumento de la mortalidad en Vieques, en especial por cáncer, puede indicar la falta de acceso a una atención médica adecuada. Las limitaciones asociadas con estos análisis, en especial las inquietudes metodológicas analizadas en este informe, introducen un grado considerable de incertidumbre y dificultan la interpretación. Algunas de las inquietudes metodológicas señaladas anteriormente incluyen la búsqueda más exhaustiva de casos de cáncer en Vieques que en el resto de Puerto Rico, un seguimiento diferencial, estimados de prevalencia de enfermedades crónicas basados en una encuesta de prevalencia de síntomas-enfermedades sin confirmación de los resultados de salud mediante registros médicos y datos limitados de mortalidad por causas distintas de cáncer. El seguimiento diferencial y la búsqueda exhaustiva de casos pueden producir estimados parcializados de la incidencia de cáncer y la mortalidad por cáncer. La incertidumbre también es evidente en los amplios intervalos de confianza informados, lo cual indica estimados imprecisos de las razones de incidencia de cáncer y mortalidad por cáncer en Vieques con relación al resto de Puerto Rico (RCCPR 2009). Esto no es inusual cuando se hacen estimados para poblaciones pequeñas.

2. De todos modos, estos hallazgos sirven como guía para investigaciones futuras sobre el estado de salud de los viequenses.

4.4.2 Recomendaciones

Evaluar la viabilidad de aplicar los métodos de SMART BRFSS con el fin de generar estimados estables de prevalencia específica en Vieques para asma, diabetes, hipertensión y otras enfermedades crónicas.

4.5 Bibliografía

ORC MacroSM. National Program of Cancer Registries, Technical Assistance and Audit Puerto Rico Central Cancer Registry 2000, Case Completeness and Data Quality Audit.

Ortíz Roque C. 2002. Heavy metal exposure and disease in the proximity of a military base. San Juan, Puerto Rico: College of Physicians and Surgeons

Capítulo 5 Vía de productos agrícolas y ganados locales

5.1. Introducción .. 125
5.2. Evaluación de los datos disponibles ... 125
 5.2.1. Estudios del período 2000-2002 .. 125
 5.2.2. Estudios de 2003 ... 128
 5.2.3. Estudios del período 2004-2005 .. 133
 5.2.4. Estudios de 2008 ... 134
5.3. Conclusiones y recomendaciones .. 135
 5.3.1. Conclusiones ... 135
 5.3.2. Recomendaciones ... 136
5.4. Bibliografía .. 137

Resumen del capítulo 5

Este capítulo evalúa los datos y la información disponibles sobre contaminantes detectados en productos agrícolas y de ganado locales; el capítulo 7 considera los efectos del contacto directo con contaminantes del suelo.

Los datos generales son insuficientes para cuantificar adecuadamente la exposición en seres humanos o sacar conclusiones válidas de salud respecto de si el consumo de productos agrícolas cultivados localmente y de ganado criado localmente produciría efectos perjudiciales para la salud.

Existen datos limitados de muestreo de gandules locales, un alimento básico de los viequenses. En una evaluación preliminar de datos completada para este informe se llegó a la conclusión de que el nivel de cadmio encontrado en muestras de gandules cultivados localmente no aportaría un exceso de cadmio alimentario a los niños en edad preescolar que no coman más de 5 de las porciones más grandes (6 onzas) por semana de gandules cultivados localmente. Los adultos que coman porciones más grandes (12 onzas) deben limitar la ingestión a 11 porciones por semana. Los tamaños de porción típicos para los niños en edad preescolar (1.5 onzas) no aportan un exceso de cadmio por debajo de las 20 comidas por semana, y los adultos que coman una porción típica (3 onzas) pueden comer hasta 44 comidas por semana sin superar los niveles recomendados para la ingestión de cadmio. En general, exceder los niveles recomendados de cadmio en la dieta no provocaría consecuencias inmediatas en la salud. Sin embargo, la ingestión excesiva de cadmio durante décadas podría contribuir a niveles perjudiciales de acumulación de cadmio en los riñones, que posiblemente podrían provocar enfermedad renal.
Como medida protectora, para estos cálculos de exposición se supuso que las personas usualmente comían la porción más grande que, por lo general, se consume en una comida, y que los gandules contenían el nivel más alto de cadmio medido. No obstante, es probable que estas suposiciones sobrestimen el grado de exposición para la mayoría de la población.

No está claro si el número limitado de muestras son representativas de las concentraciones de cadmio en otros cultivos locales de gandules, pero la incertidumbre significativa de la evaluación destaca la necesidad de obtener más muestras. Los resultados de la evaluación preliminar y la totalidad de los datos disponibles sugieren que los cultivos alimentarios tienen un potencial de captación de metales presentes en el suelo, lo cual justifica continuar las investigaciones. Para evaluar mejor esta vía de exposición, la ATSDR ha recomendado una iniciativa de colaboración para obtener más muestras de alimentos cultivados localmente.
5.1 Introducción

A muchos viequenses les sigue preocupando que las actividades pasadas de adiestramiento militar en la región oriental de la isla hayan dejado niveles elevados de metales pesados en el suelo superficial. Las plantas podrían absorber esos metales, y cuando las personas coman esas plantas, podrían quedar expuestas. Los viequenses también se preguntan si los animales podrían acumular metales pesados si pastorean en áreas en las que se realizaban actividades militares y si eso podría llevar a la exposición de las personas que consumen carne y lácteos de esos animales. Los viequenses dependen mucho de los productos locales de origen vegetal y animal como fuentes de alimento y para su sustento económico. Por lo tanto, para los viequenses, la seguridad de los alimentos producidos localmente tiene implicaciones a la salud y la economía.

5.2 Evaluación de los datos disponibles

Desde 2000, varios estudios independientes han explorado los niveles de metales pesados en la vegetación y el ganado de Vieques. Esta sección proporciona un breve resumen de los resultados, y analiza sus fortalezas y limitaciones, junto con la evaluación de la ATSDR y la respuesta a los hallazgos.

Los estudios analizados en esta sección fueron preparados por científicos asociados con la Universidad de Puerto Rico y Casa Pueblo, una organización local de defensa de la comunidad. Varios de esos estudios fueron presentados y analizados por los autores durante la reunión celebrada en noviembre de 2009 en Atlanta, GA.

5.2.1 Estudios del período 2000-2002

- En 2000, investigadores de Casa Pueblo y la Universidad de Puerto Rico tomaron muestras de la vegetación predominante en el Área de Impacto de Proyectiles Activos (LIA) (específicamente, en Carrucho Beach, Monte David y las lagunas Gato e Icacos) para analizar la presencia de metales pesados (Massol Deyá y Díaz 2000). También se recolectaron poblaciones de referencia de las mismas especies en Bosque Seco de Guánica y la finca RUM Alzamora. Las plantas recolectadas incluyeron Urochloa maxima (raíz y tallo), Sporobolus virginicus (raíz y tallo), Syringodium filiform (tallo), Ipomoea violacea (fruto), Faidherbia albida (tallo) y Calotropis procera (hojas), entre otras especies. Los autores informaron que las concentraciones de metales pesados como plomo, cobalto y manganeso en la vegetación de Vieques eran significativamente más altas que las concentraciones detectadas en las ubicaciones de referencia.

- En 2001, los mismos investigadores recolectaron aleatoriamente cultivos y vegetación común de tres sitios de la sección residencial de Vieques: un área agrícola de Monte Carmelo, otra área de Monte Carmelo que linderan con el antiguo Campamento García y una antigua granja agrícola en Barrio Monte Santo, sector Gobeo (Massol Deyá y Díaz 2001). En este artículo, el análisis se limitó a las dos granjas de las que se obtuvieron muestras en el área civil de Vieques, y se centró en plantas cultivadas para una economía agrícola. Las muestras incluyeron hojas y tallos de calabaza, pimiento, gandules, piña y yuca. El estudio informó que la concentración de cadmio, cobalto, cobre, plomo y manganeso superaba los niveles informados en la vegetación típica de zonas templadas (de Smith y Huyck 1999). Los autores indicaron que las raíces, tallos y muestras...
de hojas de calabaza, pimiento, gandules, piña y yuca tenían concentraciones elevadas de plomo y cadmio mientras que los árboles de guamá y mango no mostraron ninguna concentración elevada de metales. El 18 de agosto de 2001, los investigadores de Casa Pueblo recolectaron muestras de pelo de cabras que pastaban en Monte Santos y Santa María en Vieques (Massol Deyá 2002). Como referencia, se obtuvieron muestras de cabras que pastaban en la isla principal de Puerto Rico. La publicación informó que el pelo de las cabras que pastaban en Vieques contenía niveles más altos de plomo que el pelo de las cabras de la isla principal. No se detectó mercurio en el pelo de cabra (el límite de detección fue 0.03 µg/g).

Debido a estos resultados y a otros estudios realizados por los mismos investigadores que informaron niveles elevados de metales pesados en plantas y ganado, el 7 de agosto de 2001 el Departamento de Agricultura de Puerto Rico (Puerto Rico Department of Agriculture, PRDA) puso un embargo contra la producción agrícola y ganadera de Vieques. El Departamento de Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino de Monte Carmelo, Martineau, Monte Santo, Esperanza, Luján, Gubeo y el oeste de Vieques para analizar la presencia de cadmio, cobalto, cobre, plomo, manganeso y níquel. El Departamento de Agricultura y la Asociación de Granjeros concluyeron que los productos agrícolas de Vieques eran aptos para el consumo y no contenían niveles tóxicos de esos metales (PRDA 2001). Cuando el Departamento de Agricultura y la Asociación de Granjeros no pudo repetir los estudios de Massol Deyá y Díaz, se levantó el embargo (El Nuevo Día 2001).

5.2.1.1 Evaluación de la ATSDR

Durante la preparación de la evaluación de salud pública para analizar la exposición por el suelo (ATSDR 2003), la ATSDR citó dos de los estudios (Massol Deyá y Díaz 2000, 2001). Estos estudios informaban niveles elevados de metales en la vegetación y áreas agrícolas locales. Ese problema se discutió originalmente como una inquietud de la comunidad en la Evaluación de salud pública de la vía del suelo (ATSDR 2003).

La ATSDR solicitó que un agrónomo del Departamento de Agricultura de los EE.UU. revisara en forma independiente los estudios de 2000 y 2001 de Massol Deyá y Díaz. El agrónomo determinó (USDA 2002) que, si bien los estudios proporcionaban evidencia de que había acumulación de metales pesados en las plantas, las limitaciones del estudio impedían calcular una dosis de exposición en seres humanos:

1. Los seres humanos no consumen muchas de las especies de las que se obtuvieron muestras para este estudio. Cuando se obtuvieron muestras de especies comestibles, no se obtuvieron muestras de las partes comestibles. La mejor forma de calcular la exposición en seres humanos a partir de alimentos cultivados en el lugar es utilizar las partes comestibles del alimento. En general, es menos probable que las partes comestibles de plantas acumulen metales del suelo, debido a los procesos normales de las plantas (p. ej., barreras fisiológicas que impiden que los contaminantes lleguen a la parte superior de las plantas) (ATSDR 2001).

2. Para el estudio no se habían utilizado materiales de referencia estandares para demostrar que los resultados eran precisos. También carecía de correcciones de base para plomo, cobalto, níquel y cadmio con el fin de eliminar el efecto de dispersión de la luz por parte de cualquier
material no esencial presente en las muestras, lo cual puede producir una sobrestimación de una concentración.

3. El análisis de metales no indicaba si los metales estaban en forma biodisponible (es decir, en una forma química que se absorbe rápidamente en el tejido de las plantas a partir del medio que las rodea). Esto es importante porque las muestras de vegetación incluyen contaminantes captados por la planta y partículas del suelo del medio circundante. Incluso con un lavado exhaustivo, las pequeñas partículas del suelo se adhieren a los materiales de la planta y, en efecto, pueden contener más contaminantes que los que capta la planta del suelo (ATSDR 2001). Los investigadores no determinaron qué cantidad de la sustancia química estaba adherida en forma externa como suelo y qué cantidad estaba en el tejido de las plantas.

Debido a estos factores limitantes, la ATSDR no pudo cuantificar adecuadamente la exposición en seres humanos y tampoco pudo extraer conclusiones de salud válidas acerca de si consumir plantas de Vieques provocaría efectos perjudiciales para la salud. La ATSDR ha recomendado la obtención de muestras adicionales de productos cultivados localmente que mejoraría la evaluación de esta vía de exposición. Los detalles de las recomendaciones de la ATSDR se encuentran al final de este capítulo y en el capítulo 9 de este informe.

La ATSDR no pudo evaluar la exposición a productos de carne y leche de cabra en seres humanos a partir de los datos de muestreo presentados en Massol Deyá (2002). Faltaba información sobre las similitudes y diferencias entre las cabras de Vieques y la población de referencia (p. ej., especie de cabra, edad, si las diferencias eran estadísticamente significativas) y el efecto que podrían tener en la interpretación de los resultados de las muestras de pelo. El informe no dejaba en claro cómo se prepararon las muestras de pelo para su análisis. Un procesamiento inadecuado del pelo para realizar análisis químicos puede producir resultados erróneos y dificultad para interpretar si los datos representan contaminación interna de la hebra de pelo o una eliminación incompleta de cualquier tipo de contaminación externa. Además, las limitaciones para interpretar la significación con respecto a la salud de los datos de muestra de pelo impidieron a la ATSDR utilizar los datos sobre pelo de cabra informados en Massol Deyá (2002). Tres limitaciones clave del análisis del pelo impidieron, en general, una mayor caracterización de la exposición:

1. Los resultados del análisis del pelo no pueden localizar con precisión las fuentes de los contaminantes químicos detectados. Por ejemplo, los resultados del análisis del pelo no pueden, generalmente, distinguir sustancias depositadas en el pelo (p. ej., polvos) de sustancias que podrían haberse distribuido en el pelo tras una exposición ambiental, como la ingestión de agua potable contaminada o alimentos contaminados. En otras palabras, el análisis del pelo no puede, en general, diferenciar la exposición interna de la externa.

2. Actualmente, la comunidad científica no conoce el rango de niveles de contaminación que se encuentran típicamente en el pelo. Sin datos confiables en la literatura revisada por colegas sobre niveles de contaminación de referencia o de base en el pelo en la población general, y sin muestras de pelo obtenidas de las poblaciones de comparación, las agencias de salud no pueden determinar si los resultados de un análisis de pelo de algún lugar determinado son inusualmente altos o bajos. En Massol Deyá (2002), se obtuvieron muestras de dos poblaciones de cabras, y
los resultados respaldaron la conclusión del autor de que las cabras de las que se obtuvieron muestras en Vieques tenían concentraciones más altas de metales pesados en el pelo en relación con la población de comparación.

3. Un punto importante en las evaluaciones de salud pública es la comprensión de la dosis, ya sea medida o calculada. Dado que actualmente se sabe muy poco acerca de la velocidad de distribución de sustancias presentes en el cuerpo de seres humanos y animales hacia el pelo, no fue posible calcular dosis internas a partir de los resultados de las muestras de pelo. Por lo tanto, análisis de pelo no haría ninguna aportación al cálculo de la exposición en seres humanos, pero sí implica la necesidad de obtener muestras directamente de la carne y la leche de esos animales para determinar si la carne y la leche son seguras para el consumo.

Para la mayoría de las sustancias, actualmente no se dispone de datos suficientes que respalden las predicciones de efectos adversos en la salud a partir de las concentraciones en el pelo. La detección de una sustancia en una muestra de pelo generalmente no indicará cómo, cuándo o dónde se produjo la exposición a esa sustancia. Los datos de alimentos de origen vegetal y animal que las personas efectivamente consumen son los datos más aptos para realizar determinaciones acerca de las posibles implicaciones para la salud en el caso de las personas que consumen esos alimentos.
Consecuentemente, como parte de la evaluación, la ATSDR recomienda la obtención de muestras adicionales de productos agrícolas y ganaderos locales.

5.2.2 Estudios de 2003

En 2003, investigadores de la Universidad de Puerto Rico publicaron un estudio en el que analizaron los mismos datos que los autores publicaron el 10 de abril de 2000: muestras de plantas recolectadas en febrero y marzo del 2000 analizadas para detectar metales pesados (Díaz y Massol Deyá 2003). Este artículo comparó las concentraciones halladas en Vieques con las concentraciones detectadas en la isla principal de Puerto Rico. El muestreo del año 2000 incluía tallos y hojas de plantas, pero no incluía las partes comestibles de las plantas de las que se obtuvieron las muestras. Esta publicación revisada por colegas aportó más información sobre la obtención de las muestras, la preparación y las técnicas analíticas que el informe de abril de 2000. En adición a los datos de muestreo del año 2000, este artículo incluyó muestras nuevas de hojas y frutos de C. cajan (gandules) obtenidas el 18 de agosto de 2001. También analizó la relación de contaminación detectada en el fruto con la contaminación detectada en las hojas. El estudio comparó las concentraciones detectadas en muestras de frutos y hojas de gandules recolectadas el 18 de agosto de 2001. Para algunos metales, se hallaron concentraciones más altas en el fruto (zinc, níquel, cadmio y cobalto). En el caso de otros metales, se hallaron concentraciones más altas en las hojas (cobre y plomo).

5.2.2.1 Evaluación de la ATSDR

En mayo de 2009, la ATSDR obtuvo una copia del estudio de 2003 realizado por Díaz y Massol Deyá. Como parte de la evaluación sobre Vieques, la ATSDR revisó los datos sobre gandules en este estudio. Los datos informados en Díaz y Massol Deyá tienen limitaciones importantes que restringen la capacidad de la ATSDR de interpretar la significancia de los hallazgos del estudio. Esas limitaciones incluyen que no se mencionan muestras de comparación y que no hay ninguna indicación de significancia estadística de
los datos que reportan las concentraciones de metales en gandules. Los resultados de muestreo de tan solo un estudio no son representativos de la cantidad de cadmio presente en los productos agrícolas locales y no representan el potencial de exposición al cadmio para la población general a partir del consumo de gandules cultivados localmente.

Una evaluación preliminar concluyó que el nivel de cadmio informado en unas pocas muestras de gandules cultivados localmente no aportaría un exceso de cadmio alimentario a los niños en edad preescolar que no coman más de 5 de las porciones más grandes (6 onzas) por semana de gandules cultivados localmente. Los adultos que coman los tamaños de porciones más grandes (12 onzas) deben limitar la ingestión a 11 porciones por semana.

Como medida protectora, para estos cálculos de exposición se supuso que las personas comían siempre la porción más grande que, por lo general, se consume en una comida, y que los gandules contenían el nivel más alto de cadmio medido. Es probable que estas suposiciones sobrestimen el grado de exposición para la mayoría de la población. Los tamaños de porción típicos para niños en edad preescolar (1.5 onzas) no aportan un exceso de cadmio por debajo de las 20 comidas por semana. Los adultos que coman una porción típica (3 onzas) pueden comer hasta 44 comidas por semana sin superar los niveles recomendados de ingestión de cadmio. Aun así, la ingestión excesiva de cadmio durante décadas podría contribuir a niveles perjudiciales de acumulación de cadmio en los riñones, que pudieran provocar enfermedad renal. La Tabla 5-1 proporciona detalles sobre la metodología utilizada en esta evaluación.
Tabla 5-1. Dosis de exposición para el fruto de gandules (datos de Díaz y Massol Deyá 2003)

<table>
<thead>
<tr>
<th>Sustancia química</th>
<th>IR</th>
<th>Percentil</th>
<th>C (mg/kg)</th>
<th>IR (kg/día)</th>
<th>Tamaño de la porción en onzas</th>
<th>Comidas por semana</th>
<th>Comidas por año</th>
<th>EF días/año</th>
<th>ED años</th>
<th>BW kg</th>
<th>AT días</th>
<th>FA unidad menos</th>
<th>DOSIS (mg/kg/día)</th>
<th>Dosis deseable (mg/kg/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmio</td>
<td>95</td>
<td>Adulto</td>
<td>3.17</td>
<td>0.10</td>
<td>12</td>
<td>5</td>
<td>260</td>
<td>260</td>
<td>64</td>
<td>70</td>
<td>23360</td>
<td>0.05</td>
<td>0.00016</td>
<td>0.00036</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>Niño</td>
<td>3.17</td>
<td>0.05</td>
<td>6</td>
<td>5</td>
<td>260</td>
<td>260</td>
<td>6</td>
<td>16</td>
<td>2190</td>
<td>0.05</td>
<td>0.00035</td>
<td></td>
</tr>
</tbody>
</table>

Cantidad de comidas semanales para alcanzar el nivel de ingestión diaria tolerable (TDI)

<table>
<thead>
<tr>
<th>Sustancia química</th>
<th>IR</th>
<th>Percentil</th>
<th>C (mg/kg)</th>
<th>IR (kg/día)</th>
<th>Tamaño de la porción en onzas</th>
<th>Comidas por semana</th>
<th>Comidas por año</th>
<th>EF días/año</th>
<th>ED años</th>
<th>BW kg</th>
<th>AT días</th>
<th>FA unidad menos</th>
<th>DOSIS (mg/kg/día)</th>
<th>Dosis deseable (mg/kg/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95</td>
<td>Niño</td>
<td>3.17</td>
<td>0.05</td>
<td>6</td>
<td>5</td>
<td>260</td>
<td>260</td>
<td>6</td>
<td>16</td>
<td>2190</td>
<td>0.05</td>
<td>0.00036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Niño</td>
<td>3.17</td>
<td>0.01</td>
<td>1.5</td>
<td>20</td>
<td>1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>Adulto</td>
<td>3.17</td>
<td>0.10</td>
<td>12</td>
<td>11</td>
<td>572</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Adulto</td>
<td>3.17</td>
<td>0.02</td>
<td>3</td>
<td>44</td>
<td>2288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donde
- C Concentración (mg/kg)
- IR Tasa de ingestión (Ingestion rate) en el percentil (p. ej., 95 significa que el 95% de la población tiene un nivel de ingestión inferior a esa cantidad): ver abajo
- EF Frecuencia de exposición (Exposure frequency) o eventos: 260 días/año = 5 días/semana durante 52 semanas/año; 156 días/año = 3 días/semana durante 52 semanas/año
- ED Duración de la exposición (Exposure duration) durante la que se produce la exposición: 64 años (adulto); 6 años (niño)
- AT Tiempo de promedio (Averaging time): período por el que se promedia la exposición (expresada en días) para enfermedades distintas del cáncer AT = ED*365 días/año
- FA Factor de absorción de alimentos (Food absorption): supone una absorción de cadmio alimentario del 5%. (ATSDR Toxicological Profile for Cadmium, septiembre de 2008)
- BW Peso corporal (Body weight) en kilogramos
- TDI Ingestión diaria tolerable (tolerable daily intake) 0.00036 mg/kg de bw/día, Autoridad Europea de Seguridad Alimentaria (European Food Safety Authority, EFSA) 2011

tasa de peso seco
- 95 adulto 98.7 g/día Vea el EFH, capítulo 9, sección 9.2.5, para ver la conversión entre tasas de ingestión como se consume y en peso seco
- 50 adulto 24.8 g/día Se utilizó un 71.8 por ciento de contenido de agua para “frijoles - secos - frijol ojo negro (castilla) – cocido”, vea la Tabla 9-27
- 95 niño 1.6 g/kg/día
- 50 niño 0.4 g/kg/día

Ingestión diaria tolerable
TWI = ingestión semanal tolerable (tolerable weekly intake)
2.5 ug/kg BW EFSA 2009
0.00036 mg/kg/día Convertido a ingestión diaria
5.2.3 Estudios del período 2004-2005

- En 2004, investigadores del Servicio de Extensión Agrícola de la Universidad de Puerto Rico en Vieques y la Autoridad de Tierras del Estado Libre Asociado de Puerto Rico recolectaron un total de 72 muestras de piña cayena lisa, tejido de hojas y del suelo del cultivo de piña. Se recolectaron estas muestras de dos plantaciones de piña (una ubicada en Barrio Luján, en la zona civil de Vieques, y un control ubicado en Barceloneta, en la isla principal de Puerto Rico). Las muestras se utilizarían para determinar la concentración total de arsénico, cadmio, cromo, cobalto y plomo en la fruta. El autor concluyó que no se halló contaminación en las muestras del fruto o las hojas de piña de ninguna de las dos plantaciones. En todas las muestras de frutos, los niveles de arsénico, cadmio, cobalto y plomo estaban por debajo de los niveles de detección o no se detectaron. No se observó contaminación en las piñas de Vieques al compararlas con las de la plantación de Barceloneta (López Morales 2005). No obstante, se hallaron niveles más altos de metales en el suelo de la plantación de Barceloneta, que el autor atribuyó a la composición natural del suelo. El estudio concluyó que los resultados estaban dentro de los niveles regulatorios aceptados.

- En 2005, Massol Deyá et ál. publicaron un artículo en el que analizaban los mismos datos que los autores publicaron el 10 de abril de 2000 y, nuevamente, en 2003: muestras de plantas recolectadas en febrero y marzo de 2000 en las que se analizó la presencia de metales pesados. Los autores señalaron que “se observan perfiles bien diferenciados dentro de las especies estudiadas, lo cual refleja diferencias en sus propiedades fisiológicas”. Además de los datos de muestreo del año 2000, este artículo incluyó muestras nuevas de Syringodium filiforme (hierba de manatí) obtenidas de la Instalación de Adiestramiento en Armas de la Flota del Atlántico (AFWTF) en 2004 y del Bosque Estatal de Guánica en 2003 y 2004. Las concentraciones de metales pesados fueron más altas en la AFWTF. Los autores propusieron la hipótesis de bioacumulación mediante la cadena alimentaria: hierba de manatí, crustáceos, los peces se comen los crustáceos y luego son comidos por los humanos. Se hipotetizó un escenario similar relacionado con la cadena alimentaria para las aves migratorias (Massol-Deyá et ál. 2005).

5.2.3.1 Evaluación de la ATSDR

- Los datos presentados en Massol-Deyá et ál. 2005 posiblemente aporten información importante desde el punto de vista de la ecología, pero no tienen relevancia directa para evaluar la salud humana: la hierba de manatí no es una fuente de alimento típico de los viequenses. La ATSDR ha recomendado la obtención de muestras adicionales de productos agrícolas.

- El estudio de López Morales (2005) fue el único que se caracterizó por que su propósito fue, específicamente, obtener muestras de la parte comestible de un producto agrícola de consumo habitual cultivado en Vieques, la piña cayena lisa. Como parte de la evaluación de Vieques, la ATSDR evaluó el nivel de cromo —el único metal detectado— en las muestras de frutos de piña. Utilizando una tasa de ingestión estándar para el consumo de frutas,\(^2^4\) la ATSDR calculó que la

\(^{24}\) Aproximadamente 7 onzas de frutas por día (ingestión media total de frutas; USEPA 1997)
dosis de exposición estimada se encontraba por debajo de los niveles de preocupación para efectos adversos en la salud.

5.2.4 Estudios de 2008

- En enero de 2008, se recolectaron hojas de plantas de cilantro, espinaca, habichuela, pimiento y papaya de una granja orgánica de Vieques y se las analizó para detectar cadmio, cromo, cobre y plomo. Los investigadores creían que el suelo de la granja orgánica sería representativo del suelo local y dela contaminación local transportada por el aire. Los investigadores hallaron que las concentraciones de plomo y cadmio en la vegetation viequense eran significativamente más altas que las concentraciones detectadas en las plantas de referencia de Mayagüez (Díaz de Osborne et ál. 2008). Mayagüez es una ciudad localizada al suroeste de Puerto Rico a aproximadamente 120 millas de Vieques.

5.2.4.1 Evaluación de la ATSDR

Al revisar el informe de Díaz de Osborn et ál. (2008), a la ATSDR le preocupaba, inicialmente, que los datos parecían indicar que el consumo de los productos agrícolas pudiesen causar posible daño para los seres humanos. No obstante, debido a la ausencia de información sobre el control de calidad de los datos en el informe, la ATSDR cuestionó si esos datos representaban con precisión las concentraciones típicas de metales de los productos agrícolas cultivados en el lugar. La ATSDR consultó al Departamento de Agricultura de los EE.UU. (U.S. Department of Agriculture, USDA) acerca del estudio (R. Chaney, U.S. Department of Agriculture, Agricultural Research Station, Beltsville, MD, comunicación personal, 28-30 de octubre de 2008). El USDA señaló que los niveles señalados de cobre serían fitotóxicos para las plantas. El USDA comentó que las mediciones informadas eran compatibles con plantas cultivadas en suelos que habían sido alterados para aumentar la captación de metales en las plantas (Sterrett et al. 1996). A consecuencia, la ATSDR debe interpretar estos datos como confusos. La ATSDR ha recomendado la obtención de muestras adicionales de productos agrícolas cultivados localmente para resolver las incertidumbres en los datos disponibles. De todos modos, hasta que se disponga de datos adicionales y que se haya evaluado más exhaustivamente esta vía de exposición, el USDA sugiere aplicar varios métodos simples para reducir la captación de metales del suelo por parte de los productos agrícolas. Hay más información disponible en el sitio web de la Biblioteca Nacional de Agricultura del USDA: http://www.nal.usda.gov/. Información especializada en línea sobre horticultura disponible en:
Las conclusiones y las recomendaciones de la evaluación de la ATSDR de los datos sobre productos agrícolas y ganaderos locales aparecen en la sección 5.3 de este capítulo y en el capítulo 9 de este informe.

5.3 Conclusiones y recomendaciones

5.3.1 Conclusiones

1. Los datos generales son insuficientes para cuantificar adecuadamente la exposición en seres humanos o sacar conclusiones válidas de salud respecto de si el consumo productos agrícolas cultivados localmente en el lugar y de ganado criado en el lugar produciría causar efectos perjudiciales para la salud.

2. Existen datos limitados de muestreo para de gandules, un alimento básico de los viequenses. La interpretación de estos datos es incierta debido a la falta de información adecuada de QA/QC para los hallazgos analíticos.
 a. En una evaluación preliminar de los datos completada para este informe se llegó a la conclusión de que el nivel de cadmio señalado en unas pocas muestras de gandules cultivados localmente no aportaría un exceso de cadmio alimentario a los niños en edad preescolar que coman menos de 5 de las porciones más grandes (6 onzas) por semana de gandules cultivados localmente. Los adultos que coman los tamaños de porciones más grandes (12 onzas) deben limitar la ingestión a 11 porciones por semana.
 b. Los tamaños de porción típicos para los niños en edad preescolar (1.5 onzas) no aportan un exceso de cadmio por debajo de las 20 comidas por semana, y los adultos que coman una porción típica (3 onzas) pueden comer hasta 44 comidas por semana sin superar los niveles recomendados para la ingestsión de cadmio.
 c. Superar los niveles recomendados de cadmio en la dieta, en general, no provocaría daño inmediato en la salud. La ingestión excesiva de cadmio durante décadas podría contribuir a niveles perjudiciales de acumulación de cadmio en los riñones, que posiblemente podrían provocar enfermedad renal. Por lo general, solo una fracción muy pequeña (5%) de cadmio presente en los alimentos se absorbe en el cuerpo, en especial en personas con una alimentación saludable que contenga cantidades adecuadas de minerales esenciales como el zinc, el hierro y el calcio (Reeves y Chaney 2008).

3. No está claro si los resultados limitados de la obtención de muestras son representativos de las concentraciones de cadmio de otros cultivos locales de gandules, pero la incertidumbre significativa en la evaluación destaca la necesidad de obtener más muestras.

4. Los resultados de la evaluación preliminar y la totalidad de los datos disponibles sugieren un potencial de captación en los cultivos alimentarios de metales presentes en el suelo, lo cual justifica continuar con las investigaciones. Para evaluar mejor esta vía de exposición, la ATSDR
ha recomendado una iniciativa de colaboración para obtener más muestras de alimentos cultivados en el lugar.

5.3.2 Recomendaciones

La ATSDR respalda la obtención de muestras adicionales y la recolección colaborativa de datos para evaluar más profundamente esta vía de exposición en seres humanos. Las siguientes recomendaciones tienen como fin promover la recolección de datos de alta calidad y máxima utilidad, y minimizar las incertidumbres derivadas de los datos:

1. Los datos de muestreo deben representar las partes comestibles de una muestra transversal de productos agrícolas de granjas locales, huertas hogareñas y mercados locales. Obtener muestras de productos agrícolas que tienden a acumular metales pesados con más facilidad (p. ej., vegetales de hojas como lechuga y espinaca) en lugar de las hojas de cultivos de cereales o frutas.

2. Hacer encuestas a los residentes con el fin de identificar la prevalencia y el tipo de productos hortícolas cultivados en el lugar y consumidos habitualmente. El plan de diseño de obtención de muestras debe incluir los tipos de productos agrícolas identificados en esa encuesta.

3. Recoger muestras representativas de suelo superficial en la misma ubicación y al mismo tiempo que se toman las muestras de productos hortícolas y agrícolas. Las muestras de suelo deben tener una profundidad apropiada para representar la zona de la raíz.

4. Obtener muestras de carne y productos lácteos del ganado de Vieques que pastoreen. consumen forraje.

5. Para evitar valores altos o bajos falsos, la recolección y el análisis de las muestras debe cumplir con altos estándares de calidad de datos, incluir información detallada sobre aseguramiento de la calidad/control de la calidad, materiales de referencia estándares para el análisis y correcciones de base. Diseñar el plan de obtención de muestras para recolectar una cantidad suficiente de muestras que garantice una alta confianza estadística.

6. Obtener muestras de una ubicación de base o de control adecuada para realizar una comparación con muestras de alimentos producidos en Vieques.

7. Para facilitar la evaluación de la exposición, informar los datos “como se consume” (peso húmedo).

8. Planificar y ejecutar protocolos de muestreo en colaboración con científicos locales. Una manera de evitar confusiones respecto de los datos es que científicos locales y un experto independiente recolecten en forma conjunta varias muestras, las dividan y proporcionen informes analíticos con información de respaldo sobre QA/QC. Un estándar de QA/QC podría ser la división en el momento de recolección de las muestras.

9. Solicitar asistencia técnica a la Administración de Alimentos y Drogas (FDA) de los EE.UU. o al Departamento de Agricultura de los EE.UU. (USDA) para la recolección de las muestras y los protocolos de análisis. El Servicio de Investigación Agrícola del USDA se ha ofrecido a prestar, si
se lo solicita, asistencia técnica en el diseño del plan de obtención de muestras, la recolección y el análisis con protocolos apropiados de QA/QC.

5.4 Bibliografía

[ATSDR] Agency for Toxic Substances and Disease Registry. 2001. Summary report for the ATSDR expert panel meeting on tribal exposures to environmental contaminants in plants. Atlanta: Division of Health Assessment and Consultation; 23 de marzo.

López Morales JL. 2005. Determination of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co) and lead (Pb) in “smooth cayenne” pineapple fruit, leaves tissue and soil using inductively coupled plasma-optical emission spectrometry (ICP-OES). Mayagüez, PR: Universidad de Puerto Rico. Disponible en: http://www.conucopr.org/ViewRecord.do;jsessionid=9352FA03CF29511445F3F457499BD7F1?id=11161028 [consultado el 28 de agosto de 2012].

Página | 137

[USDA] US Department of Agriculture. 2002. Carta de Rufus Chaney (USDA) a Jeff Kellam (ATSDR) respecto de la revisión de expertos de dos estudios de muestras de vegetación realizados por Massol-Deyá y Díaz; 5 de marzo.

Capítulo 6 Vía del aire

6.1. Introducción a la vía del aire... 141
6.2. Evaluación de los datos disponibles.. 142
 6.2.1. Evaluación de la exposición por aire en la Evaluación de Salud Pública (PHA, por sus siglas en inglés)... 142
 6.2.2. Revisión del proceso de modelado del aire utilizado en la PHA sobre el aire.... 143
 6.2.3. Estudios posteriores a la PHA de monitoreo del aire y los estudios de modelado del aire.. 146
6.3. Hallazgos .. 149
6.4. Conclusiones y recomendaciones... 152
 6.4.1. Conclusiones ... 152
 6.4.2. Recomendaciones ... 153
6.5. Bibliografía ... 153

Resumen del capítulo 6

Este capítulo revisa de qué manera la posible exposición a contaminantes en el aire a raíz de las operaciones militares realizadas en las antiguas Instalaciones de Adiestramiento Naval de Vieques podría haber afectado las áreas residenciales viequenses. Aunque nuestra revisión se basa, principalmente, en fuentes usadas en la PHA sobre el aire de la ATSDR del 2003, también se resumen datos de monitoreo del aire y estudios de dispersión de aire elaborados o recopilados después de la PHA del 2003. Esos últimos datos evaluaron los efectos de detonaciones o quemadas al aire libre, en curso o propuestas, e incluyeron datos meteorológicos específicos para el lugar recogidos después de 2003.

También evaluamos el proceso de los modelos utilizados en la PHA del 2003 sobre el aire, los supuestos y los datos usados en ese proceso de modelado, y comparamos los resultados con datos de monitoreo recogidos durante eventos recientes de quemadas al aire libre. Si bien esta revisión revela que el proceso de modelado de la PHA sobre el aire es compatible con las prácticas establecidas, se identifican dos errores menores de cálculo en las concentraciones de las fuentes de detonación. Estos errores, sin embargo, no afectan los resultados ni las conclusiones de la PHA sobre el aire.

En su conjunto, los datos disponibles de muestras y modelos son adecuados para la determinación de cualquier riesgo potencial para la salud pública que surja de la exposición a contaminación transportada por el aire. Al sobrestimar numerosos aspectos de las emisiones de contaminantes y evaluar exposiciones en las peores condiciones posibles, el modelo de dispersión por aire de 2003 de la ATSDR trató en forma adecuada las incertidumbres inherentes al proceso de modelado de dispersión de aire.
Los resultados del modelo indican que en las áreas residenciales de Vieques, los contaminantes transportados por el aire, resultado de los ejercicios militares pasados realizados en el Campo de Adiestramiento Naval de Vieques, habrían sido básicamente no detectables y es poco probable que hayan provocado efectos perjudiciales. Los estudios de monitoreo del aire realizados después de 2003 como apoyo para la reparación continua del lugar respaldan esos resultados.
6.1 Introducción a la vía del aire

En 1980, no mucho después de la creación de la ATSDR, los viequenses comenzaron a preguntarle a la agencia si el aire de la isla era seguro para respirar. A los residentes les preocupaba y les preocupa los contaminantes liberados en el aire durante los ejercicios de adiestramiento militar de la Marina. Esos ejercicios incluían el uso en el pasado de artefactos explosivos por parte de la Marina (principios de la década de 1970 hasta abril de 1999) así como ejercicios con artefactos inertes (de mayo de 2000 a mayo de 2003). Entre otras preocupaciones, los viequenses preguntaban si los polvos tóxicos de los explosivos usados en el campo de bombardeo podrían haber llegado hasta sus barrios.

Durante el tiempo en que la Marina realizaba ejercicios con artefactos explosivos en Vieques se condujeron tres estudios de muestras de aire (1972, 1978 y 1979). No se dispone de referencias directas a esos estudios, pero otros documentos informaron y resumieron los resultados (TAMS 1979; Cruz Pérez 2000). El Apéndice C de la PHA sobre el aire (ATSDR 2003) incluye una revisión de los datos del estudio, la disponibilidad de esos datos y las limitaciones de cada conjunto de datos. La Junta de Calidad Ambiental de Puerto Rico realizó dos de esos estudios y la Marina realizó el tercero. Ninguna de las mediciones de los estudios detectó contaminación del aire a niveles que constituyeran una preocupación para la salud. Esas conclusiones se ven limitadas por la reducida cantidad de ubicaciones para tomar muestras de aire y por la pequeña cantidad de analitos medidos. Dado que esos estudios históricos de obtención de muestras no necesariamente emplearon procedimientos de control de la calidad de los datos que se aceptan en la actualidad, los estudios no pudieron determinar en forma concluyente, según los estándares actuales, si había contaminantes transportados por el aire presentes en las áreas residenciales de Vieques.

Por tanto, la ATSDR no pudo basar conclusiones relativas a la salud en esos estudios únicamente. No obstante, el modelado podría aportar otro conjunto de datos que ofrecerían mayor claridad a hallazgos anteriores.

Cuando la ATSDR comenzó a evaluar primero la vía del aire, había disponibles dos estudios de modelado de dispersión que arrojaron conclusiones bien diferenciadas acerca de la posible exposición a partículas en Vieques. Uno fue preparado por contratistas de la Marina (IT 2000) y el segundo fue preparado por el Dr. Cruz-Pérez, un ingeniero local (Cruz Pérez 2000). Como parte del proceso de la PHA de 2003, la ATSDR contrató tres expertos en modelado de aire para revisar los estudios. El Apéndice D de la PHA sobre el aire incluye un resumen y una revisión de cada uno de los estudios de modelado. Después de recibir los comentarios de los revisores externos, la ATSDR decidió realizar un estudio independiente adicional de modelado usando las recomendaciones de la revisión por expertos. Obsérvese que dada la cantidad limitada de muestras de aire que se obtuvieron en Vieques mientras la Marina utilizaba artefactos explosivos, fue necesario recurrir al modelado. El Apéndice D de la PHA sobre el aire contiene documentación del modelo, incluidos los supuestos definitorios y resultados.

25 La Evaluación de salud pública sobre el aire incluye un resumen más completo de la historia del funcionamiento de las antiguas Instalaciones de Adiestramiento Naval de Vieques.
6.2 Evaluación de los datos disponibles

6.2.1 Evaluación de la exposición por aire en la Evaluación de Salud Pública (PHA, por sus siglas en inglés)

Para calcular los efectos de los artefactos explosivos en la calidad del aire, la ATSDR utilizó un análisis de modelado que evaluó 86 contaminantes diferentes de conocida liberación en el aire al detonar explosivos (49 compuestos orgánicos, 29 metales, 5 compuestos explosivos, más restos de carcasa, uranio empobrecido y partículas como PM10). Los resultados del modelo hallaron que a medida que el polvo y el humo se trasladaban del campo de municiones y explosivos hacia áreas habitadas, las sustancias químicas liberadas en el aire tras las explosiones se dispersaban a niveles extremadamente bajos. Para la mayoría de los contaminantes, los efectos previstos en la calidad del aire de áreas residenciales eran tan bajos que incluso es probable que un dispositivo de muestreo de aire muy sensible no pudiera medir niveles tan bajos de contaminantes.

Por ejemplo, el modelo predijo que la materia particulada contaminante emitida durante ejercicios con explosivos representaría menos del 1 por ciento de las concentraciones de materia particulada medidas en las áreas residenciales de Vieques.

Esta comparación sugiere que las emisiones del LIA tuvieron un efecto pequeño en la calidad del aire residencial. Utilizando este análisis de modelado y los datos de muestras de aire referidos anteriormente, la ATSDR concluyó que de los 86 contaminantes evaluados que podrían haber formado parte de las emisiones del antiguo Campo de Adiestramiento Naval de Vieques, al llegar a las áreas residenciales de Vieques, ninguno de ellos superaba los valores de comparación para la salud. En otras palabras, incluso el efecto total de las sustancias químicas combinadas no producía contaminación del aire residencial.

Entre mayo de 2000 y mayo de 2003, la Marina realizó ejercicios de adiestramiento militar con artefactos inertes (no explosivos). Durante 2000 y 2001, la Junta de Calidad Ambiental de Puerto Rico llevó a cabo un monitoreo del aire ambiente en dos estaciones de áreas residenciales de Vieques. En días en los que había artefactos inertes que caían en el campo de artefactos explosivos, la Junta de Calidad Ambiental de Puerto Rico recolectó más de 50 muestras de partículas en las áreas residenciales de Vieques. Esos datos e información de respaldo se informan en el Sistema de calidad del aire, antes denominado Sistema de recolección de información aerométrica (Aerometric Information Retrieval System, AIRS) de la EPA y se resumen en la PHA sobre el aire (Apéndice C). En todas las muestras, los niveles de partículas eran mucho más bajos que los niveles con un efecto en la salud. De hecho, jamás se estableció una relación clara entre la cantidad de artefactos inertes arrojados en el LIA y los niveles de contaminación del aire medidos en las áreas residenciales de la isla. Esas observaciones sobre las

26 El término “partículas” se refiere a partículas sólidas y gotas líquidas presentes en el aire. PM10 y PM2.5 se refieren a partículas que tienen diámetros aerodinámicos inferiores a 10 y 2.5 micrones, respectivamente, o menos. Nótese también que si bien el énfasis actual respecto de los efectos en la salud de las partículas está puesto en las PM2.5, los estándares anteriores basados en la salud utilizaban las PM10. La PHA sobre el aire de 2003 utilizó las PM10 a fin de hacer comparaciones directas con las mediciones anteriores y los resultados del modelo.
concentraciones estimadas de contaminantes en el aire llevaron a la ATSDR a concluir que los días en que se arrojaban artefactos inertes al LIA, los niveles de contaminación del aire no representaban un peligro para la salud de los residentes de la isla.

Además del estudio de modelado y del análisis de datos históricos de monitoreo del aire, la ATSDR realizó un monitoreo del aire en el lugar durante los ejercicios de junio de 2001 realizados por la Marina con artefactos explosivos inertes aire-tierra. Los resultados de esa iniciativa de obtención de muestras se encuentran documentados (ERG 2001), y la PHA sobre el aire describe sus limitaciones. Debido a problemas de ubicación/emplazamiento de la estación (como se comenta en la PHA sobre el aire), los datos de muestreo no cumplen con los estándares aplicables de control de calidad. No obstante, las concentraciones de contaminantes medidas eran congruentes con las conclusiones relativas a la salud pública.

Las siguientes conclusiones de la PHA sobre el aire se basan, en gran medida, en la iniciativa de modelado de la ATSDR y en datos de estaciones de monitoreo de aire ubicadas en Isabel Segunda y Esperanza, establecidas y mantenidas por la Junta de Calidad Ambiental de Puerto Rico:

- Los ejercicios con artefactos explosivos realizados por la Marina en el LIA no representaron un peligro para la salud en las áreas residenciales de Vieques.
- El polvo transportado por el viento del campo de artefactos explosivos no representaba y no representa un peligro para la salud de los residentes.

La PHA sobre el aire también contiene una revisión exhaustiva de los estudios de modelado disponibles entonces, el estudio de modelado de la ATSDR y otros conjuntos de datos informados sobre monitoreo del aire.

6.2.2 Revisión del proceso de modelado del aire utilizado en la PHA sobre el aire

Eastern Research Group (ERG) y Trinity Consultants efectuaron el estudio de modelado del aire de la ATSDR para evaluar la posible exposición por aire a partir de las operaciones históricas del antiguo Campo de Adiestramiento Naval de Vieques. La PHA sobre el aire y un informe de seguimiento (Wilhemi et ál. 2006) describen los procedimientos específicos, supuestos y resultados de la iniciativa de modelado. Trinity Consultants realizó el modelado de dispersión “Calpuff” y envió los resultados a ERG (Trinity Consultants 2002).

La medición directa de emisiones transportadas por el aire producidas por detonaciones de artefactos explosivos militares no es posible.27 De todos modos, el modelado cuantitativo es una estrategia útil para evaluar las posibles emisiones producidas por eventos con artefactos explosivos. Para evaluar la posible exposición a contaminación transportada por el viento, la PHA sobre el aire utilizó el siguiente procedimiento de modelado:

27 Las explosiones destruirían el equipo de monitoreo; sin embargo, es posible obtener muestras indirectas a sotavento.
1. Hacer estimaciones tendientes a proteger la salud respecto de concentraciones de emisiones transportadas por aire a partir de artefactos explosivos individuales utilizando el Modelo de oscurecimiento combinado para contaminantes inducidos por el campo de batalla (Combined Obscuration Model for Battlefield Induced Contaminants) (Army Research Laboratory 2000);

2. Utilizar un modelo de dispersión de aire aceptado por la EPA de los EE.UU. (Calpuff) para estimar concentraciones de contaminantes específicas para el evento, tendientes a proteger la salud, de 24 horas y anuales en los puntos de máxima exposición fuera del lugar;

3. Calcular la concentración máxima de contaminantes diaria y anual en puntos de exposición fuera del lugar utilizando datos documentados de uso de artefactos explosivos para aumentar las concentraciones de contaminantes dispersos específicas para el evento; y

4. Evaluar los posibles efectos en la salud pública de la exposición a esos contaminantes comparando las concentraciones máximas estimadas de contaminantes de 24 horas y anual con valores de comparación apropiados en relación con la salud.

Esta revisión revela que el fundamento general para este abordaje es sólido y que cada uno de los supuestos que subyace en la selección de los parámetros del modelo está bien documentado en la PHA sobre el aire y en la bibliografía (texto y Apéndice D; Wilhemi et ál. 2006). El procedimiento de modelado fue elaborado a partir de comentarios y recomendaciones de revisores independientes externos que evaluaron los estudios existentes.

Varios factores o supuestos para el modelo presentes en el estudio de 2003 combinados llevaron a una sobrestimación intencional de la posible exposición, lo cual ayudó a garantizar que las conclusiones sirvan para proteger la salud:

- Sobrestimar las tasas de emisión de partículas causadas por explosiones suponiendo que todas las partículas están compuestas de la fracción PM10 (las partículas más grandes que no son susceptibles a una dispersión de aire significativa están incluidas como PM10).

- Sobrestimar las tasas de emisión de explosivos (p. ej., TNT, RDX, HMX, polvo de aluminio) suponiendo que el 10% de los explosivos no se consume en la explosión y está disponible para dispersión. Por el contrario, los datos disponibles muestran que menos del 1% de los explosivos subsiste después de la detonación.

- Debido a las variaciones en la composición de los explosivos de distintos tipos de artefactos, se supuso que los porcentajes máximos de composición de TNT, RDX y polvo de aluminio conformaban, en su conjunto, más del 125 por ciento del uso total de explosivos.

- Para las estimaciones de emisiones también se supuso que todos los artefactos explosivos arrojados, detonados o lanzados al LIA explotaron y que todas las emisiones emanaron de una ubicación con una única fuente. Así, las bombas que explotaron en varias ubicaciones diseminarían las emisiones sobre un área relativamente grande, lo cual llevaría a una mayor dispersión y a una concentración más baja en cualquier sitio a sotavento.

- Todas las evaluaciones de posible exposición se basan en las peores condiciones meteorológicas posibles, tanto para la exposición de 24 horas como anual, para una persona que viva
directamente en el terreno colindante con el lugar (es decir, la ubicación con las estimaciones de concentración más altas fuera del lugar). Las áreas residenciales están a por lo menos 3 millas de distancia hacia el oeste, de modo que para los residentes que no viven en el lugar, eso se traduciría en dosis de exposición proporcionalmente más bajas.

Tres hojas de cálculo EXCEL creadas por ERG (METALS.xls, ORGANICS.xls y EXPLOSIVES.xls) contienen los resultados específicos del estudio de modelado. Esas hojas de cálculo fueron enviadas a la ATSDR por correo electrónico (John Wilhelmi, ERG, a Mark Evans, ATSDR, comunicación personal, 3 de diciembre de 2009). Una revisión de las hojas de cálculo reveló dos errores o discrepancias menores.

En primer lugar, las concentraciones de metales dentro del penacho de partículas se calculan sumando los metales de los compuestos explosivos, los metales de la cubierta de los artefactos y los metales del suelo eyectados al aire por la explosión. No se da cuenta en forma similar de las concentraciones de explosivos (p. ej., TNT, RDX y HMX) presentes en los suelos del Área de Impacto de Proyectiles Activos al evaluar las concentraciones de esos materiales en el penacho. De todos modos, dado que las concentraciones de compuestos explosivos de los suelos del LIA son tan bajas, la contribución relativa de los materiales expulsados por el suelo es insignificante.

Por ejemplo, la concentración de TNT en el suelo del LIA tiene un promedio de 2.9 partes por millón (ppm). La emisión máxima anual de TNT como material expulsado del suelo (en función de la concentración de TNT en el suelo de 2.9 ppm) sería, aproximadamente, 1.6 libras por año (o 0.00027 libras por hora; en función de 5,840 horas por año de operaciones). En comparación, el modelo de dispersión de aire de la ATSDR supone que las emisiones transportadas por el aire de TNT sin detonar en bombas (suponiendo que el 10% de TNT no se enciende) es 10.76 libras por hora. Si solo el 5% de TNT subsiste después de la explosión, esa tasa de emisión de TNT por hora se convierte en 5.38 libras por hora. Considerando que todos los estudios disponibles muestran que menos del 1% de TNT no se enciende, la cantidad de TNT en el aire está sobrestimada y, en relación con la sobrestimación de la ignición de TNT, la contribución de TNT al material expulsado del suelo es muy pequeña.

La segunda discrepancia detectada en las hojas de cálculo de ERG se refiere al cálculo de las tasas de emisión máxima de metales en partículas atmosféricas de 24 horas. En ese cálculo no se incluyó un factor de conversión para ajustar las tasas de emisión en libras por hora a emisiones en gramos por segundo. Considerando que una tasa de emisión de 1 libra por hora es aproximadamente 8 veces superior a una tasa de emisión de 1 gramo por segundo, el uso de un valor de entrada 8 veces superior produce una sobrestimación 8 veces superior de la tasa de emisión máxima de 24 horas. No obstante, en conjunto, las discrepancias en el proceso de modelado de dispersión de aire no afectan en forma significativa los resultados o las conclusiones expresados en la PHA sobre el aire de 2003.

El Apéndice E de la PHA sobre el aire contiene 39 comentarios sobre el proceso de modelado y las conclusiones de la PHA, así como las respuestas de la ATSDR a esos comentarios. Revisamos los comentarios y respuestas para asegurarnos de que cada respuesta abordara adecuadamente cada inquietud. Esa revisión reveló que las respuestas eran apropiadas y brindaban un respaldo adecuado del proceso de evaluación de la PHA sobre el aire y las consecuentes conclusiones para la salud pública.
Observamos, sin embargo, una inquietud específica y la respuesta dada (PHA sobre el aire, comentario/rpta n.8º, Apéndice E). La inquietud planteada fue: “No hay datos disponibles en relación con PM2.5...”. La respuesta indica que, de hecho, no se modeló explícitamente PM2.5, pero se trata al utilizar el supuesto que mejor protegería la salud (es decir, que las concentraciones estimadas de PM10 consistían por completo de partículas PM2.5), los aumentos en la concentración anual promedio y la concentración máxima de 24 horas provocados por eventos de uso de artefactos explosivos (0.04 µg/m3 para el promedio anual; 10.2 µg/m3 para el promedio de 24 horas) de todos modos serían (de la PHA sobre el aire de 2003)

“... considerablemente más bajos que los estándares actuales de la EPA basados en la salud (PM2.5) (15 µg/m3 para la concentración anual promedio y 65 µg/m3 para la concentración promedio de 24 horas). Por lo tanto, los datos del modelado indican que las emisiones aéreas de partículas, fueran estas finas o gruesas, causadas por los ejercicios de adiestramiento militar no alcanzaron niveles de preocupación para la salud en las áreas residenciales de Vieques”.

6.2.3 Estudios posteriores a la PHA de monitoreo del aire y los estudios de modelado del aire

Tras la publicación de la PHA sobre el aire, la Marina realizó monitoreos adicionales del aire y modelados relacionados con “Acciones críticas de eliminación” para las detonaciones de municiones in situ (blow-in-place, BIP). Es decir, para la eliminación de artefactos explosivos sin detonar arrojados, lanzados o disparados y para una iniciativa planificada con el fin de quemar vegetación en las áreas de adiestramiento con artefactos activos. Esas iniciativas se diseñaron para permitir el acceso seguro a áreas históricas de fuego activo y se documentaron en una serie de informes:

1. Air Dispersion Modeling of the TCRA/BIP Activities on the Former Vieques Naval Training Range, Draft (Orden de tarea/contrato de la Marina de los EE.UU. 0047, febrero de 2007; preparado por CH2M-Hill, Herndon, VA).
2. Air Dispersion Modeling for TCRA-Prescribed Vegetation Burns on the Former Vieques Naval Training Range, Draft Final (Orden de tarea/contrato de la Marina de los EE.UU. 0047, junio de 2008; preparado por CH2M-Hill, Herndon, VA).

Los resúmenes de datos de monitoreo del aire descripten los eventos de muestreo en el lugar en tiempo real (a sotavento) realizados antes, durante y después de 51 eventos de detonación in situ de artefactos explosivos realizados en el LIA. La información de esos informes muestra que los análisis de monitoreo se realizaron utilizando métodos aceptados y que los resultados estaban dentro de los límites aceptables para el aseguramiento de la calidad del muestreo y el análisis.

Los analitos medidos fueron PM10, metales y explosivos a intervalos de 1 hora o de 8 horas. Las mediciones se resumieron en promedios de 8 horas o 24 horas. Ningún explosivo o metal en ninguna de las muestras de aire fueron reportados en concentraciones que se encuentren por encima de los estándares regulatorios o los vigentes aplicados a la salud. Un evento de detonación podría haber encendido la vegetación circundante; produjo un valor de PM10 de 24 horas de 153 µg/m3: apenas por encima del estándar de NAAQS de 150 µg/m3. No obstante, esa medición se realizó en una ubicación en el lugar, situada inmediatamente a sotavento del sitio de detonación. Ninguno de los 51 eventos de detonación produjo mediciones elevadas de PM10 en las estaciones cercanas a las áreas de posible exposición fuera del lugar. Los niveles de exposición para metales están más de 10 veces por debajo de lo que indican las guías de salud. Por tanto, no es probable que haya efectos de interacción entre sustancias químicas y no es probable que los efectos aditivos o sinérgicos entre las sustancias químicas potencien la toxicidad de la mezcla. En resumen, no es probable que se produzcan efectos perjudiciales por la mezcla de sustancias químicas (ATSDR 2004).

Un modelo de dispersión de aire realizado como apoyo de las detonaciones BIP (CH2MHill 2007a) respalda los resultados de monitoreo medidos. Este estudio de modelado utilizó un modelo de dispersión de aire diferente (modelo de dispersión de quema abierta/detonación abierta; Bjorkland et ál. 1998) y datos meteorológicos específicos para el lugar que no estaban disponibles cuando se realizó la PHA sobre el aire. Los resultados de este modelo de dispersión de aire también respaldan los resultados de monitoreo y las conclusiones del estudio de modelado de la ATSDR. Las concentraciones estimadas de contaminantes transportados por el aire a partir de eventos BIP en áreas de posible exposición fuera del lugar “están por debajo de los estándares regulatorios y de los límites de detección analítica razonables para todos los compuestos”. (CH2MHill 2007a).

El modelado de dispersión de aire de las detonaciones BIP (CH2MHill 2007a) utilizó datos meteorológicos recopilados del campo aéreo del Campamento García en Vieques. Esos datos de velocidad y dirección del viento, específicos del lugar para el año 2005, no estaban disponibles cuando se realizó la PHA de la ATSDR. En su lugar, el modelo de dispersión de aire de la ATSDR utilizó los datos meteorológicos disponibles en el momento de la Estación Naval Roosevelt Roads y de la estación del aeropuerto de San Juan.

La Figura 6-1 muestra diagramas de la rosa de los vientos para las estaciones del Campamento García, el aeropuerto de San Juan LM y Roosevelt Roads (tomado de CH2MHill 2007a). El emplazamiento del Campamento García está en una cuenca topográfica poco profunda en la región central sur de Vieques. La rosa de los vientos de 2005 refleja esa ubicación, donde las direcciones predominantes de los vientos
soplan desde el noreste, mientras que en el aeropuerto de San Juan LM y en Roosevelt Roads las direcciones predominantes de los vientos son similares pero más hacia el sudeste y el este. La velocidad promedio anual del viento en las estaciones Roosevelt Roads y del aeropuerto de San Juan LM es entre dos y cuatro veces mayor que la de la estación del Campamento García (2.88 y 4.10 frente a 1.46 m/s, respectivamente). No hay datos meteorológicos a largo plazo para el LIA. Las áreas residenciales de Vieques se encuentran al oeste del LIA; el uso de datos relativos al viento que aprovecha al máximo el componente de dispersión hacia el este y utiliza una velocidad promedio anual del viento más alta, proporciona una estimación del transporte de contaminantes que tiende a proteger la salud. Es decir que la aplicación de los datos sobre el viento del Campamento García tendería a dispersar más contaminantes a una distancia más corta y más hacia el océano (hacia el sur), con menores cantidades hacia las áreas residenciales (hacia el este).

Además de la reciente evaluación de detonaciones BIP, la Marina ha propuesto la quema prescrita de vegetación del LIA con el fin de acceder de manera segura y retirar los artefactos explosivos sin detonar que queden. Como apoyo para esa propuesta, la Marina ha realizado modelados adicionales del aire para evaluar los posibles efectos de dicha quema prescrita (CH2MHiII 2008a). Si bien la PHA sobre el aire no atendió la quema de vegetación, sí abordó las operaciones pasadas de quema abierta/detonación abierta (OBOD, por sus siglas en inglés) del exceso de artefactos explosivos recuperados. Dado que el volumen de artefactos explosivos relacionados con los eventos de OBOD pasados era pequeño en relación con el volumen utilizado en las operaciones navales que entonces estaban en curso, la PHA sobre el aire de 2003 halló que las emisiones atmosféricas de los eventos de OBOD pasados no constituían un peligro para la salud pública de los viequenses.

La PHA sobre el aire 2003 incluyó una evaluación del impacto para la salud pública de la exposición al polvo de las tormentas africanas, basada en concentraciones medidas o estimadas de PM10, y reveló que la exposición a PM10 atribuida a dichas tormentas de polvo no constituía un peligro para la salud pública. En el momento de la publicación de la PHA sobre el aire, no había datos disponibles sobre la composición química específica del polvo de esas tormentas. Un estudio reciente que llevó a cabo Gioda et ál. (2007) presentó las concentraciones de PM10 y metales de muestras de aire de diferentes ubicaciones de Puerto Rico, incluido Vieques, lo cual aporta dichos datos específicos de composición química. Este estudio pudo correlacionar las concentraciones de partículas atmosféricas estacionales medidas en Vieques y otras ubicaciones de Puerto Rico con las tormentas de polvo africanas. La mayoría de los metales analizados en esas muestras (cadmio, cobalto, cobre, hierro, níquel, plomo y vanadio) estaban muy por debajo de los valores de comparación aplicables para la salud y no representan un peligro para la salud pública.

La concentración promedio anual de arsénico de 0.0003 µg/m³ está apenas por encima del valor de comparación de 0.0002 µg/m³, que se basa en supuestos de exposición tendientes a proteger la salud, un exceso de riesgo de cáncer de por vida de 0.000001 y el riesgo de cáncer por inhalación de unidad de 4.3e-3 (por µg/m³) de la unidad de la EPA de los EE.UU. Utilizando los datos de Gioda (et ál.), el exceso de riesgo estimado de cáncer de por vida para la exposición por inhalación de arsénico en Vieques es

\[0.0003 \, \text{µg/m}^3 \times 4.3e-3 \, \text{por µg/m}^3 = 0.0000013\]
La concentración promedio anual de partículas atmosféricas de arsénico medida y que provoca un exceso de riesgo de cáncer de por vida en Vieques está en un punto intermedio respecto de otros valores de Puerto Rico y no difiere significativamente de los valores de Fajardo, PR, la ubicación de referencia identificada por Gioda et ál. (2007). El polvo de las tormentas africanas aporta una contribución mensurable a las cargas de base de partículas en Vieques y otras ubicaciones únicamente durante los meses de verano y, por tanto, representa solo una contribución estacional a las cargas de partículas atmosféricas predominantemente locales. La inhalación de metales específicos de las tormentas de polvo africanas, si bien contribuye a las cargas estacionales de partícula en Vieques y otras ubicaciones de Puerto Rico, no presenta un peligro explícito para la salud pública.

Tabla 6-1. Concentraciones anuales promedio de PM10 y metales: Vieques y Fajardo, PR**†

<table>
<thead>
<tr>
<th></th>
<th>PM10</th>
<th>As</th>
<th>Cd</th>
<th>Co</th>
<th>Cu</th>
<th>Fe</th>
<th>Ni</th>
<th>Pb</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vieques</td>
<td>23.6</td>
<td>0.00029</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.001</td>
<td>0.00033</td>
<td>0.0007</td>
<td>0.0009</td>
<td>0.0025</td>
</tr>
<tr>
<td>Fajardo</td>
<td>25.5</td>
<td>0.00023</td>
<td>0.00002</td>
<td>0.0014</td>
<td>0.002</td>
<td>0.00027</td>
<td>0.0008</td>
<td>0.0007</td>
<td>0.0019</td>
</tr>
<tr>
<td>CV</td>
<td>50</td>
<td>0.00020</td>
<td>0.01</td>
<td>0.1</td>
<td>150</td>
<td>2200</td>
<td>0.09</td>
<td>0.15</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*Tomado de (Gioda et ál. 2007)
†En µg/m³

6.3 Hallazgos

Todos los conjuntos de datos ambientales, ya sea que estén basados en análisis de muestras directas o en un enfoque de modelado, incluyen la simplificación de supuestos e incertidumbres inherentes. Los datos medidos analíticamente suponen que el dispositivo de obtención de muestras captura correctamente la sustancia de interés, que la persona que obtiene la muestra se encuentra en el lugar y momento correctos en relación con la emisión de contaminantes y la exposición a estos, y que los análisis químicos/de sustancias producen estimaciones de concentración precisas. Los procedimientos de control y garantía de calidad aseguran que los procesos de obtención de muestras de campo y de mediciones de laboratorio produzcan resultados confiables. No obstante, dicho eso, los datos de obtención de muestras de campo siguen siendo apenas estimaciones de las condiciones reales.

Los conjuntos de datos modelados cuantitativamente, como en el caso del modelo de dispersión de aire utilizado en la PHA sobre el aire, resuelven algunas limitaciones de la obtención de muestras directas: los conjuntos de datos modelados permiten la estimación de resultados para cualquier momento o ubicación. Pero los modelos de dispersión de aire incluyen, necesariamente, otros supuestos, como las tasas de emisión de contaminantes relevantes, los datos meteorológicos apropiados y los aspectos específicos del terreno del lugar (p. ej., la topografía). Todas esas condiciones específicas del lugar o parámetros del modelo influyen en los patrones de movimiento del aire. Al igual que los métodos para obtención de muestras de campo, los modelos de dispersión de aire también incluyen procedimientos para el aseguramiento de la calidad con el fin de mejorar la calidad de los resultados. El modelo Calpuff utilizado en la PHA sobre el aire realizada por la ATSDR ha sido sometido a la revisión regulatoria correspondiente. El Centro de Apoyo para la Regulación del Modelado Atmosférico (Support Center for Regulatory Atmospheric Modeling) de la EPA de los EE.UU. aprobó el modelo para los usos empleados por la ATSDR. Consulte: http://www.epa.gov/scram001.
Los supuestos del modelo y los parámetros de entrada utilizados en el estudio de la ATSDR están documentados específicamente en el Apéndice D de la PHA sobre el aire de 2003, y se describen en detalle en Wilhelmi et ál. (2006). Al sobrestimar numerosos aspectos de las emisiones de contaminantes y evaluar exposiciones en las peores condiciones posibles, se abordaron adecuadamente las incertidumbres inherentes a este modelo de dispersión de aire. Y a pesar de la sobrestimación de las posibles exposiciones, los resultados del modelo indican que en las áreas residenciales de Vieques, los contaminantes transportados por el aire y causados por los usos históricos del Campo de Adiestramiento Naval de Vieques hubiesen sido esencialmente imperceptibles. Los datos de muestras de aire históricas y recientes de la PREQB y las muestras de aire obtenidas por la Marina después de la PHA y el modelo de dispersión de aire avalan los resultados predichos. En su conjunto, entonces, los datos disponibles son adecuados para las conclusiones expresadas en la PHA sobre el aire.

6.4 Conclusiones y recomendaciones

6.4.1 Conclusiones

1. Esta revisión de la posible exposición por el transporte en el aire dentro de las áreas residenciales de Vieques a contaminantes generados por las operaciones militares en las antiguas Instalaciones de Adiestramiento Naval de Vieques se basa en las siguientes fuentes de información que se utilizaron en la PHA realizada por la ATSDR en 2003:
 a. Registros de la Marina de los EE.UU. sobre los tipos y cantidades de artefactos explosivos utilizados en el campo de adiestramiento,
 b. Un modelo de términos fuente utilizado para calcular las cantidades de material producido por la detonación de artefactos explosivos,
 c. Un modelo de dispersión de aire para calcular el transporte de contaminantes desde el área de detonación hasta las áreas residenciales,
 d. Datos meteorológicos a largo plazo del aeropuerto de San Juan, PR, y la estación naval Roosevelt Roads,

2. También se resumen los datos de monitoreo del aire y los estudios de dispersión de aire realizados o recopilados después de la publicación de la PHA sobre el aire de 2003, con el fin de evaluar eventos en curso o propuestos de detonación abierta o quema abierta.

3. Esta revisión de la posible exposición por el transporte en el aire evalúa el proceso de modelado utilizado en la PHA sobre el aire de 2003, los supuestos y los datos usados en el proceso de modelado, y compara los resultados de ese proceso de modelado con datos de monitoreo recogidos durante eventos recientes de quema al aire libre.

4. Si bien esta revisión halla que el proceso de modelado de la PHA sobre el aire es consistente con las prácticas de modelado establecidas, se identifican dos errores menores en el cálculo de las concentraciones de las fuentes de detonación. Uno produce una sobrestimación de las concentraciones de metales. El otro produce una leve subestimación de los productos derivados de explosiones en el suelo, que está sobrecompensado por la estimación general de las concentraciones de compuestos explosivos. Esos errores no afectan los resultados ni las conclusiones de la PHA sobre el aire.

5. En su conjunto, los datos disponibles de muestras y modelos son adecuados para la determinación del peligro potencial para la salud pública debido a la exposición a contaminación transportada por el aire. Las incertidumbres inherentes al modelo de dispersión de aire utilizado por la ATSDR en 2003 fueron abordadas adecuadamente al sobrestimar numerosos aspectos de las emisiones de contaminantes y evaluar exposiciones en las peores condiciones posibles. A pesar de la sobrestimación de las posibles exposiciones, los resultados del modelo indican que los contaminantes transportados por el aire y causados por los usos históricos del Campo de
Adiestramiento Naval de Vieques habrían sido básicamente imposibles de detectar en las áreas residenciales de Vieques y que es poco probable que hayan provocado efectos perjudiciales. Los resultados predichos son avalados por los datos de muestras de aire históricas y recientes de la PREQB y por las muestras de aire obtenidas por la Marina después de la PHA y el modelado de dispersión de aire. En su conjunto, los datos disponibles proporcionan un fundamento adecuado para las conclusiones relativas a la salud pública expresadas en la PHA sobre el aire.

6. Para realizar la evaluación tendiente a la protección de la salud respecto de la posible exposición a contaminantes transportados por el aire y provocados por los ejercicios militares en las antiguas Instalaciones de Adiestramiento Naval de Vieques, la Evaluación de Salud Pública de la ATSDR utilizó procedimientos de modelado y datos de monitoreo disponibles adecuados. El modelado de dispersión de aire y los datos de monitoreo del aire adicionales realizados tras finalizar la PHA sobre el aire también respaldan las conclusiones de la ATSDR relativas a la salud pública. Dado que no es probable que los ejercicios militares del pasado hayan producido concentraciones mensurables de contaminantes transportados por el aire en las áreas residenciales de Vieques, no hay ningún fundamento relacionado con la salud pública que respalde la realización de estudios adicionales del aire o iniciativas de monitoreo del aire ambiental en relación con los ejercicios militares del pasado en Vieques.

7. Si bien los residentes de Vieques podían oír y, posiblemente, sentir las explosiones de los ejercicios militares realizados en el antiguo Campo de Adiestramiento Naval de Vieques, 8 millas sigue siendo una distancia considerable. La física del sonido y de la migración de ondas sísmicas es muy diferente de la física de la dispersión atmosférica de las partículas y gases transportados por el aire.

6.4.2 **Recomendaciones**

No existen otras recomendaciones a la fecha.

6.5 **Bibliografía**

Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Gioda, et al., Particulate matter (PM$_{10}$ and PM$_{2.5}$) from Different Areas of Puerto Rico. Fresenius Environmental Bulletin v. 16-No.8, 2007.

Capítulo 7 Vía del suelo

7.1. Introducción a la vía del suelo

7.1.1. Vías de exposición por el suelo

7.1.2. Evaluación de los datos disponibles

7.1.3. Fortalezas y limitaciones de los datos disponibles para evaluar la vía del suelo

7.2. Análisis

7.2.1. Exposición en los manifestantes en el Área de Impacto de Proyectiles Activos durante 1999-2000

7.2.2. Exposición en las áreas residenciales de la isla

7.2.3. Obtención reciente de muestras de suelo superficial en áreas de interés

7.2.4. Datos recientes de un estudio de base

7.2.5. Consideraciones adicionales

7.3. Conclusiones y recomendaciones

7.3.1. Conclusiones

7.3.2. Recomendaciones

7.4. Bibliografía

Resumen del capítulo 7

El siguiente capítulo evalúa los datos e información disponibles sobre los contaminantes del suelo de Vieques y si la ingestión accidental de materiales del suelo podría enfermar a las personas. Los efectos indirectos de los contaminantes en el suelo en la cadena alimentaria terrestre se consideran aparte en el capítulo 5, “Vía de productos agrícolas y ganaderos locales”. La ATSDR evaluó la posible exposición directa por el suelo en dos situaciones: personas que vivieron en propiedades del LIA durante las protestas de 1999-2000 y personas que viven en las áreas residenciales de la isla.

Hay datos suficientes disponibles para concluir que las personas que vivieron en el LIA durante las protestas de 1999-2000 no estuvieron expuestas a contaminantes del suelo a niveles suficientemente altos para causar efectos adversos en su salud. En las áreas residenciales de la isla, no existen datos adecuados sobre el suelo para caracterizar las posibles exposiciones en forma completa. De todas maneras, la consideración de datos sobre el suelo de otras ubicaciones de la isla y la consideración de cómo pueden transportarse por el aire los contaminantes hasta las áreas residenciales sugieren que, en las áreas residenciales de la isla, la exposición a contaminantes del suelo relacionados con actividades militares no es suficientemente alta para provocar efectos adversos en la salud. Desde la PHA sobre el suelo de 2003 de la ATSDR, se han obtenido más datos sobre el suelo
mediante investigaciones de áreas conocidas y localizadas de contaminación en tierras militares. Los manifestantes no tuvieron acceso a esas áreas ni las ocuparon, de modo que éstas no afectan las conclusiones extraídas para estas exposiciones. Tampoco pertenecen a la parte residencial de la isla; por lo tanto, no mejoran la evaluación residencial.

Los datos recientes, junto con la presencia conocida de artefactos explosivos sin detonar en el LIA, respaldan la necesidad de mantener el acceso restringido al LIA y a otras áreas militares potencialmente contaminadas y la necesidad de continuar las evaluaciones ambientales y las actividades de reparación. A fin de tratar las incertidumbres que subsisten acerca de los problemas de contaminación del suelo en áreas residenciales, la ATSDR recomienda tomar muestras de la superficie del suelo en las áreas residenciales de la isla.
7.1 Introducción a la vía del suelo

Varios estudios han examinado los niveles de contaminantes en el suelo del Área de Impacto de Proyectiles Activos y de otros lugares de Vieques. La ATSDR evaluó los datos disponibles para determinar los posibles efectos en dos situaciones: las personas que vivieron en áreas del LIA durante 1999-2000 y las personas que vivían (en el pasado y al momento de la preparación de este informe) en las zonas residenciales de la isla. El capítulo incluye los siguientes temas:

- Las maneras en que las personas podrían estar expuestas a contaminantes del suelo y el enfoque de la ATSDR en este capítulo en la exposición directa;
- La documentación de datos disponibles sobre el suelo, incluido un análisis de los puntos fuertes, y las limitaciones de los datos para evaluar la exposición en el LIA o en la zona residencial de la isla; y un nuevo análisis de las exposiciones de interés centrado en las incertidumbres de los datos disponibles; y
- La discusión sobre la manera en que el análisis anterior podría verse afectado por datos sobre el suelo obtenidos recientemente en áreas de interés o en áreas que no fueron afectadas por ejercicios de bombardeo aéreo, y un análisis de otras consideraciones planteadas por partes interesadas en relación con la exposición por el suelo.

7.1.1 Vías de exposición por el suelo

Los contaminantes ambientales afectan en forma directa e indirecta la salud del planeta y de las personas que lo habitan. La ATSDR se centra en la identificación de exposiciones que podrían afectar en forma directa la salud humana. En el caso del suelo, analizamos si la pequeña cantidad que las personas podrían ingerir accidentalmente o tocar podría contener un nivel suficiente de una sustancia química determinada como para provocar efectos en la salud. El suelo contaminado también puede afectar a las plantas y a las personas y los animales que las ingieren. Las personas pueden comer animales hervíboros que crecen y se alimentan del suelo contaminado. La ATSDR considera dichas vías de exposición analizando los niveles de contaminantes en las plantas o los animales que las personas efectivamente utilizan o consumen. Las características de los contaminantes, el suelo y las plantas afectan el potencial de captación de contaminación de la planta y pueden ser importantes para el uso medicinal, ceremonial o como alimento de las plantas o de los animales que se alimentan de ellas. Para más información sobre la exposición por plantas o animales posiblemente afectados por contaminantes del suelo, vea el capítulo 5 de este informe, “Vía de productos agrícolas y ganaderos locales”.

La ATSDR identificó varios contaminantes del suelo que podrían afectar directamente a los viequenses. Consideramos posibles vías de exposición por el suelo pasadas (es decir, durante los ejercicios militares y después), presentes (es decir, de los últimos años, después del cese de los ejercicios militares) y futuras. La Tabla 7.1 a continuación enumera las vías de exposición directa por el suelo identificadas.

Para evaluar la exposición por el suelo debido a la ingestión accidental o al contacto con el suelo se prefieren datos de suelo superficial. En general, se supone que en las actividades cotidianas, las personas solo toman contacto con unas pulgadas de la capa superior del suelo. El polvo hogareño también se considera un constituyente de la vía del suelo, dado que el suelo puede aportar
contaminantes al polvo cuando este contamina los zapatos o las manos. Las partículas de suelo impulsadas por viento pueden aportar contaminantes al suelo superficial pero, en general, este fenómeno y sus efectos en la salud forman parte de la vía del aire. Esta sección enumera las consideraciones del aporte de la vía del aire a la exposición por el suelo, que es el presunto mecanismo por el cual el suelo residencial se habría contaminado inicialmente a causa de los ejercicios de bombardeo aéreo realizados a varias millas en el LIA.
Tabla 7-1. Vías de exposición directa por el suelo para las personas de Vieques

<table>
<thead>
<tr>
<th>Marco de tiempo: Pasado</th>
<th>Punto de exposición</th>
<th>Personas expuestas</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestión accidental o contacto con polvo transportado por el aire desde las actividades militares del pasado</td>
<td>Área residencial de la isla</td>
<td>Residentes de Vieques</td>
<td>No hay datos históricos; no hay modo de confirmar las predicciones del modelo</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial o polvo hogareño contaminado por las actividades militares pasadas</td>
<td>Área residencial de la isla</td>
<td>Residentes de Vieques</td>
<td>No hay datos históricos; no hay modo de confirmar los supuestos excepto, tal vez, por los compuestos inorgánicos</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial durante el periodo de residencia en el Área de Impacto de Proyectiles Activos (durante 1999 y 2000)</td>
<td>Área de Impacto de Proyectiles Activos en la propiedad de la Marina</td>
<td>Manifestantes que ocupaban campamentos en la playa</td>
<td>Existen resultados del suelo superficial para el periodo y ubicación de interés. Analizado en una evaluación anterior</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial o suelo subsuperficial durante la realización de actividades de construcción o excavación</td>
<td>Propiedades actuales y pasadas de la Marina</td>
<td>Personal o contratistas de la Marina</td>
<td>No se ha evaluado en esta ocasión; el foco está en los residentes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marco de tiempo: Presente</th>
<th>Punto de exposición</th>
<th>Personas expuestas</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestión accidental de polvo transportado por el viento desde el Área de Impacto de Proyectiles Activos</td>
<td>Área residencial de la isla</td>
<td>Residentes de Vieques</td>
<td>Los datos actuales sobre el suelo del Área de Impacto de Proyectiles Activos muestran que los niveles de contaminantes son demasiado bajos para dañar la salud; por lo tanto, la conclusión es la misma para el polvo transportado por el viento</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial o polvo hogareño previamente contaminados</td>
<td>Área residencial de la isla</td>
<td>Residentes de Vieques</td>
<td>No existen datos disponibles; se podrían recolectar para confirmar las conclusiones basadas en otras ubicaciones</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial en áreas de acceso restringido de actividades navales</td>
<td>Propiedades actuales y pasadas de la Marina</td>
<td>Personal o contratistas de la Marina; intrusos</td>
<td>Datos actuales disponibles para ubicaciones específicas; pocos contaminantes por encima de los niveles seguros utilizados para la detección; es difícil hacer una generalización</td>
</tr>
<tr>
<td>Ingestión accidental o contacto con suelo superficial o suelo subsuperficial durante la realización de actividades de reparación</td>
<td>Propiedades de la Marina</td>
<td>Personal o contratistas de la Marina</td>
<td>No se ha evaluado en esta ocasión; el foco está en los residentes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marco de tiempo: Futuro (potencial)</th>
<th>Punto de exposición</th>
<th>Personas expuestas</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposición más frecuente de los civiles al suelo superficial en áreas de actividades navales o en antiguos terrenos de la Marina</td>
<td>Propiedades actuales y pasadas de la Marina</td>
<td>Residentes de Vieques</td>
<td>Se necesitan muestras/evaluaciones de áreas específicas antes de abrirlas al público</td>
</tr>
</tbody>
</table>
7.1.2 Evaluación de los datos disponibles

Varias investigaciones han analizado muestras de los suelos de Vieques:

- En 1972, el servicio de Reconocimiento Geológico de los EE.UU. recolectó y describió concentraciones de metales del horizonte “C” del suelo (en general, la roca madre bajo el suelo superficial y las capas de subsuelo) (Learned et ál. 1973). Esta obtención de muestras fue un reconocimiento geoquímico de exploración de metales únicamente e incluyó 420 muestras de toda la isla. En un informe posterior, los datos fueron informados nuevamente (Marsh 1992).

- En 1978, se analizaron muestras de suelo recolectadas en cuatro ubicaciones del Área de Impacto de Proyectiles Activos (LIA) y dos ubicaciones del Área Oriental de Maniobras (EMA) para detectar explosivos y productos de la combustión de explosiones (Hoffsommer y Glover 1978; Lai 1978). En los informes que describen esta obtención de muestras no se incluyeron las ubicaciones exactas y la profundidad de los sitios de extracción de las muestras.

- En 1998, para describir las condiciones existentes antes de un proyecto propuesto para la expansión del aeropuerto, se recolectaron cinco muestras de suelo (de 4 a 12 pulgadas de profundidad) de una zona de amortiguación de un área del Destacamento de Apoyo de Municiones Navales (NASD) y se las analizó para detectar un rango de posibles contaminantes (PMC 1998).

- En 1999, se recolectaron alrededor de 33 muestras de suelo superficial (de 0 a 6 pulgadas de profundidad) a lo largo del límite occidental del EMA y se las analizó para detectar compuestos explosivos (CH2MHill y Baker 1999).

- En 1999 y 2000, se recolectaron muestras de suelo y sedimentos de 55 ubicaciones del LIA y otras ubicaciones y se las analizó para detectar metales y otros compuestos inorgánicos (García et ál. 2000). El informe que describe este evento de recolección de muestras indica que las muestras se recolectaron en ubicaciones con impactos directos de bombas, áreas de escorrentías de aguas pluviales, zonas de conservación adyacentes y áreas civiles, pero no se proporcionaron las ubicaciones de la toma de muestras ni la profundidad exacta o los procedimientos para su obtención. Solo se informaron las concentraciones de contaminantes más altas y las inmediatamente siguientes a las más altas detectadas en 25 ubicaciones de muestreo dentro del LIA.

- En 2000, se recolectaron 37 muestras de suelo superficial (de 0 a 6 pulgadas de profundidad) dentro del LIA y zonas de conservación adyacentes, incluidas áreas específicas del LIA ocupadas por manifestantes en 1999 y 2000 (CH2MHill 2000). Esas muestras se analizaron para detectar metales y explosivos. Las muestras del LIA se centraron en cráteres de bombas o áreas de recolección de escorrentías de aguas pluviales, en las que se considera probable la presencia del nivel más alto de contaminantes de explosivos. Las muestras obtenidas en los campamentos de los manifestantes se recolectaron en ubicaciones que se consideraron representativas del área general.
En 2001, para describir las condiciones de base del NASD, se recolectaron 24 muestras de suelo superficial (de 0 a 6 pulgadas de profundidad) y se las analizó para detectar compuestos inorgánicos (CH2MHill 2002).

Desde 2003, varias investigaciones de sitios del EMA, el Área de Impacto de Superficie (Surface Impact Area, SIA) y del NASD han incluido la obtención de muestras de suelo superficial, a razón de entre 4 y 50 muestras por sitio (CH2MHill 2007a-c; 2008a-e). Esas investigaciones se centraron en áreas de interés conocidas y localizadas afectadas por las actividades de la Marina diferentes de los ejercicios aéreos con artefactos explosivos.

En 2007, se recolectaron 40 muestras de suelo superficial (de 0 a 6 pulgadas de profundidad) de áreas del este de Vieques que no habían sido afectadas en forma evidente por las actividades de la Marina. Las muestras se analizaron para detectar compuestos inorgánicos con el fin de describir las condiciones de base en el este de Vieques (CH2MHill 2007d).

7.1.3 Fortalezas y limitaciones de los datos disponibles para evaluar la vía del suelo

Algunos de los datos enumerados anteriormente no son apropiados para evaluar la exposición de los residentes a contaminantes en el suelo de Vieques. Específicamente, al evaluar la posible exposición por el suelo, la ATSDR se centró en dos vías: la exposición de los manifestantes que ocuparon partes del LIA en 1999 y 2000, y la exposición de personas que viven en el área residencial de la isla a contaminantes relacionados con los bombardeos. La siguiente sección describe las fortalezas y las limitaciones de los datos disponibles aplicables.

7.1.3.1 Manifestantes que vivieron en el Área de Impacto de Proyectiles Activos durante 1999-2000

Aunque limitados en número, los datos de CH2MHill 2000 son ideales para evaluar la exposición de los manifestantes durante 1999-2000: establecen una correspondencia entre las ubicaciones y el tiempo que las personas pueden haber estado expuestas. Se conoce menos información específica acerca de las ubicaciones, los análisis y los resultados informados en García et ál. (2000), pero las muestras se tomaron en la misma área general y en el momento apropiado. En ambos conjuntos de datos, las muestras del LIA se seleccionaron de áreas consideradas como las más contaminadas (es decir, cráteres de bombas y áreas de recolección de escorrentías de aguas pluviales), por lo que el objetivo de las muestras fue describir en forma conservadora los niveles de contaminantes dentro del LIA. Pero la pequeña cantidad de muestras comparada con la gran extensión de tierra del LIA deja un alto grado de incertidumbre respecto de si, en efecto, se recolectaron las muestras de “la peor situación posible”. Esta es una limitación común de la obtención de muestras ambientales. Otra limitación de ambos conjuntos de datos es que estos sólo se aplican a períodos cercanos a la ocupación de los manifestantes. Por último, evaluar esos conjuntos de datos para detectar peligros para la salud de los constituyentes químicos aporta escasa información acerca de otros peligros graves de la ocupación del LIA, como los peligros físicos que representan los artefactos explosivos sin detonar.
7.1.3.2 Exposición en el área residencial de la isla

 Debido a las actuales restricciones de acceso a propiedades de la Marina, la mayoría de los casos de exposición en la actualidad se producirían únicamente en las áreas residenciales de la isla. Pero los únicos datos de las áreas residenciales son los datos del reconocimiento geológico de 1972, que solo describen el horizonte “C” del suelo\(^{28}\) y solo analizan el contenido de metales. Esos datos estaban distribuidos entre las áreas residenciales y otras áreas de la isla. Es posible que no proporcionen información precisa o completa acerca del suelo superficial que las personas pueden ingerir accidentalmente o tocar en las actividades cotidianas. Si bien otros datos contienen información más completa sobre contaminantes en los suelos superficiales, fueron recolectados de partes no habitadas de la isla. Una limitación de esos datos para describir la exposición es que tal vez no representen con precisión la exposición en áreas residenciales. A pesar de la naturaleza limitada de los datos disponibles sobre los niveles de contaminantes en los suelos residenciales, la ATSDR tuvo acceso a una combinación de información relacionada con los niveles de contaminantes en el suelo de otros lugares de la isla. La ATSDR utilizó esa información 1) para hacer modelos de predicciones sobre la forma en que los contaminantes podrían ser transportados por el aire hasta las áreas residenciales y 2) para sacar conclusiones con fundamentos científicos acerca de la probabilidad de que los ejercicios militares hayan contaminado el suelo residencial a niveles que podrían provocar efectos en la salud. A continuación se proporciona más información sobre la incertidumbre que implica el uso de datos limitados para evaluar la exposición por el suelo en la sección 7.2, Análisis.

7.2 Análisis

 Entre otras inquietudes relativas a la salud de Vieques que recibió la ATSDR se encuentran aquellas relacionadas con la exposición a contaminantes por los ejercicios militares con artefactos explosivos realizados en el LIA. Debido a las actuales restricciones de acceso a propiedades de la Marina, la mayoría de los casos de exposición en la actualidad se producirían únicamente en las áreas residenciales de la isla. No obstante, durante 1999 y 2000, algunos manifestantes ocuparon áreas del LIA. En las siguientes secciones se analizan los datos disponibles para evaluar la exposición directa por el suelo en los manifestantes que vivieron en el LIA durante ese período y de los viequenses en general en otros momentos del pasado o en el presente. Además, se analizan datos de muestras de suelo superficial obtenidas desde la evaluación anterior de la ATSDR, realizada en 2003, en la medida en que se relacionan con la evaluación de la posible exposición por la vía del suelo.

7.2.1 Exposición en los manifestantes en el Área de Impacto de Proyectiles Activos durante 1999-2000

 En 2000, se recolectaron muestras de suelo superficial de las ubicaciones específicas del LIA en las que vivieron los manifestantes durante 1999 y 2000, y también de otras ubicaciones del LIA (CH2MHiII 2000). Las muestras incluían áreas bajas que probablemente se vieran afectadas por escorrentías de aguas pluviales. Aproximadamente en la misma época, una organización independiente también recolectó muestras de suelo del LIA y las áreas en las que vivieron personas durante 1999-2000 (García et ál.).

\(^{28}\) En general, la roca madre bajo el suelo superficial y las capas de subsuelo.
2000. Para esta obtención de muestras, no se informaron la ubicación exacta, la profundidad de la extracción y los resultados completos. Dado que el informe de García et ál. indicaba que el objetivo del estudio era caracterizar la exposición, en su evaluación anterior la ATSDR consideró los resultados como muestras de suelo superficial. Eso se tradujo en estimación conservadora de exposición porque García et ál. sólo informaron los valores más altos y los valores inmediatamente siguientes a los más altos detectados. La inclusión por parte de la ATSDR de esos valores informados en el cálculo de la exposición promedio produjo una parcialidad hacia arriba de la estimación.

Si bien su cantidad fue limitada, las muestras de suelo superficial recolectadas durante 2000 fueron prácticamente ideales para evaluar la exposición en las personas que ocuparon el LIA. Tanto en lo que respecta al tiempo y al espacio, las muestras eran representativas del suelo con el que las personas podrían haber entrado en contacto mientras estaban allí. Los datos del informe CH2MHill 2000 incluyeron documentación de altos estándares de calidad de los datos, como formularios de aseguramiento de la calidad/control de calidad y cadena de custodia.

En su evaluación anterior la ATSDR calculó las dosis utilizando la concentración más alta medida en las ubicaciones en las que vivieron los manifestantes; todas las dosis se ubicaron por debajo de los niveles de efecto para la salud vigentes en ese momento (ATSDR 2003). Algunos críticos de ese análisis sugirieron que las personas de los campamentos podrían haber estado expuestas a contaminantes en otros lugares del LIA. En respuesta, examinamos si nuestra conclusión cambiaría si usáramos las concentraciones promedio de contaminantes inorgánicos medidas en todo el LIA como una concentración de exposición (una persona que pasó un tiempo en el campamento y en otras partes del LIA tendría una exposición promedio sobre todos los suelos superficiales encontrados). Si bien las concentraciones promedio de exposición tuvieron una parcialidad hacia arriba porque los promedios incluían solo la medición máxima y la segunda medición más alta detectada en el suelo en el estudio de García et ál. (2000), las concentraciones solo fueron apenas más altas que el máximo valor del campamento utilizado en la evaluación anterior de la ATSDR. Siguiendo el razonamiento de la evaluación de salud pública anterior, no sería de esperar que la exposición a esas concentraciones en el suelo superficial provocara efectos adversos en la salud (ATSDR 2003). La ATSDR también analizó datos de explosivos en el suelo superficial de otras ubicaciones del LIA, obtenidos en 2000 (CH2MHill 2000). Si bien esas muestras mostraron detecciones infrecuentes de HMX, RDX, 2-amino-DNT y TNT, incluso los niveles más altos detectados fueron más bajos que los valores de detección.29 La concentración promedio en el suelo de cada sustancia química medida se encuentra por debajo del valor de detección correspondiente, lo cual indica que los posibles efectos de la mezcla son poco probables.

Utilizando los datos disponibles, no hallamos indicación alguna de que los manifestantes que vivieron en el LIA durante 1999-2000 hayan estado expuestos a niveles perjudiciales de contaminantes en el suelo superficial. Un punto fuerte de esa conclusión es que los datos del campamento se recolectaron específicamente para evaluar esa exposición y se los recolectó de modo tal que representaran los campamentos donde vivieron los manifestantes. Además, las muestras del LIA se recolectaron para evaluar las áreas más contaminadas del LIA, de modo que las conclusiones se basarían en niveles de

29 Niveles con los que no se esperarían efectos adversos en la salud, ni siquiera con la exposición continua.
contaminantes con una parcialidad hacia arriba y serían más protectoras. Una limitación es que, al igual que con cualquier evaluación de este tipo, las conclusiones deben basarse en una pequeña cantidad de muestras. Si la obtención de más muestras mostrara que las muestras anteriores no produjeron una descripción conservadora o representativa del área de exposición, las conclusiones anteriores podrían no ser válidas.

Otra limitación de usar esos datos para evaluar la exposición es que solo se aplican al escenario específico descrito. Es decir que los datos se limitan a los manifestantes que vivieron en campamentos en el LIA durante 1999-2000. Durante los años previos a 1999-2000, los niveles de contaminantes (en especial, de explosivos) podrían haber sido mucho más altos y podrían haber tenido el potencial de provocar efectos en la salud a corto o largo plazo (no tenemos forma de obtener esos datos en la actualidad). También, a pesar del hecho de que en el año 2000 los niveles de contaminantes en el suelo superficial del LIA no eran lo bastante altos como para prever efectos adversos en la salud, ese hallazgo por sí solo no significa que era seguro que las personas ocuparan el LIA. Todavía había peligros físicos, como artefactos explosivos sin detonar que podrían provocar lesiones inmediatas o la muerte a aquellos que los alteraran accidentalmente. Debido a que esos peligros todavía existen, limitar el acceso al LIA y a otras áreas militares contaminadas es fundamental para proteger la salud pública, al menos hasta que en esas áreas se realice una evaluación ambiental y una limpieza completas.

7.2.2 Exposición en las áreas residenciales de la isla

La ausencia de datos de suelo superficial es una de las principales limitaciones para evaluar la exposición por el suelo en las áreas residenciales de la isla. Los únicos datos del suelo disponibles de esa sección de la isla eran los datos del Reconocimiento geológico de 1972 realizado por los EE.UU. (Learned et ál. 1973). Si bien los puntos de obtención de muestras estaban bien distribuidos entre las áreas residenciales y otras áreas de la isla, los datos describían únicamente muestras del horizonte “C” del suelo (en general, la roca madre bajo el suelo superficial y las capas de subsuelo). El informe indicaba que, en muchos puntos, el suelo superficial y las capas de subsuelo estaban ausentes (es decir que la roca madre estaba expuesta en la superficie). Pero no se indicó a qué muestras específicas correspondía esa descripción ni la profundidad y las condiciones de obtención de la muestra para cada muestra individual. Por lo tanto, se desconoce si los datos del horizonte “C” efectivamente representan el suelo superficial que las personas pueden ingerir accidentalmente o tocar durante las actividades cotidianas. Además, independientemente de que la roca madre esté expuesta o no, el análisis del horizonte “C” aporta escasa información, si no nula, acerca del depósito superficial de contaminantes transportados por el aire (es decir, los mecanismos por los que se cree que los contaminantes de los ejercicios con artefactos explosivos llegaron al suelo).

Si bien los datos sobre suelos residenciales eran limitados, la ATSDR pudo usar los datos limitados y otra información para sacar conclusiones con fundamento científico acerca del potencial de exposición a contaminantes en el suelo residencial relacionado con bombardeos que pudiera provocar efectos adversos para la salud. En su evaluación de salud anterior, debido a que los datos residenciales eran limitados, la ATSDR utilizó los datos del USGS y varias otras fuentes de datos de diferentes áreas de la isla para evaluar el potencial de daño para la salud de la exposición residencial al suelo (CH2M Hill y

- el LIA,
- el Área Oriental de Maniobras (EMA),
- el límite del EMA,
- el área residencial y
- el Destacamento de Apoyo de Municiones Navales (NASD).

En primer lugar, la ATSDR comparó el nivel más alto de un contaminante determinado hallado en cualquiera de las muestras con los niveles de detección por debajo de los cuales no se esperarían efectos en la salud. Los contaminantes presentes a niveles superiores al nivel de detección se siguieron evaluando mediante el cálculo de dosis de exposición a partir de la concentración promedio en el suelo. Ninguno de los contaminantes presentes en el suelo se halló a niveles que hicieran esperar el desarrollo de efectos perjudiciales (ATSDR 2003).

La evaluación de salud pública de la vía del suelo cumple con los procedimientos de la ATSDR para tomar decisiones relativas a la salud pública cuando solo se dispone de datos ambientales limitados. Además, los resultados de modelado del aire, analizados en el capítulo anterior, respaldaron la hipótesis de que los artefactos explosivos detonados y sin detonar no contaminaron los suelos residenciales a niveles perjudiciales. Los modelos indicaron que los contaminantes transportados por el aire se dispersarían a niveles no detectables al alejarse del Área de Impacto de Proyectiles Activos.

Si bien el análisis de toda la información indicó que es poco probable que haya efectos en la salud a partir de la exposición a contaminantes en los suelos residenciales, un punto que es necesario reiterar es que los supuestos de la evaluación anterior incluyen cierto grado de incertidumbre. Al utilizar muestras ambientales discretas para describir un área extensa, siempre existe incertidumbre. Esto es particularmente cierto cuando los datos recolectados en una ubicación conforman la base de las conclusiones sobre otra ubicación de la que no se obtuvieron muestras. Otras incertidumbres relativas a los datos incluyen:

- Promediar resultados del suelo que podrían incluir muestras subsuperficiales no es necesariamente representativo de las concentraciones presentes en el suelo superficial que las personas podrían ingerir accidentalmente o tocar durante las actividades normales.
- Cada investigación puede tener un foco diferente y podría analizar diferentes conjuntos de contaminantes. Además, si bien se espera que los niveles de contaminantes inorgánicos se mantengan relativamente estables con el tiempo, otros niveles de contaminantes (p. ej., los de compuestos volátiles, ciertos explosivos) en el suelo superficial podrían reducirse significativamente con el tiempo debido a la volatilización o la degradación química o biológica. Por lo tanto, aun si se dispusiera de muestras de suelo superficial, es posible que los resultados no representaran por completo todas las exposiciones posibles del pasado.
La mayoría de los datos más recientes sobre el suelo superficial se recolectaron en el LIA. Dado que el LIA era el centro de una petición por parte de los ciudadanos que se estaba considerando en ese momento, la evaluación anterior de la ATSDR se concentró en describir los posibles efectos en el suelo residencial utilizando datos del LIA. Dado que los contaminantes del LIA se habrían dispersado al llegar al área residencial, se supuso que usar datos del LIA representaba la “peor exposición posible” causada por actividades del LIA. Pero Vieques fue escenario de otras actividades militares en el pasado además de aquellas en las que se utilizaban artefactos explosivos (p. ej., transporte, almacenamiento, adiestramiento general). Es concebible que esas actividades —o incluso actividades no militares— pudieran producir distintos perfiles de contaminantes en la parte residencial de la isla comparada con el LIA.

Fuera de esas limitaciones de los datos, la ATSDR sigue manteniendo que es poco probable que cualquier nivel bajo de exposición actual por el suelo de áreas residenciales a contaminantes relacionados con artefactos explosivos en el LIA provoque efectos en la salud. En primer lugar, la obtención reciente de muestras de suelo superficial del LIA no mostró niveles de contaminantes que representaran una preocupación para la salud. En segundo lugar, el modelado del aire indica que cualquier contaminante transportado por el viento desde el LIA se dispersaría a niveles no detectables al alejarse del LIA. No obstante, dadas las incertidumbres descritas anteriormente, la ATSDR ha actualizado su conclusión anterior (ATSDR 2003) a fin de reconocer esas limitaciones e indicar que los datos históricos son insuficientes para permitirnos determinar si la exposición pasada a explosivos u otros compuestos en el suelo superficial podría haber sido lo bastante alta para aumentar el riesgo pasado de desarrollar efectos adversos en la salud.

7.2.3 Obtención reciente de muestras de suelo superficial en áreas de interés

Desde la primera evaluación de la ATSDR, varias investigaciones realizadas en el EMA, el Área de Impacto de Superficie (SIA) y el NASD han incluido la obtención de muestras de suelo superficial (CH2MHill 2007a-c; 2008a-e). Las investigaciones se centraron en áreas de interés conocidas y localizadas afectadas por las actividades de la Marina diferentes de las que implicaban el uso de artefactos explosivos. Eso quiere decir que las muestras de suelo superficial probablemente no fueran representativas de los suelos superficiales de las áreas residenciales. La ATSDR realizó una evaluación preliminar de los resultados de los suelos superficiales de esas investigaciones, centrándose en las detecciones máximas de compuestos inorgánicos por encima de los niveles de base y las detecciones de compuestos orgánicos. Si bien varios sitios contenían niveles más altos que los valores de detección,30 las restricciones actuales de acceso debido a la actividad de reparación en curso significan que la exposición del público es poco probable. En cualquier caso, no se observó evidencia de que existiera contaminación asociada con las áreas de interés fuera del área localizada. El examen de los contaminantes presentes puede, de todas formas, aportar claves sobre los contaminantes no reconocidos anteriormente pero que podrían ser una posible preocupación en el área residencial. Por ejemplo, ciertas investigaciones recientes han demostrado detecciones aisladas de pesticidas, compuestos semivolátiles, explosivos y compuestos de dioxina. Repetimos que no hemos hallado

30 Niveles con los que no se esperarían efectos adversos en la salud, ni siquiera con la exposición continua.
evidencia de que esas áreas de contaminación se hayan diseminado más allá de las áreas locales aisladas. Los organismos responsables de caracterizar la naturaleza y el alcance de la contaminación en el futuro deben asegurarse de que se consideren todas las posibles fuentes y contaminantes.

7.2.4 Datos recientes de un estudio de base

Estudios recientes sobre muestras de base del suelo realizados en el NASD y el este de Vieques (el EMA) caracterizaron los suelos de áreas no “impactadas” por las operaciones de la Marina, es decir, que no estaban cerca de áreas de interés conocidas y localizadas, y que no estaban en el cauce de escorrentías de áreas conocidas de operaciones militares pasadas (CH2MHill 2001; CH2MHill 2007d). Como se describió en el capítulo anterior, la evaluación de la vía del aire indica que los contaminantes transportados por el aire apenas serían detectables tras la dispersión al alejarse del área de impacto de las bombas. Examinar los resultados de ubicaciones de base (no afectadas directamente por ejercicios militares) podría ser la forma de confirmar que los suelos no están afectados actualmente por la precipitación pasada de contaminantes transportados por el aire y producidos por las operaciones militares. Sin embargo, el estudio de base del NASD solo incluyó compuestos inorgánicos, y el estudio de base del este de Vieques solo incluyó compuestos inorgánicos y explosivos. Si bien los niveles de contaminantes inorgánicos suelen mantenerse relativamente estables con el tiempo, los niveles de otros contaminantes (p. ej., compuestos volátiles, ciertos explosivos) en el suelo superficial podrían reducirse considerablemente con el tiempo debido a la volatilización o la degradación química o biológica. Por ese motivo, los datos de base del suelo no fueron útiles para extraer conclusiones acerca de la exposición pasada a explosivos ni acerca de la exposición presente o pasada a posibles contaminantes no analizados.

En las muestras de base, muy pocos contaminantes estaban presentes por encima de los valores de detección.\(^{31}\) Solo el cromo total superó levemente el valor de detección de cromo hexavalente. El cromo es un elemento producido naturalmente, así como un contaminante potencial. En los suelos se encuentra en varias formas, incluida la forma hexavalente, que es la más tóxica (ATSDR 2000). Si bien no se analizaron las proporciones relativas de todas las distintas formas de cromo, buena parte del cromo total medido probablemente estuviera formada por formas de cromo menos tóxicas. En el EMA, se detectó el explosivo 2-amino-DNT en una muestra, pero se ubicó muy por debajo del valor de detección correspondiente. El área residencial de la isla estaba mucho más alejada de las actividades militares pasadas que los lugares en los que se obtuvieron las muestras de base en estas investigaciones. La dispersión provocaría concentraciones de contaminantes incluso más bajas en las áreas residenciales que en las áreas de obtención de las muestras de base. Entonces, esos datos de base refuerzan aun más la hipótesis de que los contaminantes presentes en el suelo superficial de Vieques en las áreas residenciales no se encuentran en la actualidad a niveles que hayan demostrado provocar efectos en la salud. Sin embargo, la detección de residuos explosivos en las muestras de base también sugiere que todas las áreas de la isla, incluida el área residencial, podrían haberse visto afectadas por compuestos explosivos de las actividades pasadas de bombardeo. Si bien los niveles residenciales son bajos en la actualidad, es imposible decir si los niveles pasados lo eran.

\(^{31}\) Niveles con los que no se esperarían efectos adversos en la salud, ni siquiera con la exposición continua.

7.2.5 Consideraciones adicionales

Algunos científicos puertorriqueños sugirieron a la ATSDR que evaluara muestras de suelo superficial obtenidas a 0 a 6 pulgadas de profundidad subestimaría la posible exposición a contaminantes presentes en altas concentraciones únicamente en la superficie. A fin de explorar esa inquietud, consideramos supuestos alternativos de las “peores concentraciones posibles”, como suponer que el contaminante sólo estaba presente en la primera pulgada de superficie y no en las 6 pulgadas completas.

No obstante, con los datos disponibles, determinamos que se trataba de un supuesto poco realista. La mayoría de los datos de suelo superficial provenían del LIA, en el que años de impactos generalizados de bombas y proyectiles habrían levantado grandes cantidades de suelo; es probable que cualquier contaminante resultante se haya distribuido a más de apenas 6 pulgadas de la superficie. Asimismo, muchos compuestos inorgánicos están presentes naturalmente en todo el suelo y nunca estarían del todo ausentes, más allá de la profundidad.

Dadas esas consideraciones, decidimos realizar un análisis de los datos disponibles suponiendo que todos los contaminantes estaban presentes en la pulgada superior de suelo sería erróneo. En los futuros eventos de recolección de muestras de suelo superficial, la ATSDR recomienda que organismos o investigadores exploren mejor ese tema analizando la pulgada superior de suelo en forma separada del resto de las muestras típicas de 0 a 6 o 0 a 3 pulgadas recolectadas.

Las conclusiones y las recomendaciones de la evaluación de la ATSDR de la vía del suelo aparecen a continuación y en el capítulo 9 de este informe.

7.3 Conclusiones y recomendaciones

7.3.1 Conclusiones

1. Las personas que ocuparon el LIA durante 1999-2000 no tuvieron un aumento del riesgo de desarrollar efectos adversos en la salud debido a la exposición a contaminantes en el suelo superficial. Los datos de respaldo son limitados, pero son de buena calidad y representan la ubicación y el período de interés. En los años anteriores a los análisis de fines de la década de 1990, los niveles de contaminantes del LIA (en especial, de explosivos) tal vez hayan sido más altos, pero no contamos con datos históricos que permitan evaluar ese supuesto.

2. Eso no quiere decir que en la actualidad cualquiera pueda visitar el LIA en forma segura. Los artefactos explosivos sin detonar que quedan allí podrían provocar lesiones inmediatas o la muerte a cualquiera que pudiera alterarlos accidentalmente. Datos recolectados recientemente en áreas de interés específicas dentro de terrenos militares —no las mismas áreas a las que accedieron y ocuparon los manifestantes— demuestran el potencial remanente de contaminación localizada que, si las personas visitan esas áreas, podría constituir una preocupación de salud.

3. Los datos limitados disponibles de otras ubicaciones y las consideraciones relativas a la vía del aire sugieren que los ejercicios militares realizados en el LIA no resultó en una contaminación
actual de los suelos residenciales con compuestos inorgánicos o explosivos a niveles considerados perjudiciales. La ATSDR llega a esa conclusión utilizando una evaluación científica de los datos disponibles. Pero una vez más, la cantidad de datos de otras áreas es limitada, se carece de datos de todos los posibles contaminantes de interés y no se dispone de datos adecuados de suelo superficial para el área residencial en sí. No obstante, la ATSDR comprende que los miembros de la comunidad sigan preocupados por la exposición a los suelos residenciales.

4. El modelado descrito en el análisis de la vía del aire ha sugerido que el transporte de contaminantes en el aire durante los ejercicios militares del pasado no habría sido lo bastante significativo como para afectar los suelos del área residencial de la isla. No se dispone de datos históricos suficientes para confirmar eso y jamás será posible disponer de dichos datos. En consecuencia, no podemos determinar si la exposición pasada a explosivos u otros compuestos en el suelo superficial habrá sido lo bastante intensa como para aumentar el riesgo pasado de desarrollar efectos adversos en la salud.

7.3.2 Recomendaciones

1. Seguir restringiendo el acceso al LIA y a otras áreas militares posiblemente contaminadas y continuar la evaluación ambiental y las actividades de reparación a fin de allanar el camino para el acceso público.

2. Ayudar para abordar las preocupaciones de la comunidad sobre el suelo residencial, trabajar con residentes locales para diseñar un muestreo para identificar problemas de calidad del suelo superficial del área residencial, independientemente de que esos problemas del suelo superficial se relacionen con actividades militares pasadas:
 a. Centrar el muestreo inicial en áreas identificadas como posibles áreas de alta exposición, tales como áreas sin vegetación o utilizadas por niños.
 b. Para identificar cualquier posible diferencia en la capa superior, el muestreo inicial debe analizar la pulgada superior de suelo en forma separada del resto de las muestras de 0 a 3 o 0 a 6 pulgadas de profundidad.
 c. Realizar análisis de rango completo para identificar todos los posibles contaminantes.
 d. Planificar y llevar a cabo recolección y análisis de muestras para garantizar que los resultados cumplan con altos estándares de calidad de los datos.

3. Si bien este muestreo podría aportar inferencias acerca de la exposición pasada a componentes que se mantienen estables con el tiempo, como metales u otros compuestos inorgánicos, no aportará información definitiva sobre la composición pasada de la superficie ni información sobre los niveles pasados de compuestos que reaccionan o se degradan con el tiempo.

4. La ATSDR también recomienda la recolección de muestras de suelo representativas como parte de su evaluación de la vía de la cadena alimentaria terrestre. Vea el capítulo 5 de este informe para ver detalles.
7.4 Bibliografía

CH2MHill. 2007a. Remedial investigation report for solid waste management unit (SWMU) 6, CH2MHill; febrero.

CH2MHill 2007b. Remedial investigation report for area of concern (AOC) J, CH2MHill; mayo.

CH2MHill. 2007c. Remedial investigation report for area of concern (AOC) H, CH2MHill; julio.

CH2MHill. 2008b. Remedial investigation work plan addendum for solid waste management unit. Tampa, FL: (SWMU) 4; abril.

CH2MHill. 2008c. Final PA/SI report, 12 consent order sites and 8 PI/PAOC sites. Tampa, FL.

CH2MHill. 2008d. Remedial investigation report for area of concern (AOC) I. Tampa, FL: Junio.

CH2MHill. 2008e. Remedial investigation report for area of concern (AOC) E. Tampa, FL: Julio.

Capítulo 8 Vía del agua potable

8.1. Introducción

8.2. Evaluación de los datos disponibles

8.2.1. Agua de tubería (suministro actual)

8.2.2. Agua de pozos públicos y privados

8.2.3. Sistemas de recolección de aguas pluviales

8.2.4. Fortalezas y limitaciones de los datos disponibles de la vía del agua potable

8.2.5. Análisis

8.3. Conclusiones y recomendaciones

8.3.1. Conclusiones

8.3.2. Recomendaciones

8.4. Bibliografía

Resumen del capítulo 8

En el siguiente capítulo se evalúa la información y los datos disponibles sobre contaminantes en fuentes de agua potable presentes y pasadas de Vieques y si el consumo de agua potable podría enfermar a las personas. La ATSDR consideró tres fuentes de agua potable pasadas o presentes: el actual suministro por tubería, los pozos de suministro públicos y privados utilizados en el pasado y todavía utilizados ocasionalmente cuando se interrumpe el suministro de la tubería, y los sistemas de recolección de aguas pluviales que tal vez se hayan utilizado en el pasado y podrían seguir utilizándose.

La ATSDR determinó que los limitados datos de muestreo disponibles sobre el sistema de suministro de agua de tubería y los pozos públicos y privados indican que casi todas esas fuentes de agua potable son aceptables para los usos actuales. En un pozo privado se hallaron niveles de nitratos-nitritos que pueden ser perjudiciales; la ATSDR recomendó que no se bebiera de ese pozo. Se requiere el monitoreo de la tubería de suministro actual de agua para garantizar que el suministro cumpla con los estándares de agua potable, y repetir la toma de muestras previa de tanques de almacenamiento, grifos residenciales y pozos que aún se utilizan podría responder cualquier incertidumbre restante asociada con las conclusiones acerca del agua de tubería y los pozos públicos y privados. La ausencia de datos históricos adecuados impide a la ATSDR sacar conclusiones acerca de la exposición por los pozos de suministro público en el pasado lejano (décadas de 1970 y 1980). Tampoco existen datos disponibles para evaluar la exposición por los sistemas de recolección de aguas pluviales pasados o presentes. Desde la evaluación de salud pública sobre el agua potable realizada por la ATSDR en el 2001, se han recolectado más datos sobre el agua.
subterránea. Esos datos no provienen de fuentes actuales de agua potable por lo que no aportan información adicional sobre la exposición. Sin embargo, un estudio proporcionó resultados que respaldan la conclusión previa de la ATSDR de que los contaminantes presentes en el agua subterránea del LIA no podrían alcanzar los pozos de agua de suministro público. Los otros estudios se centraron en áreas de interés con contaminación localizada no utilizadas para extraer agua potable; estos respaldan la necesidad de continuar con la caracterización y la eventual limpieza de áreas de fuentes a causa de las actividades militares que tuvieron lugar en Vieques.

Además del análisis requerido del agua de tubería, la ATSDR recomienda la repetición de la toma de muestras del suministro público actual de agua (tanques de almacenamiento y grifos residenciales) y de pozos públicos y privados que todavía estén en uso para confirmar la seguridad del agua potable para su consumo. La ATSDR también recomienda continuar la evaluación del uso de sistemas de recolección de aguas pluviales y de toma de muestras si dichos sistemas se utilizan para obtener agua potable.
8.1 Introducción

A muchos viequenses les sigue preocupando que las actividades militares realizadas en la isla y sus alrededores hayan contaminado el agua potable de Vieques, ya sea en la actualidad o en el pasado. Vieques solo ha tenido tres fuentes de agua potable actuales o pasadas:

1. Desde 1978, la Autoridad de Acueductos y Alcantarillados de Puerto Rico (Puerto Rico Aqueduct and Sewer Authority, PRASA) ha suministrado agua potable a través de una tubería desde la isla principal. Después de unos años, esas operaciones quedaron a cargo de compañías privadas contratadas por PRASA. Después del traslado desde Puerto Rico, el agua se almacena en tanques en Vieques. La mayoría de los viequenses usan esa fuente de agua.

2. Antes de 1978, los pozos de suministro público del área de extracción de Esperanza (presumiblemente operados por PRASA) y varios pozos privados de agua subterránea eran las fuentes de agua potable. Algunos de esos pozos todavía se utilizan cuando se interrumpe el servicio de suministro de agua.

3. Según se informa, en los hogares se utilizan sistemas de recolección de aguas pluviales como fuentes esporádicas y complementarias de agua potable. No está clara la prevalencia de dichos sistemas en la actualidad o en el pasado.

La ATSDR evaluó los datos disponibles con el fin de describir la seguridad de esas posibles fuentes de agua potable en Vieques. En este capítulo se describe el análisis de los datos realizado por la ATSDR.

8.2 Evaluación de los datos disponibles

8.2.1 Agua de tubería (suministro actual)

En el verano de 1999, la EPA de los EE.UU. y el Departamento de Salud de Puerto Rico recolectaron y analizaron muestras de agua de tanques de almacenamiento de agua transportada por tubería desde la isla principal y de grifos de agua residenciales de Vieques (Departamento de Salud de Puerto Rico 1999; USEPA 1999). Para abordar las cuestiones de control de calidad, en enero del 2000 la EPA de los EE.UU. volvió a tomar muestras de algunas ubicaciones para detectar explosivos (USEPA 2000). En su evaluación anterior, la ATSDR examinó esos datos y no halló contaminantes por encima de los estándares de salud o regulatorios o que se relacionaran en forma evidente con actividades de bombardeo, lo cual indica que el agua de tubería era aceptable para el consumo (ATSDR 2001). La ATSDR obtuvo recientemente informes de calidad del agua para el agua natural del período 2004-2009. Esos informes muestran que en el 2004-2005, el nivel de acción para el plomo (15 µg/L) se superaba ocasionalmente. Esto se atribuyó a la corrosión del sistema de tuberías. En el 2006-2007, la cantidad de excedentes subió marcadamente, con 28 en el 2007 únicamente. Para ese año, el percentil 90 de las concentraciones medidas de plomo (el nivel por debajo del cual cae el 90% de las concentraciones medidas de plomo) era 144 µg/L, lo cual supera en gran medida el nivel de acción. Ese nivel constituye una preocupación significativa, en especial para las mujeres embarazadas y los niños pequeños. La ATSDR desconoce la causa de los aumentos de plomo. Pero los informes de calidad del agua indicaron que se iniciaron investigaciones inmediatamente para identificar la fuente del plomo y tomar medidas
para remediarlo. En el 2008 y 2009, la cantidad de excedentes fue baja (2 en el 2008 y 4 en el 2009); el percentil 90 de las concentraciones de plomo medidas se ubicó muy por debajo del nivel de acción durante ambos años.

En resumen, el análisis del suministro de agua no mostró indicios de contaminantes relacionados con las actividades de bombardeo en Vieques. No obstante, la seguridad continua del suministro de agua de tubería se basa en el monitoreo constante del agua suministrada, de acuerdo con reglamentaciones federales y con iniciativas rápidas para corregir desviaciones si fuera necesario.

8.2.2 Agua de pozos públicos y privados

Un evento de toma de muestras realizado en 1978 informó niveles bajos de explosivos o subproductos de explosivos en muestras de agua potable tomadas de dos pozos de suministro público en Esperanza e Isabel Segunda (Hoffsommer y Glover 1978; Lai 1978). En su evaluación anterior, la ATSDR cuestionó esas detecciones de explosivos informadas debido a la pequeña cantidad de muestras recolectadas y a que las descripciones de las muestras dejaban incertidumbres respecto de la identidad y ubicación de las muestras (ATSDR 2001). Aun suponiendo que esas detecciones estaban presentes a ese nivel en el agua potable, los niveles de explosivos eran demasiado bajos como para provocar efectos adversos en la salud (ATSDR 2001). En 1995, el Departamento de Salud de Puerto Rico analizó los pozos públicos y privados, como también lo hicieron la EPA de los EE.UU. y contratistas de la Marina en 1999 (Departamento de Salud de Puerto Rico 1995a y 1995b; USEPA 1999; Baker 1999). La ATSDR evaluó esos resultados y halló que la mayoría del agua de pozo era segura para el consumo. En un pozo privado ubicado en la parte residencial de la isla, al oeste del EMA y el LIA, se hallaron altos niveles de nitratos-nitritos, que podrían representar un peligro para la salud y que probablemente se debieran a la actividad agrícola o a los sistemas sépticos de la región. Se advirtió a los residentes que no era seguro consumir el agua de ese pozo. Además de los datos de muestreo, la ATSDR evaluó la geología y la topografía de la isla y concluyó que no era probable que las actividades realizadas en el Área de Impacto de Proyectiles Activos (LIA) hubieran afectado el agua subterránea de los antiguos pozos de suministro público y privado ya que el agua subterránea no se movía en la dirección de los pozos (ATSDR 2001). Si bien los pozos utilizados anteriormente para el suministro público de agua habrían estado sujetos a las reglamentaciones relativas al agua potable, la ATSDR no revisó informes históricos sobre la calidad del agua de las décadas de 1970 y 1980 o anteriores. En función de nuestra experiencia en la revisión de registros históricos, incluso si se han llevado registros y se los pudiera hallar, surgirían demasiadas preguntas respecto de las medidas de control de calidad, la adecuación de los métodos analíticos utilizados y los analitos medidos como para que los registros históricos fueran útiles para evaluar la exposición pasada.

8.2.3 Sistemas de recolección de aguas pluviales

No se dispone de información sobre sistemas de recolección de aguas pluviales. Esto incluye su prevalencia, si alguna vez se los había utilizado para obtener agua potable o si se los había analizado. En su PHA anterior sobre el agua potable, la ATSDR analizó pero no evaluó esta vía de exposición potencial. La ATSDR tiene previsto aprender acerca de esa vía mediante su evaluación del potencial de la vía del aire de transportar contaminantes a la parte residencial de la isla y de la posible contaminación de los
sistemas de recolección de aguas pluviales. Como se mencionó en un capítulo anterior, este análisis del aire sugirió que era poco probable que la vía del aire transportara contaminantes a la parte residencial de la isla a niveles que pudieran provocar efectos adversos para la salud (ATSDR 2003). La ATSDR sí recomendó que las autoridades de Puerto Rico identificaran sistemas representativos y los analizaran para asegurarse de que dichos sistemas suministraran agua segura. Hasta donde sabemos, no se han obtenido esas muestras (ATSDR 2001). La ATSDR también recomienda la obtención de muestras de sedimento de los sistemas de recolección de aguas pluviales como indicación de la posible calidad pasada del agua.

8.2.4 Fortalezas y limitaciones de los datos disponibles de la vía del agua potable

8.2.4.1 Agua de tubería

Los datos disponibles fueron recolectados y analizados de acuerdo con métodos y procedimientos estándares. Pero solo se hizo una ronda de toma de muestras en tanques. Se obtuvo una muestra de un grifo residencial representativa del suministro de agua para los residentes. Es posible que los datos disponibles no representen plenamente la calidad de esta fuente de agua en el tiempo. De hecho, informes recientes de calidad del agua indican que los niveles de plomo en el suministro de agua superaron los estándares para el agua potable, en ocasiones en forma significativa, en algunos años. Si bien esos niveles elevados no se relacionan con actividades de bombardeo, resaltan la necesidad de monitorear en forma continua el suministro público de agua para garantizar su calidad. De acuerdo con los informes más recientes de calidad del agua, los niveles de plomo en el agua natural rara vez han superado los estándares desde el 2007. Los niveles de plomo no parecen ser una preocupación en la actualidad.

8.2.4.2 Agua de pozos públicos y privados

Los datos disponibles obtenidos recientemente fueron recolectados y analizados de acuerdo con métodos y procedimientos estándares. Pero, de forma similar a lo que sucede con el agua de tubería, solo se realizaron una o dos rondas de tomas de muestras, lo cual limita la confianza de que los resultados recientes representen plenamente el estado de los pozos en el tiempo. Con respecto a los resultados de muestreos históricos de la década de 1970, esos datos no son suficientes para extraer conclusiones relativas a la salud pública respecto de las condiciones pasadas. Solo se recolectaron dos muestras, y no se documentó el aseguramiento de la calidad de la obtención de las muestras y el análisis. Suponemos que cualquier informe de calidad del agua o análisis existentes de ese período tendría limitaciones similares.

8.2.4.3 Sistemas de recolección de aguas pluviales

No había información disponible sobre la prevalencia de los sistemas de recolección de aguas pluviales, ya fuera que se los hubiera utilizado para obtener agua potable o respecto de si alguna vez se había analizado la presencia de contaminantes.
8.3 Análisis

Científicos, viequenses y otros puertorriqueños cuestionaron si el agua potable de la isla era segura. En respuesta, la ATSDR evaluó primero los datos disponibles. La evaluación de salud pública de la vía del agua potable cumplió con los procedimientos de la ATSDR para el uso de datos ambientales limitados disponibles con el fin de sacar conclusiones relativas a la salud pública. El foco estuvo en la exposición que tuvo lugar en ese momento. En efecto, surgieron incertidumbres de los limitados datos disponibles, que se analizan a continuación. También analizamos información nueva que podría enriquecer la evaluación anterior de la exposición por el agua potable con el aporte de los datos de muestreo de agua subterránea obtenidos desde la evaluación de la ATSDR realizada en el 2001.

8.3.1.1 Agua de tubería

En 1999-2000, al parecer solo se realizó una ronda de toma de muestras de los tanques y de grifos residenciales que fueran representativas del suministro de agua para los residentes. Si bien no se espera que las condiciones de los tanques y el agua de los grifos cambien con el tiempo, se podría aumentar la confianza en la seguridad del almacenamiento y la distribución del suministro municipal al repetir los muestreos y aumentar la cantidad de muestras recolectadas en el punto de uso. Si bien las autoridades de agua de Puerto Rico analizan regularmente el agua natural, informes recientes (2004-2009) de control de calidad del agua han indicado problemas intermitentes con niveles elevados de plomo en el agua. El agua proviene de la isla principal de Puerto Rico y no se vería afectada por las actividades militares pasadas en Vieques. Pero independientemente de la fuente, la presencia de plomo en el agua potable constituye una preocupación, en especial para las mujeres embarazadas y los niños en crecimiento. El monitoreo continuo y la implementación rápida de acciones para tratar las desviaciones en el agua potable son esenciales para garantizar la seguridad continua del agua de tubería.

8.3.1.2 Agua de pozos públicos y privados

La ATSDR identificó dos incertidumbres generales asociadas con la evaluación de los antiguos pozos de agua de suministro público y de los pozos privados:

- Cantidad de puntos de datos: Las conclusiones acerca de la seguridad reciente de los pozos de agua potable se basaron en uno o dos eventos de toma de muestras para cada pozo (junio-agosto de 1995 y septiembre de 1999). Dado que las condiciones de los pozos suelen fluctuar con el tiempo, tendríamos mayor confianza en la seguridad del agua de esos pozos si hubiera varios momentos de recolección disponibles, que comprendieran por lo menos la estación de lluvias y la estación seca. Reconocemos que, debido al cierre, continuar con la toma de muestras de algunos de los pozos (p. ej., Sun-Bay) es imposible, y que si las personas no pueden beber el agua, no se puede producir la exposición. Además, es poco probable que los contaminantes fluctúen entre niveles extremadamente bajos y niveles de preocupación para la salud. No obstante, si se realizaran más análisis, se reforzaría la confianza en la conclusión.

- Ausencia de datos históricos: Los argumentos presentados en la evaluación anterior avalan la conclusión de que el movimiento del agua subterránea es imposible desde el Área de Impacto de Proyectiles Activos a los acuíferos utilizados para obtener agua potable. La evaluación
anterior de la ATSDR se centró únicamente en artefactos explosivos del Área de Impacto de Proyectiles Activos; ese fue el foco de la petición que se estaba considerando. Pero en Vieques se realizaban otras actividades militares, como transporte, almacenamiento y adiestramiento general. Esas actividades podrían haber causado derrames u otras formas de emisión que produjeran contaminantes que llegarían al antiguo suministro público de agua. Además, las fuentes de contaminantes no militares, como derrames, rellenos sanitarios, sistemas sépticos o escorrentías de actividades agrícolas también podrían haber afectado el antiguo suministro público de agua. Es poco probable que haya o hubiera explosivos presentes en el acuífero que abastecía los antiguos pozos municipales, dado que a fines de la década de 1990, no se observaban detecciones en los pozos cercanos. Sin embargo, es posible que se hayan detectado explosivos en las muestras de 1978. Pero esa detección era incierta: solo se recolectaron dos muestras y se desconoce cualquier mecanismo por el que los explosivos podrían haber llegado al agua subterránea.

De todos modos, para ser completamente rigurosos, no podemos descartar por completo la posibilidad de la presencia de residuos de explosivos en el pasado en el suministro de agua potable. Si dichas detecciones de explosivos eran representativas del nivel típico presente en el agua potable del sistema público, los niveles eran demasiado bajos como para producir efectos en la salud. Pero son demasiado pocos los puntos de datos históricos disponibles para confirmar esa conclusión. Cuando los pozos de suministro público estaban en funcionamiento, el dueño habría estado sujeto a las reglamentaciones relativas al agua potable y debería haber recopilado y mantenido los resultados de los análisis de calidad del agua. No obstante, como se describió anteriormente, la ATSDR no intentó reunir información histórica sobre la calidad del agua de esos pozos. Suponiendo que se mantuvieran datos e informes de análisis de las décadas de 1970 y 1980 y que se los pudiera localizar, subsistirían demasiadas preguntas, como la precisión y exactitud de los métodos analíticos utilizados, las medidas de control de calidad empleadas, si se analizaron todos los contaminantes de posible interés y si la toma de muestras en general era adecuada para describir la calidad pasada del agua de esos pozos. Por tanto, con respecto a la condición pasada de cualquier tipo de agua de pozo de suministro público, nunca se dispondrá de datos suficientes para establecer plenamente su seguridad.

8.3.1.3 Sistemas de recolección de aguas pluviales

En su evaluación anterior del agua potable, la ATSDR no evaluó esta vía, que sigue siendo una vía potencial de exposición. El modelado posterior del aire que realizó la ATSDR sugirió que no era probable que el transporte por el aire, histórico y actual, fuera una fuente importante de contaminación para los sistemas de recolección de aguas pluviales. Aún así, para confirmar si el agua es segura, sería necesario obtener muestras de sistemas representativos. En su evaluación anterior, la ATSDR recomendó a las autoridades de Puerto Rico identificar sistemas de ejemplo y analizarlos para asegurarse de que suministraran agua segura. Hasta donde sabemos, todavía no se ha producido la obtención de esas muestras. Si se realizara una obtención de muestras ahora (es decir, años después del cese de los bombardeos), eso no respondería la pregunta de si los contaminantes podrían haber ingresado a esos sistemas en el pasado. La ATSDR también recomienda la obtención de muestras de sedimento de los sistemas de recolección de aguas pluviales como indicación de la posible calidad del agua pasada. Esa
obtención de muestras se limitaría a contaminantes insolubles o a contaminantes que hubieran precipitado fuera de la solución, se hubieran asentado y hubieran permanecido inalterables con el tiempo. Pero como se afirmó anteriormente con respecto a los sistemas de agua de pozo, en el caso de los sistemas de recolección de aguas pluviales tampoco se dispondrá jamás de información completa acerca de todos los posibles contaminantes del pasado y de sus niveles de antaño.

8.3.1.4 Datos recientes

Desde la evaluación del 2001 realizada por la ATSDR, varias investigaciones han incorporado la obtención de muestras de agua subterránea de Vieques.

- En el 2004, se obtuvieron más muestras de pozos ubicados a lo largo del límite oriental del Área Oriental de Maniobras (EMA) (CH2M Hill 2005). En el análisis del agua subterránea no se detectaron explosivos, compuestos orgánicos semivolátiles, herbicidas, pesticidas, PCB o dioxinas. Se detectó un compuesto inorgánico (bario) y dos compuestos orgánicos volátiles (bromodiclorometano y cloroformo) por encima de los valores de detección. Dado que el estudio de flujo del agua subterránea realizado en conjunto con la investigación mostró que el agua subterránea no fluía desde el EMA hacia el límite oriental, se consideró que lo más probable era que dichos excedentes fueran niveles de base o se debieran a la recarga de aguas municipales tratadas antes que a las actividades militares pasadas. La ATSDR determinó que todas las sustancias halladas en la investigación se encontraban en niveles que no habrían producido efectos adversos en la salud si las personas bebían el agua. Si bien su alcance fue limitado, el estudio aportó evidencia adicional que respalda la conclusión de la evaluación anterior: aun si las operaciones militares hubieran contaminado el agua subterránea, esta no podría moverse físicamente hacia el oeste en dirección a los acuíferos que antigua o se utilizaban para el suministro público de agua. Los resultados del estudio no excluyen la posibilidad de otro tipo de contaminación del agua subterránea, provocada por actividades militares o no militares conectadas hidrogeológicamente con el agua subterránea que abastece los pozos públicos y privados.

- Otras investigaciones realizadas desde la evaluación inicial de la ATSDR se han centrado en caracterizar el alcance de la contaminación en áreas localizadas de agua subterránea que resultan de interés y que fueron identificadas mediante el proceso de reparación (CH2MHill 2007a–c; 2008a–e). Se hallaron varios contaminantes a niveles que volverían el agua subterránea asociada no apta para el consumo. Esos estudios no abordan las posibles fuentes de agua potable. Pero sí respaldan la necesidad de hacer una caracterización y la eventual limpieza de áreas de fuentes a partir de las actividades militares pasadas de Vieques.

Las conclusiones y las recomendaciones de la evaluación de la ATSDR de la vía del agua potable aparecen en continuación y en el capítulo 9 de este informe.

32 Niveles con los que no se esperarían efectos adversos en la salud, ni siquiera con la exposición continua.
8.4 Conclusiones y recomendaciones

8.4.1 Conclusiones

1. Los datos de muestreo disponibles de los tanques de almacenamiento y grifos de agua potable representativos de Vieques indican que, en el momento de la obtención de las muestras, el agua potable del suministro público mediante una tubería desde Puerto Rico era aceptable para beber. Sin embargo, esa conclusión es incierta debido a la cantidad limitada de muestras y a la ausencia de rondas adicionales para confirmar la obtención de las muestras. Los suministros públicos de agua se analizan regularmente y deben cumplir criterios de calidad del agua. Hemos revisado informes recientes de calidad del agua que indican que los niveles de plomo han sido un problema en el suministro de agua potable, aunque al parecer, ahora se han corregido esos problemas. Es necesario el monitoreo continuo del agua proveniente de la tubería de distribución actual y la rápida adopción de medidas para resolver problemas a fin de garantizar que el suministro cumpla con los estándares de agua potable.

2. Los datos limitados de fines de la década de 1990 de pozos públicos y privados indicaron que la mayoría de los pozos son aceptables para el consumo ocasional, por ejemplo, cuando se interrumpe el suministro de la tubería. Los patrones de flujo impiden que el agua subterránea del este (donde se produjeron la mayoría de las operaciones militares) afecte los acuíferos públicos. Y con excepción de un pozo, todos los contaminantes presentes en el agua subterránea estaban por debajo de los valores de detección relativos a la salud de la ATSDR. Pero una vez más, la confianza en las conclusiones se ve atenuada por la cantidad limitada de rondas de obtención de muestras, lo cual tal vez no haya captado las fluctuaciones estacionales en los niveles de contaminantes. Además, la ausencia de datos históricos adecuados impide a la ATSDR sacar conclusiones acerca de la exposición por los pozos de suministro público en el pasado (es decir, las décadas de 1970 y 1980).

3. Si bien la obtención de muestras adicionales podría alterar el resultado, la ATSDR confirma su conclusión previa de que los niveles de nitratos-nitritos en un pozo privado representarían un peligro para la salud, en especial de los niños. Independientemente de la fuente de esa contaminación, el agua de ese pozo no debe consumirse a menos que otros análisis más integrales demuestren que es segura.

4. No existen datos disponibles para evaluar los sistemas de recolección de aguas pluviales para determinar la posible exposición pasada o presente a contaminantes. Los sistemas de recolección de aguas pluviales siguen siendo una posible vía de exposición.

5. Las actividades militares pasadas sí afectaron el agua subterránea, pero el agua subterránea afectada no se utiliza actualmente para obtener agua potable.

33 Si bien los pozos públicos de “Sun Bay” fueron abandonados, hasta donde sabemos, los pozos públicos “B” y los pozos privados todavía pueden abastecer de agua potable.
8.4.2 Recomendaciones

1. Continuar el monitoreo requerido de la fuente de suministro público de agua y adoptar medidas rápidas para resolver la presencia de excedentes respecto de los estándares para el agua potable. Repetir la toma de muestras obtenidas en 1999-2000 de tanques de almacenamiento y grifos residenciales, que incluya una selección más amplia de grifos representativos. Eso podría confirmar la conclusión de que el suministro público de agua actual es aceptable para beber.

2. Obtener muestras adicionales de los pozos que sigan disponibles para uso durante las interrupciones del servicio de tubería. Eso también podría confirmar la seguridad del agua potable de esos pozos.

3. Determinar si las personas beben agua de sistemas de recolección de aguas pluviales y, de ser así, analizar el agua recolectada para evaluar su seguridad. Además, obtener muestras de sedimento de esos sistemas; los resultados de las muestras podrían aportar información limitada sobre la calidad pasada del agua.

4. No utilizar el agua subterránea bajo el LIA y terrenos de otras operaciones militares del pasado para obtener agua potable; continuar con la evaluación ambiental y las actividades de reparación, con el fin de identificar y limpiar el agua subterránea afectada.

8.5 Bibliografía

CH2MHiII. 2007a. Remedial investigation report for solid waste management unit (SWMU) 6, CH2MHiII; febrero de 2007.

CH2MHiII. 2008b. Remedial investigation work plan addendum for solid waste management unit (SWMU) 4, CH2MHiII; abril de 2008.
CH2MHill. 2008c. Final PA/Sl report, 12 consent order sites and 8 PI/PAOC sites. CH2MHill; junio de 2008.

Departamento de Salud de Puerto Rico. 1995a. Data Sheets concerning contamination at three Sun Bay wells on Isla de Vieques. San Juan, Puerto Rico; mayo.

Departamento de Salud de Puerto Rico. 1995b. Data Sheets concerning contamination at four B wells on Isla de Vieques. San Juan, Puerto Rico; mayo.

Capítulo 9 Conclusiones y Recomendaciones

9.1. Introducción
9.2. Consumo de pescado de los arrecifes frente a la costa de Vieques
 9.2.1. Conclusiones
 9.2.2. Recomendaciones
9.3. Biomonitorio
 9.3.1. Conclusiones
 9.3.2. Recomendaciones
9.4. Datos de resultados de salud
 9.4.1. Conclusiones
 9.4.2. Recomendaciones
9.5. Vía de productos agrícolas y de ganadería locales
 9.5.1. Conclusiones
 9.5.2. Recomendaciones
9.6. Vía del aire
 9.6.1. Conclusiones
 9.6.2. Recomendaciones
9.7. Vía del suelo
 9.7.1. Conclusiones
 9.7.2. Recomendaciones
9.8. Vía del agua potable
 9.8.1. Conclusiones
 9.8.2. Recomendaciones
9.9. Resumen final
9.1 Introducción

Como parte de la evaluación de la ATSDR sobre Vieques, hemos evaluado múltiples documentos e informes. Nosotros visitamos a Vieques, donde discutimos las preocupaciones de salud pública con funcionarios y científicos locales y con los viequenses mismos. Celebramos una reunión con otros científicos, en la que discutimos los estudios e investigaciones más recientes sobre Vieques. A continuación se encuentran nuestras conclusiones y recomendaciones sobre el sitio de Vieques y la comunidad respecto a los medios ambientales, el biomonitorio y los resultados de salud.

9.2 Consumo de pescado de los arrecifes frente a la costa de Vieques

9.2.1 Conclusiones

Durante la reunión de la ATSDR celebrada en noviembre del 2009, varios científicos plantearon inquietudes acerca de los niveles de mercurio en los peces. En particular, les preocupaba que las conclusiones obtenidas en la PHA sobre peces, publicada por la ATSDR en el 2003, no fueran congruentes con el aviso nacional de la EPA/FDA del 2004 respecto al mercurio. Por lo tanto, la ATSDR revisó sus conclusiones y recomendaciones del 2003 sobre el mercurio presente en los peces de los arrecifes que rodean Vieques.

En nuestra evaluación de salud pública del 2003 sobre el consumo de pescado, la ATSDR utilizó tasas de ingesta de pescado que se enfocaban en adultos que comían 8 onzas de pescado por día y que pesaban 70 kg (o 154 libras). Las tasas de ingestión diaria de pescado en niños eran de 4 onzas y se asumió que los niños pesaban 16 kg (o 35 libras). Las dosis estimadas se compararon con el MRL de la ATSDR de 0.3 µg/kg/día, que se derivó de un análisis de estudios realizados en las Islas Seychelles y Faroe. En la evaluación de la ATSDR tal como se presenta en este informe, la ATSDR utilizó una amplia variedad de ingestas diarias de pescado y pesos corporales. Utilizando información del Exposure Factor Handbook de la EPA, la ATSDR asumió que la ingesta diaria de pescado de mujeres adultas era de hasta 14 onzas —el percentil 99— y que las mujeres pesaban tan solo 46 kg (o 100 libras). En el caso de los niños, la ATSDR asumió que la ingesta diaria de pescado era de hasta 6 onzas para niños de 1 a 2 años de edad, 8 onzas para niños de 3 a 5 años de edad, 10 onzas para niños de 6 a 14 años de edad y de hasta 20 onzas para niños de 15 a 18 años de edad. Las ingestas más altas en niños representan el percentil 99 del tamaño de la porción, para las edades mencionadas. Además, la ATSDR utilizó las recomendaciones de la NAS y la dosis de referencia (RfD) de la EPA sobre el mercurio así como los estudios de toxicidad en seres humanos realizados en las Islas Faroe. A partir de su evaluación del mercurio en los peces de Vieques, la ATSDR llegó a estas nuevas conclusiones:

1. La ATSDR ha identificado la exposición al mercurio debido al consumo frecuente de alimentos de origen marino como un riesgo potencial para la salud pública. Las mujeres con una dieta variada de pescado que normalmente comen más de 2 oz de pescado por día reciben dosis estimadas de mercurio que superan la RfD crónica de la EPA. A medida que aumenta el tamaño de la porción, las dosis estimadas se van acercando al nivel más bajo que ha demostrado causar efectos perjudiciales en el feto en desarrollo. La ATSDR concluye que si esas mujeres están embarazadas, su bebé en desarrollo tiene un pequeño aumento en el riesgo de sufrir efectos neurológicos más adelante en la vida. El riesgo de tener efectos perjudiciales aumenta a medida
que aumenta el tamaño de la porción. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

2. Las mujeres que comen ronco o mero con mayor frecuencia que otros peces de arrecife y que normalmente comen más de 2 onzas de pescado por día reciben dosis estimadas de mercurio dos veces más altas que las mujeres que comen una dieta variada de pescados. A medida que aumenta el tamaño de la porción, las dosis estimadas para las mujeres que comen porciones más grandes a diario (p. ej., 10 a 14 oz) se acercan o superan el nivel más bajo que ha demostrado causar efectos perjudiciales en el feto en desarrollo. La ATSDR concluye que si esas mujeres están embarazadas, su bebé en desarrollo tiene un pequeño aumento en el riesgo de sufrir efectos neurológicos más adelante en la vida. El riesgo de tener efectos perjudiciales aumenta a medida que aumenta el tamaño de la porción. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

3. Los niños con una dieta variada de pescado que normalmente comen más de 0.5 oz de pescado por día reciben dosis estimadas de mercurio que superan la RfD crónica de la EPA. Estos niños tienen un pequeño riesgo de sufrir efectos neurológicos. Pero a medida que aumenta el tamaño de la porción, aumenta el riesgo de tener efectos perjudiciales. Según la edad, los niños de tan solo 1 año que comen 3 o 4 onzas de pescado por día reciben dosis estimadas que superan las dosis que han demostrado provocar efectos neurológicos y tienen el mayor riesgo de desarrollar efectos neurológicos perjudiciales. Los posibles efectos perjudiciales identificados en estudios realizados en niños no viequenses expuestos en el útero incluyen el lenguaje, la atención y la memoria y, en menor medida, las funciones visual/espacial y motora.

4. Al igual que las mujeres, los niños que comen ronco y mero con mayor frecuencia que otros peces de arrecife reciben dosis estimadas dos veces mayores que los niños que comen una dieta variada de pescados. Las dosis estimadas en esos niños superan las dosis asociadas con efectos neurológicos.

5. Existe cierta incertidumbre asociada con esos hallazgos porque la respuesta de una persona al mercurio es, en sí misma, algo incierta. La incertidumbre podría deberse al sexo, la genética, la salud y el estado nutricional o a cómo el cuerpo maneja el mercurio. En los tres estudios en seres humanos que se centraron en la exposición a mercurio debido al consumo de pescados y de alimentos de origen marino, la identificación de los niveles de menor efecto fue incierta. El estimar la dosis de mercurio a partir de la ingesta de pescados de arrecife fue igual de incierto, dado que la dosis puede variar según el tipo, la frecuencia y la cantidad de pescado consumido.

6. Si bien la ATSDR respalda el aviso nacional de la EPA y de la FDA sobre el consumo de pescado, partes del aviso no aplican a los viequenses que dependen en gran medida de los alimentos locales de origen marino. Por ejemplo, el aviso discute información acerca de pescados que los viequenses no comen como el abadejo, el bagre y el blanquillo. Además, el aviso recomienda que si no hay un aviso local disponible, las personas no deben comer más de 6 onzas de pescado local y no deben consumir ningún otro pescado durante la semana. Incluimos enlaces al aviso
para uso de la información y recomendamos un programa educativo sobre mercurio en el consumo de pescado local.

7. Los residentes necesitan información a fin de que puedan seleccionar los alimentos locales de origen marino con menor cantidad de mercurio respecto de los alimentos locales de origen marino con mayor cantidad de mercurio. Eso protegerá a los fetos en desarrollo y a los niños pequeños del mercurio presente en el pescado. Con fines informativos, el aviso e información relacionada están disponibles en: http://www.epa.gov/waterscience/fish/advice; http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/Seafood/FoodbornePathogensContaminants/Methylmercury/ucm115662.htm, y en el capítulo 2, sección 2.7 de este informe, apéndice 2A-3.

8. En las 104 muestras de peces recolectadas de las áreas marinas cercanas a Vieques y del mercado comercial de pescado, el nivel promedio de mercurio fue de 0.1 ppm y el rango no fue detectable hasta 0.33 ppm. Los niveles de mercurio detectados en pescados de arrecife de Vieques son similares a los niveles reportados por la FDA (FDA 2010). Los niveles de mercurio se encuentran en el rango bajo (0.02-0.2 ppm) a medio (0.2-0.6 ppm) de mercurio identificado por la FDA en su reciente evaluación de riesgos y beneficios (FDA 2009).

9. La ATSDR también llevó a cabo un análisis estadístico de los datos sobre peces del 2001 y llegó a las siguientes conclusiones:

a. El mercurio detectado en los alimentos de origen marino es más alto en dos familias de peces (ronco y mero) comparadas con otras familias de las que se tomaron muestras (p. ej., cotorro y pargo). La concentración de mercurio promedio en el ronco y el mero fue más alta que el nivel de detección de 0.049 ppm de la EPA. Al evaluar algunas de las hipótesis, la ATSDR utilizó el promedio general de 0.1 ppm para determinar qué familias de peces de arrecife tenían probabilidades de superar el promedio general.

b. Los niveles de mercurio en cotorro fueron estadísticamente inferiores al nivel de detección de 0.049 ppm de la EPA e inferiores al promedio general de 0.1 ppm.

c. Todos los pargos tuvieron un valor inferior al valor de detección de 0.049 ppm de la EPA. Sin embargo, se recolectó una cantidad insuficiente de pargos para determinar si el nivel promedio de mercurio en pargos era estadísticamente diferente del nivel de detección de 0.049 ppm de la EPA. Se recolectó una cantidad suficiente de pargos para determinar que el nivel promedio de mercurio es estadísticamente inferior al promedio general de 0.1 ppm.

10. El mercurio está presente en la mayoría de los alimentos de origen marino y es particularmente alto en algunas especies de peces y bajo en otras especies. Si bien el mercurio era un componente de los detonadores de algunas bombas, solo se introdujeron pequeñas cantidades de mercurio en el ambiente de Vieques de esa fuente. Esta conclusión es respaldada por los niveles bajos de mercurio en los suelos del LIA, que parecen ser niveles producidos en forma natural. Los niveles de mercurio en peces del LIA y sus alrededores muy probablemente sean consecuencia de la reserva global de mercurio que circula en el ambiente.
11. El análisis estadístico mostró que algunas especies de peces y mariscos tenían niveles más altos de algunos metales y menores de otros metales – hierro, aluminio, cobre, zinc, arsénico, bario, potasio y selenio, estaban todos ligeramente más altos. Estos metales son materiales que se encuentran en las bombas y barcos de metal, lo que sugiere una posible contaminación localizada. Pero los niveles solo fueron ligeramente más altos y la diferencia fue estadísticamente significativa solo para algunos arrecifes comparados con otros arrecifes alrededor de Vieques.

9.2.2 Recomendaciones

La ATSDR recomienda lo siguiente para la consideración por parte de agencias ambientales y de salud pública, y de los científicos:

1. Las personas que frecuentemente consumen alimentos de origen marino deben seguir los avisos sobre peces y las restricciones de pesca en Vieques. Mantener las restricciones de pesca en las aguas adyacentes al LIA.

2. Realizar una encuesta entre los residentes de Vieques para determinar los tipos, la frecuencia y la cantidad de pescado consumido.

3. Realizar evaluaciones de riesgo y análisis estadísticos adicionales utilizando información nueva recopilada a partir de la encuesta sobre consumo de pescado recomendada anteriormente.

4. Obtener y analizar más muestras de peces de Vieques si la encuesta propuesta y el análisis estadístico no aportan suficiente información sobre la salud pública. Obtener suficientes muestras de peces para permitir un análisis por especies y por localización.

5. Elaborar un programa educativo acerca del mercurio en los peces que incorpore los hábitos locales e información sobre el consumo de alimentos de origen marino de los viequenses. Los beneficios se acumulan en el feto en desarrollo con la ingestión materna de nutrientes presentes en los alimentos de origen marino (FDA 2009) y estos pueden superar la ingestión contaminante de pequeñas cantidades de mercurio. El objetivo de este programa educativo específico para el lugar debe ser educar a los viequenses sobre los beneficios de comer alimentos de origen marino de modo que puedan elegir pescados con menor cantidad de mercurio y así mantener la saludable costumbre alimentaria de consumir alimentos de origen marino locales.

9.3 Biomonitorio

9.3.1 Conclusiones

1. Desde el 1999, se han realizado al menos cinco investigaciones de biomonitorio en seres humanos en Vieques. Todas ellas estuvieron a cargo de científicos y médicos puertorriqueños o del Departamento de Salud de Puerto Rico. El Departamento de Salud de Puerto Rico ha llevado a cabo la iniciativa de toma de muestras más abarcadora, en la que se recolectaron muestras biológicas de 500 viequenses seleccionados aleatoriamente. El manuscrito del Departamento de Salud de Puerto Rico reportó que en el 20% de los participantes
a. el aluminio, el plomo o el mercurio en sangre;

b. el uranio, el cadmio o el níquel en orina; o

c. el níquel o el arsénico en el cabello

superaba el rango de referencia del laboratorio. El manuscrito del Departamento de Salud de Puerto Rico identificó el uso de cigarrillos y de tinturas para el cabello, así como el consumo de alimentos de origen marino, como posibles fuentes de algunos de los niveles elevados, pero no de todos. El manuscrito del Departamento de Salud de Puerto Rico reconoció que, en el caso de algunos residentes, no se pudo identificar la fuente de niveles altos de metal en orina, cabello y sangre. El manuscrito del Departamento de Salud de Puerto Rico no reportó niveles de mercurio en el cabello. Los resultados de las investigaciones de la Dra. Ortiz Roque demostraron que algunos residentes tenían niveles elevados de mercurio en el cabello, y que muy probablemente la fuente era el consumo de pescado; sin embargo, no se descartaron por completo otras posibles fuentes.

2. Los datos de estos estudios demostraron niveles elevados de diversos metales en la sangre, la orina, el cabello o las heces de algunos residentes de Vieques. Si bien algunos de estos niveles elevados pueden explicarse por el consumo de cigarrillo, alimentos de origen marino, o el uso de tinturas para el cabello, estas razones no pueden explicar todos los niveles elevados. En particular, los resultados de biomonitoreo de la Dra. Ortiz Roque demostraron que algunos viequenses tenían un nivel elevado de mercurio en el cabello superior a 12 ppm, el nivel identificado por la NAS como agente perjudicial en el 5% de los fetos expuestos en el útero. La Dra. Ortiz Roque también demostró que el mercurio presente en el cabello estaba asociado con el consumo de pescado. En cambio, el estudio del Departamento de Salud de Puerto Rico no encontró niveles excesivos de mercurio en sangre, si bien el estudio no midió o no informó niveles de mercurio en el cabello. Por ende, existe algo de incertidumbre respecto a la prevalencia de altos niveles de mercurio en los viequenses. Excepto por el mercurio, el contenido de metales en el cabello es difícil de interpretar. Los metales pueden unirse directamente al cabello por el uso de productos comerciales para el cabello, lo cual dificulta toda distinción entre la exposición interna a metales mediante la ingesta y la inhalación frente a la exposición externa que resulta del contacto con el metal en el ambiente (p. ej., champú, tintes, polvo).

3. Estos estudios no pudieron investigar el ambiente de cada persona para identificar la fuente en aquellos que tenían niveles excesivos en cabello, orina o sangre. El estudio del Departamento de Salud de Puerto Rico fue el que más cerca estuvo de identificar las posibles fuentes (p. ej., consumo de cigarrillos y uso de tintes para el cabello, consumo de alimentos de origen marino), pero admitió la imposibilidad de identificar la fuente o fuentes para todos los residentes con una exposición excesiva a metales. Ya sea mediante el instrumento de la encuesta o mediante una visita al hogar, puede ser posible identificar otras fuentes que aumentan la exposición a metales, tales como los utensilios de cocina, los residuos metálicos en los alimentos (p. ej., té y vegetales), el consumo de bebidas con envases metálicos, ritos religiosos que usan cápsulas que contienen mercurio, cremas para la piel, las formulaciones de antiácidos y de antiperspirantes.
4. La ATSDR sigue siendo cautelosa respecto de la toma de decisiones sobre el uso del cabello como indicador de la exposición a contaminantes ambientales y como indicador del riesgo de efectos perjudiciales. Un problema importante a la hora de interpretar las concentraciones de metales en el cabello es si el contenido de metal surgió de una exposición interna (p. ej., de la ingestión o inhalación) o de una exposición externa (p. ej., el cabello que entra en contacto con un producto que contiene metal). En la actualidad, no existe ningún método de lavado capaz de eliminar los contaminantes de metales exógenos y, a la vez, conservar los metales endógenos sin alteraciones. Las sustancias químicas tales como el metilmercurio, que se originan generalmente de fuentes dietarias, son menos susceptibles a esa desventaja dado que las fuentes inusuales de mercurio inorgánico no complican la situación (p. ej., vapor de mercurio en ámbitos ocupacionales o domésticos).

5. Estos resultados de biomonitoreo no permiten sacar conclusiones acerca de la exposición a los contaminantes relacionados con los bombardeos.

9.3.2 Recomendaciones

1. Los viequenses podrían estar expuestos al mercurio en los peces y al cadmio en los gandules. Estas exposiciones pueden ameritar más investigaciones ambientales, como la obtención de muestras de productos cultivados localmente para determinar el contenido de cadmio y obtener más información sobre el consumo de pescado y la posibilidad de que contenga mercurio. Se podría usar la información para decidir si se realizan pruebas en seres humanos para detectar mercurio y cadmio en sangre u orina. Si se identifican otras exposiciones ambientales, podrían considerarse más investigaciones de biomonitoreo en seres humanos. En el capítulo 2, sección 2.3.2 y en el capítulo 5, sección 5.3.2, respectivamente, se puede encontrar información más detallada sobre las recomendaciones de la ATSDR sobre el pescado y los productos cultivados localmente.

2. La ATSDR no está recomendando un esfuerzo de biomonitoreo completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos con un programa de biomonitoreo si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitoreo humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitoreo, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación.

3. Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, deberán consultar con su proveedor de salud para discutir la necesidad de realizar pruebas y los costos asociados a éstas. Un laboratorio cualificado deberá realizar las pruebas y análisis.
4. CDC/ATSDR pueden proporcionar una lista de laboratorios cualificados que pueden llevar a cabo las pruebas. Y si se requiere, CDC/ATSDR pueden proporcionar información a los proveedores de salud acerca de las pruebas de detección de metales en muestras biológicas.

9.4 Datos de resultados de salud

9.4.1 Conclusiones

1. Los documentos que revisó la ATSDR ofrecen una perspectiva de salud compleja para los viequenses. Los hallazgos de estos estudios indican que hay elevaciones en la prevalencia de enfermedad crónica, la incidencia de cáncer, y la mortalidad por cáncer en la población de Vieques comparada con el resto de Puerto Rico. Además, el aumento de la mortalidad en Vieques, en especial por cáncer, puede indicar la falta de acceso a servicios de salud adecuados. Las limitaciones asociadas con esos análisis, en especial las inquietudes metodológicas analizadas en este informe, introducen un grado considerable de incertidumbre y dificultan la interpretación. Algunas de las inquietudes metodológicas señaladas anteriormente incluyen la búsqueda más exhaustiva de casos de cáncer en Vieques que en el resto de Puerto Rico, un seguimiento diferencial, cálculos de prevalencia de enfermedades crónicas basados en una encuesta de prevalencia de síntomas-fermedades sin confirmación de los resultados de salud mediante registros médicos, y datos limitados de mortalidad por causas distintas de cáncer. El seguimiento diferencial y la búsqueda exhaustiva de casos pueden producir estimados parcializados (con sesgos) de la incidencia de cáncer y la mortalidad por cáncer. La incertidumbre también es evidente en los amplios intervalos de confianza informados, lo cual indica estimados imprecisos de las razones de incidencia de cáncer y de mortalidad por cáncer en Vieques en relación con el resto de Puerto Rico (RCCPR 2009). Esto no es inusual cuando se hacen estimados para poblaciones pequenas.

9.4.2 Recomendaciones

Evaluar la viabilidad de aplicar los métodos de SMART BRFSS a fin de generar estimados estables de prevalencia específica en Vieques para asma, diabetes, hipertensión y para otras enfermedades crónicas.

9.5 Vía de productos agrícolas y de ganadería locales

9.5.1 Conclusiones

1. Los datos generales son insuficientes para cuantificar adecuadamente la exposición en seres humanos o sacar conclusiones válidas de salud respecto a si el consumo de productos locales, agrícolas y de ganadería, produciría efectos perjudiciales para la salud.

2. Existen datos limitados de muestreo para gandules, un alimento básico de los viequenses. La interpretación de estos datos es incierta debido a la falta de información adecuada de QA/QC para los hallazgos analíticos.
a. La evaluación preliminar de los datos completada para este informe llegó a la conclusión de que el nivel de cadmio reportado en unas pocas muestras de gandules locales no aportaría un exceso de cadmio en la dieta de los niños de edad preescolar que coman menos de 5 de las porciones más grandes (6 onzas), por semana, de gandules cultivados localmente. Los adultos que coman los tamaños de porciones más grandes (12 onzas) deben limitar la ingesta a 11 porciones por semana.

b. Los niños de edad preescolar que coman un tamaño de porción típico (1.5 onzas) pueden comer hasta 20 comidas por semana, y los adultos que coman una porción típica (3 onzas) pueden comer hasta 44 comidas por semana sin superar los niveles recomendados para la ingesta de cadmio.

c. Superar los niveles recomendados de cadmio en la dieta, en general, no provocaría un daño inmediato en la salud. La ingesta excesiva de cadmio durante décadas podría contribuir a niveles perjudiciales de acumulación de cadmio en los riñones, lo que posiblemente podría resultar en enfermedad renal. Por lo general, solo una fracción muy pequeña (5%) de cadmio presente en los alimentos se absorbe en el cuerpo, en especial en personas con una alimentación saludable que contenga cantidades adecuadas de minerales esenciales como el zinc, el hierro, y el calcio (Reeves y Chaney, 2008).

3. No está claro si los resultados limitados de la obtención de muestras son representativos de las concentraciones de cadmio en otros cultivos locales de gandules, pero la incertidumbre significativa en la evaluación destaca la necesidad de obtener más muestras.

4. Los resultados preliminares de la evaluación y la totalidad de los datos disponibles sugieren la posibilidad de que los metales presentes en el suelo sean absorbidos por los alimentos cultivados, lo cual justifica continuar con las investigaciones. Para evaluar mejor esta vía de exposición, la ATSDR ha recomendado una iniciativa de colaboración para obtener más muestras de alimentos cultivados localmente.

9.5.2 Recomendaciones

La ATSDR respalda la obtención de muestras adicionales y la recolección colaborativa de datos para evaluar más profundamente esta vía de exposición en seres humanos. Las siguientes recomendaciones tienen como fin promover la recolección de datos de alta calidad y máxima utilidad, y minimizar las incertidumbres de los datos:

1. Los datos de muestreo deben representar las partes comestibles de una muestra transversal de productos agrícolas de granjas locales, huertas hogareñas y mercados locales. Obtener muestras de productos agrícolas que tiendan a acumular metales pesados con más facilidad (p. ej., vegetales de hojas como lechuga y espinaca) en lugar de las hojas de cultivos de cereales o frutales.

2. Hacer encuestas a los residentes a fin de identificar la prevalencia y el tipo de productos hortícolas cultivados en el lugar y consumidos habitualmente. El plan de diseño de obtención de muestras debe incluir los tipos de productos agrícolas identificados en esta encuesta.
3. Recoger muestras representativas de suelo superficial en la misma localización y al mismo tiempo en que se tomen las muestras de productos hortícolas y agrícolas. Las muestras de suelo deben tener una profundidad apropiada para representar la zona de la raíz.

4. Obtener muestras de carne y productos lácteos del ganado de Vieques que consume forraje.

5. Para evitar valores altos o bajos falsos, la recolección y el análisis de las muestras debe cumplir con altos estándares de calidad de datos, incluyendo información detallada sobre aseguramiento de la calidad/control de la calidad, materiales estándares de referencia para el análisis, y correcciones de trasfondo. Diseñar el plan de obtención de muestras para recolectar una cantidad suficiente de muestras que garantice una alta confianza estadística.

6. Obtener muestras de una localización de trasfondo o de control adecuada para realizar una comparación con muestras de alimentos producidos en Vieques.

7. Para facilitar la evaluación de la exposición, informar los datos “como se consume” (peso húmedo).

8. Planificar y ejecutar protocolos de obtención de muestras en colaboración con científicos locales. Una manera de evitar confusiones respecto de los datos es que los científicos locales y un experto independiente recolecten en forma conjunta varias muestras, las dividan, y proporcionen informes analíticos con información de respaldo sobre QA/QC. Un estándar de QA/QC podría ser dividido en el momento de recolección de las muestras.

9. Solicitar asistencia técnica a la Administración de Alimentos y Medicamentos (FDA) de los EE.UU. o al Departamento de Agricultura de los EE.UU. (USDA) para la recolección de las muestras y los protocolos de análisis. El Servicio de Investigación Agrícola del USDA se ha ofrecido a prestar, si se le solicita, asistencia técnica en el diseño del plan de obtención de muestras, la recolección, y el análisis con protocolos apropiados de QA/QC.

9.6 Vía del aire

9.6.1 Conclusiones

1. Esta revisión de la posible exposición por el transporte en el aire dentro de las áreas residenciales de Vieques a contaminantes generados por las operaciones militares en las antiguas Instalaciones de Adiestramiento Naval de Vieques se basa en las siguientes fuentes de información que se utilizaron en la PHA realizada por la ATSDR en 2003:

 a. Registros de la Marina de los EE.UU. sobre los tipos y cantidades de artefactos explosivos utilizados en el campo de adiestramiento,

 b. Un modelo de términos fuente utilizado para estimar las cantidades de material producido por la detonación de artefactos explosivos,

 c. Un modelo de dispersión de aire para calcular el transporte de contaminantes desde el área de detonación hasta las áreas residenciales,
d. Datos meteorológicos a largo plazo del aeropuerto de San Juan, PR, y la estación naval Roosevelt Roads, y

2. También se resumen los datos de monitoreo del aire y los estudios de dispersión de aire realizados o recopilados después de la publicación de la PHA sobre el aire de 2003, con el fin de evaluar eventos en curso o propuestos de detonación abierta o quema abierta.

a. Esta revisión de la posible exposición por el transporte en el aire evalúa el proceso de modelado utilizado en la PHA sobre el aire de 2003, las asunciones y los datos usados en el proceso de modelado, y compara los resultados de ese proceso de modelado con datos de monitoreo recogidos durante eventos recientes de quema al aire libre.

b. Si bien en esta revisión se halla que el proceso de modelado de la PHA sobre el aire es consistente con las prácticas de modelado establecidas, se identifican dos errores menores en el estimado de las concentraciones de las fuentes de detonación. Uno produce una sobrestimación de las concentraciones de metales. El otro produce una leve subestimación de los productos derivados de explosiones en el suelo, que está sobre compensado por la estimación general de las concentraciones de compuestos explosivos. Esos errores no afectan los resultados ni las conclusiones de la PHA sobre el aire.

c. En su conjunto, los datos disponibles de muestras y modelos son adecuados para la determinación del riesgo potencial para la salud pública debido a la exposición a contaminación transportada por el aire. Las incertidumbres inherentes al modelo de dispersión de aire utilizado por la ATSDR en 2003 fueron abordadas adecuadamente al sobrestimar numerosos aspectos de las emisiones de contaminantes y evaluar exposiciones en las peores condiciones posibles. A pesar de la sobrestimación de las posibles exposiciones, los resultados del modelo indican que los contaminantes transportados por el aire y causados por los usos históricos del Campo de Adiestramiento Naval de Vieques habrían sido básicamente imposibles de detectar en las áreas residenciales de Vieques y que es poco probable que hayan provocado efectos perjudiciales. Los resultados predictos son justificados por los datos de muestras de aire históricas y recientes de la PREQB y por las muestras de aire obtenidas por la Marina después de la PHA y el modelado de dispersión de aire. En su conjunto, los datos disponibles proporcionan una base adecuada para las conclusiones relacionadas a la salud pública expresadas en la PHA sobre el aire.

d. Para realizar la evaluación tendiente a la protección de la salud con relación a la posible exposición a contaminantes transportados por el aire y provocados por los ejercicios militares en las antiguas Instalaciones de Adiestramiento Naval de Vieques, la Evaluación de Salud Pública de la ATSDR usó procedimientos de modelado y datos de monitoreo disponibles adecuados. El modelo de dispersión de aire y los datos de monitoreo del aire adicionales realizados tras finalizar la PHA sobre el aire también respaldan las conclusiones de la ATSDR relativas a la salud pública. Dado que no es probable que los ejercicios militares
del pasado hayan producido concentraciones medibles de contaminantes transportados por el aire en las áreas residenciales de Vieques, no hay ninguna base relacionada con la salud pública que respalde la realización de estudios adicionales del aire o de monitoreo del aire ambiental en relación con los ejercicios militares del pasado en Vieques.

e. Si bien los residentes de Vieques podían oír y, posiblemente, sentir las explosiones de los ejercicios militares realizados en el antiguo Campo de Adiestramiento Naval de Vieques, 8 millas sigue siendo una distancia considerable. La física del sonido y de la migración de ondas sísmicas es muy diferente de la física de la dispersión atmosférica de las partículas y gases transportados por el aire.

9.6.2 Recomendaciones:

No existen otras recomendaciones a la fecha.

9.7 Vía del suelo

9.7.1 Conclusiones

1. Las personas que ocuparon el LIA durante el 1999-2000 no tuvieron un aumento del riesgo de desarrollar efectos adversos en la salud debido a la exposición a contaminantes en el suelo superficial. Los datos de respaldo son limitados, pero son de buena calidad y representan la localización y el periodo de interés. En los años anteriores a los análisis de fines de la década de 1990, los niveles de contaminantes del LIA (en especial, de explosivos) tal vez hayan sido más altos, pero no contamos con datos históricos que permitan evaluar esta asunción.

2. Esto no quiere decir que en la actualidad cualquiera pueda visitar el LIA en forma segura. Los artefactos explosivos sin detonar que quedan allí podrían provocar lesiones inmediatas o la muerte a cualquiera que pudiera alterarlos accidentalmente. Datos recolectados recientemente en áreas de interés específicas dentro de los terrenos militares —no las mismas áreas a las que accedieron y ocuparon los manifestantes— demuestran el potencial remanente de contaminación localizada que, si las personas visitan esas áreas, podría constituir una preocupación de salud.

3. Los datos limitados disponibles de otras localizaciones y las consideraciones relativas a la vía del aire sugieren que los ejercicios militares realizados en el LIA no produjeron contaminación actual en suelos residenciales con compuestos inorgánicos o explosivos a niveles considerados perjudiciales. La ATSDR llega a esa conclusión llevando a cabo una evaluación científica de los datos disponibles. Pero una vez más, la cantidad de datos de otras áreas es limitada, no se dispone de datos de todos los posibles contaminantes de interés y no se dispone de datos adecuados de suelo superficial para el área residencial en sí. No obstante, la ATSDR comprende que a los miembros de la comunidad les siga preocupando la exposición por los suelos residenciales.

4. El modelo descrito en el análisis de la vía del aire ha sugerido que el transporte de contaminantes en el aire durante los ejercicios militares del pasado no habría sido lo bastante
significativo como para afectar los suelos del área residencial de la isla. No se dispone de datos históricos suficientes para confirmar eso y jamás será posible disponer de dichos datos. En consecuencia, no podemos determinar si la exposición pasada a explosivos u otros compuestos en el suelo superficial habrá sido lo bastante intensa como para aumentar el riesgo pasado de desarrollar efectos adversos en la salud.

9.7.2 Recomendaciones

1. Seguir restringiendo el acceso al LIA y a otras áreas militares posiblemente contaminadas y continuar la evaluación ambiental y las actividades de remediación con el fin de facilitar el camino para el acceso público.

2. Ayudar a responder a las preocupaciones de la comunidad sobre el suelo residencial, trabajar con residentes locales para diseñar un muestreo con el fin de identificar problemas de calidad del suelo superficial del área residencial, independientemente de que esos problemas del suelo superficial se relacionen con actividades militares pasadas:
 a. Centrar el muestreo inicial en áreas identificadas como posibles áreas de alta exposición, tales como áreas sin vegetación o utilizadas por niños.
 b. Para identificar cualquier posible diferencia en la capa superior, el muestreo inicial debe analizar la pulgada superior de suelo en forma separada del resto de las muestras de 0 a 3 ó 0 a 6 pulgadas de profundidad.
 c. Realizar análisis de rango completo para identificar todos los posibles contaminantes.
 d. Planificar y llevar a cabo recolección y análisis de muestras para garantizar que los resultados cumplan con altos estándares de calidad de los datos.

3. Si bien este muestreo podría aportar inferencias acerca de la exposición pasada a componentes que se mantienen estables con el tiempo, como metales u otros compuestos inorgánicos, no aportará información definitiva sobre la composición pasada de la superficie ni información sobre los niveles pasados de compuestos que reaccionan o se degradan con el tiempo.

4. La ATSDR también recomienda la recolección de muestras de suelo representativas como parte de su evaluación de la vía de la cadena alimentaria terrestre. Vea el capítulo 5 de éste informe para más detalles.

9.8 Vía del agua potable

9.8.1 Conclusiones

1. Los datos de muestreo disponibles de los tanques de almacenamiento y grifos de agua potable representativos de Vieques indican que, en el momento del muestreo, el agua potable del suministro público mediante una tubería desde Puerto Rico era aceptable para beber. Sin embargo, esa conclusión es incierta debido a la cantidad limitada de muestras y a la ausencia de rondas adicionales para confirmar la obtención de las muestras. Los suministros públicos de agua se analizan regularmente y deben cumplir con criterios de calidad del agua. Hemos
revisado informes recientes de calidad del agua que indican que los niveles de plomo han sido un problema en el suministro de agua potable, aunque al parecer, ahora se han corregido esos problemas. Es necesario el monitoreo continuo del agua proveniente de la tubería de distribución actual y la rápida adopción de medidas para resolver problemas con el fin de garantizar que el suministro cumpla con los estándares de agua potable.

2. Los datos limitados de fines de la década de 1990 de pozos públicos y privados indicaron que la mayoría de los pozos son aceptables para el consumo ocasional, por ejemplo, cuando se interrumpe el suministro de la tubería. Los patrones de flujo impiden que el agua subterránea del este (donde se produjeron la mayoría de las operaciones militares) afecte el acuífero público. Y con excepción de un pozo, todos los contaminantes presentes en el agua subterránea estaban por debajo de los valores de detección relativos a la salud de la ATSDR. Pero una vez más, la confianza en las conclusiones se ve atenuada por la cantidad limitada de rondas de muestreos, lo cual tal vez no haya capturado las fluctuaciones estacionales en los niveles de contaminantes. Además, la ausencia de datos históricos adecuados impide a la ATSDR llegar a conclusiones acerca de la exposición por los pozos de suministro público en el pasado (es decir, las décadas de 1970 y 1980).

3. Si bien la toma de muestras adicionales podría alterar el resultado, la ATSDR confirma su conclusión previa de que los niveles de nitratos-nitritos en un pozo privado representarían un peligro para la salud, en especial de los niños. Independientemente de la fuente de esa contaminación, el agua de ese pozo no debe consumirse a menos que otros análisis más integrales demuestren que es segura.

4. No existen datos disponibles para evaluar los sistemas de recolección de aguas de lluvia para determinar la posible exposición pasada o presente a contaminantes. Los sistemas de recolección de aguas de lluvia siguen siendo una posible vía de exposición.

5. Las actividades militares pasadas sí afectaron el agua subterránea bajo algunas áreas militares específicas, pero el agua subterránea afectada no se utiliza actualmente para agua potable.

9.8.2 Recomendaciones

1. Continuar el monitoreo requerido de la fuente del suministro público de agua y adoptar medidas rápidas para resolver la presencia de excedentes con relación a los estándares para el agua potable. Repetir la toma de muestras obtenidas en el 1999-2000 de tanques de almacenamiento y grifos residenciales, que incluya una selección más amplia de grifos representativos. Eso podría confirmar la conclusión de que el suministro público de agua actual es aceptable para beber.

2. Obtener muestras adicionales de los pozos que sigan disponibles para uso durante las interrupciones del servicio de distribución de agua. Eso también podría confirmar la seguridad del agua potable de esos pozos.

34 Si bien los pozos públicos de “Sun Bay” fueron abandonados, hasta donde sabemos, los pozos públicos “B” y los pozos privados todavía pueden abastecer de agua potable.
3. Determinar si las personas beben agua de sistemas de recolección de aguas de lluvia y, de ser así, analizar el agua recolectada para evaluar su seguridad. Además, obtener muestras de sedimento de esos sistemas; los resultados de las muestras podrían aportar información limitada sobre la calidad pasada del agua.

4. No utilizar el agua subterránea bajo el LIA, de otros terrenos de operaciones militares del pasado para obtener agua potable; continuar con la evaluación ambiental y las actividades de remediación, con el fin de identificar y limpiar el agua subterránea afectada.

9.9 Resumen final

La ATSDR realizó una revisión exhaustiva de los datos ambientales, biológicos y de resultados de salud de la Isla de Vieques. Consideramos cuidadosamente los datos e información de científicos puertorriqueños y de otros países que dedicaron un esfuerzo y tiempo considerables, en ocasiones a sus expensas, para investigar problemas de salud ambiental en Vieques. Agradecemos esos esfuerzos. No obstante, al igual que cualquier sitio con una historia tan larga de investigaciones ambientales, estos datos tienen fortalezas y debilidades que se tornan importantes en el momento de tomar decisiones acerca de la salud pública. Por momentos, los datos pueden plantear tanto preguntas como respuestas.

Una de esas situaciones es las mezclas. La ATSDR reconoce la posibilidad de que este informe no pueda abordar con precisión los efectos combinados y de la exposición acumulada en la salud de los viequenses. A veces eso se debe a la falta de datos; en otros casos, se trata de una limitación de la ciencia. La ATSDR ha publicado guías para realizar evaluaciones de las mezclas (ATSDR 2004) y entre nuestro personal se encuentran algunos de los expertos mundiales sobre el tema. Pero admitimos que el debate que existe entre los científicos con respecto a esos temas continúa y que todavía no ha surgido un consenso científico o “mejor práctica” sobre cómo evaluar esos efectos con precisión.

Más aún, estamos al tanto de la literatura que examina los efectos físicos y psicológicos en la salud que puede tener el estrés en una comunidad como Vieques, dadas las seis décadas de actividades militares y la persistente preocupación por los efectos de esas actividades en la salud de la población. Algunos estudios han demostrado que el estrés crónico es un factor de riesgo de enfermedad cardíaca y contribuye a la aparición de enfermedades del sistema inmunológico. El estrés crónico también es un factor importante en el envejecimiento prematuro.

Por último, como indicamos al comienzo de este informe, la ATSDR reconoce que los viequenses están preocupados sobre la salud de todos los que viven en su isla. Esperamos que las conclusiones y recomendaciones de este informe sirvan para la concientización pública acerca de la salud, aumenten el bienestar de las personas y protejan la salud de todos los viequenses.
Apéndice A Resúmenes de los estudios

Tabla de contenidos

Dramatic Increase in Radiation in Vieques.. A-3
Radioactividad en Vieques.. A-6
Environmental Impact of Navy Activities in Vieques... A-9
Metales pesados en la vegetación dominante del área de impacto de Vieques, Puerto Rico ... A-14
Metales tóxicos en la vegetación de la zona civil de Vieques, Puerto Rico .. A-18
Trace Element Composition in Forage Samples from a Military Target Range, Three Agricultural Areas, and One Natural Area in Puerto Rico .. A-22
Evaluación de Metales Pesados en Productos Agrícolas de una Finca con Prácticas Orgánicas en el Bo. Luján Sector Destino de Vieques (Puerto Rico) ... A-27
Determination of Arsenic (As), Cadmium (Cd), Chromium (Cr), Cobalt (Co) and Lead (Pb) in “Smooth Cayenne” Pineapple Fruit, Leaves Tissue and Soil Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) .. A-29
Herbivorous: Additional Evidence of Heavy Metal Mobilization through the Food Web ... A-31
Draft Findings in Vieques, Puerto Rico (AKA Heavy Metals in Reefs Where Bombs Are) .. A-34
Biomagnification of Carcinogenic Metals in Crab Tissue, Vieques, Puerto Rico .. A-37
Evaluación Preliminar de las Condiciones Químicas y Físicas de las Hierbas Marinas Thalassia testudium y Syringodium filiforme en Vieques .. A-40
Estudio Toxicológico de Metales Pesados en Poblaciones de Peces en la Isla de Vieques... A-42
Radiological, Chemical, and Environmental Health Assessment of the Marine Resources of the Isla de Vieques Bombing Range, Bahia Salina del Sur, Puerto Rico ... A-44
Carcinogens Found in Marine Life in Island of Vieques in Puerto Rico .. A-48
Vieques Litigation Support: Explosives Analyses of Water and Soil Samples Taken on Vieques Island, Puerto Rico .. A-51
Vibroacoustic Disease Induced by Long-Term Exposure to Sonic Booms ... A-55
Investigación Científica de los Metales Tóxicos habidos en el Terreno Biológico de niños y adultos viequenses y sus efectos sobre los Minerales Nutrientes .. A-57
Heavy Metal Exposure and Disease in the Proximity of a Military Base .. A-60
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Mercury Contamination in Reproductive Age Women in a Caribbean island: Vieques A-62
Arsenic Detected in Urine, Nails, and Hair Study (no se dispone del título exacto) A-64
Executive Summary of the Prevalence of Heavy Metals in Vieques .. A-66
Título indeterminado .. A-68
No se dispondrá de hallazgos del estudio ... A-68
Exploratory study of health and other conditions in Vieques ... A-71
Incidence and Mortality of Cancer in Vieques 1990-2004 ... A-73
Ex-USS Killen Site Investigation and Biological Characterization, Vieques Island, Naval Station
Roosevelt Roads, Puerto Rico ... A-75
A Tale of Germs, Storms, and Bombs: Geomorphology and Coral Assemblage Structure at Vieques
(Puerto Rico) Compared to St. Croix (U.S. Virgin Islands) ... A-76
Field Data Summary, Vieques Fish Assessment, Vieques, Puerto Rico ... A-77
An Ecological Characterization of the Marine Resources of Vieques, Puerto Rico Part II: Field Studies
of Habitats, Nutrients, Contaminants, Fish, and Benthic Communities .. A-79
Categoría: Datos ambientales – Radiación
Fecha de la publicación: 9 de noviembre de 2001
Título: Dramatic Increase in Radiation in Vieques
Autor(es): Frankie Jiménez
Afiliación: Comité Pro Rescate y Desarrollo de Vieques (CRDV)
Estado de la publicación: Comunicado de prensa
Estado de revisión por expertos: Ninguna
Citado anteriormente por la ATSDR: Sí (Evaluación de salud pública del 2003: Evaluación de la vía del aire)

Hallazgos del estudio
En el 2001, después de dos rondas de bombardeo en Vieques, la obtención de muestras de radiación produjo estos hallazgos:

Tabla A-1. Obtención de muestras de radiación en Vieques, 2001

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Ubicación de donde se tomó la muestra</th>
<th>Nivel de radiación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junio del 2001</td>
<td>Áreas civiles</td>
<td>Ningún aumento</td>
</tr>
<tr>
<td></td>
<td>Playa Yayí (cerca del campo de bombardeo)</td>
<td>Aumento de 60%</td>
</tr>
<tr>
<td>Septiembre-octubre del 2001</td>
<td>Playa Esperanza (área civil, costa sur)</td>
<td>Aumento de 248%</td>
</tr>
<tr>
<td></td>
<td>Pueblo principal (Isabel II, costa norte)</td>
<td>Aumento de 225%</td>
</tr>
</tbody>
</table>

Los autores atribuyeron el aumento de la radiación a la dispersión del suelo contaminado por el uso pasado de proyectiles con cabeza de uranio empobrecido (depleted uranium, DU) en el Área de Impacto de Proyectiles Activos (LIA). En el comunicado de prensa no se indicó cómo se midieron los niveles de radiación, qué tipos de radiación se midieron ni las cantidades de radiación que efectivamente se detectaron.

No obstante, en el comunicado se expresó desaprobación para los ejercicios de bombardeo futuros previstos para noviembre-diciembre del 2001.
Cómo abordó la ATSDR los hallazgos del estudio

En el 2002, la ATSDR se comunicó con el Comité Pro Rescate y Desarrollo de Vieques (CRDV) para obtener más información acerca de esta iniciativa de obtención de muestras, pero no recibió respuesta. No fue posible confirmar el alegato de que los niveles de radiación aumentaron en Vieques durante los ejercicios de adiestramiento militar. No fue posible tomar decisiones relativas a la salud pública basadas en el informe de un aumento del 248% de los niveles de radiación sin contar con datos. El indicador más importante de exposición es el nivel concreto de radiación, no el aumento relativo. No fue posible obtener una confirmación de las declaraciones expresadas en el comunicado de prensa. No obstante, en la sección V.D de la Evaluación de la vía del aire de la PHA, la ATSDR utilizó niveles de base establecidos para investigar las implicaciones para la salud pública del aumento de radiación informado.

A fin de calcular el efecto de un aumento informado del 248% de la dosis, la ATSDR utilizó datos recopilados por la Comisión Reguladora Nuclear (Nuclear Regulatory Commission, NRC) para establecer los niveles de base de radiación. En junio del 2000, la NRC registró mediciones de la tasa de dosis de radiación en 29 ubicaciones en las áreas residenciales de Vieques con un medidor Ludlum Modelo 19 microR. Estas observaciones se obtuvieron a una distancia de 1 metro sobre la superficie del suelo. La tasa de exposición promedio de las 29 mediciones fue 4 microroentgens por hora (µR/hora), lo cual equivale a aproximadamente 4 microrem por hora (µrem/hora). La ATSDR supuso que esa tasa de dosis representaba los niveles de base de radiación externa en las áreas residenciales de Vieques. Si los datos del CRDV se basaron en observaciones similares de la tasa de dosis, un aumento del 248% de la radiación implicaría que los niveles de radiación aumentaron de 4 µrem/hora a 14 µrem/hora, o hubo un aumento neto por encima del nivel de base de 10 µrem/hora. Suponiendo que ese aumento por encima del nivel de base se haya producido las 24 horas del día durante 90 días por año (es decir, la cantidad máxima de tiempo que la Marina realizaba ejercicios de adiestramiento militar en Vieques), el aumento total en la dosis de radiación en el año sería 22 mrem, un nivel que se encuentra muy por debajo del nivel mínimo de riesgo (MRL) crónico para radiación ionizante de la ATSDR. El MRL se define como un aumento de la radiación ionizante de 100 mrem por encima del nivel de base por año. Dados esos parámetros, la ATSDR no considera que un aumento del 248% sea indicativo de exposición a radiación a niveles preocupantes, suponiendo una tasa de exposición de 4 µrem/hora.

De hecho, la ATSDR observó que los niveles de radiación medidos en el estudio de la NRC parecen ubicarse cómodamente dentro de los niveles de base observados en todo el territorio de los Estados Unidos. Y en un comunicado de prensa no relacionado con el CRDV (Hermandad de Reconciliación [Fellowship of Reconciliation] 2001) se anunció que el nivel más alto de radiación medido durante el reciente reconocimiento de Vieques fue 18 µR/hora, lo cual equivale a aproximadamente 18 µrem/hora. Esos niveles son similares a las lecturas de reconocimiento recogidas en otros lugares de los Estados Unidos; son considerablemente más bajos que las mediciones de base de muchas áreas que se encuentran a varios miles de pies sobre el nivel del mar como Denver, Colorado. Debido a su elevación más alta, es de esperar que Denver tenga niveles de radiación por encima del promedio.

Como parte del análisis de la agencia sobre los datos, la ATSDR volvió a solicitar más información sobre el estudio. En respuesta a la solicitud de la ATSDR, se recibió el informe “Radioactividad en Vieques” el 5 de agosto del 2009.
Bibliografía

Categoría: Datos ambientales – Radiación
Fecha de la publicación: Alrededor de 2000
Título: Radioactividad en Vieques
Autor(es): Frankie Jiménez
Afiliación: Comité Pro Rescate y Desarrollo de Vieques (CRDV)
Estado de la publicación: Auto-publicación
Estado de revisión por expertos: Ninguna
Citado anteriormente por la ATSDR: No

Hallazgos del estudio

Entre el 7 de octubre de 1999 y el 3 de febrero de 2000, se obtuvieron muestras de radiación en el Área de Impacto de Proyectiles Activos (LIA). El investigador recolectó las muestras en respuesta al uso accidental por parte de la Marina de los EE.UU. de proyectiles con uranio empobrecido el 19 de febrero de 1999. El investigador realizó mediciones de radiación gamma alrededor de los blancos (p. ej., tanques y aeronaves), de los caminos que conducían a los blancos y de las áreas en las que se enterraron antiguos blancos. La medición de Playa Yayí se utilizó como ubicación de base.

Según el informe del investigador, las muestras se obtuvieron con un instrumento “fabricado por la Corporación de Investigación Nuclear”. El informe no aportaba más información sobre el dispositivo para la obtención de las muestras ni enumeraba las cantidades concretas de radiación detectadas en otras ubicaciones. En cambio, proporcionaba el aumento porcentual con respecto a las lecturas obtenidas en Playa Yayí. Por último, el informe no especificaba el tiempo promedio para las mediciones individuales. Por lo tanto, no está claro si los hallazgos se basaron en niveles máximos de radiación instantáneos o en promedios sostenidos.

<table>
<thead>
<tr>
<th>Ubicación de donde se tomó la muestra</th>
<th>Nivel de radiación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Playa Yayí (ubicación de base)</td>
<td>7 µR/h</td>
</tr>
<tr>
<td>Campamento Mayor of Cataño</td>
<td>Aumento de 30%</td>
</tr>
<tr>
<td>Varias aeronaves detrás del campamento “Pro Vieques”</td>
<td>Aumento del 50% frente a los aviones, “normal” lejos de los aviones</td>
</tr>
<tr>
<td>Tanque justo enfrente de la montaña</td>
<td>Aumento de 200%</td>
</tr>
<tr>
<td>Tanque en la cima de la montaña</td>
<td>Aumento de 100%</td>
</tr>
<tr>
<td>Caminos que llevan a los blancos</td>
<td>Aumento de 100%, “normal” inmediatamente más allá de los caminos</td>
</tr>
<tr>
<td>Tanques cerca del campamento Monte David</td>
<td>Aumento de 50%</td>
</tr>
<tr>
<td>Pendiente de la montaña cercana al campamento Monte David</td>
<td>Aumento de 220%</td>
</tr>
<tr>
<td>Tanque cerca de Playa Salina Sur</td>
<td>Aumento de 100%</td>
</tr>
</tbody>
</table>

µR/h = microroentgen por hora

Al principio del artículo, el investigador señaló que los niveles de radiación en el LIA eran “de más del 500% de lo normal”. Pero 220% fue el aumento porcentual más alto mencionado. Dado que ciertas áreas mostraban niveles de radioactividad “por encima de lo normal”, el investigador llegó a la conclusión de que había material radioactivo presente en los blancos y sus alrededores, y también bajo la superficie (p. ej., en caminos y cementerios). Tras completar la obtención de algunas muestras, el 19 de enero de 2000 el investigador presentó una reclamación ante la Comisión Reguladora Nuclear (NRC). Es posible que esa reclamación haya dado pie al estudio de la NRC que se revisó en la Evaluación de la vía del aire de la PHA.

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR recibió este informe el 5 de agosto de 2009. Debido a que este informe —al igual que un comunicado de prensa contemporáneo, titulado Dramático aumento de la radiación en Vieques— no contenía una lectura concreta de niveles de radiación, la ATSDR investigó las implicaciones para la salud pública del aumento informado de radiación utilizando el mismo abordaje que presentó en la sección V.D de la Evaluación de la vía del aire de la PHA. Un aumento del 220% de radiación implicaría que los niveles de radiación aumentaron del nivel de base de 7 µrem/hora (que equivale aproximadamente a 7 microrem por hora [µrem/hora]) a 22 µrem/hora, esto es un aumento neto por encima del nivel de base de 15 µrem/hora. Suponiendo que ese aumento por encima del nivel de base se haya producido 24 horas al día, 365 días por año, el aumento total en la dosis de radiación en el año fue 131 mrem. El nivel mínimo de riesgo (MRL) crónico de la ATSDR para la radiación ionizante sedefine como un aumento de la dosis de radiación ionizante de 100 mrem por encima del nivel de base por año. Aún cuando esa dosis calculada superaba el MRL de la ATSDR, el cálculo no tuvo en cuenta la ocupación individual. Es decir que, para superar ese MRL, una persona debería encontrar la ubicación con el nivel de radiación elevado y permanecer allí las 24 horas del día durante todo un año. Un escenario más realista —aunque, de
todos modos, poco probable — sería que una persona permaneciera en la ubicación durante 4 horas por día en el transcurso de un año. Eso daría como resultado un aumento de la dosis radiológica de 20 mrem en el año.

Por lo tanto, en lo que respecta al método concreto utilizado para detectar la radiación, la información provista es de uso limitado: no se especificó el rango de base. Por lo general, las mediciones de radiación gamma oscilan entre 3 y 5 µR/h. Como indicó el autor, la medición de base fue 7 µR/h, que, para la ATSDR, podría ascender hasta 11 o 12 µR/h. Dicha variación en el medidor también podría explicar los grandes porcentajes observados. Por ejemplo, si el promedio fuera 7 µR/h, un aumento de 3 µR/h representaría un aumento del 50%.

Además, si bien el uranio empobrecido (DU) es radioactivo, su emisión de radiación gamma es baja. No se sumaría a la radiación ambiente de base detectable por el tipo de medidor de radiación utilizado en este estudio. De hecho, Naciones Unidas estim que la radiación por DU es tan débil que quedaría bloqueada por el suelo en el que fue enterrado.35 Por lo tanto, la ATSDR considera que la radiación por DU reportada fue errónea.

Hallazgos del estudio

Entre mayo de 1999 y abril de 2000, personal de Servicios Científicos y Técnicos, Inc. recogió y analizó muestras de suelo, sedimento y agua superficial de 55 ubicaciones de Vieques. El propósito era determinar los niveles de metales y otros compuestos inorgánicos en el ecosistema de Vieques. Cuarenta y dos muestras se obtuvieron en el LIA: específicamente, en áreas de impacto directo, áreas de blancos y áreas cercanas. Cinco muestras se obtuvieron en la Zona de Conservación Punta Este y seis se obtuvieron en el área residencial. Once muestras de agua se obtuvieron de lagunas del LIA, de la Playa Carrucho y de la Zona de Conservación Punta Este. El análisis de las muestras incluyó las concentraciones más altas y la segunda concentración más alta:
Tabla A-3. Muestras de agua de lagunas del LIA

<table>
<thead>
<tr>
<th>Sustancia química</th>
<th>Concentración más alta (ppm)</th>
<th>Tipo de muestra</th>
<th>Segunda concentración más alta (ppm)</th>
<th>Tipo de muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio</td>
<td>24,500</td>
<td>suelo</td>
<td>23,600</td>
<td>suelo</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>50.1</td>
<td>sedimento</td>
<td>46.8</td>
<td>suelo</td>
</tr>
<tr>
<td>Arsénico</td>
<td>20.2</td>
<td>suelo</td>
<td>16.4</td>
<td>suelo</td>
</tr>
<tr>
<td>Bario</td>
<td>1,170</td>
<td>suelo</td>
<td>1,100</td>
<td>suelo</td>
</tr>
<tr>
<td>Cadmio</td>
<td>31.3</td>
<td>suelo</td>
<td>27.4</td>
<td>suelo</td>
</tr>
<tr>
<td>Cromo</td>
<td>40.2</td>
<td>sedimento</td>
<td>31.9</td>
<td>suelo</td>
</tr>
<tr>
<td>Cobalto</td>
<td>26.4</td>
<td>suelo</td>
<td>21.4</td>
<td>suelo</td>
</tr>
<tr>
<td>Cobre</td>
<td>501</td>
<td>suelo</td>
<td>313</td>
<td>suelo</td>
</tr>
<tr>
<td>Hierro</td>
<td>67,900</td>
<td>suelo</td>
<td>51,400</td>
<td>sedimento</td>
</tr>
<tr>
<td>Plomo</td>
<td>138</td>
<td>sedimento</td>
<td>75.4</td>
<td>suelo</td>
</tr>
<tr>
<td>Manganoso</td>
<td>1,111</td>
<td>suelo</td>
<td>811</td>
<td>suelo</td>
</tr>
<tr>
<td>Mercurio</td>
<td>4.21</td>
<td>sedimento</td>
<td>0.329</td>
<td>sedimento</td>
</tr>
<tr>
<td>Níquel</td>
<td>68.7</td>
<td>suelo</td>
<td>32.9</td>
<td>sedimento</td>
</tr>
<tr>
<td>Nitratos más nitritos</td>
<td>50.8</td>
<td>sedimento</td>
<td>30.2</td>
<td>suelo</td>
</tr>
<tr>
<td>Fósforo</td>
<td>40.4</td>
<td>suelo</td>
<td>16</td>
<td>sedimento</td>
</tr>
<tr>
<td>Selenio</td>
<td>1.48</td>
<td>sedimento</td>
<td>1.34</td>
<td>sedimento</td>
</tr>
<tr>
<td>Plata</td>
<td>0.625</td>
<td>suelo</td>
<td>0.526</td>
<td>sedimento</td>
</tr>
<tr>
<td>Sulfato</td>
<td>8,590</td>
<td>NA</td>
<td>8,380</td>
<td>NA</td>
</tr>
<tr>
<td>Estaño</td>
<td>38.7</td>
<td>agua superficial</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Vanadio</td>
<td>178</td>
<td>suelo</td>
<td>164</td>
<td>suelo</td>
</tr>
<tr>
<td>Zinc</td>
<td>872</td>
<td>suelo</td>
<td>325</td>
<td>suelo</td>
</tr>
</tbody>
</table>

NA = no disponible
ppm = partes por millón

Los autores informaron que los niveles más altos de metales y otras sustancias se encontraban en las muestras de sedimento, suelo y agua obtenidas en el LIA, a diferencia de las muestras recolectadas en el territorio del este y en la zona civil. Las concentraciones de zinc y cobre del LIA eran más altas que las que informó el USGS en 1973. Los autores recomendaron obtener muestras ambientales adicionales en el área civil y la parte occidental de Vieques, así como muestras de biomonitorio de los residentes de Vieques.

Cómo abordó la ATSDR los hallazgos del estudio

En una comparación estadística con otros datos del LIA, estos datos mostraron que nueve de las 20 sustancias químicas eran significativamente diferentes (más altas, p < 0.05): amoníaco, bario, cadmio,
cobre, plomo, mercurio, níquel, nitratos/nitritos y zinc. Esto no implica discrepancia alguna entre los datos; simplemente significa que usar solo la detección más alta y la segunda más alta en lugar del conjunto de datos completo tergiversaría cualquier resultado. Por lo tanto, esos datos no se utilizaron en los análisis estadísticos para evaluar las características generales del suelo. No obstante, sí se utilizaron para formar las siguientes conclusiones durante las evaluaciones de salud pública de la Evaluación de la vía del suelo de la PHA (vea la sección IV de la Evaluación de la vía del suelo):

- Durante el proceso de evaluación de la salud pública, se consideraron todos los datos de muestras de suelo disponibles, incluidos los datos presentados en el informe preparado por Servicios Científicos y Técnicos.
- Para evaluar la exposición en seres humanos, la ATSDR compiló aproximadamente 600 muestras de suelo/sedimento (para ver un resumen de la obtención de muestras de suelo, vea las páginas 13-15 de la PHA).
- Actualmente, los residentes de Vieques no están expuestos a niveles perjudiciales de sustancias químicas en el suelo.
- Si bien en el pasado las actividades de adiestramiento de la Marina elevaron los niveles de algunos metales en el suelo del antiguo LIA, esos niveles siguen siendo demasiado bajos como para constituir una preocupación de salud.
- Los manifestantes que vivieron en el LIA durante un año (1999-2000) son los que tuvieron la exposición más prolongada a los contaminantes del suelo del LIA. La ATSDR analizó los datos del suelo recopilados por Servicios Científicos y Técnicos —junto con datos de la Marina— de áreas en las que vivieron los manifestantes. La ATSDR determinó que los manifestantes no estuvieron expuestos a niveles perjudiciales de sustancias químicas en el suelo.
Hallazgos del estudio

Las lagunas Gato y Anones se encuentran en el lado occidental del Área de Impacto de Proyectiles Activos (LIA), cerca del Área de Impacto de Superficie (SIA). El 12 de febrero de 2000, con el fin de caracterizar la contaminación por metales pesados, se obtuvo una muestra de sedimento de cada laguna. Las muestras se tomaron únicamente de las zonas secas de las lagunas.

Las muestras tenían 50 y 30 centímetros de profundidad y fueron analizadas a intervalos de 10 y 5 centímetros (Gato y Anones, respectivamente). Los autores informaron que, con respecto a la profundidad, los metales estaban distribuidos casi homogéneamente. No aparecieron diferencias significativas en las concentraciones de metales pesados a diferentes profundidades ni tampoco entre las lagunas. Los autores señalaron que los “resultados muestran un alto grado de mezcla en los sedimentos, hasta por lo menos 50 cm (20 pulgadas) de profundidad, a causa, principalmente, de la intensidad de los impactos de las bombas en el área”.

Los autores informaron los resultados de la obtención de muestras en una gráfica de barras. A continuación se presenta una interpretación aproximada de sus datos.
Tabla A-4. Muestras de sedimento de las lagunas Gato y Anones

<table>
<thead>
<tr>
<th></th>
<th>Cobre</th>
<th>Cobalto</th>
<th>Cadmio</th>
<th>Plomo</th>
<th>Níquel</th>
<th>Cromo</th>
<th>Manganeso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gato</td>
<td>40 – 60</td>
<td>60 – 100</td>
<td>60 – 100</td>
<td>100 – 130</td>
<td>60 – 125</td>
<td>300 – 500</td>
<td>900 – 1750</td>
</tr>
<tr>
<td>Anones</td>
<td>40 – 85</td>
<td>75 – 110</td>
<td>75 – 110</td>
<td>90 – 140</td>
<td>75 – 100</td>
<td>200 – 250</td>
<td>600 – 1000</td>
</tr>
</tbody>
</table>

No se citó ninguna guía de salud.

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR obtuvo este estudio en julio de 2009 y revisó los datos como parte de su evaluación sobre Vieques.

Estos datos fueron recogidos en el antiguo LIA, un área restringida. Por lo tanto, nadie está expuesto en forma continua a esas sustancias químicas. El potencial de exposición más prolongada se produjo entre abril de 1999 y mayo de 2000, cuando un grupo de manifestantes ocupó el LIA. Como se informó en Massol-Deyá y Díaz (2002), las concentraciones máximas de cobalto, cadmio, plomo, níquel, cromo y manganeso fueron más altas que las concentraciones evaluadas en la Evaluación de la vía del suelo del 2003. Al establecer la correspondencia con valores de comparación basados en la salud, las concentraciones de cadmio y cromo también eran altas. No obstante, como se señaló, el acceso al antiguo LIA sigue estando restringido (incluidas las lagunas Gato y Anones).
Categoría: Datos ambientales – Plantas
Fecha de la publicación: 10 de abril de 2000
Título: Metales pesados en la vegetación dominante del área de impacto de Vieques, Puerto Rico
Autor(es): Arturo Massol-Deyá y Elba Díaz
Afiliación: Casa Pueblo de Adjuntas y Universidad de Puerto Rico, Mayagüez
Estado de la publicación: Auto-publicación
Estado de revisión por expertos: Ninguna
Citado anteriormente por la ATSDR: Sí (Evaluación de salud pública del 2003: Evaluación de la vía del suelo)

Hallazgos del estudio

En febrero y marzo de 2000, investigadores de Casa Pueblo y el Recinto Universitario de Mayagüez (RUM) de la Universidad de Puerto Rico tomaron muestras de la vegetación para detectar metales pesados en el Área de Impacto de Proyectiles Activos (LIA) (específicamente, en Playa Carrucho, Monte David y las lagunas Gato e Icacos). También se recolectaron poblaciones de referencia de las mismas especies en Bosque Seco de Guánica y la finca RUM Alzamora. Los investigadores obtuvieron muestras de las siguientes plantas:

- *Urochloa maxima* (raíz y tallo),
- *Sporobolus virginicus* (raíz y tallo),
- *Syringodium filiform* (tallo),
- *Ipomoea violaceae* (fruto),
- *Faidherbia albida* (tallo) y
- *Calotropis procera* (hojas).

Las concentraciones promedio se presentan en la Tabla A-5
Los autores informaron que en la vegetación de Vieques, las concentraciones de metales pesados como plomo, cobalto y manganeso fueron significativamente más altas que las concentraciones detectadas en las ubicaciones de referencia. Los autores concluyeron que con los niveles detectados, si las personas consumieran esas plantas estarían expuestas a dosis críticamente peligrosas. Los autores recomendaron tareas de reparación para reducir el transporte de sustancias químicas del LIA a las áreas residenciales.

Cómo abordaron la ATSDR y el Departamento de Agricultura de Puerto Rico los hallazgos del estudio

Este y otros estudios realizados por los mismos investigadores informaron la presencia de metales en plantas y ganado. En consecuencia, el 7 de agosto de 2001, el Departamento de Agricultura de Puerto Rico puso un embargo en los productos agrícolas y el ganado de Vieques. Luego, el Departamento de

<table>
<thead>
<tr>
<th>Tabla A-5. Resultados de las muestras de vegetación del LIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentraciones promedio (µg/g)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Playa Carrucho</td>
</tr>
<tr>
<td>S. filiforme</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>33.32 29.60 28.66 58.23 2.78 2.78 30.48 9929.14 106.24</td>
</tr>
<tr>
<td>Sargazo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monte David</td>
</tr>
<tr>
<td>U. maxima (raíz)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>12.85 63.66 14.19 115.44 21.04 2.89 17.10 2550.16 65.78</td>
</tr>
<tr>
<td>U. maxima (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>10.25 48.65 5.08 135.02 5.99 1.57 4.03 1667.61 42.98</td>
</tr>
<tr>
<td>C. procera (hojas)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>30.05 68.40 18.08 287.94 12.68 3.11 4.63 11401.98 112.47</td>
</tr>
<tr>
<td>A. farnesiana (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>8.13 10.15 5.33 18.27 2.86 ND 12.93 2095.67 15.14</td>
</tr>
<tr>
<td>Laguna Icacos</td>
</tr>
<tr>
<td>Planta acuática</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>2.69 36.31 29.31 1740.42 42.14 4.63 12.93 - 68.97</td>
</tr>
<tr>
<td>Laguna Gato</td>
</tr>
<tr>
<td>I. violaceae (fruto)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>32.61 25.75 7.64 40.31 1.17 ND 9.39 1867.95 50.86</td>
</tr>
<tr>
<td>S. virginicus (raíz)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>17.17 68.61 78.26 882.35 182.62 1.18 10.36 5135.36 73.20</td>
</tr>
<tr>
<td>S. virginicus (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>30.45 34.81 ND 670.57 5.32 ND ND 1553.96 24.40</td>
</tr>
<tr>
<td>S. pyramidatus (raíz)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>18.77 22.91 7.14 156.23 15.77 2.25 9.02 4450.16 45.06</td>
</tr>
<tr>
<td>S. pyramidatus (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>12.19 2.73 1.25 31.75 3.03 ND ND 2931.47 15.60</td>
</tr>
<tr>
<td>Bosque Seco de Guánica y Finca Alzamora (poblaciones de referencia)</td>
</tr>
<tr>
<td>C. procera (hojas)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>1.29 2.59 5.17 17.85 9.31 1.03 5.69 - 19.91</td>
</tr>
<tr>
<td>S. filiforme (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>5.57 4.19 14.64 251.44 27.93 2.79 15.39 - 59.31</td>
</tr>
<tr>
<td>S. virginicus (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>0.60 3.11 5.36 7.54 7.35 0.79 2.76 - 14.83</td>
</tr>
<tr>
<td>U. maxima (raíz)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>ND 6.89 19.95 78.61 23.75 0.80 14.52 - 75.77</td>
</tr>
<tr>
<td>U. maxima (tallo)</td>
</tr>
<tr>
<td>Plomo Cobalto Níquel Manganeso Cromo Cadmio Cobre Magnesio Zinc</td>
</tr>
<tr>
<td>ND 4.69 10.50 35.19 12.24 0.60 12.93 - 59.53</td>
</tr>
</tbody>
</table>

ND = no detectado
Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino para analizar la presencia de cadmio, cobalto, cobre, plomo, manganeso y níquel. Las muestras se obtuvieron en Monte Carmelo, Martineau, Monte Santo, Esperanza, Luján, Gubeo y el oeste de Vieques. El análisis de las muestras arrojó la conclusión de que los productos agrícolas de Vieques eran, de hecho, aptos para el consumo y no contenían niveles tóxicos de los contaminantes mencionados (Departamento de Agricultura 2001). Dado que los investigadores del gobierno y la Asociación de Agricultores no pudieron repetir los resultados del Dr. Massol, se levantó el embargo (El Nuevo Día 2001).

Como parte de la evaluación de salud pública anterior, la ATSDR solicitó que un agrónomo del Departamento de Agricultura de los EE.UU. (USDA) hiciera una revisión independiente de los estudios de Casa Pueblo y RUM. El agrónomo determinó que, si bien los estudios proporcionaban evidencia de acumulación de metales pesados en las plantas, las limitaciones de los estudios impedían calcular una dosis de exposición en seres humanos. El agrónomo también concluyó que:

- Muchas de las especies de las que se obtuvieron muestras para este estudio no se consumían y cuando las muestras eran de especies comestibles, no se tomaron en cuenta las partes comestibles. La mejor forma de calcular la exposición en seres humanos a partir de alimentos cultivados en el lugar es utilizar las partes comestibles del alimento. En general, es menos probable que las partes comestibles de las plantas acumulen metales del suelo, debido a los procesos normales de las plantas (es decir, barreras fisiológicas que impiden que los contaminantes lleguen a la parte superior de las plantas) (ATSDR 2001).

- Además, los estudios carecían de materiales de referencia estándares para demostrar que los resultados eran precisos y carecían de correcciones de base para plomo, cobalto, níquel y cadmio, cuyo objetivo es eliminar el efecto de dispersión de la luz por parte de cualquier material no esencial presente en las muestras.

- El análisis de metales tampoco indicaba si los metales eran biodisponibles. Esto es importante porque las muestras de vegetación incluyen contaminantes captados por la planta y también partículas del suelo de los medios de cultivo. Por tanto, incluso con un lavado exhaustivo, pequeñas partículas de suelo se adhieren a los materiales de la planta y, en efecto, pueden contener más contaminantes que los que capta la planta del suelo (ATSDR 2001). Cuando se ingiere la contaminación externa del suelo, las sustancias químicas unidas al suelo no suelen estar en una forma que el cuerpo pueda absorber. Si bien existen métodos disponibles para determinar qué cantidad de la concentración de una sustancia química está adherida al suelo y qué cantidad está en el tejido de la planta, los investigadores no los usaron en este estudio.

Por tanto, la ATSDR no pudo cuantificar la exposición en seres humanos ni sacar conclusiones relativas a la salud acerca de si el consumo de plantas cultivadas en Vieques provocaría efectos perjudiciales para la salud. Como parte de su evaluación, la ATSDR recomendó la obtención de muestras adicionales de productos agrícolas de subsistencia.
Bibliografía

Hallazgos del estudio

Investigadores de Casa Pueblo y el Recinto Universitario de Mayagüez (RUM) de la Universidad de Puerto Rico recogieron aleatoriamente vegetación agrícola y común de tres sitios de 1) una sección residencial de Vieques, 2) un área agrícola de Monte Carmelo y también de una sección de Monte Carmelo que lindera con el Campamento García y 3) una finca agrícola en Barrio Monte Santo, sector Gobeo. Sin embargo, el artículo escrito limitó el análisis a las dos fincas de las que se obtuvieron muestras en el área civil de Vieques y centró sus conclusiones y recomendaciones en plantas cultivadas para una economía agrícola.

El estudio informó que todos los metales (cadmio, cobalto, cobre, plomo y manganeso) se hallaron a niveles tóxicos. El plomo y el cadmio tenían las tasas de absorción más altas. Las muestras incluyeron hojas y tallos de calabaza, pimiento, gandules, piña y yuca. Solo el guamá y los mangos mostraron niveles aceptables de metales.

El estudio informó las siguientes concentraciones promedio halladas en los tallos y hojas de plantas. No informó las concentraciones en las partes comestibles de las plantas de las que se obtuvieron las muestras (vea la Tabla A-6).

Los autores concluyeron que las concentraciones más altas de metales se hallaban en las plantas con raíces poco profundas —donde se esperaría hallar niveles más altos de contaminación en el suelo— y en las plantas que requerían tasas de riego más altas (mayor acceso a la contaminación del suelo).

Las recomendaciones del estudio incluyeron:

- Cese permanente de las actividades que provocan contaminación
- Una moratoria del consumo de plantas cultivadas en Vieques y compensación para los granjeros
- Acciones preventivas para niños que son más sensibles a las toxinas

Cómo abordaron la ATSDR y el Departamento de Agricultura de Puerto Rico los hallazgos del estudio

Debido a que este y otros estudios realizados por los mismos investigadores informaron la presencia de metales en las plantas (Massol 2000) y el ganado (Massol 2001), el Departamento de Agricultura de Puerto Rico puso un embargo en los productos agrícolas y ganaderos de Vieques el 7 de agosto de 2001. El Departamento de Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino de Monte Carmelo, Martineau, Monte Santo, Esperanza, Luján, Gubeo y el oeste de Vieques para analizar la presencia de cadmio, cobalto, cobre, plomo, manganeso y níquel. El Departamento de Agricultura y la Asociación de Agricultores concluyeron que los productos agrícolas de Vieques eran aptos para el consumo y no contenían niveles tóxicos de los metales mencionados (Departamento de Agricultura 2001). Cuando el Departamento de Agricultura y la Asociación de Agricultores no pudieron repetir los resultados del Dr. Massol, se levantó el embargo (El Nuevo Día 2001).
Tabla A-6. Muestras de vegetación

<table>
<thead>
<tr>
<th></th>
<th>Concentraciones promedio (µg/g, peso seco)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plomo</td>
</tr>
<tr>
<td>Monte Carmelo, zona agrícola</td>
<td></td>
</tr>
<tr>
<td>C. procera (hojas)</td>
<td>62.16</td>
</tr>
<tr>
<td>A. farnesiana (hojas)</td>
<td>11.77</td>
</tr>
<tr>
<td>A. farnesiana (tallo)</td>
<td>13.04</td>
</tr>
<tr>
<td>U. maxima (hojas)</td>
<td>8.97</td>
</tr>
<tr>
<td>Calabaza (hojas)</td>
<td>42.23</td>
</tr>
<tr>
<td>Pimiento (hojas)</td>
<td>22.64</td>
</tr>
<tr>
<td>Pimiento (tallos)</td>
<td>11.85</td>
</tr>
<tr>
<td>Gandules (hojas)</td>
<td>10.59</td>
</tr>
<tr>
<td>Gandules (tallos)</td>
<td>4.80</td>
</tr>
<tr>
<td>Bo. Monte Santo. Sector Gobeo</td>
<td></td>
</tr>
<tr>
<td>Pimiento (hojas)</td>
<td>39.52</td>
</tr>
<tr>
<td>Pimiento (tallo)</td>
<td>44.65</td>
</tr>
<tr>
<td>Mango (hojas)</td>
<td>12.40</td>
</tr>
<tr>
<td>Yuca (hojas)</td>
<td>29.23</td>
</tr>
<tr>
<td>Guamá (hojas)</td>
<td>7.80</td>
</tr>
<tr>
<td>Plátano (hojas)</td>
<td>29.99</td>
</tr>
<tr>
<td>Gandules (hojas)</td>
<td>49.14</td>
</tr>
<tr>
<td>Gandules (tallo)</td>
<td>63.17</td>
</tr>
<tr>
<td>Calabaza (hojas)</td>
<td>17.02</td>
</tr>
<tr>
<td>U. maxima (hojas)</td>
<td>8.58</td>
</tr>
<tr>
<td>Piña (hojas)</td>
<td>40.46</td>
</tr>
<tr>
<td>Quenepa (hojas)</td>
<td>18.68</td>
</tr>
</tbody>
</table>

Como parte de la evaluación de salud pública de 2001, la ATSDR solicitó una revisión independiente del estudio por parte de un agrónomo del Departamento de Agricultura de los EE.UU. (USDA). Ese agrónomo determinó que, si bien los estudios proporcionaban evidencia de acumulación de metales pesados en las plantas, las limitaciones del estudio impedían calcular una dosis de exposición en seres humanos. El agrónomo también concluyó que:

Muchas de las especies de las que se obtuvieron muestras para este estudio no se consumen y cuando las muestras eran de especies comestibles, no se tomaron en cuenta las partes comestibles. La mejor forma de calcular la exposición en seres humanos a partir de alimentos cultivados en el lugar es utilizar las partes comestibles del alimento. En general, es menos probable que
las partes comestibles de plantas acumulen metales del suelo, debido a los procesos normales de las plantas (p. ej., barreras fisiológicas que impiden que los contaminantes lleguen a la parte superior de las plantas) (ATSDR 2001).

Para el estudio no se habían utilizado materiales de referencia estándares para demostrar que los resultados eran precisos. El estudio también carecía de correcciones de base para plomo, cobalto, níquel y cadmio, con el fin de eliminar el efecto de dispersión de la luz por parte de materiales no esenciales presentes en las muestras.

El análisis de metales no indicaba si los metales eran biodisponibles. Esto es importante porque las muestras de vegetación incluyen contaminantes captados por la planta y también partículas del suelo de los medios de cultivo. Incluso con un lavado exhaustivo, pequeñas partículas de suelo se adhieren a los materiales de la planta y, en efecto, pueden contener más contaminantes que los que capta la planta del suelo (ATSDR 2001). Cuando se ingiere la contaminación externa del suelo, las sustancias químicas unidas al suelo no suelen estar en una forma que el cuerpo pueda absorber. Si bien existen métodos disponibles para determinar qué cantidad de la concentración de una sustancia química se adhiere al suelo y qué cantidad está en el tejido de la planta, los investigadores no emplearon dichos métodos en este estudio.

Debido a esos factores, la ATSDR no pudo cuantificar la exposición en seres humanos ni sacar conclusiones relativas a la salud acerca de si el consumo de plantas cultivadas en Vieques provocaría efectos perjudiciales para la salud. Como parte de su evaluación, la ATSDR recomendó la obtención de muestras adicionales de productos agrícolas de subsistencia.

Bibliografía

Categoría: Datos ambientales – Plantas

Fecha de la publicación: 2003

Título: Trace Element Composition in Forage Samples from a Military Target Range, Three Agricultural Areas, and One Natural Area in Puerto Rico

Autor(es): Elba Díaz y Arturo Massol-Deyá

Afiliación: Universidad de Puerto Rico, Mayagüez

Estado de revisión por expertos: Revisada por expertos

Citado anteriormente por la ATSDR: No

Hallazgos del estudio

En este artículo se analizan los mismos datos que los autores publicaron el 10 de abril de 2000: muestras de plantas recolectadas en febrero y marzo de 2000 en las que se analizó la presencia de metales pesados. El artículo compara las concentraciones halladas en Vieques con las concentraciones detectadas en la isla principal de Puerto Rico. El muestreo de 2000 incluía tallos y hojas de plantas, pero no incluía las partes comestibles de las plantas de las que se obtuvieron muestras. No obstante, esta publicación revisada por expertos sí aportó más información sobre la obtención de las muestras, la preparación y las técnicas analíticas que el informe de abril de 2000.

Además de los datos sobre la obtención de muestras de 2000, este artículo incluyó nuevas muestras de hojas y fruto de C. cajan (gandules) recolectadas el 18 de agosto de 2001, y analizó la relación de contaminación detectada en el fruto respecto de la contaminación detectada en las hojas.

En la Tabla 1 del estudio, se compararon las hojas y tallos de cuatro especies vegetales. Cuando esos hallazgos se compararon con muestras de la isla principal de Puerto Rico, las muestras vegetales de Vieques contenían más plomo, cobalto y manganeso, pero menos cromo y cobre. En el caso del níquel y el cadmio, los resultados fueron variados.
TABLA 1. Análisis elemental de las muestras de hojas recolectadas en dos ubicaciones en Puerto Rico

<table>
<thead>
<tr>
<th></th>
<th>Pb</th>
<th>Co</th>
<th>Ni</th>
<th>Mn</th>
<th>Cr</th>
<th>Cd</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guánica, State Forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calotropis procera</td>
<td>1.29</td>
<td>2.59</td>
<td>5.17</td>
<td>17.85</td>
<td>9.31</td>
<td>1.03</td>
<td>5.69</td>
</tr>
<tr>
<td>Syringodium filiforme</td>
<td>5.57</td>
<td>4.19</td>
<td>14.64</td>
<td>251.44</td>
<td>27.93</td>
<td>2.79</td>
<td>15.39</td>
</tr>
<tr>
<td>Sporobolus virginicus</td>
<td>0.60</td>
<td>3.11</td>
<td>5.26</td>
<td>7.54</td>
<td>7.35</td>
<td>0.71</td>
<td>2.76</td>
</tr>
<tr>
<td>Pancium maximum</td>
<td>nd</td>
<td>4.89</td>
<td>10.30</td>
<td>35.19</td>
<td>12.24</td>
<td>0.60</td>
<td>12.93</td>
</tr>
</tbody>
</table>

Vieques, AFNTE							
Calotropis procera	30.05	68.40	18.08	287.94	12.68	3.11	4.63
Syringodium filiforme	33.52	29.60	28.66	58.23	2.78	2.78	30.48
Sporobolus virginicus	30.45	34.81	1.80	nd	5.68	3.25	13.52
Pancium maximum	10.25	46.65	5.08	nd	nd	nd	4.05

1 Promedio (desviación estándar; n = 2); nd = no detectable

En la Tabla 2 del estudio se compararon las hojas y tallos de dos especies vegetales (gandules y calabaza). Al igual que en la Tabla 1, las muestras de Vieques contenían más plomo y cobalto, pero esas dos muestras contenían más cadmio y cobre, y menos níquel y manganeso.

Ambos conjuntos de muestras mostraron que las plantas de Vieques contenían más plomo y cobalto. En el caso de otros metales, los resultados variaron según la especie vegetal.

TABLA 2. Composición de oligoelementos en forraje del área civil de Vieques y la isla principal de Puerto Rico

<table>
<thead>
<tr>
<th></th>
<th>Elemento químico (µg/g peso seco)</th>
<th>Pb</th>
<th>Co</th>
<th>Ni</th>
<th>Mn</th>
<th>Cr</th>
<th>Cd</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isla principal, Puerto Rico</td>
<td></td>
<td>4.93</td>
<td>4.31</td>
<td>7.44</td>
<td>137.43</td>
<td>0.90</td>
<td>11.04</td>
<td>21.16</td>
</tr>
<tr>
<td>°C</td>
<td>b</td>
<td>4.51</td>
<td>-</td>
<td>17.43</td>
<td>113.03</td>
<td>0.65</td>
<td>21.16</td>
<td></td>
</tr>
<tr>
<td>Vieques, Puerto Rico</td>
<td></td>
<td>29.14</td>
<td>10.42</td>
<td>7.38</td>
<td>126.32</td>
<td>1.79</td>
<td>20.58</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>c</td>
<td>33.08</td>
<td>7.65</td>
<td>9.47</td>
<td>72.54</td>
<td>2.34</td>
<td>29.76</td>
<td></td>
</tr>
</tbody>
</table>

1 Promedio (desviación estándar; n = 4 a 6); guion = no disponible
2 Diferencias significativas *p < 0.05; **p < 0.10
3 La isla principal incluye muestras de Mayagüez y Las Marías
4 Vieques incluye muestras de Monte Carmelo, Villa Borinquen y Monte Sano

En la Tabla 3 del estudio se comparan las concentraciones detectadas en muestras de frutos y hojas de gandules recolectadas el 18 de agosto de 2001. Para algunos metales, se hallaron concentraciones más altas en el fruto (zinc, níquel, cadmio y cobalto). Para otros metales (es decir, cobre y plomo), se hallaron concentraciones más altas en las hojas.
TABLA 3. Elementos químicos en hojas y frutos de *Cajanus cajans* recolectados en ¹Monte Carmelo (Vieques, Puerto Rico) [µg/g peso seco]

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Zn</th>
<th>Ni</th>
<th>Pb</th>
<th>Cd</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hojas</td>
<td>10.72 (6.06)</td>
<td>32.12 (9.95)</td>
<td>2.26 (0.28)</td>
<td>15.12 (0.59)</td>
<td>2.42 (0.23)</td>
<td>17.46 (0.95)</td>
</tr>
<tr>
<td>Fruto</td>
<td>8.22 (1.69)</td>
<td>34.00 (1.86)</td>
<td>4.80 (0.75)</td>
<td>6.35 (2.06)</td>
<td>3.17 (1.36)</td>
<td>25.75 (3.48)</td>
</tr>
<tr>
<td>Frutos/hojas²</td>
<td>0.8</td>
<td>1.1</td>
<td>2.1</td>
<td>0.4</td>
<td>1.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

¹Muestras recolectadas de todas las plantas disponibles (aproximadamente 20 individuos) el 18 de agosto de 2001.

²Frutos/hojas = 1.0, concentración de metales igual en todas las muestras de tejido de plantas. Frutos/hojas > 1.0, mayor concentración de metales en los frutos. Frutos/hojas < 1.0, menor concentración de metales en frutos.

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR obtuvo este estudio en mayo de 2009. Dado que los gandules son una especie que los residentes de Vieques consumen, la ATSDR ha emprendido una revisión de los nuevos datos sobre los gandules como parte de su análisis sobre los datos de Vieques (ver el capítulo 5).
Categoría: Datos ambientales – Plantas
Fecha de la publicación: 14 de agosto de 2005
Título: Trace Elements Analysis in Forage Samples from a U.S. Navy Bombing Range (Vieques, Puerto Rico)
Autor(es): Arturo Massol-Deyá, Dustin Pérez, Ernie Pérez, Manuel Berrios y Elba Díaz
Afiliación: Universidad de Puerto Rico
Estado de revisión por expertos: Revisada por expertos
Citado anteriormente por la ATSDR: No

Hallazgos del estudio

En este artículo se analizaron los mismos datos que los autores publicaron el 10 de abril de 2000 y en 2003: muestras de plantas recolectadas en febrero y marzo de 2000 en las que se analizó la presencia de metales pesados. Los autores señalaron que "se observan perfiles bien diferenciados dentro de las especies estudiadas, lo cual refleja diferencias en sus propiedades fisiológicas".

Además de los datos de muestreo de 2000, este artículo incluyó muestras nuevas de *Syringodium filiforme* (hierba de manatí) obtenidas de la Instalación de Adiestramiento en Armas de la Flota del Atlántico (AFWTF) en 2004 y del Bosque Estatal de Guánica en 2003 y 2004. Las concentraciones de metales pesados fueron más altas en la AFWTF. Los autores presentaron la hipótesis de bioacumulación mediante la cadena alimentaria: hierba de manatí a crustáceos y peces a seres humanos. Se presentó un escenario similar relacionado con la cadena alimentaria para las aves migratorias.

Los autores evaluaron variaciones temporales de las muestras de *S. filiforme*. La Tabla 2 de su estudio muestra que las concentraciones de metales pesados en el 2004 (luego del cese de las actividades de bombardeo) eran aproximadamente la mitad de los niveles de las concentraciones halladas en el 2000 (cuando el campo de bombardeo estaba en actividad). Se hallaron resultados similares en la población de control: plantas del Bosque Estatal de Guánica, ubicado a aproximadamente 120 millas del campo de bombardeo.
Si bien los autores no lo mencionan específicamente, sus datos señalaban que las “concentraciones seguras” detectadas en una especie no implican que otras especies vegetales tengan las mismas propiedades fisiológicas y que también sean seguras para el consumo.

Tabla 2: Análisis elemental de *Syringodium filiforme* recolectada en la AFWTF y Bosque Estatal de Guánica

<table>
<thead>
<tr>
<th>Elemento químico (g/g peso)</th>
<th>Pb</th>
<th>Co</th>
<th>Ni</th>
<th>Al</th>
<th>As</th>
<th>Cd</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFWTF-2001 (Activo)</td>
<td>33.32</td>
<td>29.60</td>
<td>28.66</td>
<td>na</td>
<td>na</td>
<td>0.28</td>
<td>30.48</td>
</tr>
<tr>
<td></td>
<td>(10.77)</td>
<td>(5.51)</td>
<td>(1.58)</td>
<td>na</td>
<td>na</td>
<td>(0.13)</td>
<td>(3.65)</td>
</tr>
<tr>
<td>AFWTF-2004 (No activo)</td>
<td>8.14</td>
<td>10.61</td>
<td>3.43</td>
<td>154.3</td>
<td>0.61</td>
<td>0.15</td>
<td>17.42</td>
</tr>
<tr>
<td></td>
<td>(3.15)</td>
<td>(4.21)</td>
<td>(2.13)</td>
<td>(67.7)</td>
<td>(0.46)</td>
<td>(0.15)</td>
<td>(1.83)</td>
</tr>
<tr>
<td>Guánica-2001</td>
<td>5.58</td>
<td>4.19</td>
<td>14.64</td>
<td>na</td>
<td>na</td>
<td>0.28</td>
<td>15.39</td>
</tr>
<tr>
<td></td>
<td>(1.90)</td>
<td>(0.06)</td>
<td>(4.75)</td>
<td>na</td>
<td>na</td>
<td>(0.01)</td>
<td>(4.16)</td>
</tr>
<tr>
<td>Guánica-2003/2004</td>
<td>2.33</td>
<td>1.82</td>
<td>3.75</td>
<td>341.2</td>
<td>1.04</td>
<td>0.28</td>
<td>12.16</td>
</tr>
<tr>
<td></td>
<td>(2.24)</td>
<td>(0.43)</td>
<td>(1.85)</td>
<td>(112.9)</td>
<td>(0.25)</td>
<td>(0.22)</td>
<td>(2.83)</td>
</tr>
</tbody>
</table>

1 Promedio (desviación estándar; n = 2 a 10);

na = no disponible

Cómo abordó la ATSDR los hallazgos del estudio:

La hierba de manatí no es una especie que consuman los residentes de Vieques. Esos datos pueden aportar información importante desde el punto de vista ecológico, pero no tienen relevancia directa para evaluar la salud humana. La ATSDR ha recomendado la obtención de muestras adicionales de productos agrícolas de subsistencia.
Hallazgos del estudio

En enero de 2008, los investigadores visitaron una finca orgánica de Vieques y recolectaron hojas de plantas de cilantro, espinaca, habichuelas, pimientos y papaya. Los investigadores también analizaron la presencia de cadmio, cromo, cobre y plomo. Los investigadores seleccionaron una finca orgánica porque creían que el suelo sería representativo del suelo producido naturalmente y de la contaminación local transportada por el aire. Los investigadores hallaron que las concentraciones de plomo y cadmio en la vegetación de Vieques eran significativamente más altas que las concentraciones detectadas en las plantas de referencia de Mayagüez, un pueblo del extremo occidental de Puerto Rico, a aproximadamente 120 millas de Vieques.
Tabla A-7. Niveles de metales pesados en la vegetación y guía de salud de un estudio de 1999

<table>
<thead>
<tr>
<th></th>
<th>mg/kg, peso seco</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cadmio</td>
<td>Cromo</td>
<td>Cobre</td>
<td>Plomo</td>
</tr>
<tr>
<td>Guía de salud citada en el estudio*</td>
<td>1.0</td>
<td>No se proporciona ninguna</td>
<td>No se proporciona ninguna</td>
<td>No se proporciona ninguna</td>
</tr>
<tr>
<td>Vieques</td>
<td>0.52 - 19.50</td>
<td>0.98 - 2.69</td>
<td>30.18 - 112.48</td>
<td>3.43 - 16.43</td>
</tr>
<tr>
<td>Mayagüez</td>
<td>0.74 - 1.70</td>
<td>No hay muestras</td>
<td>44.05 - 54.24</td>
<td>1.88 - 5.10</td>
</tr>
</tbody>
</table>

*Alimentos, seguridad y salud de la Unión Europea (1999)

Utilizando esos datos, los investigadores exigieron que

1. La Marina indemnizará a los residentes de Vieques por el impacto en las actividades agrícolas: el suelo contaminado por las actividades de la Marina era transportado por el viento a las áreas civiles de Vieques, donde lo captaban los cultivos agrícolas.

2. La limpieza del Área de Impacto de Proyectiles Activos (LIA) debe incluir no solo las bombas sin detonar sino también el suelo contaminado: el viento sigue soplando suelo contaminado hacia las áreas civiles.

3. La limpieza del Área de Impacto de Proyectiles Activos (LIA) debe incluir el retiro de bombas sin detonar en los mares adyacentes a Vieques.

4. La Junta de Calidad Ambiental de Puerto Rico debe negar a la Marina la solicitud de una exención para practicar la quema abierta de vegetación: las plantas han captado contaminación del suelo y su quema liberaría esa contaminación al aire, donde, en última instancia, llegaría a los residentes de Vieques.

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR solicitó este estudio al autor y lo recibió en octubre de 2008. La ATSDR halló que las concentraciones, tal como habían sido informadas, serían perjudiciales para los seres humanos. Por tanto, la ATSDR consultó al Departamento de Agricultura de los EE.UU. (USDA) acerca del estudio (Rufus Chaney, USDA, comunicación personal, 28-30 de octubre de 2008). El USDA señaló que

- Los niveles informados de cobre serían fitotóxicos para las plantas.
- El suelo se podría haber mejorado experimentalmente para aumentar la captación de metales. Las mediciones informadas eran compatibles con plantas cultivadas en suelos mejorados artificialmente para aumentar la captación de metales en las plantas.
- Debido a las limitaciones de este estudio, la ATSDR recomienda la obtención de muestras adicionales de productos agrícolas de subsistencia (ver el capítulo 5, sección 5.3.2).
En 2004, investigadores del Servicio de Extensión Agrícola en Vieques de la Universidad de Puerto Rico y la Autoridad de Tierras del Estado Libre Asociado de Puerto Rico recolectaron muestras para estudio. Recoleccionaron un total de 72 muestras de fruto, tejido de hojas y suelo de dos plantaciones de piña cayena lisa (una ubicada en Barrio Luján, en la zona civil de Vieques, y un control ubicado en Barceloneta, en la isla principal de Puerto Rico). Se utilizó la espectrometría con plasma acoplado inductivamente con emisión óptica junto con el Método 200.7 de la EPA de los EE.UU. para determinar la concentración total de arsénico, cadmio, cromo, cobalto y plomo en las muestras.
Tabla A-8. Metales pesados en piña y suelo

Concentración máxima en el fruto de la piña (mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Arsénico</th>
<th>Cadmio</th>
<th>Cromo</th>
<th>Cobalto</th>
<th>Plomo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vieques</td>
<td>Por debajo del LOD o ND</td>
<td>ND</td>
<td>2.3*</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Barceloneta</td>
<td>Por debajo del LOD o ND</td>
<td>ND</td>
<td>6.4</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Concentración máxima en el suelo (mg/kg)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vieques</td>
<td>169.7</td>
<td>3.9</td>
<td>6.7</td>
<td>9*</td>
<td>32.2</td>
</tr>
<tr>
<td>Barceloneta</td>
<td>268.4 o 331.4†</td>
<td>6.3</td>
<td>64.2 o 77.4†</td>
<td>12.7</td>
<td>76.5</td>
</tr>
</tbody>
</table>

LOD = límite de detección
mg/kg = miligramos por kilogramo
ND = no detectado
*No se informa el número exacto; se calculó el valor a partir de una gráfica de barras.
†Ambas cifras se informan como la detección máxima.

El autor concluyó que las muestras de ninguna de las plantaciones mostraban contaminación en el fruto o las hojas de piña. En todas las muestras de frutos, los niveles de arsénico, cadmio, cobalto y plomo estaban por debajo de los niveles de detección o no se detectaron. No se observó contaminación en las piñas de Vieques al compararlas con las de la plantación de Barceloneta. Se hallaron niveles más altos de metales en el suelo de la plantación de Barceloneta, que el autor atribuyó a la composición natural del suelo. El autor concluyó que esos resultados concordaban con los de la ATSDR y que todos los valores estaban dentro de los niveles regulatorios aceptados.

Cómo abordó la ATSDR los hallazgos del estudio:

Como parte de su análisis sobre los datos de Vieques, la ATSDR evaluó el nivel de cromo —el único metal detectado— en las muestras de frutos de piña (ver el capítulo 5, sección 5.3.2). Utilizando una tasa de ingestión estándar para el consumo de frutas, la dosis de exposición estimada que calculó la ATDSR se ubicó por debajo de los niveles de preocupación para la salud.

³⁶ Aproximadamente 7 onzas de frutas por día (ingestión media total de frutas; USEPA 1997)
<table>
<thead>
<tr>
<th>Categoría:</th>
<th>Datos ambientales – Ganado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha de la publicación:</td>
<td>2001</td>
</tr>
<tr>
<td>Título:</td>
<td>Herbivorous: Additional Evidence of Heavy Metal Mobilization through the Food Web</td>
</tr>
<tr>
<td>Autor(es):</td>
<td>Arturo Massol-Deyá</td>
</tr>
<tr>
<td>Afiliación:</td>
<td>Casa Pueblo de Adjuntas y Universidad de Puerto Rico</td>
</tr>
<tr>
<td>Estado de la publicación:</td>
<td>Auto-publicación</td>
</tr>
<tr>
<td>Estado de revisión por expertos:</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Citado anteriormente por la ATSDR:</td>
<td>Sí (Evaluación de salud pública del 2003: Evaluación de la vía del suelo)</td>
</tr>
</tbody>
</table>

Hallazgos del estudio

El 18 de agosto de 2001, investigadores de Casa Pueblo de Adjuntas recolectaron muestras de pelo de cabras que pastaban en áreas de Monte Santos y Santa María en Vieques. Como referencia, también se obtuvieron muestras de cabras que pastaban en la isla principal de Puerto Rico.

La publicación informó que el pelo de las cabras que pastaban en Vieques contenía niveles más altos de metales que muestras similares de cabras de la isla principal. No se detectó mercurio en el pelo de ninguna de las cabras (el límite de detección fue 0.03 µg/g).
Los autores concluyeron que su estudio confirmaba la “diseminación de niveles peligrosos de contaminantes por toda la red alimentaria viequense”. Sin embargo, el estudio no proporcionó valores de comparación.

Se puede encontrar información adicional sobre este estudio en *Science and Ecology: Vieques in Environmental Crisis*, páginas 52-53, por los mismos autores. Los autores señalaron que las cabras y el ganado que pastaban hierba de Guinea y otras plantas consumidas por seres humanos tenían concentraciones más altas de plomo y cadmio.

Cómo abordaron la ATSDR y el Departamento de Agricultura de Puerto Rico los hallazgos del estudio

La Evaluación de la vía del suelo (vea las páginas 57-58 de la PHA) abordó este tema como una preocupación de la comunidad. Debido a que este y otros estudios realizados por los mismos investigadores informaron niveles elevados de metales en plantas y ganado, el 7 de agosto de 2001, el Departamento de Agricultura de Puerto Rico puso un embargo contra la producción agrícola y ganadera de Vieques. El Departamento de Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino de Monte Carmelo, Martineau, Monte Santo, Esperanza, Luján, Gubeo y el oeste de Vieques para analizar la presencia de cadmio, cobalto, cobre, plomo, manganeso y níquel. El Departamento de Agricultura y la Asociación de Agricultores concluyeron que los productos agrícolas de Vieques eran aptos para el consumo y no contenían niveles tóxicos de esos contaminantes (Departamento de Agricultura 2001). Como el Departamento de Agricultura y la Asociación de Agricultores no pudieron repetir los resultados de Massol, se levantó el embargo. (El Nuevo Día 2001)

Bibliografía

Hallazgos del estudio

Del 26 al 30 de noviembre de 1999, el Dr. Porter llevó a cabo un reconocimiento de campo para examinar la salud de los arrecifes de coral al sur del Área de Impacto de Proyectiles Activos (LIA).

El estudio informó sobre cuatro objetivos:

1. Recolección de muestras de sustancias químicas que se filtraran de las bombas. La carta informaba que el análisis debería haber estado disponible a fines de diciembre de 1999.

2. Determinar el origen de los cráteres en el área. Las lecturas del magnetómetro sugirieron que había objetos metálicos (es decir, bombas) incrustados en las paredes de los cráteres. El estudio concluyó que las detonaciones provocaron los cráteres.

3. Determinar si se produjeron bombardeos después de 1993. El Dr. Porter utilizó datos de tarjetas de reclutamiento y números de serie para identificar fechas. Pero no se presentaron en la carta datos ni conclusiones respecto a cuándo se habían producido los bombardeos.

4. Determinar el alcance de la contaminación por sustancias químicas. No había análisis disponibles al momento de redacción de la carta, pero se informaron observaciones visuales:
 a. El coral que estaba en contacto con una de las bombas con filtraciones estaba enfermo y presentaba un marcado cambio de coloración.
 b. Había entre 100 y 150 barriles y un cilindro de gas comprimido cerca de una barcaza hundida.
c. Había entre 900 y 1000 barriles cerca de una segunda barcaza partida en dos. (La segunda barcaza más tarde se identificó como el antiguo USS Killen, hundido durante una práctica de ejercicios de tiro).

En la carta del Dr. Porter se recomienda:

1. Identificar otras áreas submarinas donde hayas barriles; pescadores locales informaron de otras dos áreas.
2. Obtener muestras de los barriles y cilindros de gas para determinar sus contenidos, manejo y opciones para retirarlos.
3. Obtener muestras de coral en el área para determinar la edad del coral y, por consiguiente, la fecha en que se hundieron los barriles. [En un comunicado de prensa de University of Georgia (UGA) fechado el 13 de diciembre de 1999, el Dr. Porter calculaba que las barcazas se habían hundido alrededor de 10 o 12 años antes].

En un comunicado de prensa de UGA del 13 de diciembre de 1999, el Dr. Porter informó que había visto el navío hundido y cientos de barriles de 55 galones. El Dr. Porter informó estas observaciones en un comunicado de prensa desde la Universidad de Georgia. Este comunicado de prensa ya no está disponible en la página de internet de la UGA (http://news.uga.edu/).

Nota: El Dr. Porter publicó sus resultados en 2004. El Dr. Porter luego concluyó que “las concentraciones de sustancias químicas explosivas halladas en los peces y langostas recolectados cerca del USS Killen se encuentran por debajo de las Concentraciones basadas en el riesgo de la EPA para las especies comestibles de origen marino comerciales”.

Cómo abordó la ATSDR los hallazgos del estudio

El comunicado de prensa de 1999 del Dr. Porter sobre barriles con filtraciones llevó al equipo de investigación sobre exposición de la ATSDR a obtener muestras de peces de las aguas costeras de Vieques. En 2001, la ATSDR y la EPA de los EE.UU. recolectaron 104 peces y 42 mariscos de seis ubicaciones en Vieques y sus alrededores, incluida el área en la que recogió muestras el Dr. Porter, cerca del antiguo USS Killen. Para determinar otras ubicaciones para la toma de muestras y especies de peces para recolectar, la ATSDR se basó en una investigación de la Universidad Metropolitana, conversaciones con la persona que había solicitado a la ATSDR una evaluación de las condiciones de salud pública de Vieques, residentes de Vieques e información provista en el Informe de la Comisión Especial de Vieques. La ATSDR recolectó muestras de mero, pargo, cotorro, ronco, salmonete, cangrejo de tierra, carrucho y langosta espinosa. Además, para atender una preocupación específica de la comunidad, la ATSDR recolectó un chapín panal de un mercado de pescado local.

En 2003, la ATSDR arribó a la siguiente conclusión en su Evaluación sobre peces y mariscos:

- No se detectaron compuestos explosivos en ninguna de las muestras de peces y mariscos comestibles obtenidas en Vieques.
- Se detectaron metales en los peces y mariscos.
La ATSDR evaluó varios escenarios de consumo, incluida la ingestión diaria de pescado. La ATSDR halló que es seguro consumir una variedad de pescados y mariscos de Vieques diariamente, incluido el pargo (la especie más deseada y consumida generalmente). La ATSDR concluyó en 2003 que los peces y mariscos capturados en cualquiera de las ubicaciones son seguros para el consumo, incluidos los peces y mariscos de áreas del antiguo LIA y el USS Killen o sus alrededores.

La ATSDR está reevaluando el contenido de mercurio en peces y mariscos. Los resultados de nuestra evaluación sobre Vieques se encuentran en el capítulo 2 de este informe.
Hallazgos del estudio

En noviembre de 1999, investigadores de Casa Pueblo de Adjuntas, en colaboración con el Departamento de Biología del Recinto Mayagüez de la Universidad de Puerto Rico, obtuvieron muestras de cangrejos violinistas machos de la laguna Icacos, cerca del Área de Impacto de Proyectiles Activos (LIA). Como control, los investigadores tomaron muestras de Puerto Mosquito, apenas al este de Esperanza. La laguna Icacos está adyacente a la laguna Anones; los investigadores obtuvieron muestras de suelo de la laguna Anones el 12 de febrero de 2000. El propósito de la investigación era evaluar el posible transporte de metales del suelo del LIA hacia otros ecosistemas.

En cada ubicación, los investigadores recolectaron alrededor de 35 cangrejos violinistas. Se analizaron las extremidades (es decir, pinzas y patas) separadas del cuerpo (es decir, la concha y el contenido interno) para detectar cadmio, cromo, cobalto, cobre, plomo, manganeso, níquel y zinc.

Luego los investigadores compararon los niveles de metales pesados detectados en los cangrejos violinistas de la laguna Icacos con los niveles de los suelos. Los autores informaron que, con respecto al cadmio, había una biomagnificación; las concentraciones de cadmio en los cangrejos violinistas eran 10 a 20 veces más altas que en los suelos.

Los investigadores también informaron que la concentración promedio de cadmio (8.05 μg/g) en los cuerpos de los cangrejos (es decir, concha y contenido interno) superaban la concentración máxima semanal permitida por la Organización Mundial de la Salud (OMS) (0.007 μg/g) (alrededor de 60 μg/persona/día para una persona de 60 kg) y la concentración crítica diaria de la Administración de Alimentos y Medicamentos de los EE.UU. (USFDA) para personas de más de 2 años de edad (6 μg/g).
Tabla A-10. Metales detectados en cangrejos violinistas

<table>
<thead>
<tr>
<th>Ubicación de la muestra</th>
<th>Cobre</th>
<th>Manganeso</th>
<th>Zinc</th>
<th>Plomo</th>
<th>Cromo</th>
<th>Cadmio</th>
<th>Níquel</th>
<th>Cobalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto Mosquito – extremidades</td>
<td>49.94</td>
<td>86.56</td>
<td>62.99</td>
<td>n/d</td>
<td>25.48</td>
<td>1.74</td>
<td>17.15</td>
<td>12.17</td>
</tr>
<tr>
<td>Laguna Icacos – extremidades</td>
<td>51.18</td>
<td>37.17</td>
<td>61.91</td>
<td>n/d</td>
<td>23.07</td>
<td>4.77</td>
<td>7.02</td>
<td>9.82</td>
</tr>
<tr>
<td>Puerto Mosquito – cuerpos</td>
<td>381.75</td>
<td>199.96</td>
<td>120.80</td>
<td>n/d</td>
<td>40.27</td>
<td>2.24</td>
<td>21.81</td>
<td>10.32</td>
</tr>
<tr>
<td>Laguna Icacos – cuerpos</td>
<td>499.91</td>
<td>97.75</td>
<td>75.59</td>
<td>n/d</td>
<td>40.70</td>
<td>8.05</td>
<td>18.95</td>
<td>35.69</td>
</tr>
</tbody>
</table>

n/d = no detectado

Cómo abordó la ATSDR los hallazgos del estudio

El estudio del Dr. Massol estableció que los cangrejos violinistas contenían evidencia de metales pesados. El estudio planteó la pregunta de qué concentraciones de metales se hallarían en los cangrejos consumidos por seres humanos.

Pero el estudio no pudo responder esa pregunta. Este se realizó con cangrejos violinistas, que los seres humanos no consumen. Y el estudio no separó la carne del cangrejo de la concha; el análisis se realizó con el contenido de la concha y el cuerpo combinados.

El informe del Dr. Massol de un alto nivel de contaminación en los cangrejos violinistas sí llevó a la ATSDR a obtener muestras de cangrejos de tierra, especie que consumen los seres humanos. En 2001, durante la Evaluación sobre peces y mariscos, la ATSDR y la EPA de los EE.UU. recolectaron cangrejos de tierra de tres ubicaciones de Vieques, incluido el antiguo LIA (vea las secciones IV y V y el Apéndice D de la PHA). No se detectaron compuestos explosivos en las partes comestibles de los cangrejos de tierra de ninguna de las ubicaciones. Si bien se detectaron metales en los cangrejos de tierra, los niveles fueron demasiado bajos para constituir una preocupación para la salud en el caso de las personas que los consumen.

La ATSDR también revisó el estudio ecológico de la Dirección de Pesca y Fauna Silvestre de los EE.UU. (USFWS) realizado en 2001 en la Evaluación sobre peces y mariscos respecto de cangrejos de tierra y cangrejos violinistas del oeste de Vieques (vea las páginas 12-13 de la PHA del 2003). La investigación de la USFWS estableció que los cangrejos violinistas y los cangrejos de tierra contenían algunos metales pesados y pesticidas. Dado que las muestras analizadas por la USFWS fueron de cuerpo entero, los datos del informe resultaron útiles para evaluar la contaminación ecológica, pero no fue posible convertirlos fácilmente con el fin de evaluar la salud humana.

En 2006, en una consulta de salud, la ATSDR ayudó a la USFWS a determinar si ciertas áreas de refugio seleccionadas podían abrirse para recolectar cangrejos de tierra. En 2005, la NOAA obtuvo 74 muestras
de cangrejos de tierra de 14 ubicaciones, y las analizó para detectar compuestos explosivos, PCB, pesticidas organoclorados y oligoelementos:

- Los niveles hallados en los cangrejos de tierra eran mucho más bajos que los niveles que, según se informa en la bibliografía científica, producen efectos perjudiciales para la salud.
- No se detectaron compuestos explosivos en ninguna muestra de cangrejo.
- No se hallaron asociaciones entre la ubicación en la que se obtuvo la muestra y los niveles de contaminantes presentes en los cangrejos de tierra.
Categoría: Datos ambientales – Praderas marinas

Fecha de la publicación: junio de 2000

Título: Evaluación Preliminar de las Condiciones Químicas y Físicas de las Hierbas Marinas *Thalassia testudium* y *Syringodium filiforme* en Vieques.

Autor(es): Fernando L. Herrera, Brenda Alicea López, Blanca Díaz Perez, Siomara Cardona Vilella, Neritza Guerra Villanueva y Maria C. Ortiz Rivera

Afiliación: Universidad Metropolitana, Facultad de Asuntos Ambientales; Universidad de Puerto Rico, Arecibo

Estado de la publicación: Auto-publicación

Estado de revisión por expertos: Ninguna

Citado anteriormente por la ATSDR: No

Hallazgos del estudio

El propósito del reconocimiento era realizar una evaluación demográfica y morfológica de *Thalassia testudium* e identificar y determinar el contenido de metales pesados en tejidos de *Thalassia* y *Syringodium*. En las praderas marinas que rodean Vieques, el Dr. Herrera halló “altas concentraciones” de aluminio, arsénico, hierro, níquel, zinc, cadmio, cobalto y plomo. También observó una estrecha relación entre las actividades militares pasadas y la contaminación hallada en las plantas marinas de Vieques.

Cómo abordó la ATSDR los hallazgos del estudio

El informe del Dr. Herrera sobre la presencia de metales pesados en las praderas marinas —sustancia que no consumen los seres humanos— llevó a la ATSDR a obtener muestras de carrucho, especie que los humanos sí consumen y que frecuenta habitualmente las praderas marinas. En 2001, la ATSDR y la EPA de los EE.UU. recolectaron 20 carruchos de cuatro praderas marinas que rodean a Vieques: al norte del LIA, cerca del USS Killen, al sur de Esperanza y al oeste de la Zona de Conservación de Monte Pirata. Las ubicaciones se eligieron para que representaran áreas de pesca productivas de los alrededores de la
La carne de carrucho se analizó para detectar la presencia de compuestos explosivos y metales pesados:

- No se detectaron compuestos explosivos en las muestras de carrucho de ninguna ubicación.
- Se detectaron metales en las muestras de carrucho, pero los niveles eran demasiado bajos para constituir una preocupación de salud en las personas que consumen carrucho.
Hallazgos del estudio

Entre diciembre de 1999 y abril de 2000, investigadores de la Universidad Metropolitana recolectaron pescados de mercados de pescado de las costas norte y sur de Vieques y del mercado de pescado de Parguera ubicado en Lajas, en el lado oeste de la isla principal de Puerto Rico.

Para determinar las tasas de consumo de pescado y qué especies incluir en la toma de muestras, los investigadores utilizaron un cuestionario para preguntar a los residentes de Vieques acerca de sus hábitos alimentarios. Cincuenta y un residentes respondieron.

Los investigadores concluyeron que “en función de los datos obtenidos... no pudimos verificar nuestra hipótesis de posible bioacumulación en los peces... no hay una relación clara entre el peso y el tamaño del pez y el contenido de metal”.

En las 78 muestras de pescado analizadas, no se detectó cadmio y no se detectó plomo en los filetes de pescado. Pero los autores sí informaron “altas concentraciones” de arsénico, mercurio, selenio y zinc.

Tabla A-11. Metales pesados en pescados de mercado

<table>
<thead>
<tr>
<th>Muestras de filete de pescado (ppm)</th>
<th>Plomo</th>
<th>Cadmio</th>
<th>Arsénico</th>
<th>Mercurio</th>
<th>Selenio</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vieques, norte</td>
<td>n/d</td>
<td>n/d</td>
<td>0.325 - 1.676</td>
<td>0.019 - 0.048</td>
<td>0.123 - 1.290</td>
<td>1.2 - 9.1</td>
</tr>
<tr>
<td>Esperanza</td>
<td>n/d</td>
<td>n/d</td>
<td>0.290 - 0.658</td>
<td>0.022 - 0.048</td>
<td>0.168 - 0.713</td>
<td>3.3 - 8.2</td>
</tr>
<tr>
<td>Parguera, isla principal</td>
<td>n/d</td>
<td>n/d</td>
<td>0.000 - 2.236</td>
<td>0.000 - 0.008</td>
<td>0.103 - 0.502</td>
<td>0.7 - 5.9</td>
</tr>
</tbody>
</table>

n/d, no se detectó
Límite de detección de cadmio, 0.005 ppm
Límite de detección de plomo, 0.050 ppm

Cómo abordó la ATSDR los hallazgos del estudio

En la Evaluación sobre peces y mariscos del 2003 (vea las páginas 11-12 de la PHA), la ATSDR evaluó si las concentraciones informadas por los autores producirían efectos perjudiciales para la salud en las personas que consumieran pescados. La ATSDR determinó en ese momento que el consumo diario de pescado era seguro a partir de las muestras de pescado de mercado (es decir que todas las concentraciones informadas por la Universidad Metropolitana eran demasiado bajas para constituir una preocupación para la salud). No obstante, el estudio aportó información valiosa sobre los hábitos alimentarios: específicamente, con qué frecuencia los residentes de Vieques consumían pescado y qué especies consumían. La ATSDR utilizó esa información sobre la dieta en toda la PHA.

En el capítulo 2 de este informe, la ATSDR usa información del estudio de la Dra. Caro y sus propios datos de peces para evaluar el consumo local de pescado Las conclusiones y recomendaciones de esta evaluación se presentan en los capítulos 2 y 9.
Hallazgos del estudio

Este informe describe una investigación encarada para determinar la seguridad radiológica, explosiva y química de las aguas costeras marinas en los alrededores del sitio en el que se hundió el USS Killen. El informe aportó los siguientes hallazgos y conclusiones:

Radiológicos

- Se hallaron lecturas radiológicas ambientales normales en los alrededores del USS Killen y de los barriles de 55 galones.
- Las lecturas indican que no hay amenazas para la salud.
- Los restos del USS Killen y los barriles de 55 galones deben dejarse como están para que sirvan como hábitat marino.

Explosivos

- Se detectaron lecturas mensurables de residuos de explosivos en parte de la flora y fauna en los alrededores de algunas bombas, y las concentraciones disminuían al aumentar la distancia desde la fuente.
- Las lecturas de los artefactos explosivos en descomposición son localizadas y representan una mínima amenaza toxicológica para los seres humanos.
- Los peces y langostas recolectados en los alrededores del USS Killen son seguros para el consumo. Las concentraciones de residuos de explosivos se encuentran por debajo de las concentraciones basadas en el riesgo de la EPA de los EE.UU. para las especies comestibles de origen marino comerciales.

- Dado que el aumento del acceso humano y los patrones de lixiviación ambiental aumentan el riesgo de detonación, diseminación y bioacumulación en los alrededores inmediatos de UXO y restos relacionados, deben retirarse todos esos elementos ubicados entre la línea de pleamar en la costa y el fondo de Bahía Salina del Sur.

Metales

- Las concentraciones de arsénico en los peces (0.76 y 1.05 ppm) están por encima de la Guía de concentraciones basadas en el riesgo de la EPA de los EE.UU. (0.26 ppm).

- Los autores señalaron que la concentración total de arsénico en langostas recolectadas en la Ubicación 1 (11.0 ppm) está dentro del rango normal para la langosta espinosa del Atlántico (de 10 a 20 ppm). El texto del informe indica que los niveles de arsénico están por encima de la Guía de concentraciones basadas en el riesgo de la EPA de los EE.UU. (0.13 ppm) y tal vez justifiquen un aviso para hacer un consumo limitado.

- Las concentraciones de bario, cadmio, cromo y selenio en los peces y langostas se ubicaron por debajo de las de la Guías de concentraciones basadas en el riesgo de la EPA de los EE.UU. y estuvieron dentro de los rangos informados en el evento de toma de muestras de peces realizado por la ATSDR en el 2001.

- No se analizó la presencia de uranio y plomo en los peces recolectados de las Ubicaciones 1 y 2.
Tabla A-12. Resultados de la toma de muestras de aguas costeras marinas

<table>
<thead>
<tr>
<th>Matriz</th>
<th>Sitio 1 (-)</th>
<th>Sitio 1 (-después)</th>
<th>Sitio 2</th>
<th>Sitio 3</th>
<th>Hatillo, P. R. (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As</td>
<td>Se</td>
<td>As</td>
<td>Se</td>
<td>As</td>
</tr>
<tr>
<td>Agua</td>
<td>2.51 µg/L</td>
<td>30.8 µg/L</td>
<td>1.15-1.38 µg/L</td>
<td>19.0-27.4 µg/L</td>
<td>0.93-1.02 µg/L</td>
</tr>
<tr>
<td>Sediment</td>
<td>5.24 mg/kg</td>
<td><2.70 mg/kg</td>
<td>1.75 mg/kg</td>
<td><2.70 mg/kg</td>
<td><2.70 mg/kg</td>
</tr>
<tr>
<td>Barriles</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Peces</td>
<td>0.76 mg/kg</td>
<td><0.90 mg/kg</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Corales</td>
<td><0.20 mg/kg</td>
<td><2.3 mg/kg</td>
<td><0.20 mg/kg</td>
<td><2.3 mg/kg</td>
<td><0.20-0.91 mg/kg</td>
</tr>
<tr>
<td>Langostas</td>
<td>38.4 mg/kg</td>
<td>11.0 mg/kg</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*Control es peces locales de Kroger, Athens, GA

Tabla 4.4 Resumen de la concentración de As y Se detectada en muestras analizadas. El valor del nivel máximo de contaminantes (Maximum Contaminant Level, MCL) en agua potable de la EPA para AS es 50 µg/L, y para Se es 50 µg/L. La concentración basada en el riesgo (Risk-Based Concentration, RBC) de la EPA para AS en pescado es 0.26 mg/kg y 20 mg/kg para Se.

Cómo abordó la ATSDR los hallazgos del estudio

Si bien los datos recién se publicaron en 2004, en 1999 University of Georgia emitió un comunicado de prensa en el que informó que el Dr. Porter había descubierto barriles con filtraciones frente a la costa del LIA. Este informe motivó la investigación sobre exposición encarada por la ATSDR en el 2001, durante la cual se obtuvieron muestras de peces, cangrejos, langostas y carruchos de todo Vieques. En el 2001, la ATSDR y la EPA de los EE.UU. recolectaron 104 peces y 42 mariscos de seis ubicaciones de Vieques, incluida el área en la que recogió muestras el Dr. Porter, cerca del antiguo USS Killen. En 2003, en la Evaluación sobre peces y mariscos de la ATSDR se analizaron datos del evento de muestreo llevado a cabo por la agencia en el 2001 y se concluyó lo siguiente:

- No se detectaron compuestos explosivos en ninguna de las muestras de peces y mariscos comestibles obtenidas en Vieques.
- Se detectaron metales en los peces y mariscos.
- La ATSDR evaluó varios escenarios de consumo, incluida la ingestión diaria de pescado. La ATSDR halló que era seguro consumir una variedad de pescados y mariscos de Vieques diariamente, incluido el pargo (la especie más deseada y consumida generalmente).
- Los peces y mariscos capturados en cualquiera de las ubicaciones son seguros para el consumo, incluidas las áreas de los alrededores del antiguo LIA y el USS Killen.
Como parte de su análisis sobre los datos de Vieques, la ATSDR evaluó el nivel de mercurio en los peces recolectados en los arrecifes que rodean Vieques y en un mercado de pescado de la isla. Los resultados de nuestra evaluación sobre Vieques pueden hallarse en el capítulo 2.

Los niveles de arsénico en peces y mariscos a menudo se informan como arsénico total. No obstante, es importante distinguir entre arsénico inorgánico, que es perjudicial para los seres humanos, y arsenobetaína, que es un compuesto que contiene arsénico y que no es perjudicial para los seres humanos. La arsenobetaína no es perjudicial porque los seres humanos no la metabolizan y se excreta fácilmente en un plazo de 2 a 3 días desde la ingestión. La mayor parte del arsénico (por lo general, menos del 1%) presente en peces y mariscos, como la langosta, es la arsenobetaína no tóxica (Sloth 2005, Fabris 2006, Green 2006). Un estudio en particular informó que los niveles porcentuales inorgánicos en la langosta espinosa (especies de Panulirus) era 0.01 a 0.2 por ciento (Peshut 2008). Panulirus es el género de langostas que se hallan cerca de Vieques y otras partes del Caribe.

Bibliografía

Peshut PJ, Morrison RJ, Brooks BA. 2008; Arsenic speciation in marine fish and shellfish from American Samoa. 71(3);484-492.

Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Categoría: Datos ambientales – Vida marina

Fecha de la publicación: 21 de febrero de 2009

Título: Carcinogens Found in Marine Life in Island of Vieques in Puerto Rico

Autor(es): James Porter, PhD

Afiliación: Universidad de Georgia

Estado de la publicación: Comunicado de prensa

Estado de revisión por expertos: Ninguna

Citado anteriormente por la ATSDR: No

Hallazgos del estudio

En este comunicado de prensa se anunció que el Dr. Porter presentaría los hallazgos de su evento de muestreo realizado en 1999 durante el Segundo Diálogo Internacional sobre Municiones Sumergidas (Second International Dialogue on Underwater Munitions), del 25 al 27 de febrero de 2009 en Honolulu, Hawái.

En el informe de 2004 del Dr. Porter se recomendó dejar las bombas sin detonar en su lugar. Según el nuevo comunicado de prensa, ahora recomendaba el retiro de los artefactos explosivos utilizando un sistema de recuperación de artefactos diseñado por Underwater Ordnance Recovery, Inc., y los conocimientos técnicos de los maquinistas de la tienda de instrumentos del laboratorio de la Universidad de Georgia.

El comunicado de prensa señalaba que se había detectado material carcinogénico hasta a 2 metros de distancia de las bombas y citaba que, según el Dr. Porter, un paso futuro sería “determinar el enlace de las municiones sin detonar a las especies marinas y de allí a la mesa”.

Cómo abordó la ATSDR los hallazgos del estudio

Los Centros para el Control y la Prevención de Enfermedades (CDC) participaron en la presentación del panel del Segundo Diálogo Internacional sobre Municiones Sumergidas. La ATSDR consideró la información nueva del Dr. Porter como parte del análisis de la agencia sobre los datos de Vieques.
Hallazgos del estudio

El Dr. Cruz-Pérez modeló los efectos en la calidad del aire provocados por el uso de explosivos en Vieques.

El Dr. Cruz-Pérez concluyó que

- La detonación de un único proyectil de artillería (es decir, un proyectil de mortero de 105 mm) podría emitir 400 kilogramos de suelo y residuos de explosivos en el aire.
- Las concentraciones de contaminantes en el aire ambiental por los ejercicios de adiestramiento militar son inversamente proporcionales a la distancia a sotavento elevada a la 1.5 potencia.
- Una única explosión de un proyectil de artillería provocaría un aumento de las concentraciones de partículas en el aire ambiental en las áreas residenciales de Vieques de 33 μg/m³ en el transcurso de 15.9 minutos.
- Incluidas las contribuciones de las concentraciones de base, un nivel no especificado de ejercicios de adiestramiento militar provocaría concentraciones de partículas de 197 μg/m³ en las áreas residenciales de Vieques.

Cómo abordó la ATSDR los hallazgos del estudio

Cuando la ATSDR comenzó su evaluación de la vía del aire, había disponibles dos estudios sobre modelos de dispersión: uno preparado por contratistas de la Marina y el otro por el Dr. Cruz-Pérez, cuyo modelo
de partículas en el aire no coincidía con el modelo de la Marina. Eso llevó a la ATSDR a contratar a tres expertos en modelos para hacer una revisión crítica de ambos estudios. Después de examinar los hallazgos de los revisores, la ATSDR decidió realizar un estudio de modelos independiente que no tuviera algunas de las fallas de los estudios anteriores. Nótese que, debido a la obtención limitada de muestras que tuvo lugar en Vieques durante el tiempo en que la Marina utilizaba bombas activas, fue necesario recurrir al modelo.

Las conclusiones de la Evaluación de la vía del aire se basaron, en gran medida, en la iniciativa de modelos de la ATSDR. La Evaluación de la vía del aire también incluyó la evaluación que hizo la ATSDR del análisis de modelos de aire del Dr. Cruz-Pérez (vea las páginas D-11 a D-15 de la PHA).

El artículo del Dr. Cruz-Pérez no aportó evidencia sólida (p. ej., referencias, ecuaciones, parámetros de entrada) para defender la tasa estimada de emisión atmosférica de 400 kilogramos de suelo por cada proyectil de artillería. En el Apéndice D de la PHA, para calcular las emisiones, la ATSDR utilizó un modelo publicado y documentó todos los parámetros de entrada y los supuestos.

El Dr. Cruz-Pérez basó las concentraciones estimadas en el aire ambiental en una presunta tasa de descomposición con la distancia a sotavento. Los tres revisores expertos cuestionaron la tasa estimada de descomposición del Dr. Cruz-Pérez; un revisor experto citó publicaciones revisadas por expertos que sugieren que los contaminantes de penachos instantáneos —como los que se asocian con actividades de bombardeo— se descompondrían con mucha más rapidez que lo que sugieren los cálculos del Dr. Cruz-Pérez. Los revisores expertos identificaron por lo menos un error en los cálculos del Dr. Cruz-Pérez, y la ATSDR observó que el enfoque no consideró parámetros que han demostrado afectar la dispersión atmosférica (p. ej., altura inicial de las nubes, estabilidad atmosférica, velocidad del viento, dirección del viento, altura de mezcla). Para calcular las concentraciones en el aire ambiental en Vieques, la ATSDR utilizó un modelo recomendado por la EPA de los EE.UU. (CALPUFF) con opciones para modelar fuentes tipo “soplo” (es decir, instantáneas), como los eventos de bombardeo ocurridos en Vieques. El modelo de la ATSDR predijo los efectos en la calidad del aire de 75 contaminantes, no de un solo contaminante. Y en su PHA, la ATSDR documentó exhaustivamente todos los supuestos del modelo, parámetros de entrada y opciones de tiempo de ejecución.

Por el contrario, el Dr. Cruz-Pérez calculó las concentraciones estimadas de partículas en el aire ambiental en días en que se produjeron ejercicios de adiestramiento militar. Sin embargo, los revisores expertos señalaron que esos cálculos no documentan el tiempo promedio de las concentraciones (p. ej., de 24 horas, promedio anual) ni especifican el tamaño de las partículas (p. ej., PM10, PM2.5, TSP); ambos datos son importantes consideraciones en materia de evaluaciones de salud. El análisis del modelo de la ATSDR tuvo en cuenta esas fallas al especificar el tamaño de las partículas consideradas y al evaluar tanto la duración de la exposición aguda como de la crónica. La PHA documenta todas las concentraciones en el aire ambiental que calculó la ATSDR durante la iniciativa de modelos.
Hallazgos del estudio

Entre el 11 y el 16 de mayo de 1978, el Centro Naval de Armas de Superficie (Naval Surface Weapons Center, NSWC) obtuvo y analizó muestras de agua y suelo del interior y el exterior del Área de Impacto de Proyectiles Activos (LIA) de la Isla de Vieques. Las muestras se recolectaron 1 semana después de un ejercicio militar en el que se utilizaron artefactos explosivos activos en el LIA. Se analizaron las muestras para detectar TNT, RDX y tetrilo. El estudio también analizó los productos de biotransformación de TNT: 4-amino-2, 6-dinitrotolueno y 2-amino-4, 6-dinitrotolueno. El NSWC no detectó productos de biotransformación.

El NSWC sí halló que las concentraciones de TNT y RDX estaban por debajo de los niveles de peligro toxicológico sugeridos por el Laboratorio de Desarrollo e Investigación en Bioingeniería Médica (Medical Bioengineering Research and Development Laboratory) de la Marina de los EE.UU. en 1977. No se proporcionó ninguna guía para el tetrilo.

El NSWC tomó 26 muestras de agua: 15 dentro del LIA (una de agua potable) y 9 de áreas controladas por la Marina al oeste del LIA (una de agua potable), que incluyeron las Instalaciones de Municiones Navales (Naval Ammunition Facility, NAF) y el Campamento García, agua potable de Isabel Segunda y agua potable de Esperanza.
Tabla A-13. Resultados de las muestras de agua del NSWC

<table>
<thead>
<tr>
<th>Estación</th>
<th>Descripción de la estación</th>
<th>TNT, ppm*</th>
<th>RDX, ppm</th>
<th>Tetrilo, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guía de salud citada en el estudio</td>
<td><0.01</td>
<td><0.03</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Muestras de agua potable</td>
<td>Ausente</td>
<td>0.00006</td>
<td>Ausente</td>
<td></td>
</tr>
<tr>
<td>5 Muestras de agua potable</td>
<td>Ausente</td>
<td>0.00004</td>
<td>Ausente</td>
<td></td>
</tr>
<tr>
<td>6 Muestras de agua potable</td>
<td>Ausente</td>
<td>0.00004</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>OP-1 Muestras de agua potable</td>
<td>Ausente</td>
<td>0.00004</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>1 Muestras de agua superficial</td>
<td><0.00004</td>
<td>0.001</td>
<td><0.0009</td>
<td></td>
</tr>
<tr>
<td>19 Muestras de agua superficial</td>
<td>0.00003</td>
<td>0.00045</td>
<td>Ausente</td>
<td></td>
</tr>
<tr>
<td>20 Muestras de agua superficial</td>
<td>Ausente</td>
<td>0.0059</td>
<td>Ausente</td>
<td></td>
</tr>
</tbody>
</table>

*ppm = partes por millón
El NSWC recolectó seis muestras de suelo de terrenos bajo el control de la Marina; no se obtuvieron muestras de áreas residenciales. Al igual que con las muestras de agua, estas muestras se analizaron para detectar TNT, RDX, tetrilo y productos de biotransformación de TNT. Además, las muestras de suelo se analizaron para detectar materiales extraíbles con acetona. No se detectó tetrilo ni productos de biotransformación.

Tabla A-14. Resultados de las muestras de suelo del NSWC

<table>
<thead>
<tr>
<th>Estación</th>
<th>Descripción de la estación</th>
<th>TNT, ppm*</th>
<th>RDX, ppm</th>
<th>% de materiales extraíbles con acetona</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Suelo obtenido cerca de Bahía de la Chiva, Área de Maniobras, Campamento García (máximo detectado de TNT)</td>
<td>0.0060</td>
<td>0.0030</td>
<td>0.04</td>
</tr>
<tr>
<td>24</td>
<td>Suelo del Cráter B, Campode demolición n.º 6</td>
<td>0.0071</td>
<td>0.0054</td>
<td>0.14</td>
</tr>
<tr>
<td>20</td>
<td>Suelo de laguna (% máximo detectado de materiales extraíbles con acetona)</td>
<td>Ausente</td>
<td>0.024</td>
<td>0.31</td>
</tr>
</tbody>
</table>

*ppm = partes por millón

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR evaluó los datos de este informe como parte de su Evaluación de los suministros de agua potable y de la vía del agua subterránea (vea la página 32 y el Apéndice E de la PHA sobre el agua potable) y la Evaluación de la vía del suelo (vea la sección IV de la PHA).

Las concentraciones de compuestos explosivos informadas en el agua potable y el agua de la laguna se ubicaron muy por debajo de los niveles considerados perjudiciales para la salud humana. La exposición pasada a esos compuestos no representó un peligro para la salud pública.

Las muestras de agua potable (4) y las sustancias químicas analizadas en este estudio fueron limitadas. Para llegar a la decisión relativa a la salud y el agua potable, la ATSDR utilizó datos adicionales. En la PHA sobre el agua potable, en el Apéndice B se enumeran los eventos de muestreo y en el Apéndice C se enumeran las sustancias químicas de las que se realizaron análisis.

En otros eventos de muestreo no se detectó RDX ni tetrilo en los suministros de agua potable. El estudio señaló: “no fue posible realizar una identificación positiva por completo debido a las concentraciones extremadamente bajas halladas”. También señaló que “si esos explosivos están presentes, las concentraciones no superan los valores informados aquí”. El laboratorio de la Marina que analizó las muestras había desarrollado técnicas sensibles para el análisis de explosivos en aguas marinas y, en particular, para detectar compuestos explosivos. Esos métodos eran más sensibles que los métodos de
laboratorio actuales de la EPA de los EE.UU. que ahora se consideran estándares para el trabajo ambiental.

Los niveles informados en el suelo se encontraron por debajo de los niveles de comparación y no indicaron un peligro para la salud.

La cantidad de muestras de suelo (6) fue limitada. Por lo tanto, para la decisión relativa a la salud y el suelo, la ATSDR utilizó datos adicionales. Por ejemplo, en 1999 y 2000, la Marina (a pedido de la ATSDR) y Servicios Científicos y Técnicos recolectaron muestras de suelo de las áreas en las que vivieron los manifestantes. Los manifestantes que vivieron en el LIA durante un año (1999-2000) son los que tuvieron la exposición más prolongada a los contaminantes del suelo del LIA. La ATSDR revisó los datos y determinó que los manifestantes no habían estado expuestos a niveles perjudiciales de sustancias químicas impregnadas en el suelo.
Categoría: Datos de resultados de salud – Enfermedad cardíaca

Fecha de la publicación: Enero de 2001

Título: Vibroacoustic Disease Induced by Long-Term Exposure to Sonic Booms

Autor(es): R Torres, G Tirado, A Roman, R Ramirez, H Colon, A Araujo, F Pais, W Maciniak, J Nobrega, A Bordalo e Sa, JMC Lopo Tuna, M Alves-Pereira, NAA Castelo Branco

Afiliación: Virtual Research Group and Center for Human Performances

Estado de la publicación: Manuscrito preliminar

Estado de revisión por expertos: Ninguna

Citado anteriormente por la ATSDR: Sí (2001 Vieques Heart Study Expert Panel Review)

Hallazgos del estudio

En enero de 2001, en un estudio piloto en el que se compararon los ecocardiogramas de pescadores comerciales de Vieques y la Playa de Ponce, Puerto Rico, se informó que una alta proporción de pescadores de Vieques presentaban alteraciones valvulares considerables y engrosamiento pericárdico, dos afecciones que no se observaron en la Playa de Ponce. Las posibles alteraciones observadas en los pescadores de Vieques se atribuyeron a la “enfermedad vibroacústica” (vibro-acoustic disease, VAD), que unos investigadores portugueses habían descrito en la bibliografía. Se ha dicho que la VAD se produce como consecuencia del ruido y las vibraciones provocados por los ejercicios navales realizados en la Isla de Vieques. Por orden presidencial, el Departamento de Salud y Servicios Humanos se encargó de la investigación de las cuestiones planteadas por el estudio. El Departamento, a su vez, derivó este pedido a la ATSDR, que entonces se encontraba investigando problemas de salud pública ambiental en Vieques. La División de Enfermedades Cardiovasculares de los Centros para el Control de Enfermedades (CDC) brindó una ayuda considerable para esta investigación.

Al mismo tiempo que se formuló esta solicitud, la Facultad de Medicina de Ponce (Ponce School of Medicine, PSM), dirigida por el presidente y decano el Dr. Manuel Martínez Maldonado, comenzó un estudio más definitivo sobre las posibles alteraciones cardíacas entre los residentes de Vieques. El
objetivo del estudio era resolver los problemas metodológicos que tenía el estudio piloto anterior. El 29 y 30 de marzo de 2001, científicos de la ATSDR y los CDC se reunieron con investigadores de PSM y acordaron que su revisión e interpretación de los hallazgos debía incluir una opinión independiente de médicos y científicos reconocidos.

Cómo abordó la ATSDR los hallazgos del estudio

En julio de 2001, la ATSDR, la PSM y los CDC patrocinaron conjuntamente un panel de expertos para revisar el estudio de seguimiento de la PSM. La conclusión principal del panel fue que ni las lecturas de la PSM ni las lecturas de la Mayo Clinic contenían información que indicara un problema de salud cardíaca en los pescadores comerciales de ninguno de los dos lugares. El informe inicial de valvulopatía macroscópica del estudio piloto no fue reproducido. Todos los revisores coincidieron en que, contrario a lo indicado en los informes del estudio piloto, no surgieron diferencias clínicamente relevantes en el grosor pericárdico entre los sujetos de Vieques y los de la Playa de Ponce. Además, ni las mediciones de la PSM ni las de Mayo Clinic mostraron que el grosor pericárdico de alguno de los sujetos fuera superior a 2 mm, medida que en la bibliografía publicada se considera el límite superior de lo normal.

El estudio de la PSM no respalda los hallazgos de enfermedad cardíaca entre los pescadores de Vieques. Debido a que la electrocardiografía transtorácica no puede medir en forma confiable las pequeñas diferencias halladas, los informes probablemente se deban a un error de medición que es intrínseco a la técnica y no una falta de los científicos que la emplearon. Es muy probable que eso dé cuenta de los resultados diferentes obtenidos cuando se utilizaron las lecturas de grosor pericárdico obtenidas por la Mayo Clinic en lugar de las lecturas de la PSM.
Categoría: Biomonitorío en seres humanos – Cabello y heces

Fecha de la publicación: Alrededor de 2000

Título: Investigación Científica de los Metales Tóxicos habidos en el Terreno Biológico de niños y adultos viequenses y sus efectos sobre los Minerales Nutrientes.

Autor(es): Carmen Colón de Jorge, Edgardo Santiago, John Brooks, Francisco López Perez, Jaime Rivera, Rafael Valle

Afiliación: Colegio de Médicos y Universidad de Puerto Rico

Estado de la publicación: Manuscrito preliminar (inédito)

Estado de revisión por expertos: Ninguna

Citado anteriormente por la ATSDR: No fue citado pero constituuyó la base del Debate del panel de 2001 sobre análisis de cabello

Hallazgos del estudio

En 1999 y 2000, la Dra. Colón de Jorge recolectó muestras de cabello y heces de residentes de Vieques. La doctora informó que entre el 45% y el 50% de estas personas que no fueron seleccionadas aleatoriamente presentaba intoxicación por mercurio. Utilizando resultados de las muestras de heces, la doctora halló que 3 de los 6 niños evaluados en Vieques presentaban concentraciones de metales en las heces que superaban el rango de referencia del laboratorio clínico (a saber, Doctor’s Data). La doctora también informó que 5 de 6 niños evaluados presentaban antimonio y arsénico en las muestras de heces que superaban el rango de referencia del laboratorio. Y estos eran niños que, a diferencia de los adultos, no pudieron haber estado expuestos a metales presentes en pintura, papel de cigarrillos, tabaco, ollas viejas, maquillaje y tintura para el cabello.

La Dra. Colón de Jorge informó que se obtuvieron 30 muestras de cabello de residentes de Vieques con condiciones de salud autodeclaradas. La doctora también concluyó que: 1) el 50% de las personas evaluadas presentaba contaminación por antimonio frente a un 29% de una población de control, 2) el 50% de las personas evaluadas presentaba contaminación por arsénico frente a un 29% de una
población de control y 3) el 50% de las personas evaluadas presentaba un desequilibrio de selenio. La Dra. Colón de Jorge señaló que los niveles de antimonio eran altos porque se utilizaba en balística en la isla, lo cual apoya el argumento de que la actividad de bombardeo naval era el motivo de que los niveles de antimonio fueran altos en los niños.

La Dra. Colón de Jorge también recurrió a las siguientes declaraciones para resumir los resultados de siete pacientes de control:

- Ninguno de los siete pacientes mostró niveles tóxicos totales de metales. Dos casos tenían un nivel de antimonio por encima del rango de referencia establecido por el laboratorio, comparado con el 29% de los investigados fuera de Vieques. El selenio fue normal para contaminación exógena.
- Dos casos tenían un nivel de arsénico por encima del rango de referencia comparado con el 29% de los casos fuera de Vieques. El selenio fue normal para contaminación exógena.
- Como los niveles de selenio eran normales y estaban dentro del rango de referencia, los siete pacientes de control no tenían contaminación endógena por metales pesados.
- La Dra. Colón de Jorge recogió muestras de cabello de siete personas al azar en Río Piedras, en la isla principal de Puerto Rico. Ninguno de los resultados mostró niveles tóxicos de metales pesados. Por el contrario, en los análisis de 21 de 30 personas (es decir, el 63%) de Vieques con condiciones de salud conocidas (y que, por lo tanto, no fueron seleccionadas aleatoriamente) se detectaron diversos metales a niveles tóxicos.
- El informe de la Dra. Colón de Jorge incluye varios apéndices con información adicional, enfocada mayormente en cómo evaluar e interpretar los resultados elementales en el cabello. Uno de los apéndices contenía un informe de Doctor’s Data titulado *Comprehensive Interpretations for Hair Elements from Al to Zn* (Interpretaciones integrales de elementos en el cabello del Al al Zn) (Quiq 1998).

Cómo abordó la ATSDR los hallazgos del estudio

Para determinar la relación entre los datos en el cabello y los posibles efectos adversos para la salud, la ATSDR solicitó la ayuda de expertos ajenos a la agencia. En junio de 2001, la ATSDR citó a un panel de expertos para analizar el estado de la ciencia en relación con el análisis de cabello para determinar la exposición ambiental (ATSDR 2001). El panel estuvo formado por personas de organismos gubernamentales estatales y federales, académicos y médicos de consultorios privados cuyos conocimientos, intereses y experiencias cubrían una amplia variedad de disciplinas técnicas relevantes.

Los panelistas coincidieron en que

... para la mayoría de las sustancias, actualmente no existen datos suficientes que permitan prever un efecto en la salud a partir de la concentración de la sustancia en el cabello. La presencia de una sustancia en el cabello puede indicar exposición (tanto interna como externa), pero no necesariamente indica la fuente de exposición.
Los panelistas señalaron que —siempre y cuando se pueda descartar la contaminación externa— solo se ha establecido una relación entre las concentraciones de contaminantes en el cabello y cualquier tipo de resultado mensurable para el metilmercurio y, en un grado limitado, el arsénico.

El panel reconoció que existen métodos de laboratorio para medir los niveles de algunos contaminantes ambientales en el cabello, pero comentó que es necesario estandarizar los procedimientos para ayudar a garantizar resultados más precisos y confiables. También se identificaron varios factores que limitaron la interpretación de incluso los resultados de laboratorio más precisos, confiables y reproducibles.

La preocupación de la comunidad sobre el análisis del cabello se atendió brevemente en la PHA sobre el suelo de 2001 (vea la página 58).

Bibliografía

Hallazgos del estudio

Entre enero de 2000 y julio de 2001, la Dra. Carmen Ortiz Roque recolectó muestras de cabello de 203 viequenses. La Tabla A-14 muestra los datos de diversos metales en el cabello.

<table>
<thead>
<tr>
<th>Metal en ppm</th>
<th>% de elevación</th>
<th>Promedio (CI 95%)</th>
<th>Mujeres</th>
<th>Varones</th>
<th>Niños <10 años de edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercurio, N = 205</td>
<td>33% > 1 ppm</td>
<td>2.07 (0 - 8.9)</td>
<td>2.87</td>
<td>1.08</td>
<td>1.89</td>
</tr>
<tr>
<td>Aluminio, N = 145</td>
<td>56% > 17 ppm</td>
<td>25.74 (10.52 - 25.75)</td>
<td>26.45</td>
<td>24.18</td>
<td>34.94</td>
</tr>
<tr>
<td>Cadmio, N = 205</td>
<td>26% > 0.47 ppm</td>
<td>0.65 (0 - 5.0)</td>
<td>0.75</td>
<td>0.55</td>
<td>No disponible</td>
</tr>
<tr>
<td>Plomo, N = 205</td>
<td>2.9% > 25 ppm</td>
<td>8.07 (0 - 19.0)</td>
<td>4.28</td>
<td>12.47</td>
<td>No disponible</td>
</tr>
<tr>
<td>Arsénico, N = 205</td>
<td>0 > 1 ppm</td>
<td>0.18 (0 - 3.0)</td>
<td>0.141</td>
<td>0.233</td>
<td>No disponible</td>
</tr>
</tbody>
</table>

La Dra. Ortiz Roque indicó que se hallaron niveles elevados de mercurio (33%), aluminio (56%), cadmio (26%) y plomo (6%) en los participantes. Los niveles de arsénico en el cabello no estaban elevados.

La Dra. Ortiz Roque también informó que el 22% de las mujeres y el 60% de los niños de quienes se tomaron muestras en Vieques tenían niveles de mercurio superiores a los que se considera el percentil 90 en los Estados Unidos.

Un subconjunto de 22 pares equiparados de madres e hijos de 5 años de edad o menos fue analizado en mayor profundidad. La Dra. Ortiz Roque informó una correlación significativa entre los niveles de mercurio en el cabello de las madres y los hijos (correlación de Pearson de 0.93, p = 0.0001).
concentración promedio de aluminio en el cabello para los viequenses fue 25.74 ppm, y esa concentración superó el límite superior de una población humana estándar. La Dra. Ortiz Roque indicó que los niveles de aluminio en el cabello de los niños normalmente son más altos que en los adultos.

La doctora concluyó que los datos mostraban que los viequenses tenían una exposición interna a metales pesados y que esos datos estaban respaldados por el alto porcentaje de mujeres y niños con niveles de mercurio en el cabello por encima del percentil 90 en comparación con los Estados Unidos continentales. Si bien ninguna de las mujeres de la encuesta NHANES de 1999 presentó niveles de mercurio en el cabello superiores a 12 ppm, 3 de 45 mujeres viequenses presentaron niveles en el cabello superiores a 12 ppm (es decir, 15.41, 25.26 y 101.3 ppm).

La Dra. Ortiz Roque concluyó que la correlación entre el cabello de madres e hijos mostró que la exposición a mercurio se había producido en el útero; que la exposición de los viequenses a mercurio era demasiado alta para ser considerada segura y que el mercurio se utilizaba en los detonadores.

Cómo abordó la ATSDR los hallazgos del estudio

Como se mencionó anteriormente, la ATSDR citó a un panel de expertos que coincidieron en que... para la mayoría de las sustancias, actualmente no existen datos suficientes que permitan prever un efecto en la salud a partir de la concentración de la sustancia en el cabello. La presencia de una sustancia en el cabello puede indicar exposición (tanto interna como externa), pero no necesariamente indica la fuente de exposición.

No obstante, la Dra. Ortiz Roque documentó que varias madres tenían niveles elevados de mercurio en el cabello y sus hallazgos se describen en el capítulo 3. Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides deben consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis.
Hallazgos del estudio

La Dra. Ortiz Roque publicó los datos del estudio de 2001 en el que se midió el nivel de mercurio en el cabello de los residentes de Vieques. En ese estudio se investigaron los niveles de mercurio en el cabello de mujeres de 16 a 49 años que vivían en la Isla de Vieques. La doctora comparó esos niveles con los de mujeres de San Juan y Ceiba, Puerto Rico. Las mujeres eran excluidas si habían sometido su cabello a un tratamiento químico 3 meses antes del análisis. Uno de dos laboratorios autorizados obtuvo y analizó una muestra de cabello proximal de 1.5 cm.

La Dra. Ortiz Roque informó datos estadísticos de 41 mujeres viequenses junto con información sobre el consumo de alimentos de origen marino y comparó esos datos con los de la isla principal de Puerto Rico y de Estados Unidos. La Tabla A-15 resume los datos. La Dra. Ortiz Roque utilizó un margen de exposición (MOE) para definir los niveles de exposición inseguros.
Tabla A-16. Resultados de mercurio en el cabello de mujeres publicados por la Dra. Ortiz Roque en 2004

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>Edad</th>
<th>Mercurio en ppm</th>
<th>Consumo de alimentos de origen marino</th>
<th>% de mujeres > RfD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mediana Media Percentil 90</td>
<td>Margen de exposición</td>
<td>Total</td>
</tr>
<tr>
<td>Vieques</td>
<td>41</td>
<td>31.8</td>
<td>0.66 4.4 8.96</td>
<td>1.3 4.9 2.9 1.9</td>
<td>26.8</td>
</tr>
<tr>
<td>PR</td>
<td>45</td>
<td>29.9</td>
<td>0.38 0.4 1</td>
<td>12 2.8 1.1 0.7</td>
<td>6.6</td>
</tr>
<tr>
<td>EE.UU.</td>
<td>702</td>
<td>NA</td>
<td>0.2 1.4</td>
<td>8.6 NA NA NA</td>
<td>7</td>
</tr>
</tbody>
</table>

El enfoque de MOE de la Dra. Ortiz Roque se originó en un artículo de 2001 de MMWR y con el Consejo Nacional de Investigación (NRC, por sus siglas en inglés). El NRC recomendó un nivel de efecto del 5% derivado del límite de confianza inferior al 95% de una dosis de referencia (BMDL, por sus siglas en inglés). La base del nivel de efecto del 5% es calificaciones anormales en pruebas de función cognitiva en niños expuestos en el útero a metilmercurio. El NRC recomendó que la EPA de los EE.UU. derive su dosis de referencia con un BMDL de 58 ppb de metilmercurio en sangre de cordón, que se identificó como el nivel de efecto del 5% a partir de un estudio realizado en las islas Feroe en el que se utilizaron modelos estadísticos. El valor de 58 ppb en sangre de cordón se traduce como 12 ppm en el cabello (Ortiz Roque 2004; NRC 2000).

Los resultados mostraron que el percentil 90 de la concentración de mercurio en el cabello de las mujeres de Vieques fue de 8.96 ppm comparado con 1 ppm en las mujeres de Puerto Rico y 1.4 ppm en las mujeres de los Estados Unidos. La Dra. Ortiz Roque concluyó que las mujeres viequenses en edad reproductiva estaban expuestas a concentraciones de mercurio inseguras para los fetos en desarrollo.

Cómo abordó la ATSDR los hallazgos del estudio

La Dra. Ortiz Roque documentó que varias madres tenían niveles elevados de mercurio en el cabello y sus hallazgos se describen en el capítulo 3.

Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides deben consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis.

Bibliografía

Hallazgos del estudio

El Dr. Carlos Rodríguez Sierra aparentemente realizó dos estudios de arsénico en orina en Vieques. El primero se realizó antes de 2004 y los resultados se presentaron en varias conferencias de salud pública, incluido el VIII Simposio Internacional sobre Iones Metálicos en Biología y Medicina de 2004. El segundo estudio de arsénico se realizó de 2006 a 2008 y fue informado en *El Vocero* en marzo de 2009. Ninguno de los dos estudios se ha publicado en una revista revisada por colegas. La ATSDR ha solicitado que el Dr. Rodríguez Sierra comparta un manuscrito o estadísticas de resumen, pero no ha recibido respuesta. El Dr. Rodríguez Sierra pertenece al Departamento de Salud Ambiental, Recinto de Ciencias Médicas de la Universidad de Puerto Rico.

La siguiente información proviene de un artículo periodístico de marzo de 2009 publicado en *El Vocero*, en el que se describe la exposición a arsénico entre los residentes de Vieques por el consumo de pescado. El artículo afirmaba que se halló arsénico orgánico en una muestra representativa de viequenses con un alto consumo de pescado.

El Dr. Rodríguez Sierra identificó dos grupos en Vieques: uno estaba formado por 30 personas que consumían cantidades considerables de pescado. El otro estaba formado por 22 personas que consumían muy poco pescado. Como biomarcador de la exposición a corto plazo, los investigadores midieron los niveles de arsénico inorgánico en orina. Como biomarcador de la exposición a largo plazo, midieron el arsénico en uñas y cabello.

El artículo informaba que los investigadores midieron el arsénico en orina y hallaron que, en promedio, los niveles en orina, cabello y uña eran generalmente bajos. No obstante, algunas personas, y en
especial algunos hombres, que comían pescado con frecuencia tenían concentraciones más altas de arsénico *inorgánico* en las uñas, lo cual es un indicador de exposición a largo plazo.

Cómo abordó la ATSDR estos hallazgos del estudio

Dado que los datos no están disponibles, la ATSDR consideró los resultados cualitativamente en el capítulo 3. Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides deben consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis.
Hallazgos del estudio

A partir de 2004, el Departamento de Salud de Puerto Rico llevó a cabo un estudio epidemiológico de 5 años de duración, 500 personas y en dos fases, para detectar la presencia de metales pesados en la sangre, la orina y el cabello de los residentes. Los resultados se presentaron en un manuscrito preliminar en 2006. En la primera fase, el estudio del Departamento de Salud de Puerto Rico llevó a cabo entrevistas y análisis de laboratorio de 1) arsénico en cabello y orina, 2) níquel en cabello y orina, 3) cadmio en cabello y orina, 4) mercurio en sangre, 5) plomo en sangre, 6) aluminio en sangre 7) uranio en orina. La segunda fase de la investigación implicó recolectar y analizar muestras de sangre de los participantes de la fase I cuyos análisis hubieran mostrado metales a niveles tóxicos. La fase II se extendió desde diciembre de 2005 hasta marzo de 2006.

El manuscrito del Departamento de Salud de Puerto Rico informó que los principales hallazgos de este estudio fueron:

- Niveles detectables de al menos un metal pesado hallados en más del 90% de la población.
- Los niveles de aluminio en sangre, arsénico en orina y níquel en cabello fueron superiores al umbral del laboratorio en más del 20% de los participantes del estudio. Los resultados de arsénico en orina correspondieron a arsénico total, no a arsénico inorgánico.
- Las medias geométricas de uranio en orina, mercurio en sangre, plomo en sangre, aluminio en sangre, níquel en cabello y cadmio en orina fueron significativamente más altas que las medias geométricas de la encuesta NHANES de 1999.
- Ninguna de las medias geométricas identificadas por el laboratorio se ubicó por encima del umbral de toxicidad del laboratorio.
En el caso del arsénico, el cadmio y el níquel, el consumo de cigarrillos, el consumo de alimentos de origen marino y el uso de tintura para el cabello fueron identificados como factores de riesgo para los niveles superiores al umbral del laboratorio.

- Se identificaron quince personas (3%) con niveles superiores al umbral de toxicidad para aluminio en sangre (10), plomo en sangre (2), mercurio en sangre (1) y cadmio en orina (2).

- En el estudio de seguimiento a 10 de las 15 personas, sólo se identificó una persona con niveles superiores al umbral de toxicidad.

El manuscrito del Departamento de Salud de Puerto Rico sugirió establecer un registro de salud voluntario de residentes de Vieques. Un registro de salud 1) permitiría la documentación sistemática de factores relacionados con riesgos potenciales, 2) identificaría personas con signos y síntomas tempranos que podrían estar asociados con enfermedades y 3) facilitaría la atención temprana y las necesidades de acceso al servicio de salud.

El manuscrito del Departamento de Salud de Puerto Rico señaló que se desconocían los niveles de plomo en sangre de los 1,000 niños de Vieques de 0 a 6 años. Ese grupo de alto riesgo es más vulnerable a la exposición al plomo que los adultos. El manuscrito del Departamento de Salud de Puerto Rico indicó que se nombraría un epidemiólogo para trabajar con el fin de establecer este programa, el cual seguirá las pautas de los CDC para el manejo de casos. Se desconoce si, a la fecha, se ha implementado ese programa.

Cómo abordó la ATSDR los hallazgos del estudio

El estudio de biomonitoreo del Departamento de Salud de Puerto Rico aportó mucho conocimiento sobre la exposición a metales en los residentes de Vieques. Algunos resultados del estudio del Departamento de Salud de Puerto Rico sugerían la presencia de niveles elevados de diversos metales, lo cual creó preocupación acerca de una exposición excesiva en la isla. El estudio del Departamento de Salud de Puerto Rico se describe en detalle en el capítulo 3. Los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides deben consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis.
Hallazgos del estudio

El Dr. John Wargo de la Universidad de Yale consideró el análisis de los datos y la preparación de un artículo acerca de metales pesados en el cabello de los viequenses. Sin embargo, informó a la ATSDR que ya no planea realizar este análisis por problemas de garantía y control de calidad de los datos del cabello y por problemas con el uso de cabello para medir a la mayoría de los metales.

Cómo abordó la ATSDR los hallazgos del estudio

No se dispondrá de hallazgos del estudio.
Hallazgos del estudio

Entre 1973 y 1989, el Programa de Vigilancia, Epidemiología y Resultados Finales (SEER) del Instituto Nacional del Cáncer financió parcialmente el Registro Central de Cáncer de Puerto Rico (RCCPR). Después de 1989, no se renovó el contrato entre el RCCPR y el SEER y, hasta 1997, el RCCPR funcionó con fondos locales. En 1997, el RCCPR solicitó y obtuvo financiamiento de los Centros para el Control y la Prevención de Enfermedades (CDC) mediante un acuerdo de cooperación acordado por el Programa Nacional de Registros de Cáncer. En el año calendario 1998, comenzando con los diagnósticos de casos de cáncer, el RCCPR proporcionó datos a los CDC.

En este informe, se evaluó la incidencia de cáncer y mortalidad por cáncer en Vieques durante 1990-2001 en los sitios anatómicos más frecuentes (es decir, mama, colorrectal, cervical, cavidad oral y faringe, pulmones y bronquios, y próstata) y algunos otros tipos de cáncer potencialmente asociados con la exposición ambiental (es decir, hígado y conductos biliares intrahepáticos, riñones y pelvis renal, vejiga, linfoma y leucemia) para dos períodos (1990-1995 y 1996-2001). También se evaluaron los cánceres por género según correspondiera. Para presentar las tasas de incidencia de cáncer y mortalidad por cáncer a cinco años según la práctica estándar, como se especifica en publicaciones como Cancer Statistics Review del SEER, Cancer in North America de North American Association for Central Cancer Registries y publicaciones conjuntas como United States Cancer Statistics.

Después de hacer ajustes por edad, el análisis identificó un aumento de la incidencia de cáncer en Vieques para algunas partes anatómicas específicas así como para todos los tipos de cáncer combinados. Sólo se identificaron aumentos significativos en el período 1990-1995. Se identificaron
razones de incidencia estandarizadas (standardized incidence ratios, SIR) estadísticamente significativas, ajustadas para la edad, con los correspondientes intervalos de confianza del 95% (CI 95%) para:

Todos los tipos de cáncer para ambos sexos combinados (SIR = 1.19; CI 95% 1.02, 1.39);
- Pulmón y bronquios para ambos sexos combinados (SIR = 2.25; CI 95% 1.35, 3.52);
- Pulmón y bronquios en hombres (SIR = 2.24; CI 95% 1.19, 3.83) y
- Próstata (SIR = 1.47; CI 95% 1.03, 2.03).

Después de hacer ajustes por edad, el análisis identificó un aumento de la incidencia de cáncer en Vieques para algunas partes anatómicas específicas así como para todos los tipos de cáncer combinados. Se identificaron razones de mortalidad estandarizadas (standardized mortality ratios, SMR) estadísticamente significativas, ajustadas para la edad, con los correspondientes intervalos de confianza del 95% (CI 95%) para:

- Todos los tipos de cáncer para ambos sexos combinados, 1990-1995 (SMR = 1.26; CI 95% 1.01, 1.57);
- Todos los tipos de cáncer en mujeres, 1990-1995 (SMR = 1.43; CI 95% 1.01, 1.96);
- Todos los tipos de cáncer para ambos sexos combinados, 1996-2001 (SMR = 1.25; CI 95% 1.01, 1.52);
- Cáncer de mama, 1990-1995 (SMR = 0.26; CI 95% 0.03, 0.92) y
- Cavidad oral y faringe en hombres, 1990-1995 (SMR = 3.96; CI 95% 1.08, 10.00).

Como se mencionó brevemente en el documento y lo confirmó el Dr. Figueroa (comunicación personal, julio de 2009), fue necesario realizar cierto seguimiento para identificar casos en Vieques que no se hubieran procesado de manera uniforme con el resto de PR. Un ejemplo se relaciona con la documentación de la edad para los casos del registro. En esta evaluación, en la Isla de Vieques todos los casos en los que se indicara residencia tenían la edad confirmada. Pero esa práctica no se respetó en la isla principal de PR. Si se desconocía la edad en un caso, se lo omitía de cualquier cálculo de las tasas. Dada la pequeña cantidad de casos de Vieques, se confirmó la edad para asegurarse de que se pudieran incluir todos los casos potenciales.

Cómo abordó la ATSDR los hallazgos del estudio

No se incluyeron los datos del resultado de salud en informes previos de la ATSDR sobre Vieques. Los resultados de este estudio se analizan ahora en el capítulo 4.
Hallazgos del estudio

Este documento describe un estudio transversal de los residentes de cuatro barrios de Vieques: Luján, el asentamiento Administración de Reconstrucción de Puerto Rico (PRRA), Esperanza y Santa María. El trabajo de campo de este estudio se llevó a cabo entre abril y noviembre de 2000.37 Los autores intentaron incluir a todos los residentes de cada barrio y permitieron que la cabeza de la familia —por lo general, la matriarca— respondiera en nombre de todos los integrantes de la familia. Además de la información demográfica, de empleo y de hábitos alimentarios recopilada, la encuesta también recogió datos de prevalencia de enfermedades informados por los encuestados.

Cáncer, enfermedad cardíaca, hipertensión, diabetes y asma fueron informados por los encuestados con una prevalencia mayor que la de los datos de referencia de la isla principal de Puerto Rico. Específicamente, las tasas de casos informadas fueron 1.18-2.69 veces las tasas de datos informadas en un estudio de 1994 realizado en Puerto Rico. Todos los datos fueron informados por los mismos encuestados o por un representante. No se intentó acceder a registros médicos con el fin de validar la información recopilada.

Los cuatro barrios se describieron, en su conjunto, como representativos de la población de Vieques. Luján tenía 132 residentes reportados con un rango de edad de entre 5 y 25 años, el PRRA tenía 306 residentes reportados con un rango de edad de entre 59 y 70 años, Esperanza tenía 388 residentes reportados y Santa María tenía reportados 217 residentes.

37 Ese período tal como se informa parece inconsistente con la fecha de publicación de marzo de 2000.
Cómo abordó la ATSDR los hallazgos del estudio

No se incluyeron los datos del resultado de salud en informes previos de la ATSDR sobre Vieques. Los resultados de este estudio se analizan ahora en el capítulo 4.
Hallazgos del estudio

Entre 1973 y 1989, el Programa de Vigilancia, Epidemiología y Resultados Finales (SEER) del Instituto Nacional del Cáncer financió parcialmente el registro de cáncer de Puerto Rico (RCCPR). Después de 1989, no se renovó el contrato entre el RCCPR y el SEER y, hasta 1997, el RCCPR funcionó con fondos locales. En 1997, el RCCPR solicitó y obtuvo financiamiento de los Centros para el Control y la Prevención de Enfermedades (CDC) mediante un acuerdo de cooperación acordado por el Programa Nacional de Registros de Cáncer. En el año calendario 1998, comenzando con los diagnósticos de casos de cáncer, el RCCPR proporcionó datos a los CDC.

Después de hacer ajustes por edad, el análisis identificó un aumento de la incidencia de cáncer en Vieques para algunas partes anatómicas específicas así como para todos los tipos de cáncer combinados. Se identificaron aumentos significativos entre 1990 y 1994 y 1995 y 1999. Se identificaron
razones de incidencia estandarizadas (SIR) estadísticamente significativas, ajustadas para la edad, con los correspondientes intervalos de confianza del 95% (CI 95%) para:

1990-1994
- Pulmón y bronquios para ambos sexos combinados (SIR = 2.34; CI 95% 1.36, 3.75) y
- Pulmón y bronquios en hombres (SIR = 2.43; CI 95% 1.25, 4.24); 1995-1999
- Todos los tipos de cáncer para ambos sexos combinados (SIR = 1.26; CI 95% 1.08, 1.47)
- Todos los tipos de cáncer en hombres (SIR = 1.31; CI 95% 1.07, 1.60)
- Próstata (SIR = 1.53; CI 95% 1.09, 2.09).

Después de hacer ajustes por edad, el análisis identificó un aumento de la mortalidad por cáncer en Vieques para algunas partes anatómicas específicas así como para todos los tipos de cáncer combinados. Se identificaron razones de mortalidad estandarizadas (SMR) estadísticamente significativas, ajustadas por edad, con los correspondientes intervalos de confianza del 95% (CI 95%) para:

1990-1994 – Cáncer colorrectal en mujeres (SMR = 2.75; CI 95% 1.11, 5.67)
1995-1999 – Todos los tipos de cáncer para ambos sexos combinados (SMR = 1.35; CI 95% 1.08, 1.67)
2000-2004:
- Todos los tipos de cáncer en hombres (SMR = 1.40; CI 95% 1.07, 1.80)
- Cáncer de próstata (SMR = 2.62; CI 95% 1.66, 3.93)

Como se mencionó brevemente en el documento y lo confirmó el Dr. Figueroa (comunicación personal, julio de 2009), fue necesario realizar cierto seguimiento para identificar casos en Vieques que no se hubieran procesado de manera uniforme con el resto de PR. Un ejemplo se relaciona con la documentación de la edad para los casos del registro. En esta evaluación, en la Isla de Vieques todos los casos en los que se indicara residencia tenían la edad confirmada. Pero esa práctica no se respetó en la isla principal de PR. Si se desconocía la edad en un caso, se lo omitía de cualquier cálculo de las tasas. Dada la pequeña cantidad de casos de Vieques, se confirmó la edad para asegurarse de que se pudieran incluir todos los casos potenciales.

CÓMO ABORDÓ LA ATSDR LOS HALLAZGOS DEL ESTUDIO

No se incluyeron los datos del resultado de salud en informes previos de la ATSDR sobre Vieques. Los resultados de este estudio se analizan ahora en el capítulo 4.
En noviembre del 2001, científicos marinos localizaron los restos del antiguo USS Killen (en dos partes en la Bahía Salina del Sur), y evaluaron la vegetación acuática sumergida, la población de peces y la de coral alrededor del buque hundido. En vista de la cantidad de superestructura que le faltaba al Killen, la hipótesis fue que los tambores fueron usados como lastre para redistribuir el peso del buque objetivo. También comprobaron que varios de los tambores habían sido sellados vacíos para proporcionar flotabilidad a algunos de los compartimentos del buque. La vegetación acuática sumergida alrededor de las dos áreas fue comparable con el sitio de control y no mostró signos de estrés ambiental. El buque sustentó poblaciones de peces y coral similares a las del sitio control y no se comprobó que afectaran al ecosistema de manera negativa. El estudio concluyó que el buque hundido estaba actuando como el hábitat productivo artificial del arrecife.

Cómo abordó la ATSDR los hallazgos del estudio

La ATSDR usó los resultados de este estudio en la Evaluación de peces y mariscos de 2003 para tratar las preocupaciones de los viequenses sobre el antiguo USS Killen y los tambores asociados con él. Como parte de la evaluación de la agencia sobre Vieques, se agregó un resumen del estudio a la sección que analiza los efectos que antiguas actividades militares sobre Vieques tuvieron sobre el ambiente marino circundante (ver el capítulo 2, sección 2.1.4).
Hallazgos del estudio

Este estudio comparó la variabilidad entre los conjuntos de arrecifes ubicados entre Vieques y St. Croix para evaluar las diferencias y la influencia de factores naturales y manufacturados. Los investigadores establecieron 18 sitios en Vieques (12 dentro del antiguo LIA y seis en el antiguo EMA) y seis en St. Croix para evaluación de la estructura del ensamblaje de coral. No se observaron diferencias en la cubierta del arrecife de coral bentónico vivo ni en la composición de los conjuntos de coral dentro y fuera de la LIA en Vieques. Además, los conjuntos de arrecifes en Vieques y St. Croix fueron similares en composición y cobertura biótica. Los investigadores consideraron que la falta de diferenciación dentro de las comunidades de coral de Vieques y entre Vieques y St. Croix era el resultado más pronunciado del estudio. Como los arrecifes en St. Croix no estaban en mejor condición que los de Vieques, los autores sugieren que las alteraciones naturales (enfermedad y tormentas) tuvieron mayor efecto sobre las comunidades de coral que las antiguas actividades de bombardeo militar.

Cómo abordó la ATSDR los hallazgos del estudio

Como los viequenses están preocupados por los efectos que las actividades de bombardeo tuvieron sobre el ambiente marino, la ATSDR revisó este estudio reciente como parte de la evaluación de la agencia sobre Vieques. Se agregó un resumen de este estudio a la sección que analiza los efectos ecológicos a los arrecifes de coral alrededor de Vieques (ver capítulo 2, sección 2.1.4).
Hallazgos del estudio

El Equipo de respuesta ambiental de la Agencia de Protección Ambiental de los EE.UU. (U.S. Environmental Protection Agency’s Environmental Response Team, la EPA/ERT) recolectó y analizó 104 peces y 38 mariscos (que representaban a 20 especies comestibles distintas) de las aguas costeras y de tierra cercanas a la costa de Vieques en julio de 2001. También se recolectaron cangrejos violinistas del LIA. La EPA/ERT capturó peces y mariscos de cinco localizaciones de pesca preferidas (norte del LIA, sur del LIA, sur de Esperanza, norte de Isabel Segunda y oeste de Vieques) así como de un mercado de pescado local en Isabel Segunda. Se detectaron varios metales pesados en los peces y en los mariscos. No se detectaron compuestos explosivos en los peces ni en los mariscos, con la excepción de bajos niveles de ciclotetrametileno de tetratrimetamina (HMX) y un químico similar a ciclotrimetileno de trinitramina (RDX) en los cangrejos violinistas y un químico similar RDX en un pez cofre del mercado de pescado. Como los cangrejos violinistas no habían sido lavados antes del análisis, la detección puede haber sido el resultado de la contaminación del suelo. No se detectaron compuestos explosivos en ninguna de las otras 142 muestras de peces o mariscos comestibles. La EPA/ERT determinó estadísticamente que las concentraciones químicas en los peces y mariscos recolectados del sur del LIA eran similares a los recolectados del oeste de Vieques. Los buzos notaron cualitativamente que los arrecifes estaban en buenas condiciones y que los peces parecían estar sanos. Documentaron la presencia de municiones sin detonar en el norte y en el sur del LIA.

38 El laboratorio que realizó los análisis no pudo confirmar una identificación definitiva.
Cómo abordó la ATSDR los hallazgos del estudio

La EPA/ERT asistió a la ATSDR y condujo el estudio para evaluar si el pescado y los mariscos comúnmente consumidos en Vieques contenían o no metales pesados y compuestos explosivos en niveles que podrían afectar adversamente a la salud pública. Los resultados del estudio fueron evaluados y analizados en profundidad en la Evaluación de Peces y Mariscos de 2003. Como parte de la evaluación de la agencia sobre Vieques, se agregó un breve resumen de las condiciones generales de los arrecifes encontradas durante el estudio a la sección que analiza los impactos ecológicos a los arrecifes de coral alrededor de Vieques (ver capítulo 2, sección 2.1.4).
Hallazgos del estudio

El propósito de este estudio fue proporcionar una caracterización espacial exhaustiva del ecosistema marino que rodea a Vieques. Se basa en esfuerzos previos de la NOAA investigando la fauna ictícola, comunidades bentónicas, niveles de nutrientes y contaminantes químicos en el ambiente marino que rodea a Vieques. Los datos fueron agrupados y analizados de acuerdo con el uso anterior de la tierra. Los hallazgos principales se resumen a continuación:

- Se usó un diseño aleatorizado estratificado para seleccionar 75 sitios para estudios de comunidades ictícolas y bentónicas alrededor de Vieques. Los investigadores comprobaron que Vieques era similar en términos de cobertura bentónica, abundancia total de peces y biomasa con otras localizaciones cercanas (sudoeste de Puerto Rico, St. Croix y San Juan). No se pudo vincular de manera concluyente a las diferencias en las comunidades ictícola y bentónica con patrones del uso anterior de la tierra.

- Se usó un diseño aleatorizado estratificado para seleccionar 78 sitios para sondeos de sedimento (laguna y a cierta distancia de la costa) y 35 sitios para muestreo de tejido coral. Las muestras de sedimento y tejido coral fueron analizadas para 150 contaminantes químicos, incluidos metales, pesticidas y explosivos. En total, las concentraciones de contaminantes estuvieron por debajo de las recomendaciones de calidad de sedimento establecidas; los sedimentos de lagunas tuvieron típicamente concentraciones más altas que los sitios cercanos a la costa y los sedimentos tuvieron mayores concentraciones de vestigios y elementos principales.
que los corales. Las muestras de sedimento analizadas para 14 compuestos explosivos no dieron
detecciones confirmadas. DDT (en cuatro sitios) y cromo (en un sitio) fueron detectados en
muestras de sedimento por encima de las recomendaciones de calidad de sedimento
establecidas. Sin embargo, ninguno de los sitios tuvo concentraciones con probabilidades de
afectar la biota residente. Las concentraciones de hidrocarburos aromáticos policíclicos en el
sedimento fueron significativamente más elevadas en la zona de uso de la tierra que incluyó el
antiguo Destacamento de Apoyo de Munición Naval. La concentración de cadmio fue
significativamente mayor en la antigua LIA.

- Siguiendo un proceso de diseño aleatorio estratificado, muestras de agua de 40 estaciones de
muestreo fueron analizadas en busca de nitrato, nitrito, silicato, ortofosfato, amoníaco, urea,
nitrógeno total y fósforo total. No se descubrió evidencia de enriquecimiento antropogénico de
nutrientes. En general las concentraciones de nutrientes fueron bajas y similares en magnitud a
las medidas en otras partes de Puerto Rico. Las concentraciones de nitrógeno y fósforo
estuvieron por debajo de los valores umbrales publicados que se consideran peligrosos para el
crecimiento excesivo macroalgal en ecosistemas de arrecifes de coral.

Los autores concluyeron que había poca evidencia de diferencias en los recursos, nutrientes, o
contaminantes marinos alrededor de Vieques en comparación con otros ecosistemas de arrecifes de
coral en Puerto Rico y en las Islas Vírgenes de los EE.UU. El ecosistema de arrecifes parece ser moldeado
esencialmente por factores procesados a escala regional más que por factores locales. Los resultados del
estudio no respaldaron ninguna de las siguientes hipótesis: 1) las actividades navales afectaron en forma
negativa a los ambientes marinos alrededor de Vieques y 2) la falta de desarrollo en dos tercios de la isla
fue una influencia positiva al impedir que actividades humanas documentadas en otras partes como
nocivas para los ambientes marinos.

Cómo abordó la ATSDR los hallazgos del estudio

Como los viequenses están preocupados por los efectos que las actividades de bombardeo tuvieron
sobre el ambiente marino, la ATSDR revisó este estudio reciente como parte de la evaluación de la
agencia sobre Vieques. Los resultados de las muestras de metales pesados en sedimento y coral se
analizan en el capítulo 1, sección 1.3.3. Un resumen del estudio se agregó también a la sección que
analiza los impactos ecológicos a los arrecifes de coral alrededor de Vieques (ver capítulo 2, sección
2.1.4). La ATSDR observa que el alcance del estudio fue caracterizar todo el ecosistema marino
alrededor de Vieques; no se dirigió en forma intencional hacia la caracterización del impacto de las
actividades de bombardeo.
Apéndice B Resúmenes de documentos previos de la ATSDR

Este apéndice contiene resúmenes de documentos previos de la ATSDR en los que se evalúan datos ambientales relacionados con Vieques. El apéndice también incluye resúmenes de dos revisiones por paneles financiadas por la ATSDR: una relativa a ecocardiogramas cardíacos y otra de un análisis elemental de cabello.

A menudo se plantea la cuestión de revisiones por expertos para evaluaciones de salud pública. En general, las evaluaciones de salud pública no son revisadas por expertos; el Congreso indicó específicamente que “todos los estudios y resultados de investigaciones realizadas en el marco de esta sección (que no sean evaluaciones de salud pública) deben informarse o adoptarse únicamente después de una revisión apropiada realizada por expertos”. Consulte 42 U.S.C. §9604(i)(13) de la Ley Integral de Respuesta, Compensación y Responsabilidad Ambiental de 1980 (CERCLA o Superfondo), según las enmiendas de la Ley de superfondo y reautorización (Superfund Amendments and Reauthorization Act, SARA) de 1986.

Si bien en general las evaluaciones de salud pública no se someten a revisión por expertos, se publican para recibir comentarios del público. Además, algunas evaluaciones de salud pública son, en efecto, revisadas por expertos. En el caso de las evaluaciones de salud pública relevantes a Vieques que fueron revisadas por expertos, en este apéndice se indican las fechas de los comentarios públicos y los nombres de encargados de la revisión por expertos.

Tabla de contenidos

Evaluación de salud pública presentada para recibir comentarios del público; 16 de octubre de 2001: Evaluación de salud pública final... B-3
Isla de Vieques Bombing Range Public Health Assessment: Soil Pathway.. B-6
Isla de Vieques Bombing Range Public Health Assessment: Fish and Shellfish .. B-9
Isla de Vieques Bombing Range Public Health Assessment: Air.. B-11
Isla de Vieques Bombing Range Health Consultation: Land Crabs ... B-14
Hair Analysis Panel Discussion: Exploring the State of the Science – Junio de 2001................................. B-16
Expert Review of the Vieques Heart Study .. B-21
Un residente de Vieques solicitó a la ATSDR que investigara si el agua subterránea contaminada podría pasar de la zona bajo el Área de Impacto de Proyectiles Activos (LIA) a las áreas habitadas de Vieques. La ATSDR estudió la hidrogeología de la isla y evaluó los niveles de sustancias químicas en muestras de agua potable y de agua subterránea obtenidas de pozos y tanques de Vieques. En función de eso, la ATSDR concluyó que

El agua del sistema de suministro público de agua actual es segura para el consumo

La mayoría de los residentes de Vieques reciben el agua potable mediante una tubería submarina desde la isla principal de Puerto Rico. En 1999 y 2000, la Agencia de Protección Ambiental de los EE.UU., el Departamento de Salud de Puerto Rico y la Marina de los EE.UU. analizaron el agua potable del sistema de suministro público de agua para detectar compuestos orgánicos volátiles, compuestos inorgánicos y
compuestos explosivos. Después de evaluar los resultados del análisis, la ATSDR concluyó que las actividades de la Armada no afectaron el suministro público de agua potable y que era seguro beber el agua.

El agua de la mayoría de los pozos de agua subterránea de la isla es segura para el consumo.

En el pasado, los residentes extraían agua de pozos de agua subterránea de los valles de Esperanza y Resolución. También se obtenía agua potable de pequeños pozos privados de áreas residenciales. Muchos de esos pozos actualmente suministran agua potable suplementaria cuando se interrumpe el sistema de suministro público de agua de la isla principal.

De 1995 a 2000, la Agencia de Protección Ambiental de los EE.UU., el Departamento de Salud de Puerto Rico, el Reconocimiento Geológico de los EE.UU. y la Marina de los EE.UU. obtuvieron muestras de pozos de agua subterránea de la isla para detectar compuestos orgánicos volátiles, compuestos inorgánicos, pesticidas, herbicidas, bifenilos policlorados y compuestos explosivos. No se hallaron compuestos explosivos ni sus residuos en ninguno de los pozos. La evaluación de la ATSDR incluyó la determinación de si, para las personas que beben agua de los pozos, las sustancias químicas detectadas se encontraban a niveles perjudiciales.

La ATSDR concluyó que durante las interrupciones del suministro público de agua, el agua de todos los pozos, menos uno, era segura para el consumo. Pero la ATSDR también halló que los pozos de agua subterránea tenían un contenido de sodio naturalmente alto, por lo que se recomendó a los residentes con dietas de bajo contenido de sodio que consideraran limitar la ingestión de agua de los pozos de agua subterránea de la isla. Un pozo privado (Pozo 3-7) también mostró niveles altos de nitratos/nitritos. Por lo tanto, el agua del Pozo 3-7 no era segura para el consumo, en especial para niños y mujeres embarazadas. El Departamento de Salud de Puerto Rico emitió un aviso correspondiente y el personal del departamento informó personalmente a los residentes que el agua del Pozo 3-7 no era segura. Dada la hidrogeología de Vieques, la ATSDR no consideró que la contaminación fuera consecuencia de las actividades en el campo de bombardeo; más bien, lo más probable es que se debiera a las actividades agrícolas de la zona o a los sistemas sépticos.

La geología y topografía de la Isla de Vieques impiden el movimiento de agua subterránea desde el Área de Impacto de Proyectiles Activos hacia el área en la que se encuentran los pozos de agua subterránea.

La ATSDR evaluó la hidrogeología de la isla para determinar si las sustancias peligrosas del Área de Impacto de Proyectiles Activos podrían migrar en el agua subterránea hasta el área de los pozos de agua
potable. La ATSDR determinó que los pozos estaban dentro de acuíferos aislados y que, por lo tanto, no estaban conectados geológicamente con el agua subterránea del extremo oriental de la isla. Además, entre el Área de Impacto de Proyectiles Activos y el lugar donde estaban ubicados los pozos, el lecho de roca y la topografía hacia el este de la isla están inclinados hacia arriba. Por tanto, en vez de migrar hacia los pozos, el agua subterránea del Área de Impacto de Proyectiles Activos se movía lentamente pendiente abajo hacia las lagunas y, eventualmente, hacia el océano.

Si se cumplen buenas prácticas de higiene, el agua de los sistemas de recolección de aguas pluviales es segura para el consumo.

Dado que ningún estudio de muestreo caracterizó la calidad del agua de los sistemas de recolección de aguas pluviales en Vieques, no se disponía de datos de muestreo específicos del lugar como fundamento para conclusiones sólidas. No obstante, en caso de cumplirse las prácticas de higiene aceptadas, la ATSDR espera que los sistemas de recolección de aguas pluviales de Vieques suministren agua limpia que no represente peligros para la salud.

En el pasado, el agua de Vieques era segura para el consumo.

En 1978, la Marina informó niveles muy bajos de compuestos explosivos en muestras de agua potable de Vieques.

El laboratorio que analizó las muestras de agua estableció cierta incertidumbre en los resultados. La ATSDR revisó esos datos, así como los procedimientos de muestreo y analíticos, para evaluar si las detecciones informadas representaban un peligro potencial para la salud. Para proteger a la salud pública, la ATSDR analizó los resultados asumiendo que había compuestos explosivos. La ATSDR concluyó que las concentraciones informadas estaban muy por debajo de los niveles perjudiciales. El agua no representó un peligro para la salud de ninguno de los que hubieran consumido en el pasado. Y los análisis más recientes de muestras de agua potable obtenidas con metodologías actualizadas de muestreo y análisis no detectaron ningún grado de contaminación relacionada con explosivos.

Categoría: Datos ambientales – Suelo

Fecha de la publicación: 23 de octubre de 2001 – Evaluación de salud pública presentada para recibir comentarios del público
Algunos miembros de la comunidad expresaron la preocupación de que los contaminantes generados por el bombardeo y otras actividades de adiestramiento de la Marina podrían haber sido transportados por el viento desde el Área de Impacto de Proyectiles Activos y depositados en el suelo de las áreas residenciales de Vieques. Para abordar esta preocupación, la ATSDR evaluó, aproximadamente, 600 muestras de suelo recolectadas por el Reconocimiento Geológico de los EE.UU., el Departamento de Recursos Naturales de Puerto Rico, la Marina de los EE.UU. y Servicios Científicos y Técnicos, Inc. La ATSDR analizó las muestras para detectar metales, otros compuestos inorgánicos y compuestos explosivos y concluyó que

Los residentes de Vieques no están expuestos a niveles perjudiciales de sustancias químicas en el suelo.

La ATSDR comparó los niveles de sustancias químicas hallados en los suelos de Vieques con los niveles que los profesionales de la salud pública consideran seguros. La ATSDR también realizó análisis
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

detallados para determinar la cantidad de sustancias químicas a las que se podría esperar que estuvieran expuestas las personas durante toda la vida. Los análisis mostraron que tanto para los adultos como para los niños que viven en Vieques, la ingestión accidental de suelo o el contacto con el suelo no provocarían efectos perjudiciales para la salud.

Los manifestantes que vivieron en el Área de Impacto de Proyectiles Activos durante un año no estuvieron expuestos a niveles perjudiciales de sustancias químicas en el suelo.

Entre abril de 1999 y mayo de 2000, para protestar contra la presencia de la Marina de los EE.UU. en Vieques, adultos y niños acamparon en el Área de Impacto de Proyectiles Activos. La Marina y Servicios Científicos y Técnicos, Inc. recolectaron muestras de suelo de las áreas en las que acampan los manifestantes. La ATSDR analizó los datos y determinó que para cualquier persona que hubiera ingerido suelo accidentalmente o que lo hubiera tocado todas las sustancias químicas se hallaban a niveles inferiores a los que podrían provocar efectos perjudiciales en la salud.

En comparación con los suelos del resto de la región, algunos de los metales detectados en el suelo de Vieques presentaban elevaciones moderadas.

La ATSDR comparó la calidad del suelo de Vieques con sedimento de la isla principal de Puerto Rico y con suelo de los Estados Unidos. La ATSDR halló que el nivel máximo de algunos de los metales detectados en el suelo de Vieques estaba moderadamente elevado en comparación con el suelo de Puerto Rico y de los Estados Unidos. La ATSDR también analizó las características químicas del suelo de Vieques para determinar si los metales se encontraban a niveles artificialmente elevados. Para ello, la ATSDR agrupó muestras de suelo de toda la isla según la roca subyacente (las unidades geológicas) y comparó las características químicas generales de esos suelos. La ATSDR halló que los suelos de Vieques estaban fuertemente influenciados por el tipo de roca que los forma; en otras palabras, los suelos desarrollados sobre distintos tipos de rocas subyacentes tienen diferentes niveles de metales. Los niveles de metales detectados en Vieques fueron compatibles con los que se hallan normalmente en suelos sustentados por el tipo de roca que se halla en Vieques (p. ej., rocas volcánicas) y no hubo niveles de preocupación para la salud.

Las concentraciones de metales en los suelos del Área de Impacto de Proyectiles Activos parecieron moderadamente elevadas, pero no a niveles perjudiciales.
Según el análisis de la ATSDR, al parecer los suelos del Área de Impacto de Proyectiles Activos han sufrido la influencia de las actividades de adiestramiento de la Marina y contenían niveles elevados de metales. No obstante, la ATSDR determinó que las concentraciones de metales en el suelo no estaban en niveles perjudiciales.

El análisis espacial de la ATSDR mostró que los metales aparentemente no se trasladaban del Área de Impacto de Proyectiles Activos a las áreas residenciales de Vieques.

La ATSDR examinó los datos del suelo para determinar tendencias espaciales que pudieran mostrar el movimiento de metales desde el Área de Impacto de Proyectiles Activos a las áreas residenciales de Vieques (es decir, un patrón de concentraciones de altas a medias y a bajas, de este a oeste). Para ello, la ATSDR creó mapas espaciales que muestran las ubicaciones de las concentraciones de metales detectadas en Vieques. Ninguno de los mapas espaciales mostró ningún patrón que comenzara con concentraciones altas en el Área de Impacto de Proyectiles Activos y disminuyera gradualmente la concentración hacia las partes occidentales de la isla. Por tanto, los datos del suelo recolectados de toda la isla indicaron que los contaminantes del Área de Impacto de Proyectiles Activos no fueron transportados en cantidades considerables por el aire para depositarse en las áreas residenciales de la isla.
Los estudios previos informaron niveles elevados de metales en el pescado y mariscos consumidos por los residentes de Vieques. Para tratar esta preocupación, la ATSDR trabajó con el Equipo de Respuesta Ambiental de la Agencia de Protección Ambiental de los EE.UU. para recolectar y analizar peces y mariscos de las aguas costeras y la tierra cercana a la costa en Vieques, a fin de determinar si los tejidos musculares de pescados y mariscos contenían niveles de metales y compuestos explosivos que serían nocivos para la salud humana.

Entre el 16 y el 20 de julio de 2001, se recolectaron peces y mariscos de seis localizaciones en Vieques. La ATSDR decidió recolectar merluza, pargo, cotorro, ronco, salmonetes, cangrejo de tierra, carrucho y langosta espinosa porque varias fuentes las identificaron como tipos de mariscos comúnmente cazados y consumidos. Estos peces y mariscos fueron recolectados de arrecifes y zonas cercanas a la costa en las siguientes seis localizaciones: (1) norte de la zona de impacto vivo, (2) sur de la zona de impacto vivo,
cerca de un buque de la marina hundido, (3) sur de Esperanza, (4) norte de Isabel Segunda, (5) un mercado de pescado en Isabel Segunda, y (6) oeste de la zona de conservación Laguna Kiani en el extremo occidental de Vieques. Los tejidos musculares y filetes fueron analizados para metales y compuestos explosivos. Todos los procedimientos de muestreo y análisis fueron realizados de acuerdo con los protocolos de la Agencia de Protección Ambiental de los EE.UU.

Durante el evento de muestreo, se observó que todas las ubicaciones de muestra soportaban poblaciones sanas y diversas de organismos marinos y que todos los arrecifes estaban en buenas condiciones. También observaron que, con muy pocas excepciones, los organismos recolectados parecían estar sanos.

ATSDR llegó a las siguientes conclusiones:

- No se detectaron compuestos explosivos en ninguno de los peces y mariscos comestibles de Vieques.
- Se detectaron metales en los peces y mariscos de Vieques, sin embargo, los niveles fueron demasiado bajos como para causar efectos nocivos sobre la salud en quienes los consuman.
 - Es seguro comer pescado y mariscos de Vieques todos los días.

De acuerdo con un estudio de consumo local, casi la mitad de los residentes de Vieques consumían alimentos de origen marino una o dos veces por semana. Sin embargo, algunas personas respondieron que comían alimentos de origen marino cinco veces por semana o más. Para proteger a todos los residentes, la ATSDR calculó la exposición determinando la cantidad de metales a la que sería más probable que las personas estuvieran expuestas durante toda la vida si comieran pescado o mariscos todos los días durante 70 años. Luego la ATSDR comparó los niveles con los niveles considerados seguros por los profesionales de la salud pública. La ATSDR halló que diversos pescados y mariscos de Vieques eran seguros para el consumo diario.

A partir de la evaluación actual sobre Vieques de la ATSDR, algunas de esas conclusiones han cambiado. Consulte el capítulo 9 para ver nuevas conclusiones y recomendaciones sobre pescados y mariscos.
Varios residentes de Vieques consultaron a la ATSDR si era seguro respirar el aire de la isla. Los residentes estaban muy preocupados por los contaminantes liberados en el aire durante los ejercicios de adiestramiento militar de la Marina. Esas preocupaciones incluían los ejercicios de bombardeo con proyectiles activos del pasado y, también, los ejercicios de práctica de bombardeo más recientes. Los residentes también tenían preguntas respecto de si el polvo contaminado del campo de bombardeo podía llevar a sus barrios por la acción del viento.

La ATSDR concluyó que

En función de los resultados del análisis de modelado de la ATSDR, los ejercicios de bombardeo con proyectiles activos realizados por la Marina no representaron un peligro de salud para los residentes.

Tres estudios de muestreo de aire se realizaron durante el tiempo cuando la Marina usó bombas activas sobre Vieques. La Junta de Calidad Ambiental de Puerto Rico realizó dos de estos estudios y la Marina realizó el tercero. Ninguna de las mediciones de esos estudios detectó contaminación del aire a niveles que constituyeran una preocupación para la salud. Sin embargo, dado que nunca se localizó la documentación de los estudios originales, la ATSDR no podía respaldar sus conclusiones de salud en esos estudios solos.
La ATSDR estimó los efectos en la calidad del aire provocados por las bombas activas con un análisis de modelado. Este análisis consideró casi 100 contaminantes distintos que son conocidos por ser liberados al aire cuando los artefactos explotan. En el análisis de modelado se halló que químicos liberados al aire en humo por las bombas se dispersaban a niveles extremadamente bajas a medida que el humo se trasladaba del campo de bombardeo hacia las áreas donde vive gente. Para la mayoría de los contaminantes, los impactos previstos en la calidad del aire de áreas residenciales eran tan bajos que, incluso, es probable que dispositivos muy sensibles para la obtención de muestras de aire no pudieran medirlos. En el caso de materia particulada, por ejemplo, se predijo que las emisiones de partículas de los ejercicios de bombardeo con proyectiles activos representarían menos del 1 por ciento de la concentración de partículas al medirlas en las áreas residenciales de Vieques. Esa comparación sugiere que las emisiones del campo de bombardeo tienen un efecto extremadamente pequeño en la calidad del aire de las áreas residenciales de Vieques. En función de este análisis de modelado ese análisis de modelado, la ATSDR concluyó que las emisiones de los ejercicios de bombardeo con proyectiles activos no hacen que la contaminación del aire alcance niveles asociados con efectos en la salud.

Los ejercicios de práctica de bombardeo realizados por la Marina no representaron un peligro para la salud de los residentes.

Entre mayo de 2000 y mayo de 2003, la Marina realizó los ejercicios de adiestramiento militar con las llamadas bombas de práctica. En días en los que se arrojaron bombas de práctica al campo de bombardeo, la Junta de Calidad Ambiental de Puerto Rico recolectó más de 50 muestras de partículas. En todas las muestras, los niveles de partículas eran más bajos que los niveles de preocupación para la salud. De hecho, en la parte residencial de la isla, no hubo una relación clara entre la cantidad de bombas de práctica arrojadas y los niveles de contaminación del aire medidos. Mediante esas observaciones y el cálculo de concentraciones atmosféricas de otros contaminantes, la ATSDR halló que, en los días en los que hubo práctica de bombardeo, los niveles de contaminación del aire no presentaron un peligro para la salud de los residentes de la isla.

El polvo soplado por el viento desde el campo de bombardeo no representa un peligro para la salud de los residentes.

Los efectos en la calidad del aire del polvo transportado por el viento, generalmente, se evalúan midiendo los niveles de partículas en el aire. El término “partículas“ se refiere a partículas sólidas y gotas líquidas presentes en el aire que respiramos. Durante los últimos 3 años, la Junta de Calidad Ambiental de Puerto Rico ha medido los niveles de partículas en dos ubicaciones de las áreas residenciales de Vieques. Para cuando se había completado la evaluación del aire realizada por la ATSDR, se habían
recolectado casi 450 muestras de aire. En todas las mediciones, las cantidades de partículas se ubicaron muy por debajo de los niveles de preocupación para la salud.39

39 La evaluación de salud pública en la que se analizó este muestreo de aire se presentó en la 96.\textdegree Conferencia y Exhibición Anual de Air and Waste Management Association realizada en San Diego del 22 al 26 de junio de 2003.
La Organización Nacional de Océanos y Atmósfera (NOAA) solicitó a la ATSDR que determinara si el consumo de cangrejos de tierra de diversas ubicaciones de Vieques era seguro. En junio de 2005, la NOAA recolectó cangrejos de tierra (Cardisoma guanhumi) de 14 ubicaciones (13 en Vieques y una en la isla principal de Puerto Rico). Los cangrejos se analizaron para detectar compuestos explosivos, bifenilos policlorados (PCB), pesticidas organoclorados y oligoelementos. Tras revisar los análisis, la ATSDR concluyó que

El consumo de los cangrejos de tierra es seguro.

Los niveles de PCB, pesticidas organoclorados y oligoelementos hallados en los cangrejos de tierra eran mucho más bajos que los niveles con los que se ha informado el desarrollo de efectos perjudiciales para la salud. Los niveles también estaban por debajo del límite regulatorio de la Administración de Alimentos y Medicamentos de los EE. UU (USFDA) para el consumo de mariscos. Solo algunas muestras de cangrejos de tierra contenían PCB y pesticidas, lo cual indica que estas sustancias químicas no estaban generalizadas. La ATSDR no esperaba el desarrollo de efectos perjudiciales para la salud en las personas que comieran cangrejos de tierra de Vieques.

Los niños no deben comer los órganos internos de los cangrejos de tierra.

Debido a la cantidad de cobre en los órganos internos de los cangrejos de tierra, los niños que consumieran esos órganos internos podrían experimentar problemas estomacales. En cuanto a la carne del músculo de los cangrejos de tierra, los niños pueden consumirla en forma segura todos los días. No
obstante, una práctica de salud pública prudente indicaría que los niños deben reducir su exposición al cobre evitando comer los órganos internos de los cangrejos de tierra.

No se detectaron compuestos explosivos en ninguna muestra de cangrejo y no se hallaron asociaciones entre la ubicación de la toma de muestra de los cangrejos de tierra y los niveles de contaminantes.

En algunas áreas en las que se obtuvieron muestras, los cangrejos de tierra contenían concentraciones promedio más altas de ciertas sustancias químicas que los cangrejos de tierra de otras áreas. En cuanto a otras sustancias químicas, no se hallaron diferencias considerables entre las dos ubicaciones. La ATSDR determinó que las personas podían consumir diariamente en forma segura una comida de cangrejo de tierra de cualquiera de las ubicaciones en las que se obtuvieron las muestras.
Categoría: Biomonitoro en seres humanos – Cabello
Fecha de la publicación: Junio de 2001
Título: Hair Analysis Panel Discussion: Exploring the State of the Science – Junio de 2001
Autor(es): Robert Baratz, DDS, Ph.D., MD, Internal Medical Consultation Services, Inc Thomas Clarkson, Ph.D., University of Rochester Michael Greenberg, MD, MPH, MCP, Hahnemann University Michael Kosnett, MD, University of Colorado Health Sciences Center Dan Pascal, Ph.D., Centers for Disease Control and Prevention Sharon Seidel, Ph.D., California Department of Health Services LuAnn White, Ph.D., Tulane School of Public Health
Estado de la publicación: Publicado por la ATSDR
Estado de revisión por expertos: No corresponde. El documento es un resumen de los debates del panel.

Resumen ejecutivo

En Atlanta, Georgia, el 12 y el 13 de junio de 2001, la Agencia de Sustancias Tóxicas y Registro de Enfermedades (ATSDR) convocó a un panel de siete miembros con el fin de revisar y analizar el estado de la ciencia en ese momento en relación con el análisis de cabello; específicamente, su uso en la evaluación de la exposición ambiental. La ATSDR invitó a expertos científicos representativos en los campos de análisis de cabello, toxicología y medicina a participar en un debate de un día y medio sobre diversos temas, incluidos métodos analíticos, factores que afectan la interpretación de los resultados analíticos, consideraciones toxicológicas y datos faltantes/necesidades de investigación.
Antecedentes

La ATSDR convocó a este panel en respuesta a 1) el entonces creciente número de consultas de miembros de la comunidad que solicitaban ayuda para interpretar resultados de análisis de cabello y 2) el interés de la agencia en averiguar más acerca de la utilidad del análisis del cabello al evaluar la exposición y los efectos en la salud en sitios de residuos peligrosos. La agencia preveía utilizar los comentarios recibidos de esta iniciativa para desarrollar una guía para los asesores de salud de la agencia sobre el uso y la interpretación de los datos de los análisis de cabello.

Las preguntas generales que la ATSDR buscaba responder incluían

- ¿Para qué sustancias se dispone de métodos confiables de análisis del cabello?
- ¿Cuándo es apropiado/inapropiado considerar un análisis de cabello para evaluar la exposición en seres humanos a la contaminación ambiental?
- ¿Qué sucede si datos faltantes limitan la interpretación y el uso del análisis de cabello en la evaluación de contaminantes ambientales?

Este informe de resumen presenta los hallazgos de los debates del panel. Los principales puntos de debate están resaltados.

Descripción general de los debates

Los panelistas participaron de una serie de debates para responder las preguntas de la ATSDR, en los que señalaron varias limitaciones al estado de conocimiento de la época sobre la utilidad del análisis del cabello en las evaluaciones de exposición ambiental. Los debates se centraron, principalmente, en metales y oligoelementos en el cuero cabelludo. Los panelistas consideraron las diferencias bien marcadas entre el uso del análisis de cabello para identificar una exposición (p. ej., ¿La sustancia llega a las personas? ¿Existe una vía completa?) y su uso para predecir, diagnosticar o tratar una enfermedad (p. ej., ¿Qué informan las concentraciones en el cabello acerca de la probabilidad de efectos perjudiciales para la salud?). Los panelistas señalaron que la última cuestión era donde más datos faltaban en ese entonces.

Si bien no se requería que llegaran a un consenso, los panelistas sí llegaron a un acuerdo respecto del siguiente enunciado sumario relacionado con la utilidad general del análisis del cabello en la evaluación de exposiciones ambientales:

Para la mayoría de las sustancias, no existían datos suficientes que permitieran prever un efecto en la salud a partir de la concentración de la sustancia en el cabello. La presencia de una sustancia en el cabello puede indicar exposición (tanto interna como externa), pero no necesariamente indica la fuente de exposición.
¿Para qué sustancias existen métodos confiables de análisis del cabello?

El grupo estuvo de acuerdo en que los métodos de laboratorio disponibles en ese momento podían medir los niveles de algunos contaminantes ambientales en el cabello. Pero para ayudar a garantizar resultados más precisos y confiables, era necesario estandarizar los procedimientos. Eso incluiría asegurarse de que las muestras fueran obtenidas por una persona capacitada e incluiría, entre otras cosas, establecer protocolos sistemáticos para la toma de muestras, protocolos de lavado y procedimientos de control de calidad/aseguramiento de la calidad. El panel también concordó en que los análisis debían estar dirigidos al elemento específico de interés.

¿Cuándo es apropiado/inapropiado considerar un análisis de cabello para evaluar la exposición en seres humanos a la contaminación ambiental?

En general, los panelistas estuvieron de acuerdo en que, antes de determinar si el análisis de cabello es una herramienta de evaluación apropiada, los evaluadores deben considerar

1. **El tipo de exposición y la duración.** Para comprender la probabilidad de que una sustancia determinada esté en el cabello al momento de realizar el análisis y para identificar otras fuentes de exposición (p. ej., tratamientos para el cabello), confeccionar antecedentes de exposición.

2. Dado que la tasa de crecimiento del cabello es de un promedio de 12 centímetros por año, el panel concluyó que el análisis de cabello no suele ser útil para evaluar exposiciones muy recientes o exposiciones ocurridas más de 1 año antes. El análisis de segmentos de cabello (es decir, analizar las tendencias de concentración en toda la longitud del cabello) puede ser útil para documentar la exposición en el tiempo (p. ej., en la identificación de una exposición aguda a dosis altas). Pero eso debería considerarse según cada sujeto y sustancia en particular y según cada situación específica.

3. **El tipo de sustancia y su comportamiento en el cuerpo.** Determinar la viabilidad biológica de que una sustancia determina esté presente en el cabello y si se trata de un marcador de contaminación externa.

4. El grupo coincidió en que se sabe poco acerca de la cinética de transferencia de las sustancias al cabello.

5. **La relevancia clínica de un hallazgo negativo o positivo.** Determinar la relación dosis-respuesta, si la hubiera, entre las concentraciones de la sustancia química en el cabello y los efectos/enfermedad en el órgano comprometido. Sin una comprensión de la relación dosis-respuesta, las interpretaciones útiles no serían posibles.

Los panelistas coincidieron en que solo se ha establecido una relación entre las concentraciones de un contaminante en el cabello y cualquier tipo de resultado mensurable para dos sustancias: el metilmercurio (p. ej., la relación entre niveles en el cabello materno y la presencia de alteraciones neurológicas y del desarrollo observadas en los hijos) y, en forma limitada, el arsénico (p. ej., análisis de segmentos para análisis forense), siempre que se pueda descartar la contaminación externa. No obstante, ciertos contextos forenses únicos para otras sustancias podrían producir relaciones similares.
El grupo también señaló la necesidad de evaluar, específicamente para cada sustancia y exposición, en qué medida el análisis de cabello podría ser más ventajoso que la obtención de otras muestras biológicas, como análisis de sangre u orina.

¿Qué sucede si datos faltantes limitan la interpretación y el uso del análisis de cabello en la evaluación de contaminantes ambientales?

El grupo identificó varios factores que limitaban la interpretación de incluso los resultados de laboratorio más precisos, confiables y reproducibles. Estos incluyen:

- **La falta de rangos de referencia (o base) que permitan enmarcar la interpretación de los resultados.** En ausencia de exposiciones ambientales, los evaluadores necesitan comprender mejor qué se espera encontrar en el cabello para determinar si los niveles detectados están elevados debido a emisiones en el medio ambiente, lo cual incluye posibles diferencias geográficas o regionales en los niveles de base.

- **Dificultades para distinguir la contaminación endógena (interna) de la exógena (externa) en el cabello.** Hacer esta distinción es importante al evaluar las dosis internas de la sustancia de interés. El grupo expresó diferentes opiniones sobre la efectividad —antes del análisis— de lavar el cabello para eliminar la contaminación externa. Algunos consideraron que la bibliografía actual en ese momento sugería que no existía ningún método confiable de lavado capaz de separar la contaminación externa del depósito interno de elementos. Una sugerencia fue que, en los casos posibles, identificar los metabolitos (u otros marcadores únicos de exposición interna) de sustancias de interés era muy útil para distinguir la contaminación interna de la externa.

- **Falta de comprensión de cómo y en qué medida los contaminantes ambientales se incorporan al cabello.** En el momento de la conferencia, existía escasa información científica sobre la captación o incorporación de contaminantes ambientales en el cabello. Para los metales o compuestos orgánicos relevantes desde el punto de vista del medio ambiente, no se conocían modelos cinéticos ni datos de metabolitos o bien no se los comprendía completamente.

- **La falta de correlación entre los niveles presentes en el cabello y la sangre y otros tejidos de interés, así como la falta de datos epidemiológicos que vinculen los niveles de una sustancia específica en el cabello con efectos adversos en la salud.** Antes de que los resultados de los análisis de cabello puedan utilizarse como herramienta de diagnóstico o para predecir criterios de valoración relativos a la salud, es necesario comprender esas correlaciones. El panel señaló que no es probable que el análisis de cabello tenga una función en la evaluación de algunos de los problemas de salud más frecuentes asociados con sitios de residuos peligrosos (p. ej., cáncer, defectos de nacimiento).

- **Había poca información que fuera pertinente para estudiar los compuestos orgánicos relevantes desde el punto de vista ambiental en el cabello.**

- El panel recomendó sacar provecho de lo que se conocía sobre el análisis del cabello para evaluar las drogas de abuso.
Los panelistas promovieron la estandarización de los protocolos de muestreo e identificaron posibles áreas de investigación. No obstante, el análisis de cabello solo podría convertirse en una herramienta válida para una sustancia determinada si la investigación

- Pudiera establecer mejores rangos de referencia,
- Lograra mejorar la comprensión de la biología capilar y la farmacocinética,
- Continuara explorando posibles relaciones de dosis-respuesta,
- Estableciera si el cabello puede servir como una mejor medida o factor de predicción de enfermedades que otras muestras biológicas (como sangre u orina) y en qué ocasiones lo sería, y
- Aprendiera más acerca de los compuestos orgánicos del cabello.
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Categoría: Biomonitorando en seres humanos – Estudio cardíaco

Fecha de la publicación: Julio de 2001

Título: Expert Review of the Vieques Heart Study

Autor(es): Henry W. Blackburn, Jr., MD, University of Minnesota
Richard Devereux, MD, Cornell University
W. Dana Flanders, MD, D.Sc., MPH, Emory University
Miguel Ángel García-Fernández, MD, Hospital General Universitario Gregorio Marañón
Mauricio Hernández-Avila, MD, MPH, Ph.D., National Institute of Public Health
Elizabeth Ofili, MD, MPH, Morehouse School of Medicine
Dr. Manuel Posada de la Paz, Instituto de Salud Carlos III
Jesús Vargas-Barrón, MD, Instituto Nacional de Cardiología “Ignacio Chávez”

Estado de la publicación: Publicado por la ATSDR

Estado de revisión por expertos: No corresponde. El documento es un registro de comentarios de una revisión por expertos sobre el Estudio cardíaco de la Facultad de Medicina de Ponce.

En enero de 2001, en un estudio piloto en el que se compararon ecocardiogramas de residentes de Vieques y de Ponce Playa, Puerto Rico, se informaron alteraciones valvulares considerables y
Engrosamiento pericárdico en una gran proporción de los residentes de Vieques, hallazgos que no se observaron entre los residentes de Ponce Playa. Las posibles alteraciones observadas en los residentes de Vieques se atribuyeron a “enfermedad vibroacústica” (VAD), descrita anteriormente en la bibliografía médica por investigadores portugueses. Se ha dicho que la VAD se produce como consecuencia del ruido y las vibraciones provocadas por los ejercicios navales realizados en la Isla de Vieques. Por orden presidencial, el Departamento de Salud y Servicios Humanos investigó las cuestiones planteadas por el estudio. El Departamento, a su vez, derivó esta solicitud a la Agencia para Sustancias Tóxicas y Registro de Enfermedades (ATSDR), que ya estaba investigando problemas ambientales de salud pública en Vieques.

Al mismo tiempo que se formuló esta solicitud, la Facultad de Medicina de Ponce (PSM), dirigida por el presidente y decano el Dr. Manuel Martínez Maldonado, había comenzado un estudio más enfocado sobre las posibles alteraciones cardíacas entre los pescadores comerciales de Vieques. El objetivo del estudio era resolver los problemas metodológicos (p. ej., marco del muestreo, ausencia de ciego) que tenía el estudio piloto anterior. El 29 y 30 de marzo de 2001, científicos de la ATSDR y el CDC se reunieron con investigadores de la PSM y acordaron invitar a colaborar a médicos y científicos reconocidos para la revisión e interpretación de los hallazgos. Los revisores elegidos eran expertos de reputación internacional en ecocardiografía y medio ambiente o en epidemiología cardiovascular. Debido a su vasta experiencia, se seleccionó el laboratorio “central” de ecocardiografía de Mayo Clinic, a cargo del Dr. Jae K. Oh, para revisar los ecocardiogramas.

Ocho reconocidos médicos y científicos aceptaron invitaciones para participar. Pertenecían principalmente a instituciones académicas: cuatro panelistas eran de universidades de los EE.UU., dos de México y dos de España. La mitad de los panelistas eran especialistas en cardiología y ecocardiografía; los otros eran epidemiólogos. Otros participantes de la reunión incluyeron personal o asesores de la PSM y la ATSDR, el Dr. Jae Oh de Mayo Clinic y el Dr. John Rullán, secretario de salud de Puerto Rico. La reunión se celebró el 12 y 13 de julio de 2001, en el Condado Plaza Hotel de San Juan. El Dr. Martínez Maldonado y el Dr. David Fleming, por entonces vice-administrador de la ATSDR, presidieron conjuntamente la reunión. Los participantes revisaron los métodos, resultados y significación para la salud pública del Estudio cardíaco de Vieques teniendo en cuenta tanto los datos de la PSM como los de Mayo Clinic.

El Dr. Martínez Maldonado y el Dr. Carlos Ríos presentaron el Estudio cardíaco de Vieques. El objetivo del estudio era determinar si existía alguna asociación entre el lugar de residencia (Vieques o Ponce Playa) y cambios cardiovasculares morfológicos entre pescadores comerciales.

Los investigadores hicieron un muestreo aleatorio a partir de las listas de pescadores comerciales autorizados de Vieques y Ponce Playa, y obtuvieron 53 y 42 sujetos de ambas áreas, respectivamente. Los investigadores midieron la estatura, el peso, la presión arterial y otros parámetros físicos, recopilaron datos en un cuestionario sobre información demográfica y posibles factores de confusión, y registraron las imágenes ecocardiográficas de los sujetos. Un grupo de varios cardiólogos experimentados de la PSM hizo la lectura de los ecocardiogramas “a ciegas” (es decir, sin conocer el lugar de residencia de cada sujeto en particular) para detectar engrosamiento pericárdico; la colocación del calibrador se decidió por consenso y se utilizaron imágenes ampliadas.
Según las mediciones de la PSM, el promedio de grosor pericárdico era ligeramente mayor entre los pescadores de Vieques que entre los de Ponce Playa (1.20 mm frente a 1.05 mm), y esa diferencia fue estadísticamente significativa (p = 0.03). Los valores de grosor pericárdico medidos por Mayo estuvieron dentro del mismo rango que los medidos por la PSM, pero no alcanzaron la significación estadística al comparar los pescadores de Vieques con los de Ponce (0.78 mm frente a 0.82 mm, respectivamente).

Conclusiones del panel

La conclusión principal del panel fue que ni las lecturas de Ponce Playa ni las lecturas de Mayo contenían información que indicara un problema de salud cardíaca en los pescadores. El informe inicial de valvulopatía macroscópica del estudio piloto no fue reproducido. Todos los revisores coincidieron en que no había diferencias clínicamente relevantes entre los sujetos de Vieques y Ponce Playa respecto del grosor pericárdico, contrariamente a lo informado en el estudio piloto. Además, ni las mediciones de la PSM ni las de Mayo mostraron que el grosor pericárdico de alguno de los sujetos fuera superior a 2 mm, un valor que en la bibliografía publicada se considera el límite superior de lo normal.

El estudio de la PSM fue bien cualificado, en general, por los panelistas respecto del diseño del estudio y el análisis estadístico. El marco del muestreo (listas de pescadores registrados) se consideró apropiado y, en general, los revisores hallaron que la tasa de respuesta fue adecuada. El hecho de que se hubieran elaborado hipótesis razonablemente bien establecidas de antemano soslayó las preocupaciones acerca del problema de múltiples comparaciones. En general, los panelistas consideraron que las pruebas estadísticas utilizadas fueron seleccionadas y empleadas adecuadamente. Los panelistas señalaron que las lecturas ecocardiográficas se realizaron con un ciego apropiado —incluido el enmascaramiento de las fechas— tanto en la PSM como en Mayo.

Conclusión resumida

El estudio de la PSM no respaldó un hallazgo de enfermedad cardíaca entre los pescadores comerciales de Vieques. Debido a que la electrocardiografía transtorácica no puede medir en forma confiable las pequeñas diferencias halladas, las diferencias informadas probablemente se debieran a un error de medición (que es intrínseco a la técnica y no una falta de los científicos que la emplearon). Ese hecho da cuenta casi con seguridad de los resultados diferentes obtenidos al reemplazar las lecturas de grosor pericárdico obtenidas por la PSM con las lecturas de Mayo.

El Estudio cardíaco de Vieques representó un aporte valioso al conocimiento científico respecto del uso de la ecocardiografía. Los panelistas recomendaron la publicación del estudio en la bibliografía científica revisada por expertos.
Apéndice C Comentarios de la revisión por expertos y respuestas de la ATSDR

Tabla de contenidos
Revisión por experto 1.. C-3
Revisión por experto 2.. C-27
Revisión por experto 3.. C-33
Revisión por experto 4.. C-45
Revisión por experto 5.. C-69
Revisión por experto 6.. C-77

Nota introductoria: Presentamos las mismas seis preguntas a todos los expertos encargados de la revisión. Algunas de esas preguntas incluían solicitudes de comentarios para subpreguntas específicas. Se reproducen aquí cada una de las preguntas y subpreguntas que hicimos, los comentarios de cada revisor a las preguntas y subpreguntas y nuestras respuestas a los comentarios. Además, en todas nuestras respuestas nos referimos al Informe: Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques, Puerto Rico simplemente como “el Informe”.
Revisión por experto 1

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

[Comentario] El documento completo está bien redactado y es relativamente fácil seguirlo. No obstante, presenta una falta considerable de un enfoque coherente. Aunque la pregunta que ostensiblemente aborda el documento es si los ejercicios históricos de bombardeo en Vieques han afectado la salud pública, el documento solo se centra esporádicamente en los impactos ambientales en la salud que se vinculan en forma específica con los bombardeos y las actividades militares relacionadas y, a menudo, cambia el enfoque a la exposición ambiental general y consideraciones sobre la salud. Dado el propósito manifiesto de la revisión, se esperaría que (al menos en la parte de la revisión sobre exposición ambiental/evaluación del riesgo) hubiera una estructura lógica que primero definiera las actividades con potencial para afectar la salud pública, luego identificara los contaminantes ambientales cuya aparición se pudiera prever de esas actividades, luego identificara los medios ambientales/biológicos en los que probablemente se hallarían esos contaminantes, luego presentara los resultados de muestreo para esos medios y contaminantes, y luego comparara esos resultados con datos de base apropiados con el fin de determinar si es probable que las exposiciones y posibles exposiciones relacionadas con los datos de muestreo se asociaran con los bombardeos y las actividades relacionadas. Esa progresión lógica debería haberse basado en una o dos hipótesis bien enfocadas y explícitas para poner a prueba. Esas hipótesis serían algo similar a: “Los bombardeos y actividades militares relacionadas en Vieques produjeron exposición a contaminantes ambientales específicos por encima de los niveles de base no relacionados con los bombardeos” y “Los niveles elevados de los contaminantes específicos relacionados con los bombardeos representan un riesgo para la salud significativamente elevado para la población expuesta”. Si bien un enfoque de ese tipo queda implícito en la revisión, solo se sigue intermitentemente.

La revisión sí se refiere a contaminantes específicos que fueron identificados como producto de las actividades de bombardeo: TNT, RDX, polvo de aluminio y “86 contaminantes”, incluidos 15 metales que fueron identificados en las series de pruebas con BangBox. Sin embargo, no se presenta la relación entre la prevalencia de esos contaminantes en los explosivos y la probabilidad de su presencia en medios ambientales/biológicos. Esa falta de establecimiento de prioridades no solo confunde la formulación de hipótesis y la realización de análisis sino que además introduce una gran incertidumbre para distinguir la contaminación relacionada con los bombardeos de la contaminación de base.

Por el contrario, la revisión parece presentar información acerca de contaminación ambiental que, a menudo, parece no tener una posible relación clara con las actividades relacionadas con los bombardeos, ya sea en lo que respecta a los contaminantes analizados o a la relación espacial entre las áreas afectadas y la localización de las muestras. Si bien esa desconexión no siempre está presente en la revisión, aparece con suficiente frecuencia como para que el lector pierda la noción de un enfoque definido y del contexto de la información presentada. Eso es particularmente evidente en las secciones sobre la Vía de los peces y Biomonitorio, aunque consideraciones similares también rigen para el tratamiento de otras vías que se hace en el documento. Por ejemplo, en las partes del documento sobre biomonitorio y obtención de muestras de peces, hay un enfoque marcado en el mercurio. Dada la
magnitud de ese enfoque, se podría concluir que la contaminación por mercurio en pescados y alimentos de origen marino es un resultado previsible de las actividades relacionadas con los bombardeos y es uno de los principales focos del impacto ambiental en la salud asociado con esas actividades. Sin embargo, no he encontrado un solo lugar del documento en el que se establezca la relación entre esas actividades y la contaminación por mercurio en el medio ambiente en general o en las especies marinas en particular. Una formulación y análisis más centrados y útiles del posible efecto de las actividades relacionadas con los bombardeos respecto del impacto del mercurio/metilmercurio en la población de Vieques podría seguir las siguientes líneas:

- ¿Se prevé la contaminación por mercurio/metilmercurio como uno de los principales resultados de las actividades relacionadas con los bombardeos?
- En ese caso, ¿dónde se esperaría ese impacto?
- ¿Son los peces los que probablemente se vean afectados por el mercurio relacionado con los bombardeos, las especies que consumen los residentes de Vieques?
- ¿Cuáles son los patrones de consumo de los residentes de Vieques en relación con los peces probablemente afectados?
- ¿Cuál es la exposición dietaria de base a metilmercurio en Vieques (es decir, que no provenga de pescado afectado) y cómo se compara con la exposición por el pescado probablemente afectado?

Dada la ubicuidad de la contaminación por metilmercurio, por lo menos de bajo grado, en los peces de todo el mundo, debería preverse que, en cierto grado, se hallaría mercurio en todos los peces capturados y/o consumidos en Vieques. Más aún, sin una comprensión clara de la exposición de base a metilmercurio y los patrones de consumo de pescado específicos en Vieques, no hay un modo claro de distinguir el posible impacto de la exposición a mercurio relacionada con los bombardeos de la exposición de base en Vieques.

La ATSDR generó pocos datos centrados específicos para la evaluación de los efectos relacionados con los bombardeos en Vieques, pero, en cambio, debió basarse en datos existentes, muchos de los cuales no fueron generados específicamente con el fin de esta evaluación y/o no fueron recolectados o analizados en forma sistemática diseñada para poner a prueba las hipótesis en forma adecuada. Eso se traduce en una situación clásica en la que la ATSDR termina, en gran medida, buscando sus “llaves” (es decir, datos relevantes) junto al poste de alumbrado porque allí es donde está la luz. Es necesario considerar la calidad de toda la evaluación en función de estas limitaciones. No obstante, el uso de los datos existentes sin un enfoque más claro en el objetivo de la evaluación y sin una discriminación clara de los datos respecto de su calidad y relevancia en relación con el objetivo han dado por resultado un documento que carece de un enfoque claro y que, a menudo, es confuso en pasajes importantes.

Respuesta de la ATSDR: Todos los revisores hicieron comentarios sobre los contaminantes que podrían vincularse con los ejercicios militares realizados en Vieques. Por lo tanto, hicimos aclaraciones adicionales dentro del informe y proporcionamos referencias de una sección a otras secciones. Por ejemplo, cuando analizamos las sustancias medidas en los peces, incluimos
referencias a los constituyentes de los artefactos explosivos y a mediciones en el suelo. También sumamos una perspectiva acerca de los niveles de constituyentes en los medios que esperábamos que fueran más altos que otros. El Informe (Resumen ejecutivo y capítulos 1; 2; 3; 6 y 9) fue revisado para reflejar una mayor claridad entre las sustancias halladas en el medio ambiente viequense y las asociadas con actividades relacionadas con ejercicios militares en los que se usaron artefactos explosivos activos.

La ATSDR reconoce que en el Informe se analizan tanto la exposición por una vía específica a contaminantes relacionados con los ejercicios militares como exposiciones más generales en relación con la salud pública. En ese aspecto, la ATSDR examinó su trabajo anterior en respuesta a una inquietud sostenida acerca de la salud general de los viequenses. Las revisiones mencionadas anteriormente identifican, en efecto, posibles vínculos hallados entre sustancias presentes en el medio ambiente y los ejercicios militares. Si bien la mayoría de nuestros datos sobre contaminantes en el suelo, el agua, el aire y los alimentos de origen marino son relativamente recientes, las emisiones que pueden haber contribuido o no a su presencia son históricas.

Establecer vínculos definitivos o vías específicas entre ambos es un gran reto, excepto en los casos infrecuentes en que los contaminantes se asocian exclusivamente con un sitio, como RDX y TNT y las actividades de bombardeo. Esa situación no es particular de Vieques; se trata de un problema inherente a cualquier sitio en el que los contaminantes ambientales tienen muchas fuentes posibles, incluidas algunas asociadas con actividades realizadas en ese sitio en el pasado.

Con respecto al mercurio, unos científicos visitaron la ATSDR en noviembre de 2009. Esos científicos le solicitaron a la ATSDR que analizara nuevamente los niveles de mercurio en los peces en función de las declaraciones de la Academia Nacional de Ciencias acerca de los efectos perjudiciales del mercurio. Agregamos información al Capítulo 2 para aclarar mejor este punto.

Por último, la ATSDR no suele recolectar muestras ambientales. Nos basamos en datos disponibles de otras fuentes.

¿La ATSDR ha abordado adecuadamente las vías de exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario] La ATSDR ha identificado y atendido las vías de exposición adecuadas. No obstante, como se menciona anteriormente, con excepciones evidentes (p. ej., TNT, RDX), no ha identificado claramente los contaminantes ambientales que son específicos del campo de bombardeo ni ha identificado el alcance de la exposición a contaminantes en el medio ambiente que posiblemente se asocien con las actividades del campo de bombardeo. Las excepciones a ello son las vías del aire y del contacto con el suelo, en las que la ATSDR ha presentado un argumento sólido de que es improbable que hubiera una exposición significativa a contaminantes relacionados con los bombardeos.

Respecto de la ATSDR: Hicimos aclaraciones adicionales en el Informe y aportamos referencias de una sección a otras secciones. Incluimos referencias a los constituyentes de los artefactos explosivos cuando analizamos las sustancias medidas en los peces. El Informe (Resumen
ejecutivo y capítulos 1; 2; 3; 6 y 9) fue revisado para reflejar una mayor claridad entre las sustancias halladas en el medio ambiente y las asociadas con ejercicios militares en los que se usaron artefactos explosivos activos.

Sírvase incluir comentarios específicos sobre:

Consumo de alimentos de origen marino de arrecifes cercanos a Vieques

[Comentario] Si bien los muy limitados datos sobre contaminantes asociados inequívocamente con las actividades relacionadas con los bombardeos (p. ej., TNT, RDX, Al) sugieren que la acumulación de dichas sustancias químicas en los peces de Vieques es escasa o nula y que el potencial de acumulación es escaso o nulo, la mayor parte de la evaluación sobre el consumo de contaminantes relacionados con los bombardeos en el pescado se centra en el mercurio (Hg). Como se comentó anteriormente, no se proporciona una justificación clara para ese enfoque. No se analiza la naturaleza ni el alcance de la relación entre las actividades relacionadas con los bombardeos y el mercurio y ni siquiera queda claro si se esperaría una acumulación de metilmercurio (MeHg) en los peces como resultado de las actividades relacionadas con los bombardeos. Sospecho que el foco en el mercurio presente en los peces se debe más a la disponibilidad de datos relacionados con inquietudes más generales acerca de la exposición a MeHg que a una conexión específica con las actividades relacionadas con los bombardeos.

Respuesta de la ATSDR: Dado que los científicos que visitaron la ATSDR en noviembre de 2009 plantearon el tema del mercurio en los peces como una preocupación de salud, la ATSDR revisó sus hallazgos para mercurio en los peces. A los científicos les preocupaba que la ATSDR no hubiera considerado la evaluación de la Academia Nacional de Ciencias (NAS) relativa al mercurio en los peces y las recomendaciones de la dosis de referencia de la NAS para la EPA de los EE.UU. Más aún, a los residentes les sigue preocupando que el pescado que consumen esté contaminado por mercurio. Agregamos información al capítulo 2 para aclarar mejor este punto.

El hierro, el aluminio, el cobre, el manganeso, el zinc y el plomo son los metales que tienen mayores probabilidades de tener niveles elevados en los suelos del LIA por las actividades de bombardeo, aunque también se encontraron otros metales en las bombas. Debe tenerse en cuenta que todos estos metales también están presentes en forma natural en los suelos y rocas de Vieques (ATSDR 2003a, Learned 1973, USGS 1997 y 2001).

También asociamos el aluminio, el hierro, el cobre y compuestos explosivos en algunos alimentos de origen marino de los alrededores del LIA con ejercicios militares relacionados con el LIA. Pero esas asociaciones no incluyeron mercurio ni otras sustancias. No obstante, el Informe (Resumen ejecutivo y capítulos 1, 2, 3, 6 y 9) fue revisado para aclarar cualquier relación entre las sustancias halladas en el medio ambiente viequense y las asociadas con ejercicios militares en los que se usaron artefactos explosivos activos.

[Continuación del comentario] Había pocos datos disponibles sobre los pescados que efectivamente consumen los residentes de Vieques. La principal fuente de datos de consumo específico por especies parece ser los datos recopilados por la Dra. Caro en 2000. Sin embargo, esos datos se basan en un tamaño de muestra de apenas 51 consumidores. Es poco probable que ese tamaño de muestra sea
representativo de toda la población. No se presenta información acerca de la representatividad demográfica de la muestra, de la localización geográfica de la muestra en relación con las ubicaciones de interés o de los hábitos de pesca de los sujetos en relación con la población de Vieques en general. Más aún, como están presentados, los datos no aportan información acerca de la frecuencia relativa de consumo por especies ni acerca de la variabilidad en la frecuencia entre consumidores. El documento afirma que la ATSDR “utilizó múltiples fuentes de información para identificar los tipos preferidos de pescados y mariscos para la recolección”, incluidos los datos de la Dra. Caro. Sin embargo, no se especifican las otras fuentes ni la manera en que se utilizaron los datos en total. Esa falta de datos dificulta en gran medida la creación de un modelo razonable de consumo de pescado en Vieques y, en consecuencia, la evaluación de la exposición a contaminantes por el consumo general de pescado en Vieques y, especialmente, de especies posiblemente afectadas por las actividades relacionadas con los bombardeos.

Respuesta de la ATSDR: La ATSDR está de acuerdo con los comentarios acerca de la encuesta de 2000 de la Dra. Caro. Es por eso que complementamos los datos de la Dra. Caro con información obtenida de 1) conversaciones con los residentes de Vieques, 2) información provista por el Informe de la Comisión Especial de Vieques, 3) visitas a mercados de pescado locales y 4) el informe de 2006 del Departamento de Salud de Puerto Rico. Esos análisis confirmaron los hallazgos de la Dra. Caro. Los datos de la Dra. Caro sugerían que un 34% de los viequenses consumían pescado más de 3 a 4 veces por semana. La encuesta más amplia y aleatoria realizada por el Departamento de Salud de Puerto Rico en 2004 respaldó esos hallazgos (Departamento de Salud de Puerto Rico 2006). Agregamos ese dato al capítulo 2.

No obstante, para mejorar nuestras estimaciones de exposición por el consumo de pescado de arrecife, necesitamos información adicional. Sabemos que una proporción significativa de viequenses consumen pescado regularmente. De todos modos, sería útil contar con más información sobre los hábitos alimentarios de los viequenses como la frecuencia de consumo según el sexo y la edad para

- pescados de arrecife, pescados de mar y pescados enlatados,
- diversas especies de pescados,
- tamaño de la porción, y
- localización del arrecife.

Esa información adicional permitiría mejorar las estimaciones de la dosis y las consecuentes evaluaciones del riesgo. En cualquier caso, hemos modificado el capítulo 2 para destacar la falta de información acerca de la frecuencia del consumo de pescado por especies y que contar con esa información permitiría mejorar las estimaciones de la dosis y las consecuentes evaluaciones del riesgo.
Uso de herramientas de biomonitorio para evaluar la exposición a metales y otras sustancias químicas peligrosas en sangre, orina o cabello relacionadas con los ejercicios históricos de bombardeo

[Comentario] El biomonitorio de la exposición es, potencialmente, una herramienta muy poderosa. Sin embargo, la presencia de contaminantes en medios biológicos integra la exposición a todas las fuentes. Por tanto, la interpretación de los datos de biomonitorio en relación con la exposición y las implicaciones en la salud pública para una población específica a partir de una fuente determinada se basa en una gran medida en la comprensión de las fuentes de exposición y en la base de la exposición debida a otras fuentes en esa población. Los tamaños de las muestras de los estudios, fuera del estudio realizado por el Departamento de Salud de Puerto Rico, fueron bastante pequeños (n = 30, 52), no se presentó la relación de los sujetos con las posibles fuentes de la exposición específica en cuestión y no hubo una población de referencia apropiada de Vieques que se pudiera utilizar para distinguir las fuentes de exposición de base de las fuentes de exposición relacionadas con los bombardeos. La información acerca de los niveles de base de exposición era de Puerto Rico, la encuesta NHANES de los EE.UU. o de los rangos de referencia de laboratorio. No se analizó la relación entre los datos de base de los datos de Puerto Rico y de las encuestas NHANES y los datos de Vieques, y tampoco se analizó la naturaleza de los rangos de referencia de laboratorio. Más aún, en función de la evaluación que hizo la ATSDR del estudio del Departamento de Salud de Puerto Rico, los datos no eran finales y su confiabilidad era incierta. Es de esperar que haya elevaciones de los niveles de biomonitorio en relación con los niveles medios o medianos en un conjunto de datos debido a la variación estadística normal. Para interpretar esas elevaciones en un contexto de exposición se requiere una población de referencia estadísticamente válida y/o una medida de exposición aparte (p. ej., aire, suelo, agua, alimentos) que sea comparable en tiempo y espacio a los datos de biomonitorio y que pueda utilizarse para dilucidar el contexto de exposición de esos niveles elevados de biomonitorio.

Una buena parte de los datos de biomonitorio era acerca del mercurio en relación con la exposición a metilmercurio por el consumo de pescado. No obstante, no pude discernir información a partir de esos datos que permitiera relacionar los niveles de mercurio de dichos datos con la posible exposición (o ausencia de exposición) relacionada con los bombardeos. En cualquier población que consume pescado, se esperaría hallar concentraciones mensurables de mercurio en el cabello y la sangre, y no sorprendería hallar una fracción de la población con niveles que superaran los niveles correspondientes a la RfD de la USEPA. Eso sucedería tanto en poblaciones que consumen pescados de pescadería capturados en lugares distantes como en poblaciones que consumen pescados capturados en la localidad. Los niveles elevados de mercurio en dichos conjuntos de datos no pueden atribuirse a fuentes específicas de contaminación sin contar con datos adicionales: niveles de mercurio en una población similar sin exposición al pescado afectado a nivel local; los tipos específicos de pescado consumido; los lugares en los que se capturaron los pescados y las fuentes de contaminación en esas fuentes.
Respuesta de la ATSDR: Estamos de acuerdo en que los estudios de biomonitorio en seres humanos en Vieques son limitados. También estamos de acuerdo en que utilizar datos de biomonitorio puede ser problemático, en especial cuando se intenta determinar si los residentes han estado expuestos a contaminantes presentes en artefactos explosivos. Para hacer aclaraciones, introdujimos cambios en el capítulo 3.

Dedicamos una buena parte del Informe a describir la exposición al mercurio. Muchos de los detalles del Informe no se encuentran en las PHA originales. Nos preocupaba que dicho análisis desproporcionado del mercurio pudiera llevar a los revisores a concluir que hayamos una asociación entre el mercurio y los ejercicios militares en Vieques. Por el contrario, nuestra evaluación se centró únicamente en el escenario de exposición a sustancias químicas que representa el mayor riesgo para la salud humana. Los resultados de sustancias químicas en el suelo, el aire, el agua y la flora y fauna no revelaron una contaminación difundida. Además, es poco probable que los estudios de biomonitorio revelen si los residentes estuvieron expuestos o están expuestos a contaminantes derivados de artefactos explosivos. Aclaramos esas conclusiones mediante correcciones en los capítulos 1, 2 y 3. En resumen, los resultados de sustancias químicas en el suelo, el aire, el agua y la flora y fauna no revelaron una contaminación difundida relacionada con el sitio. No obstante, se demostró que los suelos del LIA contienen metales por encima de los niveles típicos naturales de base y que algunos de esos metales se asocian con las actividades de bombardeo (p. ej., hierro, cobre, zinc y plomo). Ninguno de los niveles detectados en el suelo es perjudicial para los seres humanos. Aunque es poco probable que el biomonitorio establezca un vínculo entre los datos de biomonitorio en seres humanos y los contaminantes militares en Vieques, ciertos estudios de biomonitorio podrían identificar exposiciones inusuales. Estamos de acuerdo en que para determinadas exposiciones no existen métodos de detección/medición por biomonitorio que sean confiables y estén aceptados. También estamos de acuerdo en que todos los estudios de biomonitorio tienen algunas limitaciones.

Consumo de alimentos (productos agrícolas, carne, lácteos, huevos) producidos en la isla

[Comentario] Dado que el mercurio endógeno en cabello y sangre refleja casi exclusivamente la exposición a metilmercurio y dado que la exposición a metilmercurio se da casi exclusivamente por el consumo de pescado/alimentos de origen marino, los datos de biomonitorio de mercurio (fuera de los datos en orina) pueden relacionarse con el consumo de pescado aún cuando no se disponga de datos adicionales para relacionar ese consumo de pescado con una fuente específica de mercurio. En el caso de otros contaminantes para los que hay una única o casi única fuente de exposición, los resultados positivos de biomonitorio de esos contaminantes pueden proporcionar evidencia clara de la exposición a esas fuentes. Sin embargo, en el caso del biomonitorio de contaminantes con múltiples fuentes de exposición, incluidos todos los metales informados para los resultados de biomonitorio de los residentes de Vieques, los datos de biomonitorio sin un contexto adicional de exposición aportan información escasa o nula sobre las fuentes específicas de exposición. Más aún, a fin de relacionar en
forma confiable los niveles de biomonitorio con la exposición a partir de una única fuente o de una combinación de fuentes discretas, debe haber una relación conocida y establecida entre la concentración del contaminante en el medio biológico dado (p. ej., cabello) y la exposición a ese contaminante. No todos los medios tienen una relación válida de concentración-exposición para un contaminante determinado. Específicamente, el cadmio (Cd), el arsénico (As), el níquel (Ni), el antimonio (Sb) y el plomo (Pb) en cabello no son, hasta donde yo sé, biomarcadores de exposición establecidos o que se puedan interpretar directamente como tales.

Por esos motivos, no creo que los datos de biomonitorio presentados por la ATSDR puedan interpretarse en relación con la exposición a partir de productos agrícolas cultivados en la isla, y mucho menos con la exposición a contaminantes por las actividades relacionadas con los bombardeos derivada del consumo de alimentos producidos en la isla.

Respuesta de la ATSDR: La ATSDR concuerda con los comentarios del revisor acerca de la irrelevancia de la fuente de exposición a mercurio cuando se evalúa la asociación entre mercurio y consumo de alimentos de origen marino. En resumen, los resultados de sustancias químicas en el suelo, el aire, el agua y la flora y fauna no revelaron una contaminación difundida relacionada con el sitio. No obstante, se demostró que los suelos del LIA contienen metales por encima de los niveles típicos naturales de base y que algunos de esos metales se asocian con las actividades de bombardeo (p. ej., hierro, cobre, zinc y plomo). Ninguno de los niveles detectados en el suelo es perjudicial para los seres humanos.

[Continuación del comentario] Con respecto a la obtención directa de muestras de alimentos cultivados en el lugar, la ATSDR señala correctamente las limitaciones de buena parte de los datos disponibles. Estas incluyen la obtención de muestras de partes no comestibles de los vegetales de abasto y la obtención de muestras de vegetales que no son de abasto, la ausencia de estándares analíticos apropiados y la ausencia de consideraciones respecto a la biodisponibilidad. Una parte considerable del análisis se centra en los niveles de cadmio en los gandules. Si bien concuerdo con el análisis de la ATSDR respecto del posible impacto en la salud del consumo de gandules mostrados, ese análisis se presenta sin un contexto para los resultados. No queda claro si, de alguna manera, los gandules de las muestras reflejan la exposición por los gandules en toda la isla o la medida en que la población general de Vieques consume gandules. Para los gandules en particular y los productos agrícolas de la muestra en general, no hay un fundamento para conectar los datos sobre niveles de contaminantes hallados en esas muestras con la actividad relacionada con los bombardeos.

Respuesta de la ATSDR: Se ha modificado el texto del capítulo 5, sección 2.2 para atender los comentarios del revisor. A la fecha, no se dispone de datos (es decir, una encuesta sobre consumo o más información sobre la ingestión de gandules en relación con todos los demás tipos de legumbre) sobre patrones de consumo. Por tanto, para este análisis preliminar utilizamos supuestos conservadores que modelaran tasas altas de ingestión. Un mayor perfeccionamiento de esas estimaciones de exposición podría hacerlas más realistas y más representativas de la población viequense.

La ATSDR está de acuerdo con la falta de evidencia para respaldar cualquier afirmación de una vía de transporte viable de contaminación por metales desde el Área de Impacto de Proyectiles.
Activos hasta áreas lejanas donde se producen alimentos. Cualquier metal detectado probablemente refleje otras fuentes como concentración de base del suelo o alguna otra fuente local. Esta es una distinción importante; no obstante, la comunidad citó la ingestión de alimentos como una preocupación de salud. Por tanto, como medida de salud pública, utilizamos los datos disponibles para realizar una evaluación preliminar conservadora de esta vía.

Exposición por aire, suelo y agua en Vieques

[Comentario] Las conclusiones que expuse anteriormente para la interpretación de los datos de biomonitoreo en relación con los alimentos producidos en el lugar se aplican igualmente a la exposición por el aire, el suelo y el agua en Vieques.

Con respecto a la evaluación directa de la vía del aire, esta es la sección más sólida y la que resulta más claramente relevante para la evaluación del posible impacto de las actividades relacionadas con los bombardeos. En lugar de datos de monitoreo del aire, los enfoques de los modelos evaluados por la ATSDR son el mejor enfoque para evaluar esta vía. Las conclusiones de esos análisis son robustas y respaldan claramente la conclusión de que las actividades relacionadas con los bombardeos no causaron una exposición significativa en las áreas residenciales.

Con respecto a la evaluación de los contaminantes en el suelo relacionados con los bombardeos, si bien la obtención de muestras de suelo en el lugar fue necesariamente limitada, las conclusiones de un bajo riesgo histórico para la salud de los manifestantes que se encontraban en el sitio parecen razonables. Esa conclusión se basa en las observaciones de que las muestras se tomaron en áreas relevantes y representativas, de que las actividades relacionadas con los bombardeos parecen haber sido generalizadas en esa parte de la isla y de que básicamente ninguno de los resultados de las muestras de suelo indicaron un riesgo significativo con la exposición a largo o corto plazo. Con respecto al impacto de las actividades relacionadas con los bombardeos en las áreas residenciales más distantes, la ATSDR señala correctamente que el potencial transporte de contaminantes desde las áreas de bombardeo hasta las áreas residenciales solo se habría producido por las mismas vías que habrían provocado exposición por inhalación a esos contaminantes en las áreas residenciales. Por tanto, la ausencia en el modelo de contaminación significativa transportada por el aire desde los sitios de bombardeo hasta las áreas residenciales indica, igualmente, la ausencia de depósito de esos contaminantes en los suelos residenciales.

Con respecto a la evaluación del agua potable, la provisión de agua potable por el sistema de tuberías alejado de los sitios de bombardeo garantiza que no haya exposición por el agua potable para la gran mayoría de la población de Vieques. La ausencia de datos claros sobre el alcance del uso de pozos de agua privados y de cuencos para recolección de aguas pluviales y la ausencia asociada de datos acerca de la calidad de esas fuentes generan cierta incertidumbre acerca de la exposición por el agua potable. No obstante, los hallazgos hidrogeológicos sobre la dirección del flujo de agua subterránea parecen impedir la contaminación de los acuíferos relevantes. No obstante, no se presentaron datos para fundamentar esa afirmación y dichos datos serían útiles (p. ej., contornos del flujo de agua subterránea).
Respuesta de la ATSDR: Gracias por sus comentarios. Hemos agregado un mapa topográfico que muestra los contornos del flujo de agua subterránea en la Figura 1.3 del Informe.

¿El Informe sobre Vieques presenta y describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario] En su mayor parte, la ATSDR parece estar al tanto de las limitaciones de los datos disponibles para evaluar la exposición humana a los contaminantes relacionados con los bombardeos. La consideración sobre la exposición por el aire, si bien no abunda en detalles, parece ser específica para el lugar y tener un alcance adecuado. Los datos sobre el agua potable son en gran medida directos y se presentan con las limitaciones correspondientes, que surgen, en buena parte, de incertidumbres acerca del alcance del uso de pozos privados. Para el resto de las exposiciones, a pesar de estar conscientes de las limitaciones asociadas con esos datos, se presentan datos de relevancia limitada o dudosa y se los considera para la evaluación general. Considero que el uso de criterios más estrictos para la inclusión de datos en la revisión habría sido apropiado para esas exposiciones. Además, particularmente en las secciones sobre consumo de pescado y biomonitorio, la ATSDR parece perder de vista repetidas veces la distinción entre la exposición a contaminantes en general y la exposición a contaminantes surgida específicamente de las actividades relacionadas con los bombardeos. Se presentan ejemplos específicos de estos puntos en los comentarios específicos del texto.

Respuesta de la ATSDR: En cuanto al ejemplo específico del mercurio, unos científicos que visitaron la ATSDR en 2009 solicitaron una nueva revisión de los hallazgos sobre los niveles de mercurio en el pescado, en especial ante las declaraciones de la Academia Nacional de Ciencias sobre los efectos perjudiciales del mercurio. Como se mencionó, el foco desproporcionado en el mercurio podría haber llevado a los revisores a concluir erróneamente que hallamos una asociación entre el mercurio y los ejercicios militares en Vieques. No pudimos mostrar una asociación. Por el contrario, en nuestra evaluación nos concentramos en gran medida en el escenario de exposición a sustancias químicas que representaba el mayor riesgo. Los resultados de sustancias químicas en el suelo, el aire, el agua y la flora y fauna no revelaron en lo absoluto una contaminación difundida por mercurio.

Describir todos los datos ambientales y de salud disponibles para Vieques es importante, aún cuando algunos de los datos no pudieran verificarse o validarse. Los resultados de datos de cabello se presentaron para numerosos metales. Algunos científicos consideraron que los datos eran válidos y extrajeron conclusiones a partir de ellos. Describimos las limitaciones de esos datos en detalle y señalamos que no era posible distinguir entre el contacto externo y la ingestión interna para la mayoría de los metales, excepto el mercurio. A este respecto, la ATSDR ha intentado informar imparcialmente los datos disponibles y aportar comentarios sobre su utilidad para tomar decisiones relativas a la salud. En nuestras conclusiones y recomendaciones, no se utilizaron los datos que no se pudieron verificar o validar (p. ej., metales en el cabello, excepto mercurio) o bien se utilizaron cualitativamente (p. ej., el arsénico en orina reportado en un seminario por Internet).
Todos los revisores comentaron en los análisis del Informe los posibles vínculos entre la contaminación y los ejercicios militares realizados en Vieques. Por lo tanto, hicimos aclaraciones adicionales dentro del Informe y proporcionamos referencias de una sección a otras secciones. Por ejemplo, cuando analizamos las sustancias medidas en los peces, incluimos referencias a los constituyentes de los artefactos explosivos y a mediciones en el suelo. También sumamos una perspectiva acerca de diversos constituyentes en los medios que esperábamos que fueran más altos que otros. El Informe (Resumen ejecutivo y capítulos 1, 2, 3, 6 y 9) fue revisado para aclarar mejor las sustancias halladas en el medio ambiente y las asociadas con los ejercicios militares.

En ese sentido, la ATSDR reconoce que en el Informe se analizan tanto la exposición por una vía específica a contaminantes relacionados con artefactos explosivos como exposiciones más generales en relación con la salud pública. Esto se debió a la solicitud que recibió la ATSDR de revisar su trabajo anterior en vista de las inquietudes generales de salud de los viequenses. Las revisiones mencionadas anteriormente aportan información sobre posibles vínculos entre las sustancias halladas en el medio ambiente y los ejercicios militares realizados en Vieques. Sin embargo, demostrar vínculos o vías específicas entre las detecciones actuales y las emisiones históricas de contaminantes de múltiples fuentes potenciales resulta imposible. Este no es un problema específico de Vieques, es inherente a muchos sitios en los que las actividades históricas posiblemente hayan provocado contaminación ambiental.

¿Fueron utilizados adecuadamente los estudios independientes en la determinación de posibles peligros para la salud?

[Comentario] Como se indicó antes, muchos de los estudios independientes no se realizaron específicamente para atender el problema del impacto de las actividades relacionadas con los bombardeos. Algunos de los demás estudios que intentaron centrarse en forma más directa en dichas actividades estaban mal diseñados o su alcance era demasiado limitado como para ser de utilidad. La ATSDR no estableció un estándar particularmente alto para distinguir entre dichos estudios en cuanto a la incorporación de datos en su evaluación general. En cierta medida, es comprensible debido a la necesidad de atender la preocupación de la comunidad y a los datos combinados limitados disponibles para trabajar. Sin embargo, el efecto neto es el de un tejido hecho de una variedad grande de retazos de fuentes de datos ligeramente unidos. Más abajo respondo a comentarios más específicos.

Respuesta de la ATSDR: Estamos de acuerdo en que la calidad de los datos es variable y describimos sus limitaciones. Dicho eso, solo en unos pocos casos los datos de pobre calidad sostienen las evaluaciones de posible exposición. La presencia de mercurio en algunos peces —el escenario de exposición pública que representaba el mayor riesgo para la salud— se basó en datos de muy alta calidad. Pero incluso esos datos eran limitados.

En respuesta a las inquietudes acerca de los estudios independientes, es importante describir todos los datos ambientales y de salud disponibles acerca de Vieques. Y eso es así incluso cuando algunos de los datos pueden ser cuestionables. Por ejemplo, los resultados de datos de cabello se presentaron para numerosos metales. Algunos científicos consideraron que los datos eran válidos y extrajeron conclusiones a partir de ellos. Pero la ATSDR describió en detalle las
limitaciones de esos datos. Señalamos que no era posible distinguir entre el contacto externo y la ingestión interna para la mayoría de los metales, excepto el mercurio. A este respecto, la ATSDR ha intentado informar imparcialmente los datos disponibles y aportar comentarios sobre su utilidad para tomar decisiones relativas a la salud. En nuestras conclusiones y recomendaciones, no se utilizaron los datos cuestionables (p. ej., metales en el cabello, excepto mercurio) o bien se utilizaron cualitativamente (p. ej., el arsénico en orina informado en un seminario por Internet).

En función de la reevaluación de la ATSDR de actividades históricas de bombardeo en el informe de Vieques, ¿la ATSDR ha formulado las conclusiones y recomendaciones apropiadas?

[Comentario]

Vía de los peces. Considero que las conclusiones acerca de los niveles de mercurio (Hg) por especies y el riesgo para salud (en relación con la RfD de metilmercurio) derivado de consumir esos pescados a las tasas de consumo dadas son apropiadas. No obstante, la conexión entre esas conclusiones y el impacto de las actividades relacionadas con los bombardeos sigue siendo una ausencia prominente. Por lo tanto, concuerdo con la conclusión de la ATSDR de que “la ATSDR no puede conocer con seguridad el grado en que las actividades militares contribuyeron o no con los niveles de mercurio hallados en los peces”. Sin embargo, dada esa conclusión, el análisis de la exposición a metilmercurio (MeHg) por el consumo de pescado en Vieques probablemente se interprete erróneamente como una conexión con las actividades relacionadas con los bombardeos que implica ese análisis.

Respuesta de la ATSDR: Estamos de acuerdo en que los análisis sobre el mercurio son extensos. También estamos de acuerdo en que algunos lectores podrían suponer que el mercurio está relacionado con los artefactos explosivos utilizados durante los ejercicios militares realizados en Vieques. Aclaramos esa posible interpretación errónea mediante correcciones en los capítulos 1, 2 y 3.

[Continuación del comentario]

Biomonitoreo. De hecho, la ATSDR no llegó a ninguna conclusión acerca del biomonitoreo ni de su relación con las actividades relacionadas con los bombardeos. Fuera de expresar precaución acerca del uso del biomonitoreo de cabello debido a la posible contaminación exógena (y no, sin embargo, debido a la ausencia de una relación clara entre la concentración endógena en el cabello y la exposición interna, como se analiza anteriormente), la ATSDR se limitó a reiterar las conclusiones de los investigadores individuales y no intentó hacer una síntesis general. Considero que la conclusión apropiada es que los resultados de biomonitoreo no permiten extraer conclusión alguna acerca de la exposición a contaminantes relacionados con los bombardeos.

Respuesta de la ATSDR: Estamos de acuerdo. Los estudios de biomonitoreo no revelan si los residentes estuvieron o están expuestos a contaminantes de artefactos explosivos activos utilizados durante los ejercicios militares. Aclaramos ese punto mediante una corrección en el capítulo 3.

[Continuación del comentario]
Datos de resultados de salud. Aquí tampoco formuló la ATSDR conclusiones claras acerca de la relación entre los datos de los resultados de salud y las actividades relacionadas con los bombardeos. Conquedo, sin embargo, con las conclusiones de la ATSDR acerca de las limitaciones metodológicas de los datos de incidencia de enfermedades de Vieques.

Respuesta de la ATSDR: Gracias por su comentario. La ATSDR no formuló ninguna conclusión clara acerca de una relación potencial debido a las diversas limitaciones metodológicas en el limitado trabajo histórico.

[Continuación del comentario]

Vía de productos agrícolas y ganaderos locales. Conquedo con la conclusión general de la ATSDR para esta área en que “Los datos disponibles actualmente sobre plantas y ganado no son adecuados para evaluar exhaustivamente el alcance de la exposición a metales pesados en personas que comen productos agrícolas cultivados en el lugar en Vieques”. También conquedo con la conclusión de que (como analicé anteriormente) las conclusiones con respecto a la vía del aire parecerían impedir una contaminación significativa de los productos agrícolas fuera del lugar, ya sea por depósito directo en las plantas o por depósito en el suelo seguido por la captación en las plantas.

Respuesta de la ATSDR: Gracias por su comentario.

[Continuación del comentario]

Vía del aire. Conquedo con la conclusión de la ATSDR de que “... los contaminantes transportados por el aire y causados por los usos históricos del Campo de Adiestramiento Naval de Vieques habrían sido básicamente imposibles de detectar en las áreas residenciales de Vieques y que es poco probable que hayan provocado efectos perjudiciales”.

Respuesta de la ATSDR: Gracias por su comentario.

[Continuación del comentario]

Vía del suelo. Conquedo con la conclusión de la ATSDR de que “Las personas que ocuparon el LIA durante 1999-2000 no tuvieron un aumento del riesgo de desarrollar efectos adversos en la salud debido a la exposición a contaminantes en el suelo superficial”. También conquedo con la conclusión de que “Los datos limitados disponibles de otras ubicaciones y las consideraciones relativas a la vía del aire sugieren que los ejercicios militares realizados en el LIA no produjeron contaminación actual en suelos residenciales con compuestos inorgánicos o explosivos a niveles considerados perjudiciales”, y la conclusión relacionada de que “El modelo descrito en el análisis de la vía del aire ha sugerido que el transporte de contaminantes en el aire durante los ejercicios militares del pasado no habría sido lo bastante significativo como para afectar los suelos del área residencial de la isla”. No me queda claro que los calificativos adicionales que aparecen en las conclusiones del capítulo 9 sean necesarios.

Respuesta de la ATSDR: Gracias por su comentario. Debido a que queríamos identificar claramente todas las incertidumbres posibles respecto de nuestra evaluación, mantuvimos los calificativos.

[Continuación del comentario]
Vía del agua potable. Conuerdo con la conclusión de la ATSDR de que el consumo de agua potable del suministro por tubería impide la exposición a contaminantes en agua potable producidos por actividades relacionadas con los bombardeos. Sin embargo, me confunde un poco la aparente contradicción por un lado entre la conclusión de la ATSDR respecto de que la dirección del flujo de agua subterránea impide la contaminación del agua subterránea hacia el oeste de los sitios de bombardeo, y por otro lado, la conclusión de que la cantidad de pozos de los que se obtuvieron muestras es insuficiente como para extraer conclusiones firmes acerca del potencial impacto de las actividades relacionadas con los bombardeos en los pozos de agua potable.

Respuesta de la ATSDR: Agregamos texto aclaratorio en el capítulo 8, sección 8.3.1.2. Nuestra evaluación indica que las actividades de bombardeo realizadas en Vieques no afectarían los antiguos pozos de agua. De todos modos, el muestreo limitado de la década de 1970 mostró dos detecciones de explosivos; por lo tanto, no podíamos descartar la posibilidad de un mecanismo desconocido del pasado. Pero aún aceptando que pudieran haber existido contaminantes en el pasado, no se han detectado en años recientes.

Selecionar la categoría correspondiente a continuación:

Haga una lista de los cambios recomendados o los motivos para no recomendarlo

- Recomendado ()
- Recomendado con cambios requeridos (X)
- No recomendado ()

Preguntas adicionales:

- **¿Tiene algún comentario sobre el proceso de revisión por expertos de la ATSDR?**

 Ningún comentario del revisor.

- **¿Tiene algún otro comentario?**

Comentarios específicos del texto

Pg. 15, último párr. - El análisis de riesgo-beneficio de la FDA solo ha circulado en una versión preliminar y fue ampliamente criticado por la USEPA. Si bien es claro que existe una compensación de riesgo y beneficio con respecto al consumo de pescado y el mercurio (Hg), a la fecha no existe un fundamento claro para cuantificar la naturaleza de esa compensación.

Respuesta de la ATSDR: Estamos de acuerdo. Gracias por el comentario.

[Continuación del comentario]

Pg. 17, párr. 2 - “… los autores concluyeron que los resultados muestran que las concentraciones de mercurio son más altas en los pescados de mercado de Vieques en comparación con la población de control de Parquera”. No se presenta un análisis estadístico para respaldar esta afirmación. Más aún, la
comparación entre Vieques y Esperanza no indica que haya una diferencia probablemente significativa. Sin más información y una descripción del contexto, no se pueden sacar conclusiones a partir de esos datos.

Respuesta de la ATSDR: Esta conclusión se basa en promedios calculados en forma muy diferente de la propuesta por la EPA de los EE.UU. o la FDA. Algunas de las conclusiones de la Dra. Caro se basaron en dos muestras analizadas en distintos momentos y en las que los valores no detectables se trataron de manera diferente de lo sugerido por la EPA de los EE.UU. De las pocas especies de las que había suficientes muestras para comparación (mero, cotorro y ronco), solo los roncos presentaron niveles de mercurio estadísticamente más altos en Vieques. El nivel de mercurio más alto hallado por la Dra. Caro de 0.052 ppm se halló en Parguera y fue un 37% más alto que el mayor nivel hallado en Vieques. Se agregaron las tablas de datos completas del Apéndice 10 de la Dra. Caro al capítulo 2 (vea la Tabla 2-2).

[Continuación del comentario]

Tabla 2-2 - Esta tabla necesita el número de muestras (n) para ser válida.

Respuesta de la ATSDR: Hemos agregado el número de muestras a la Tabla 2-2.

[Continuación del comentario]

Pg. 18, párr. 1 - ¿Cuál es la fuente del pescado que aquí se menciona como “pescado de mercado”?

Respuesta de la ATSDR: En el capítulo 2, sección 2.2.1, aclaramos que el pescado de mercado de esta afirmación se refiere a los mercados de pescado de Vieques.

[Continuación del comentario]

Pg. 22, párr. 1 - El objetivo aquí es caracterizar el consumo, no las especies per se. Por lo tanto, el análisis acerca de combinar especies debió estar motivado por la consideración de qué especies se consumen con mayor frecuencia.

Respuesta de la ATSDR: Los datos disponibles son insuficientes para evaluar los niveles de contaminantes por especies; tuvimos que combinar los peces por familias. En la mayoría de los casos, eso produjo datos por género más que por especies. Agrupar los peces por familias permitió una evaluación de los niveles de mercurio en el ronco, el mero y el pargo.

[Continuación del comentario]

Último párrafo - Si, como se indica “… los datos no eran adecuados para la comparación por especies” ¿entonces por qué en el análisis anterior se compara el ronco/mero con otros peces?

Respuesta de la ATSDR: Hemos analizado más los datos y hallamos que algunas especies podían compararse. Anteriormente, agrupamos especies de cada familia (p. ej., mero, ronco, pargo) para comparar las concentraciones por ubicaciones. Desde entonces, hemos determinado que algunas especies (p. ej., cabra mora y mero cabrilla) pueden compararse individualmente. Esas comparaciones se describen en el capítulo 2, sección 2.5.4.
[Continuación del comentario] Pg. 26, n.º 5 - No hay un fundamento para esta afirmación. No hay un nivel más bajo de efectos adversos observados (lowest observed adverse effects level, LOAEL) o un nivel de efectos adversos no observados (non observed adverse effects level, NOAEL) para MeHg.

Respuesta de la ATSDR: Hemos modificado esa oración.

[Continuación del comentario]

Último párrafo - El informe de la NAS no respalda un nivel más bajo de efectos observados (LOAEL) para el MeHg. Pg. 27, párr. 1 - La noción de que en el informe de la NAS se identificó un LOAEL o (como se indica aquí “nivel más bajo que ha demostrado provocar efectos perjudiciales”) es incorrecta. EL valor que respalda el informe de la NAS y que, en última instancia, adopta la USEPA se basa en un modelo de dosis de referencia. Se trata de un cálculo de un nivel de efecto (es decir, duplicar la población en el 5% del rendimiento más bajo) no del nivel de efecto más bajo o del nivel sin efectos. Pg. 28, párr. 3 - Véase el texto del comentario anterior respecto de la naturaleza del fundamento de la RfD de MeHg de la USEPA.

Respuesta de la ATSDR: Modificamos el texto del capítulo 2, sección 2.2 y 5 para que coincidiera con la terminología empleada por la NAS y la USEPA.

[Continuación del comentario]

Pg. 29, segundo punto – “… si comer esos pescados y mariscos enfermaría a la gente…” Este no es el resultado o la terminología apropiados, en especial con respecto al MeHg. El problema más bien se trata de un aumento del riesgo de un efecto adverso.

Respuesta de la ATSDR: Cambiamos el texto en el capítulo 2, sección 2.3.1.

[Continuación del comentario]

Pg. 34, limitaciones - Al parecer, la elección de las muestras de peces no se basó en datos directos sobre el consumo real por especies. Eso debería agregarse como una limitación importante de la estrategia de obtención de muestras.

Respuesta de la ATSDR: Utilizamos los datos directos recopilados por la Dra. Caro y complementamos esos datos con información obtenida de conversaciones con los residentes de Vieques, información provista por el Informe de la Comisión Especial de Vieques, y visitas a mercados de pescado locales.

La ATSDR concuerda con que se necesita información adicional para mejorar las estimaciones de exposición por el consumo de pescado de arrecife. Sabemos que una proporción significativa de viequenses consumen pescado regularmente. Sin embargo, más información sobre los hábitos alimentarios de los viequenses sería útil. Sería útil conocer la frecuencia de consumo por sexo y edad para:

- pescados de arrecife, pescados de mar y pescados enlatados,
- diversas especies de pescados,
- tamaño de la porción, y
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

- localización del arrecife.

Esa información adicional permitiría llegar a una mejor estimación del riesgo. En cualquier caso, hicimos cambios en el capítulo 2.

[Continuación del comentario]

Pg. 49, párr. 2 - No todos los medios biológicos son igualmente apropiados para todos los analitos, debido a la falta de una relación demostrable entre exposición y concentración. En general, el cabello se considera un medio biológico estándar para el Hg únicamente. No conozco ningún método establecido para el biomonitorio de Sb en el cabello. En NHANES, los CDC cuantificaron el Sb en orina.

Respuesta de la ATSDR: La ATSDR está de acuerdo. Si bien se pueden medir los niveles de antimonio en el cabello, interpretar los resultados es complicado. Es imposible distinguir entre la ingesta oral de antimonio (exposición interna) y el contacto del cabello con productos que contienen antimonio (exposición externa).

[Continuación del comentario]

Párr. 2 - “la identificación de la Dra. Ortiz Roque de tres residentes con niveles de mercurio en el cabello superiores a 12 ppm es un hallazgo importante”. Además, desde posiblemente el punto de vista clínico ¿por qué esto es un hallazgo importante? Sin información acerca de las fuentes de exposición (p. ej., atún enlatado), no pueden hacerse inferencias sobre exposición ambiental.

Respuesta de la ATSDR: Estamos de acuerdo. Los hallazgos son importantes desde una perspectiva clínica pero no indican una asociación con las actividades militares de Vieques. Respecto del hallazgo de que algunas mujeres y niños con niveles de mercurio en el cabello por encima de un nivel que podría provocar efectos perjudiciales a un feto en desarrollo o a un niño pequeño, eso indica una exposición excesiva a mercurio para al menos algunos residentes. Si bien se supone que esa exposición excesiva se debe al consumo de pescado, solo el seguimiento puede confirmarlo. La exposición a mercurio podría deberse a una alta frecuencia de consumo de ciertos tipos de pescado (p. ej., atún enlatado, ciertos pescados de arrecife o ciertos pescados de mar). Las estimaciones de dosis del capítulo 2 indican que la exposición a mercurio puede ser excesiva en algunas personas que consumen con frecuencia pescados que contienen niveles moderados a altos de mercurio.

[Continuación del comentario]

Pg. 51, Tabla 3-2 - La información de resumen de los estudios sobre mercurio en sangre está desactualizada por 3 a 5 años.

Respuesta de la ATSDR: Los estudios sobre mercurio que se mencionan en la Tabla 3-2 son el estudio de las Islas Faroe, el estudio de las Seychelles y el estudio de Nueva Zelanda. Estos son los principales estudios que la Academia Nacional de Ciencias, la EPA de los EE.UU. y la ATSDR usan para desarrollar guías de salud. Los estudios han generado numerosos artículos revisados por expertos publicados en revistas científicas que consultamos al evaluar la significación toxicológica de la exposición a metilmercurio. La ATSDR no está al tanto de estudios más recientes revisados por expertos.
¿Por qué? Desde el punto de vista químico individual, un resultado elevado en un estudio de biomonitoreo solo justifica un seguimiento si existe la posibilidad de efectos adversos. Desde el punto de vista poblacional, los datos inferenciales útiles que aporta un único nivel elevado son escasos o nulos.

Respuesta de la ATSDR: La ATSDR está de acuerdo en que un único nivel elevado en una persona aporta información muy limitada para hacer generalizaciones acerca de inferir la exposición a sustancias químicas y elementos relacionados con los bombardeos. Hemos modificado el texto en consecuencia. No obstante, una práctica de salud pública prudente requiere investigaciones de seguimiento cuando una persona presenta metales en matrices biológicas a niveles que constituyen una preocupación de salud. Un ejemplo excelente son los niveles elevados de plomo en sangre.

Respuesta de la ATSDR: Estamos de acuerdo y hemos cambiado el texto.

Respuesta de la ATSDR: Informamos los hallazgos tal como aparecen en un manuscrito preliminar de 2006 preparado por el Departamento de Salud de Puerto Rico como parte de un estudio de biomonitoro en Vieques. No podemos decir qué quiere decir el uso de “esperado”. Dado el contexto del estudio, el estudio del Departamento de Salud de Puerto Rico tal vez haya querido decir una comparación con los datos estadísticos de la NHANES. Estamos de acuerdo con el comentario de que la NHANES de los EE.UU. puede no ser totalmente aplicable para una población de Puerto Rico o Vieques. En el capítulo 3, analizamos la necesidad de incluir una población de control o de referencia del Estado Libre Asociado de Puerto Rico.

Respuesta de la ATSDR: Hemos corregido la numeración de la Tabla 3A-2 (resultados de la fase 1) y de la Tabla 3A-3 (resultados de la fase 2) en el capítulo 3, Apéndice 3-A.
Pg. 76, párr. 4 - No está claro que sea apropiado combinar datos de cabello, vello público y axilar.

Respuesta de la ATSDR: La ATSDR está de acuerdo. Agregamos una advertencia en el capítulo 3, secciones 3.7.2.1 y 3.7.8.1.

[Continuación del comentario]

Pg. 77, tabla - La tabla no tiene un número asignado. Además, los datos presentados para varones y mujeres por separado no están rotulados. ¿Se trata de los niveles promedio por sexo?

Respuesta de la ATSDR: La tabla está rotulada como Tabla 3A-5. Modificamos el encabezado para indicar claramente que los valores informados son promedios para diversos grupos.

[Continuación del comentario]

Pg. 79, párr. 1 - No se presentan los datos sobre correlaciones de parejas combinadas. Además, no se incluyen las edades de los niños. Las conclusiones acerca de la correlación madre-hijo y la exposición in utero no están fundamentadas.

Respuesta de la ATSDR: El manuscrito de la Dra. Ortiz Roque no proporciona datos sobre las correlaciones de parejas combinadas. Como se indica en el texto, la Dra. Ortiz Roque informó que en un subconjunto de 22 parejas combinadas, la edad de los niños era menor de 5 años. Como se indica en el texto, la Dra. Ortiz Roque informó que la correlación de Pearson era 0.93 y el valor de p era 0.0001. No es necesario introducir cambios en el Informe.

[Continuación del comentario]

Pg. 84, párr. 2 - ¿Dónde vivían los 52 sujetos? ¿Cuáles fueron los criterios para reclutarlos? ¿Cuál fue el criterio dicotómico para dividir a los sujetos en categorías de consumo alto y bajo de pescado?

Respuesta de la ATSDR: Modificamos el texto para indicar que los 52 sujetos eran viequenses. Debido a que esa información provino de un seminario por Internet, actualmente no podemos responder las otras preguntas. Esa información probablemente esté disponible cuando el Dr. Rodríguez Sierra publique sus datos.

[Continuación del comentario]

Pg. 85, tabla - Dada la breve descripción anterior del estudio de 2009 de Rodríguez Sierra, habría esperado ver los datos estratificados por tasas altas y bajas de consumo de pescado.

Respuesta de la ATSDR: Debido a que esa información provino de un seminario por Internet, actualmente no podemos responder la pregunta. Esa información probablemente esté disponible cuando el Dr. Rodríguez Sierra publique sus datos.

[Continuación del comentario]

Pg. 97, párr. 3 - Los niveles de 85 y 58 µg/L son un poco confusos. Si bien 58 µg/L es el CI 95% inferior de la dosis correspondiente a una disminución del rendimiento del 5%, el valor de 5.8 µg/L refleja, en gran medida, la variabilidad poblacional en la dosis de ingestión (µg/kg/día) requerida para llegar a 58 µg/L. Por lo tanto, el factor de reducción de 10 de 58 µg/L no es un simple valor arbitrario predeterminado.
Respuesta de la ATSDR: En el párrafo citado no se menciona 5.8 µg/L o el uso de un factor de incertidumbre de 10 para derivar 5.8 µg/L de 58 µg/L. El párrafo proviene de un sitio web de los CDC y se incluye con fines informativos. No es necesario introducir cambios en el Informe.

[Continuación del comentario]

Pg. 102, párr. 2 - No está claro por qué “Los registros de cáncer suelen ser los mejores conjuntos de datos basados en una población para cualquier enfermedad crónica”.

Respuesta de la ATSDR: Nuestra intención era comunicar que la infraestructura para informar los casos de cáncer y los requisitos legales para hacerlo son más rigurosos que para la mayoría de las enfermedades crónicas no infecciosas y que, generalmente, arrojan buenos datos. Hemos aclarado el texto.

[Continuación del comentario]

Pg. 103, párr. 1 - La oración que comienza con “Una iniciativa...” no es una oración completa.

Respuesta de la ATSDR: Corregimos la oración del cuarto párrafo del capítulo 4, sección 4.1 como se muestra a continuación.

El proyecto Tendencias de riesgo en áreas metropolitanas/micropolitanas seleccionadas (Selected Metropolitan/Micropolitan Area Risk Trends, SMART) se inició para desarrollar cálculos de prevalencia a nivel local.

[Continuación del comentario]

Pg. 108, n.2º y sig. Dada la latencia de la mayoría de los tipos de cáncer, ¿cómo se relacionan los aspectos temporales de la incidencia de cáncer con las actividades militares de Vieques?

Respuesta de la ATSDR: La Marina de los EE.UU. ocupa parte de Vieques desde 1941. Teniendo en cuenta la latencia de la mayoría de los tipos de cáncer, evaluar la incidencia de cáncer y la mortalidad por cáncer entre 1990 y 2004 implica un marco temporal razonable.

[Continuación del comentario]

Pg. 109, n.4º - Es importante analizar el estado socioeconómico (socio-economic status, SES) de Vieques en relación con Puerto Rico.

Respuesta de la ATSDR: La ATSDR incorporó un análisis sobre el SES en el capítulo 1.

[Continuación del comentario]

Pg. 115, primer punto - ¿Dónde se dan las ubicaciones de las poblaciones de referencia aquí? Sería útil tener un mapa en este punto.

Respuesta de la ATSDR: Estamos de acuerdo en que un mapa resultaría útil. Desafortunadamente, la Figura 2 de Massol-Deyá 2000 solo contiene las áreas del estudio. Fuera del nombre, no se proporcionan detalles del área de referencia y no están disponibles las ubicaciones de la toma de muestras.

[Continuación del comentario]
Pg. 116, primer punto completo - Los niveles “tóxicos” de “todos los metales” mencionados aquí, ¿se refieren a toxicidades vegetales o toxicidades humanas? Además, ¿por qué se mencionan aquí las “tasas de absorción” de Pb y Cd en lugar de las concentraciones?

Respuesta de la ATSDR: Modificamos el texto del capítulo 5, sección 5.2.1 del Informe para atender estos comentarios.

[Continuación del comentario]

Última punto. ¿Las cabras de Puerto Rico que se comparan con las de Vieques pertenecen a la misma especie de cabras? ¿Tienen la misma edad? ¿Cuáles fueron los niveles en las cabras de Vieques y de Puerto Rico? ¿La diferencia fue estadísticamente significativa?

Respuesta de la ATSDR: Esta información no estaba incluida en la publicación (Massol-Deyá 2002) que presentó los datos de muestra de pelo. Entre otras cosas, la falta de esa información impidió a la ATSDR utilizar esos datos para evaluar la exposición humana por el consumo de carne y productos lácteos del ganado local.

[Continuación del comentario]

Pg. 121, Tabla 5-1 - Si se supone que la duración de la exposición (ED) durante la infancia es 6 años, la ED en adultos debería ser 70 - 6 = 64 años y no el valor de 70 años utilizado aquí para los adultos si se supone una vida de 70 años. Además, ¿por qué la suposición de la tasa de ingestión (IR) difiere en el cálculo del MRL (0.10, 0.05 kg/día) frente a los cálculos del NOAEL/LOAEL (0.05, 0.01 mg/kg/día)?

Respuesta de la ATSDR: Se ha modificado la Tabla 5-1 para mostrar que la duración de la exposición no tuvo un efecto en la dosis diaria estimada. La tasa de ingestión usada para la comparación con el MRL de 0.10 y 0.05 kg/día refleja las tasas de ingestión del percentil 95 para adultos y niños, respectivamente. Las tasas para las comparaciones con el NOAEL y el LOAEL reflejan la ingestión del percentil 95 y el percentil 50 para niños únicamente.

[Continuación del comentario]

Pg. 124, párr. 2 - ¿Cuántas piñas se recolectaron? ¿Fue solo 1? Si fue así, ¿cómo puede usarse esa observación para respaldar el modelo?

Respuesta de la ATSDR: López Morales (2005) no indica explícitamente la cantidad de muestras, pero al parecer se tomaron 72 muestras: 36 del sitio del estudio y 36 de una plantación de referencia.

[Continuación del comentario]

Pg. 126, párr. 2. No considero que estos datos muy limitados respalden ninguna evaluación más amplia de la exposición o el riesgo.

Respuesta de la ATSDR: Gracias por su comentario. La ATSDR está de acuerdo en que las limitaciones en los datos de muestreo actuales dificultan evaluar el alcance del impacto en la salud pública por la exposición a metales en los productos agrícolas cultivados en el lugar. Dadas las incertidumbres en los datos, la ATSDR considera que una práctica de salud pública prudente
requiere realizar más investigaciones sobre esta posible vía de exposición. Para remediar esta deficiencia de datos, la ATSDR recomendó obtener más muestras.

[Continuación del comentario]

Pg. 164, párr. 1. La oración que comienza con “Examinar los resultados de ubicaciones de base no afectadas directamente por operaciones militares...” carece de sentido lógico. Si las muestras son, en efecto, muestras de base, eso implica que se supone que no fueron afectadas por actividades específicas.

Respuesta de la ATSDR: En el capítulo 7, sección 7.2.4, agregamos paréntesis a la frase para indicar que las localizaciones de base, por definición, no están afectadas por operaciones militares.

[Continuación del comentario]

Pg. 165, párr. 2 - Esta es una suposición razonable para los lugares en los que efectivamente ocurrieron las explosiones. Sin embargo, al considerar el transporte fuera del lugar, el material superficial cobra más importancia.

Respuesta de la ATSDR: La mayoría de las muestras de suelo superficial usadas en esta evaluación se recolectaron directamente en el LIA. Recomendamos que en cualquier obtención de muestras que se realice en el futuro fuera del LIA se considere la contaminación de la superficie (3 pulgadas superiores).

[Continuación del comentario]

Pg. 190, 1b - El cabello no es un medio apropiado para el monitoreo biológico de la mayoría de los contaminantes. En general, la sangre es más apropiada. Pero también en el caso de la sangre, la determinación de la pertinencia de su uso para el monitoreo biológico es específica para cada contaminante.

Respuesta de la ATSDR: Estamos de acuerdo en que, a excepción del mercurio, el cabello tiene un uso limitado para el monitoreo de la exposición ambiental. Numerosas declaraciones incluidas en el Informe comunican ese mensaje. También estamos de acuerdo en que, si otros metales se consideran como parte de un estudio de biomonitorio, es importante elaborar un protocolo válido científicamente riguroso. Eso incluye determinar si los resultados aportarán información sobre el riesgo para la salud.

[Continuación del comentario]

Pg. 192, n.2º - La revisión no presenta ningún fundamento para concluir qué implica esta única observación de los niveles de Cd en los gandules implica para la exposición. Esta observación no debe presentarse y analizarse sin un contexto apropiado.

Respuesta de la ATSDR: Se modificó el texto en el capítulo 5, sección 5.2.2 del Informe para atender estos comentarios.
Pg. 193, n.5º - Agregar “y valores bajos falsos” después de “Para evitar valores altos falsos”.

Respuesta de la ATSDR: Se modificó el texto del capítulo 5, sección 5.3 del Informe.
Revisión por experto 2

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

[Comentario] El documento de la ATSDR: Una nueva perspectiva de los datos ambientales, biológicos y de salud de la Isla de Vieques, intenta explicar con lenguaje sencillo el potencial de efectos en la salud humana como resultado de décadas de uso de partes de la isla como un área de adiestramiento y pruebas de la Marina de los EE.UU. El documento fue elaborado con datos recopilados por organismos relacionados específicamente para los fines de esta evaluación de riesgo así como datos recopilados por fuentes externas. El análisis de la evaluación del riesgo fue organizado en función de las vías individuales, como medio para estructurar la información y también explicar los posibles riesgos de manera sistemática.

Al evaluar este documento, consideré la información como un científico con experiencia en la biodisponibilidad de contaminantes en los sistemas de suelos y como alguien que conoce Vieques. Antes de asistir a la universidad, trabajé en Vieques durante dos inviernos a mediados de la década de 1980. En ese momento, la Marina tenía una presencia activa en la isla. Recuerdo que podía sentir y oír algunas de las municiones que estaban probando durante mi estadía en la isla. Leí sobre las protestas de los viequenses que influyeron en la decisión de poner fin a las operaciones de prueba. También he vuelto a la isla desde que la Marina puso fin a las operaciones y las antiguas bases de la Marina se convirtieron en áreas de vida silvestre administradas por la Dirección de Pesca y Fauna Silvestre de los EE.UU.

Comprensiblemente, a los residentes de Vieques les preocupan los posibles efectos negativos para la salud como consecuencia de décadas de uso de la isla como área de adiestramiento y pruebas de la Marina. Ciertos factores, incluidas las altas tasas de cáncer y el aumento de la incidencia de ciertas afecciones médicas, sugerirían a los residentes preocupados que hay un vínculo entre las operaciones de prueba y esos efectos observados en la salud. El documento de evaluación del riesgo intenta comprobar cualquier posible relación entre las pruebas y esos efectos observados repasando cada vía de exposición y analizando toda la evidencia disponible que vincule cualquier efecto en la salud humana con los resultados de las pruebas para cada vía.

Esa iniciativa se ve perjudicada por varios factores. Las pruebas comenzaron varias décadas antes de que se iniciaran iniciativas de investigación para documentar los efectos en la salud. Es probable que los registros de las pruebas (a saber, composición química, cantidad y destino final de los artefactos explosivos usados) no estén completos. Algunos de los datos usados para la iniciativa actual fueron compilados por científicos externos, sin el aseguramiento de la calidad, control de calidad, información sobre métodos ni poblaciones de control adecuados que, en general, se consideran esenciales para que los datos se consideren apropiados para el uso. Por último, no se dispone de los estudios necesarios para proporcionar una guía cuantitativa sobre las concentraciones de contaminantes en diferentes tejidos humanos, suelos y peces que estén probablemente asociados con efectos en la salud para todos los contaminantes considerados en este documento.

En general, esta revisión es muy comprensiva respecto de las preocupaciones de los residentes de Vieques. En este análisis se incluyen datos que probablemente sean inapropiados para utilizarlos en un
ejercicio más riguroso. Algunos ejemplos son las transmisiones por Internet y los datos no publicados sobre la salud de los residentes. El deseo de atender las preocupaciones de los residentes también los ha llevado a dar crédito y prestar atención a ciertas vías que los datos no respaldan de manera realista como una amenaza significativa.

Respuesta de la ATSDR: Gracias por sus comentarios.

¿La ATSDR ha abordado adecuadamente las vías de exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario]
El documento divide el potencial de daño provocado por las actividades de la Marina en las siguientes categorías:

- Consumo de pescado
- Vía de la cadena alimentaria terrestre
- Vía del aire
- Vía del suelo
- Vía del agua potable

El enfoque por vías es adecuado. Además, se han considerado todas las vías relevantes.

Respuesta de la ATSDR: Gracias por sus comentarios.

Sírvase incluir comentarios específicos sobre:

Consumo de alimentos de origen marino de arrecifes cercanos a Vieques

Uso de herramientas de biomonitoreo para evaluar la exposición a metales y otras sustancias químicas peligrosas en sangre, orina o cabello relacionadas con los ejercicios históricos de bombardeo

[Comentarios combinados por el revisor]

Las principales conclusiones del informe son que las vías que tienen el potencial de ser una preocupación son el consumo de pescado y la vía de la cadena alimentaria terrestre. El mercurio es el principal contaminante de interés para el consumo de pescado y el Cd es el principal agente de interés para la vía de la cadena alimentaria terrestre. Los autores citan datos de varios estudios que muestran concentraciones elevadas de Hg en ciertas especies de peces capturados cerca de los arrecifes afectados por las pruebas en Vieques. También citan estudios menos creíbles que indican concentraciones elevadas de Hg en el cabello para una cantidad significativa de viequenses, según el estudio, en comparación con poblaciones de control (Dra. Colón de Jorge y Dr. Rodríguez Sierra). El nivel elevado de Hg en los seres humanos se relaciona con el alto contenido de Hg observado en el pescado. Los autores del informe actual concluyen que reducir el consumo de pescado y evitar ciertas especies de pescado son opciones razonables para reducir cualquier riesgo asociado con un nivel elevado de Hg en los alimentos de origen marino. Esas conclusiones son razonables en función de las concentraciones de Hg...
presentes en ciertas especies de peces de las que se obtuvieron muestras y también de la disponibilidad de otras especies de peces que han demostrado tener niveles bajos de Hg en el tejido comestible. Los autores de este informe presentan los hallazgos de la Dra. Colón de Jorge y del Dr. Rodríguez Sierra y, a la vez, señalan los defectos o los aspectos desconocidos de ambos estudios. No tiene sentido dedicar recursos adicionales a análisis de la carga corporal de Hg en seres humanos cuando se ha descrito una opción clara para reducir el Hg en las dietas y, a la vez, mantener el pescado como una fuente básica de proteínas. El único factor que no se considera en este análisis es el potencial de que el exceso de Hg observado en los peces se relacione con las actividades de la Marina. En el documento no se analizan las cantidades de Hg que probablemente se usaran en las actividades de la Marina ni si se han detectado concentraciones elevadas de Hg en arrecifes afectados por las actividades de la Marina. De modo que, si bien las conclusiones y recomendaciones del informe de la ATSDR para el consumo de pescado son razonables, no se ha establecido un vínculo claro entre las concentraciones elevadas observadas en ciertas especies de peces y las actividades de la Marina en la isla.

Respuesta de la ATSDR: El Informe se centró en gran medida en el mercurio en los peces porque representa el mayor riesgo dentro de los escenarios evaluados. Los resultados de las sustancias químicas en el suelo, el aire, el agua y la flora y fauna no revelan una contaminación difundida y no identifican una asociación entre el mercurio y las actividades de bombardeo. Aclaramos ese punto al corregir el Resumen ejecutivo y los capítulos 1, 2, 3, 6 y 9.

Consumo de alimentos (productos agrícolas, carne, lácteos, huevos) producidos en la isla

Exposición por aire, suelo y agua en Vieques

[Comentarios combinados por el revisor] La otra preocupación importante descrita en el informe es el potencial de un alto consumo de Cd mediante el consumo de gandules. Esta recomendación se basa en un solo estudio que incluyó muestras de alrededor de 20 plantas de gandules de una sola área de la isla. Esa recomendación también se basa en el supuesto de que una gran cantidad de gandules va a formar parte de la alimentación diaria y que los gandules se cultivaran en la isla. Para este revisor, los datos disponibles no respaldan esa conclusión y recomendación. Esto responde a varias razones.

El informe concluye que no hay un fundamento para preocuparse, esto es, por ingestión directa de suelos (la vía del suelo) o por contaminantes transportados por el aire. Ni los datos disponibles ni las iniciativas de los modelos muestran evidencia o potencial de peligros significativos asociados con la vía del suelo o con la vía del aire para los residentes de la parte media de la isla. Esa es la parte habitada de la isla y siempre ha estado libre de pruebas militares. Para que los gandules presenten un exceso de Cd como resultado de las pruebas de la Marina, también debería haber una contaminación del suelo asociada. Dado que el modelo y los datos no muestran ningún peligro por la vía del suelo o la vía del aire, también es altamente improbable que los suelos tuvieran un nivel suficiente de contaminación por Cd como consecuencia de las actividades de la Marina para producir concentraciones vegetales sistemáticamente elevadas de Cd en las partes comestibles del tejido vegetal.

Como se indicó anteriormente para el Hg, no se aporta evidencia de un alto uso de Cd o de concentraciones de Cd en las municiones utilizadas en las pruebas. El cadmio se utilizaba históricamente como pigmento. No está claro que hubiera algo más que trazas de ese metal en cualquiera de las
actividades de la Marina. Los suelos pueden tener concentraciones naturalmente elevadas de Cd; por ejemplo, los suelos de Salinas, California, derivados de esquisto de Monterrey tienen concentraciones de Cd que oscilan entre 0.05 y 10.1 mg/kg\(^1\) (Burau et ál., 1973)\(^{40}\). Las muestras de sedimento recolectadas del LIA muestran concentraciones de Cd que oscilan entre 60 y 110 mg/kg\(^1\). Esta fue un área en la que las concentraciones de metales se elevaban por la profundidad de la obtención de las muestras como consecuencia del impacto directo de explosivos. Si bien esas concentraciones de Cd en el sedimento son claramente muy altas, se encuentran en el área afectada en forma directa. Es muy poco probable que los suelos de cultivo muestren algún aumento detectable en el Cd del suelo como consecuencia de las actividades de la Marina.

Existen otros factores por los que las altas concentraciones de Cd en este único estudio son un fundamento insuficiente para constituir una preocupación. Es probable que la captación de Cd en la planta varíe según factores específicos del suelo y la planta. El estudio tomado como fundamento para una preocupación fue realizado en un único sitio. Es muy probable que las concentraciones de Cd de gandules cultivados en diferentes áreas de la isla varíen significativamente. Un valor promedio, de diversos sitios, que mostrara un nivel muy elevado de Cd sería mucho más significativo.

La biodisponibilidad del Cd también varía según el estado nutricional de las personas. Un estudio mostró una adsorción de Cd significativamente más alta en casos con niveles por debajo de los requeridos de Ca y Fe (Reeves y Chaney, 2001). También se ha observado que una cantidad suficiente de Zn en la dieta protege contra el exceso de adsorción de Cd. Los casos más estudiados de efectos adversos en la salud como consecuencia de un exceso de Cd dietario se encuentran en Japón, donde el arroz blanqueado es el cereal básico. Esto ocurrió después de la Segunda Guerra Mundial, cuando la alimentación en Japón era deficiente. Los gandules probablemente sean una fuente superior de elementos esenciales al arroz blanqueado. Además, las dietas de Vieques probablemente sean superiores a aquellas en las que la presencia de Cd en los alimentos produjo efectos adversos en la salud.

Por último, es muy improbable que se cultiven suficientes gandules en Vieques para alimentar a una parte significativa de la población durante una cantidad de tiempo cualquiera. Si bien en términos históricos la caña de azúcar fue un cultivo importante para la economía, la agricultura en Vieques es limitada. Las familias tienen árboles de cítricos, algunas plantas de plátano y otras variedades; sin embargo, hay muy pocas fincas a gran escala en Vieques. Durante mi estadía allí, hubo un intento de cosechar tomates para exportación que fracasó. No hay suficientes lluvias que permitan el cultivo constante de vegetales sin irrigación para uso comercial.

Los comentarios anteriores pueden aplicarse a todo el modelo de transferencia por la cadena alimentaria (excluidos los alimentos de origen marino). Al analizar la sección de la vía del suelo, no se presentan datos en este capítulo. Sin embargo, en función del análisis de la vía del aire y de las conclusiones en el capítulo sobre el suelo, parece pertinente revisar las conclusiones establecidas sobre la captación de metales en los vegetales cultivados en huertos en los hogares. El capítulo no incluyó datos sobre concentraciones de metales en suelos donde las plantas fueron cultivadas. El capítulo sobre las vías del suelo sugiere que el potencial de niveles elevados de metal en el suelo como consecuencia

\(^{40}\) El experto no proveyó la cita completa en los comentarios enviados a la ATSDR.
de las actividades de la Marina en la parte habitada de la isla, la parte que podría usarse para actividades agrícolas, es mínimo. La diseminación de metales transportados por el aire sería la vía principal para la contaminación por metales del suelo. Los metales permanecerían en el suelo con el tiempo, a diferencia de los contaminantes orgánicos que también se midieron. La ausencia de algún aumento en los metales del suelo sugiere que el contenido elevado de Cd en los gandules probablemente no se relacione con la contaminación del suelo como consecuencia de las actividades anteriores de la Marina. Existen muchos factores que podrían provocar concentraciones elevadas de metales en las plantas, incluyendo un alto nivel de conductividad eléctrica del suelo, bajas concentraciones de Zn en el suelo y podría haber una relación con un nivel bajo de fósforo en el suelo. Muchos de esos factores del suelo pueden controlarse con un manejo adecuado. Se sugiere realizar análisis de suelo apropiados y emplear prácticas agrícolas apropiadas para resolver las inquietudes.

Respuesta de la ATSDR: Gracias por sus comentarios. Se ha modificado el texto relevante del capítulo 5, sección 5.2.2.

¿El Informe sobre Vieques presenta y describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario] Sí.

¿Fueron utilizados adecuadamente los estudios independientes en la determinación de posibles peligros para la salud?

[Comentario] En el afán de incluir tanta información como fuera posible, con el objetivo particular de incluir cualquier información generada por investigadores de Puerto Rico, en este informe se incorpora información que no sería considerada de suficiente integridad científica para ser incluida en la mayoría de los estudios. Existen varios motivos para ello, y la inclusión de esos estudios no ha llevado a formular recomendaciones irracionales. Las recomendaciones del informe probablemente sean más aceptadas debido a la inclusión de esos datos.

Respuesta de la ATSDR: Gracias por su comentario.

En función de la evaluación de la ATSDR de actividades históricas de bombardeo en el informe de Vieques, ¿la ATSDR ha formulado las conclusiones y recomendaciones apropiadas?

[Comentario] Véase el análisis de las concentraciones vegetales de Cd más arriba; no obstante, la respuesta general es sí.

Respuesta de la ATSDR: No se requiere.

Selezione la categoría correspondiente a continuación:

Haga una lista de los cambios recomendados o los motivos para no recomendarlo

Recomendado (X)

Recomendado con cambios requeridos ()
No recomendado ()

Preguntas adicionales:

¿Tiene algún comentario sobre el proceso de revisión por expertos de la ATSDR?

[Comentario] No

¿Tiene algún otro comentario?

[Comentario] En general, el informe es potencialmente demasiado indulgente en el uso de cualquier dato apropiado. El informe expresa inquietudes con mínimo fundamento. La información presentada sugiere que los antecedentes de actividades navales en Vieques no han producido ningún impacto mensurable en la salud humana. Dicho eso, es probable que si se otorgara acceso completo y sin restricciones a las antiguas áreas de la Marina, incluida la construcción de hogares, sería necesario revisar las conclusiones de esta evaluación del riesgo. El área probablemente requiera extensas reparaciones antes de que se pueda permitir el acceso sin restricciones. Además, los datos limitados presentados en este informe sobre la contaminación tanto de las aguas de los alrededores de Vieques como de partes de las áreas afectadas sugieren que una evaluación completa del riesgo para el ecosistema arrojaría conclusiones muy diferentes a esta limitada evaluación del riesgo para la salud humana.

Respuesta de la ATSDR: Gracias por su comentario. Modificamos el texto (en el Resumen ejecutivo y los capítulos 1, 2 y 3) para mejorar el análisis sobre los contaminantes de las bombas y su posible contribución a diversas vías. El hierro, el aluminio, el cobre, el manganeso, el zinc y el plomo son los metales que tienen mayores probabilidades de tener niveles elevados en los suelos del LIA por las actividades de bombardeo, aunque también se encontraron otros metales en las bombas. Debe tenerse en cuenta que todos estos metales también están presentes en forma natural en los suelos y rocas de Vieques (ATSDR 2003a, Learned 1973, USGS 1997 y 2001).

Si bien las asociaciones entre estas muestras y las actividades militares no son fuertes, las muestras no estaban diseñadas para una evaluación ecológica exhaustiva. Por tanto, solo deberían servir como indicadores para continuar los estudios.

Además, en los capítulos 7 y 9 aclaramos que la ATSDR recomienda realizar una evaluación ambiental y continuar las actividades de reparación en el LIA y en otros sitios posiblemente contaminados de Vieques. Debe mantenerse el acceso restringido a esas áreas hasta que se autorice el acceso sin restricciones.
Revisión por experto 3

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

[Comentario] Sí, la reevaluación fue apropiada. Se consideraron adecuadamente las vías de exposición, se incluyeron y analizaron los estudios locales de los que se pudo disponer y se han formulado propuestas para continuar el trabajo en el futuro. Mi respuesta está condicionada por solo dos cosas. En primer lugar, parece haber cierto grado de ignorancia sobre las condiciones locales, el cual se refleja en el informe: la recomendación de que los viequenses sigan el aviso nacional sobre el consumo de pescado de la EPA de los EE.UU./FDA y sus tres recomendaciones para seleccionar y comer pescados y mariscos, y la falta de conocimiento sobre el suministro público de agua de Vieques. Mi segundo condicionamiento se relaciona con la multiplicidad de actividades de obtención de muestras y datos que se recomiendan para subsanar la falta actual de datos. Consideradas en forma individual, en general, concuerdo con ellas. No obstante, en su conjunto, conforman un emprendimiento enorme y costoso que, probablemente, tome muchos años. Se sugiere establecer prioridades y que se resuelvan las faltas más importantes primero a fin de establecer, en un período de tiempo razonable, si la salud de los viequenses está en riesgo o no.

A continuación se proporcionan detalles al respecto.

Respuesta de la ATSDR: Gracias por sus comentarios. Modificamos el texto del capítulo 2 para que reflejara mejor los hábitos de consumo de pescado locales. También modificamos el capítulo 8 para responder a las inquietudes sobre el suministro público de agua. La ATSDR considera que educar acerca de la elección de pescados con niveles bajos de mercurio es la recomendación de salud pública de más alta prioridad y planea colaborar con sus socios y con la comunidad para priorizar otras recomendaciones.

¿La ATSDR ha abordado adecuadamente las vías de exposición humana a contaminantes específicos del campo de bombardeo?

[Sin comentarios]

Sírvase incluir comentarios específicos sobre:

Consumo de alimentos de origen marino de arrecifes cercanos a Vieques

[Comentario]
Concuerdo con las recomendaciones n.1-3º. Sin embargo, la ATSDR debería reconsiderar la recomendación n.4º (que los viequenses sigan el aviso nacional sobre el consumo de pescado de la EPA de los EE.UU./FDA y sus tres recomendaciones para seleccionar y comer pescados y mariscos). Esas recomendaciones dificilmente puedan aplicarse en Vieques.

Consideren que los viequenses consumen pescados capturados por pescadores locales, que son principalmente los que se muestran en la Tabla 2-1. Las recomendaciones de la EPA/FDA son que coman atún claro enlatado o las otras tres especies (salmón, abadejo y bagre), que no existen en el área. Eso no
va a suceder y, en su lugar, la recomendación debería ser que consuman especies locales con niveles bajos de mercurio, y se debería incluir una tabla.

A los viequenses se les pide que consulten los avisos locales acerca de la seguridad del consumo de pescado. Hasta donde sé, en Puerto Rico no se emiten dichos avisos. Esa misma recomendación hace referencia a “lagos, ríos locales...” de los cuales no hay ninguno en Vieques. El uso de esas referencias da la impresión de que la ATSDR desconoce la situación local.

Se pide a los viequenses que no coman tiburón, pez espada, pez sierra o blanquillo, especies que no aparecen en la Tabla 2-1.

Respuesta de la ATSDR: Coincidimos en que partes del aviso nacional sobre el consumo de pescado de la EPA/FDA no se aplica a los viequenses. Modificamos esa recomendación en el capítulo 2., sección 2.3.2.

Utilizando los datos de la encuesta de la Dra. Caro, ampliamos la lista de pescados que consumen los viequenses (vea la Tabla 2-1 en el capítulo 2, sección 2.1.1). La Tabla 2-1 ahora muestra las 22 especies de pescado y dos de mariscos (es decir, carrucho y langosta) que los 51 encuestados informaron a la Dra. Caro que consumían. Nótese que los residentes informaron que consumen tiburón, atún y pez aguja azul, especies que pueden tener niveles muy altos de mercurio. Además, los residentes informaron que consumen salmón, una especie con bajos niveles de mercurio. Que los viequenses coman atún enlatado parece una suposición razonable. Por lo tanto, algunas partes del aviso nacional de la EPA/FDA se aplican mientras que otras claramente no.

Durante el encuentro de científicos en el 2009, un científico también criticó a la agencia por 1) no citar el aviso nacional sobre el consumo de pescado de la EPA/FDA y 2) contradecir el aviso nacional en los hallazgos de la PHA anterior sobre peces de la ATSDR realizada en 2003. Es importante que los viequenses sepan qué peces de arrecife tienen niveles más altos de mercurio y qué peces de arrecife tienen niveles bajos de mercurio. La ATSDR ahora recomienda que la agencia desarrolle un programa de educación en salud específico para Vieques. Ese programa de educación en salud debe capacitar a los residentes de Vieques para elegir consumir pescados con niveles más bajos de mercurio.

[Comentario]

1. El estudio de la Dra. Caro:
 a. La Tabla 2-2 parece estar incompleta (solo muestra tres especies de peces). Caro caracteriza los tres peces como “... un ejemplo, los contenidos promedio del metal pueden mencionarse en los siguientes peces...”. Ella agrega que: “Datos adicionales del Apéndice 10 ilustran esos resultados”. Sin embargo, ni este apéndice ni muchos otros fueron incluidos en la copia del informe de Caro que envió la ATSDR.

Respuesta de la ATSDR: Agregamos la información adicional del Apéndice 10 a la Tabla 2-2 del capítulo 2, sección 2.2.1.
b. Estoy de acuerdo en que no saber si los resultados se refieren al peso seco o el peso húmedo impide la comparación con otros conjuntos de datos y el cálculo de dosis humanas a partir del consumo de pescado, pero suponer que se expresa el peso seco daría un cálculo conservador y permitiría hacer comparaciones calificadas y estimados de las dosis. Si se utiliza el peso húmedo, las concentraciones reales en los tejidos podrían ser más altas.

Respuesta de la ATSDR: Proporcionamos un análisis adicional de los datos de Caro. Consulte el capítulo 2, sección 2.2.1.

[Comentario]

c. El nombre correcto de Parquera es Parguera. El informe de Caro parece incluir el mismo error.

Respuesta de la ATSDR: Se corrigió el nombre de este pueblo.

[Comentario]

d. Se dice que la ATSDR actualmente está renovando sus intentos para determinar si los datos se refieren al peso seco o peso húmedo. Obsérvese que la Dra. Caro falleció en 2002.

Respuesta de la ATSDR: Tratamos de comunicarnos con el laboratorio. Corregimos las oraciones del capítulo 2, sección 2.2.1 para reflejar con precisión nuestros intentos.

[Comentario]

2. Datos de peces y alimentos de origen marino de la ATSDR

 a. Se indica que la ATSDR utilizó un peso corporal estándar para adultos y niños. Si esto se refiere al estándar de la isla principal, cabe destacar que, en general, los puertorriqueños pesan menos que los puertorriqueños, lo que podría subestimar los cálculos de concentraciones en los tejidos.

Respuesta de la ATSDR: En la PHA sobre peces del 2003 de la ATSDR, utilizamos un peso corporal estándar de 70 kg para adultos y de 16 kg para niños. El punto de que, por lo general, los puertorriqueños pesan menos también fue planteado por los científicos en las conversaciones de noviembre de 2009. Por lo tanto, en el Informe actual usamos un rango de peso corporal que va de 4.5 a 100 kg (9.9 a 220 libras) para representar el peso corporal de diversos grupos de edad (vea el capítulo 2, sección 2.6, Tabla 2A-1 en el Apéndice 2A-2). También incluimos un rango de tasas de ingestión diaria de pescado que cubre las ingestiones diarias hasta el percentil 99. Por lo tanto, las dosis estimadas de mercurio en este informe incluyen un rango mucho más amplio de dosis que la PHA sobre peces del 2003.

[Comentario]

3. Existe una presentación en póster titulada “Evaluación del riesgo para la salud del arsénico presente en peces de las aguas costeras de Vieques, PR” (Health Risk Assessment of Arsenic from Fish in Coastal Waters of Vieques, PR) por Acevedo et ál., en la que se midieron las concentraciones de arsénico en ocho peces comestibles de Vieques en el 2001. Las concentraciones oscilaron entre 0.3 y 3.53 mg/kg de peso húmedo. El estudio consideró
diferentes escenarios de exposición para el As inorgánico y halló que las concentraciones superaban la dosis de referencia de la EPA de 0.0003 mg/kg/día en seis o más especies de peces para efectos sistémicos en adultos y niños. Se calculó que la probabilidad de un exceso de riesgo de cáncer de por vida debido a la exposición a As en los adultos superaba el riesgo aceptable de cáncer de 10^{-6}. No creo que dicho estudio se haya publicado, pero se puede obtener el póster mediante el Dr. Carlos Rodríguez Sierra en la Escuela de Salud Pública del Recinto de Ciencias Médicas de la Universidad de Puerto Rico.

Respuesta de la ATSDR: La ATSDR ha intentado localizar esa información pero no lo ha conseguido. El promedio de arsénico total de las muestras de peces recolectadas por la ATSDR en el 2001 osciló entre 1.85 ppm (o mg/kg) y 2.84 ppm (peso húmedo), con una muestra de chapín que mostró 8.3 ppm de arsénico total. La mediana de la concentración de arsénico total en los peces fue 2.8 ppm. El carrucho y el cangrejo de tierra presentaron niveles similares (0.3 ppm y 3.9 ppm, respectivamente). Esos niveles son típicos para las concentraciones de arsénico total en los alimentos de origen marino y, en particular, para los peces (WHO 2001, Rodríguez Sierra 2002, ATSDR 2007) y son similares a los niveles informados por el revisor en el póster (0.3-3.53 ppm).

Numerosos estudios han demostrado que la forma predominante de arsénico en los peces es la arsenobetaina, un arsénico orgánico (ATSDR 2007). La arsenobetaina no es perjudicial para los seres humanos porque estos excretan rápidamente esta sustancia química sin cambios entre 24 y 48 horas después de la ingestión. La pequeña cantidad restante de arsénico inorgánico en los peces no es perjudicial (WHO 2001).

En cuanto a la langosta espinosa de los arrecifes de Vieques, se demostró que tiene niveles de arsénico total que van de 27 ppm a 48 ppm, con un promedio de 33 ppm. Al igual que en los peces, la mayor parte del arsénico presente en la langosta espinosa (género *Panulirus*) es arsenobetaina, y solo alrededor del 0.05% es arsénico inorgánico (Peshut et ál. 2007). No se introdujeron cambios en el informe.

Uso de herramientas de biomonitoreo para evaluar la exposición a metales y otras sustancias químicas peligrosas en sangre, orina o cabello relacionadas con los ejercicios históricos de bombardeo

[Comentario]

1. El capítulo aporta una buena revisión de seis estudios de biomonitoreo en seres humanos realizados en Vieques. Me sorprendió enterarme de que en las evaluaciones anteriores de salud pública de la ATSDR no se habían revisado datos de biomonitoreo de Vieques.

 Respuesta de la ATSDR: Gracias por su comentario. Los estudios de biomonitoreo no estaban disponibles cuando se estaban redactando las evaluaciones de salud pública de Vieques o, en el caso del Departamento de Salud de Puerto Rico, el estudio todavía no se había realizado. Cuando la ATSDR comenzó su evaluación sobre Vieques en 2009, sabíamos que el Departamento de Salud de Puerto Rico había realizado un estudio, pero desconocíamos la
existencia de un manuscrito preliminar. La ATSDR recibió una copia del manuscrito preliminar del Departamento de Salud de Puerto Rico a fines de 2009.

[Comentario]

2. El Departamento de Salud de Puerto Rico al parecer llevó a cabo el estudio más exhaustivo de biomonitorio en el que recolectaron muestras de cabello, orina o sangre de 500 viequenses seleccionados aleatoriamente. Sin embargo, nunca se publicó un informe público y recién en agosto de 2009 la ATSDR obtuvo una copia del manuscrito no publicado. Honestamente, por la forma en que está redactado, nos hace preguntarnos por qué la ATSDR tardó tres años en obtener una copia y cómo fue que la obtuvo.

Respuesta de la ATSDR: Cuando la ATSDR comenzó su evaluación sobre Vieques en 2009, nos enteramos de que el Departamento de Salud de Puerto Rico había realizado un estudio pero desconocíamos la existencia de un informe preliminar. Poco antes de la reunión de noviembre de 2009 con científicos invitados, la ATSDR recibió una copia preliminar del estudio del Departamento de Salud de Puerto Rico.

[Comentario]

3. El análisis del capítulo 3.3 sobre las fortalezas y las limitaciones de los estudios anteriores de biomonitorio en seres humanos de Vieques es exhaustivo y equilibrado. Se reconoce que los datos de biomonitorio de la NHANES se aplican a toda la población de los EE.UU. y que, debido a diferencias regionales, culturales y étnicas, solo pueden aplicarse con cautela a Puerto Rico. Estoy completamente de acuerdo en que, al buscar un grupo de comparación para Vieques, una población de control de otra ciudad de Puerto Rico sería más apropiada.

Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

“La pintura a base de plomo también puede ser un peligro cuando se halla en superficies que los niños pueden masticar o que están sujetas a un gran desgaste. Estas áreas incluyen
Ventanas y repisas de ventanas
Puertas y marcos
Escaleras, barandas y barandillas
Porchos y rejas”.

Mi propia experiencia en estudios con pintura a base de plomo indica que los puertorriqueños suelen pintar las casas aplicando una capa de pintura tras otra y que las capas internas (que son las más viejas)
son las que contienen pintura a base de plomo. Los niños mastican todas las capas, lo cual los expone a la pintura con plomo.

Respuesta de la ATSDR: Coincidimos con que los niños pueden estar expuestos a pintura con plomo y agregamos un comentario en el capítulo 3, sección 3.7.9.1.

[Comentario]

5. “La Dra. Colón de Jorge indicó que los niveles de antimonio eran altos porque el antimonio se utilizaba en artefactos explosivos en Vieques, lo cual señala que los ejercicios militares fueron el motivo por el cual los niveles de antimonio eran altos”. Esa conclusión no parece tener datos o análisis que la respalden y la revisión del informe por parte de la ATSDR debería indicarlo.

Respuesta de la ATSDR: La Dra. Colón de Jorge afirma que los niveles de antimonio de las bombas eran altos y que ese es el motivo por el que algunos niños presentan niveles altos de antimonio. Modificamos el texto del capítulo 3, secciones 3.2 y 3.7.9.1 para incluir la justificación de la Dra. Colón de Jorge. También señalamos que la Dra. Colón de Jorge no describió cómo los residentes podrían haber estado expuestos al antimonio.

[Comentario]

6. El análisis de las investigaciones realizadas por el Dr. Carlos Rodríguez (esta es la misma persona a la que se hace referencia anteriormente en el comentario 4 de la sección sobre el consumo de alimentos de origen marino de los arrecifes cercanos a Vieques) se basa en una presentación realizada en un seminario por Internet. Si bien se aclara que el Dr. Rodríguez tiene la intención de publicar los datos en algún momento, aparentemente no lo ha hecho, lo cual plantea la inquietud general que tengo acerca de la falta de revisión por expertos de muchos de los estudios locales que se presentan en el informe de la ATSDR.

Respuesta de la ATSDR: La ATSDR está de acuerdo en que se prefiera el uso de datos revisados por expertos. Pero los datos recolectados y analizados aplicando procedimientos de aseguramiento de la calidad/control de la calidad también son aceptables. En el afán de considerar todos los datos sobre Vieques disponibles, la ATSDR optó por incluir los datos no revisados por expertos en el Informe. En el apéndice del Informe, la ATSDR resume todos los datos disponibles e indica si los datos fueron revisados por expertos. En conversaciones por correo electrónico con el Dr. Rodríguez Sierra, nos ha informado que presentó sus datos de biomonitorio para publicación y que actualmente se encuentran en el proceso de revisión por expertos para una revista científica. Esos datos estarán a disposición de la ATSDR después de su publicación.

Consumo de alimentos (productos agrícolas, carne, lácteos, huevos) producidos en la isla

[Comentario]
1. Este capítulo incluye un análisis de varios estudios que tratan de los contaminantes detectados en productos agrícolas y en ganaderías locales. Todos los estudios presentan graves limitaciones. Por ejemplo, uno incluye tallos y hojas de plantas, pero no incluye las partes comestibles de las plantas de las que se obtuvieron muestras. Al parecer, los gandules cultivados localmente podrían contener un nivel alto de cadmio, pero, nuevamente, los datos son insuficientes.

Respuesta de la ATSDR: La ATSDR está de acuerdo. Gracias por su comentario.

[Comentario]

2. Se hace referencia a una sugerencia del USDA de varios métodos simples para reducir la captación de metales cuando los suelos están contaminados. Se afirma que la mayoría de los jardineros caseros aplican muchas de las prácticas sugeridas. Sin embargo, el sitio web citado dirige a una página muy general sobre plantas y cultivos. Debería proporcionarse una referencia más específica y asegurarse de que las prácticas sugeridas sean aplicables en Vieques.

Respuesta de la ATSDR: No había una referencia específica. A falta de otras, elegimos las recomendaciones del USDA, que, en general, son aplicables y pertinentes para la jardinería y la agricultura.

Exposición por aire, suelo y agua en Vieques

[Comentario]

Vía del aire

1. El capítulo no menciona la posibilidad de que el polvo del Sahara aporte contaminantes al aire o suelo de Vieques. Véase, por ejemplo, Garrison et ál. (Rev. Biol. Trop. 54 (supl. 3): 9-21. Publicación electrónica, 15 de enero de 2007) que obtuvo muestras en las Islas Vírgenes, donde se halló que las concentraciones traza de metal del polvo del Sahara eran similares a la composición de la corteza. Si bien pienso que las concentraciones de metales del polvo del Sahara no van a ser lo bastante altas como para representar un aporte significativo a los metales que se hallan en Vieques, debería abordarse este punto.

Respuesta de la ATSDR: Tormentas de polvo africanas: En la PHA sobre el aire del 2003 se evaluaron las implicaciones para la salud pública de la exposición a partículas transportadas por el viento de las tormentas de polvo africanas (páginas 59-61) y se halló que las partículas PM10 (y PM2.5) de dichas tormentas no estaban presentes en Vieques a niveles que constituyeran una preocupación de salud. Sin embargo, no había datos específicos de contaminantes sobre el polvo de las tormentas de polvo africanas disponibles al momento de la PHA sobre el aire (en la que se recomendaba continuar las evaluaciones en caso de que se dispusiera de dichos datos específicos de contaminantes). Se presentan datos específicos de contaminantes de polvo en un estudio reciente de Gioda et ál. (2007) y se agregó un análisis de esa información en el capítulo 6, sección 6.2.3.

[Comentario]
2. El análisis de los resultados del muestreo y los estudios de modelo realizados después de la PHA así como las recientes detonaciones BIP es exhaustivo y conduce a la conclusión formulada de que, en las áreas residenciales de Vieques, los contaminantes transportados por el aire de las operaciones militares pasadas realizadas en el Campo de Adiestramiento Naval de Vieques habrían sido prácticamente imposibles de detectar y es poco probable que hayan provocado efectos perjudiciales.

 Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

Vía del suelo

3. En este capítulo se evaluó la posible exposición directa por el suelo en dos situaciones: las personas que vivieron en propiedades del LIA durante las protestas de 1999-2000 y las personas que viven en las áreas residenciales de la isla. Se concluyó que las personas que vivieron en el LIA durante las protestas no estuvieron expuestas a contaminantes del suelo a niveles suficientemente altos como para causar efectos adversos en la salud. Esa conclusión está bien respaldada por los datos disponibles tal como se analizan en el informe. Con respecto a las áreas residenciales de la isla, no se considera que haya datos adecuados sobre el suelo para caracterizar las posibles exposiciones en forma completa. Si bien datos actuales o datos razonables recientes respaldan la conclusión de que no es probable que los niveles de contaminantes existentes en las áreas residenciales provoquen efectos adversos, hay una falta de datos históricos que respalden una conclusión más amplia en el sentido de que nunca lo ha sido. En el informe se solicita la obtención de muestras adicionales para resolver las incertidumbres subsistentes, pero la pregunta más amplia es imposible de resolver ahora.

 Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

Vía del agua potable

1. La Autoridad de Acueductos y Alcantarillados de Puerto Rico (PRASA), una corporación pública que existe desde 1945, está a cargo del abastecimiento de agua potable y del tratamiento de aguas residuales en el Estado Libre Asociado de Puerto Rico. Es la única entidad de los Estados Unidos con un mandato a nivel de todo el estado y, como tal, es una de las empresas de servicio público de agua y aguas residuales más grande en los Estados Unidos. En 2005 PRASA operaba 130 sistemas diferentes de suministro de agua en todo Puerto Rico, los cuales procesaban 500 millones de galones de agua por día. También operaba 29 plantas de eliminación de aguas residuales y 1,600 estaciones de bombeo. Vieques forma parte de su área de cobertura. Si bien es correcto que en años recientes (durante alrededor de ocho años hasta el 2004) PRASA había derivado parte de sus operaciones a corporaciones privadas como la ya mencionada Compañía de Aguas o, en otro momento, a ONDEO de PR, siempre estuvo regulada por la Ley de agua potable segura como sistema de suministro público de agua. Esa función regulatoria fue delegada por la EPA al Departamento de Salud (DOH) de Puerto Rico. PRASA está obligada a producir y distribuir
anualmente a sus usuarios Informes de confianza del consumidor, en los que se informa y explica la calidad de su agua en un lenguaje no técnico. Dichos informes para los años 2004-2009 pueden obtenerse en http://www.acueductospr.com/AMBIENTE/ccr_reports.htm (el sistema que abastece la tubería de Vieques aparece como 5386-Humacao Urbano y luego como Río Blanco en el archivo pdf) y los informes de años anteriores deberían obtenerse fácilmente en PRASA o el Departamento de Salud. Esos datos deberían ser suficientes para resolver la cuestión de la calidad del agua de la tubería. Por ejemplo, los datos de 2009 muestran que el nivel de acción para el plomo de 15 ppb fue superado cuatro veces.

Respuesta de la ATSDR: Modificamos el texto del capítulo 8, sección 8.1 para corregir cualquier imprecisión sobre los operadores actuales del suministro público de agua. No incluimos descripciones detalladas del sistema de suministro de agua; eso podría menoscabar nuestra evaluación de la posible exposición por todos los suministros de agua, pasados y presentes.

Los informes de calidad del agua del 2004-2009 mencionados en el informe indican que el suministro de la tubería ocasionalmente ha superado los estándares de agua potable para contaminantes microbianos, turbidez y plomo. Los niveles elevados de plomo, detectados principalmente en el 2006 y 2007, no se relacionaron con los ejercicios militares realizados en Vieques. Pero independientemente de la fuente, la presencia de plomo en el agua potable es un problema importante de la salud pública. La ATSDR reformuló el texto y agregó un análisis para tratar estos puntos en el capítulo 8 y Capítulo 9, secciones 9.8.1 y 9.8.2 del Informe.

[Comentario]

2. El informe de la ATSDR también aborda los pozos que se utilizaban y que se utilizan ocasionalmente en la actualidad para obtener agua potable. Es muy probable que esos pozos pertenezcan a PRASA, quien debería contar con datos históricos sobre la calidad del agua. Además, con respecto a los pozos, debería analizarse la presencia o ausencia de un relleno sanitario en Vieques que podría estar afectando el agua subterránea y el uso de tanques sépticos para la eliminación de aguas residuales.

Respuesta de la ATSDR: Agregamos un análisis sobre datos históricos en el Informe en el Capítulo 8, secciones 8.2.2, 8.2.4.2 y 8.3.1.2. No intentamos recoger información histórica adicional sobre la calidad del agua de esos pozos. Aún si estuviera disponible, las preguntas acerca de los procedimientos de obtención de muestras, análisis y control de calidad de las décadas de 1970 y 1980 hacen que sea poco probable que dichos informes nos aporten información suficiente que pudiera alterar nuestras conclusiones actuales. Asimismo, la ausencia de datos históricos adecuados para sacar conclusiones acerca de la exposición por los pozos de suministro público en el pasado (décadas de 1970 y 1980).

Por tanto, en el capítulo 8, sección 8.3.1.2 reformulamos el texto y agregamos una declaración sobre posibles fuentes de contaminantes no militares, incluidos los rellenos sanitarios y los sistemas sépticos. Si bien los rellenos sanitarios y los sistemas sépticos podrían afectar los recursos de agua subterránea, el hecho de que lo hayan hecho no formaba parte del foco de nuestra evaluación. En cambio, la ATSDR basó sus conclusiones en muestras concretas de pozos de suministro, pozos privados y grifos de agua.
[Comentario]
3. Aunque sería útil contar con datos sobre los sistemas de aguas pluviales, su uso y efecto generales probablemente sean muy pequeños.

Respuesta de la ATSDR: Gracias por el comentario.

[Comentario]
4. La ATSDR debería considerar la reescritura de todo este capítulo a fin de reflejar mejor el rol de PRASA en el abastecimiento de agua potable en Vieques.

Respuesta de la ATSDR: Modificamos el texto del capítulo 8, sección 8.1 para corregir cualquier imprecisión sobre los operadores actuales del suministro público de agua. No incluimos descripciones detalladas del sistema de suministro de agua. Nos preocupaba que eso pudiera menoscabar nuestra evaluación de la posible exposición por todos los suministros de agua, pasados y presentes.

¿**El Informe sobre Vieques presenta y describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a contaminantes específicos del campo de bombardeo?**

[Comentario]
Creo que el informe no es tan claro como debería, en especial desde el punto de vista de una persona que no es experta. Las limitaciones e incertidumbres se presentan adecuadamente para la persona que lea el informe completo con atención. Solo la lectura del resumen del informe no presenta el mismo panorama.

Respuesta de la ATSDR: En el Informe, proporcionamos información adicional sobre datos ambientales disponibles para evaluar cualquier exposición asociada con los ejercicios militares realizados en Vieques. Identificamos que las sustancias químicas halladas en muestras ambientales también se hallaron en artefactos explosivos. Se hicieron cambios en el Resumen ejecutivo del Informe y en los capítulos 1, 2, 3, 6 y 9.

¿**Fueron utilizados adecuadamente los estudios independientes en la determinación de posibles peligros para la salud?**

[Comentario]
Sí, pero se les da la misma importancia que a otros estudios revisados por expertos.

Respuesta de la ATSDR: La principal consideración para los estudios independientes es la importancia de describir todos los datos ambientales y de salud disponibles sobre Vieques, aún cuando algunos de los datos no hayan sido revisados por expertos. Consideramos los resultados de datos de cabello de numerosos metales. Algunos científicos consideraron que esos datos eran válidos y extrajeron conclusiones a partir de ellos. La ATSDR describió las limitaciones de esos datos en detalle y señaló que no era posible distinguir entre el contacto externo y la ingestión interna para la mayoría de los metales, excepto el mercurio. A este respecto, la ATSDR intentó informar imparcialmente los datos disponibles y aportar comentarios sobre su valor.
para tomar decisiones relativas a la salud. En nuestras conclusiones y recomendaciones, no se utilizaron los datos de calidad dudosa (p. ej., metales en el cabello, excepto mercurio) o bien se utilizaron cualitativamente (p. ej., el arsénico en la orina reportado en un seminario por Internet).

En función de la reevaluación de la ATSDR de actividades históricas de bombardeo en el informe de Vieques, ¿la ATSDR ha formulado las conclusiones y recomendaciones apropiadas?

[Comentarios]

Sí en cuanto a su calidad, pero tengo los siguientes comentarios respecto a su presentación:

1. Es confuso que haya conclusiones y recomendaciones al final de cada capítulo y en el capítulo 9, y estas son diferentes. Por ejemplo, al final del capítulo 5, hay un párrafo de nueve renglones con recomendaciones mientras que en el capítulo 9, esas recomendaciones se amplían a diez puntos que ocupan una página entera. Además, en otro ejemplo de confusión, el capítulo 5 se titula Vía de la cadena alimentaria terrestre en el texto del informe mientras que en el capítulo 9 se hace referencia a la Vía de productos agrícola y ganado local. Algo similar ocurre con el capítulo 2.

Respuesta de la ATSDR: En respuesta a este comentario, cambiamos “Vía de la cadena alimentaria terrestre” a “Vía de productos agrícola y ganado local” en el Resumen ejecutivo y el capítulo 5. Las conclusiones y recomendaciones del capítulo 2 ahora coinciden con las del capítulo 9.

[Comentario]

1. Considerar la primera recomendación del capítulo 9 acerca del capítulo 4: Datos de resultados de salud:

 Evaluar la viabilidad de aplicar los métodos de SMART BRFSS a fin de generar cálculos estables de prevalencia específica en Vieques para asma, diabetes, hipertensión y otras enfermedades crónicas.

En el capítulo 4, en el párrafo completo de Recomendaciones se lee:

 En este momento, la ATSDR recomienda la realización de análisis adicionales para cuantificar la morbilidad y mortalidad relacionadas y no relacionadas con el cáncer, la evaluación de las necesidades de atención médica primaria y especializada, y enfoques alternativos para la prestación de servicios médicos.

Por tanto, en el capítulo 9 se mencionan métodos específicos sin dar una explicación de cuáles son, por qué son mejores o incluso por qué son necesarios.

Respuesta de la ATSDR: Evaluar la viabilidad del uso de SMART para superar las limitaciones en el desarrollo de cálculos de prevalencia en una población pequeña debe incluirse como recomendación o próximo paso en el capítulo 9. Las recomendaciones del capítulo 4 ahora coinciden con las recomendaciones enumeradas en el capítulo 9. Los términos “a nivel local” y “población pequeña” son intercambiables.
[Comentario]

En el capítulo 9, algunos de los capítulos anteriores tienen un Resumen y Conclusiones mientras que otros solo tienen Conclusiones. Esto debería uniformarse para evitar más confusiones.

Respuesta de la ATSDR: Se corrigieron los encabezados para que todos digan “Conclusiones”.

Selección la categoría correspondiente a continuación:

Haga una lista de los cambios recomendados o los motivos para no recomendarlo

Recomendado ()

Recomendado con cambios requeridos (X)

No recomendado ()

[Comentario]

Reescritura del capítulo Vía del agua potable, a fin de reflejar mejor el rol de PRASA en el suministro de agua potable en Vieques.

Respuesta de la ATSDR: Modificamos el texto del capítulo 8, sección 8.1 para corregir cualquier imprecisión sobre los operadores actuales del suministro público de agua. No incluimos descripciones detalladas del sistema de suministro de agua. Nos preocupaba que eso menoscabara nuestra evaluación de la posible exposición por todos los suministros de agua, pasados y presentes.

Preguntas adicionales:

¿Tiene algún comentario sobre el proceso de revisión por expertos de la ATSDR?

[Comentario]

Ninguno, excepto por el Punto 6 planteado arriba.

¿Tiene algún otro comentario?

[Comentario]

Ninguno.
Revisión por experto 4

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

[Comentario] Este revisor reconoce y celebra el gran esfuerzo que han hecho las personas y los líderes de la comunidad de Vieques y PR para acceder al estado de salud de su comunidad. Además, felicita a todos los investigadores que contribuyeron a generar conocimientos científicos en este campo. En general, la reevaluación realizada por la ATSDR parece apropiada. Este informe respalda la necesidad de realizar estudios adicionales e intervenciones de salud pública en Vieques, PR, ya que si bien algunos resultados todavía no son concluyentes, la evidencia apoya la posibilidad de exposición ambiental en esta población, así como desigualdades en la salud en comparación con la isla principal de PR y los Estados Unidos. Se han incluido la mayoría de los estudios en el análisis, aunque deberían haber hecho más intentos por comunicarse con los investigadores cuyos resultados no han sido publicados. Este revisor ha resaltado varias cuestiones que ameritan consideración antes de la publicación de este manuscrito (vea a continuación).

Respuesta de la ATSDR: Agradecemos todos los comentarios.

¿La ATSDR ha abordado adecuadamente las vías de exposición humana a contaminantes específicos del campo de bombardeo?

Sirvase incluir comentarios específicos sobre:

Consumo de alimentos de origen marino de arrecifes cercanos a Vieques

[Comentario] capítulo 2. La ATSDR concluye que los niños que consumían pescado de los arrecifes cercanos a Vieques y los hijos de madres que también consumían eso tenían un aumento del riesgo de desarrollar varias condiciones de salud. No obstante, el informe destaca que esa conclusión acerca del riesgo de efectos perjudiciales en fetos y niños es algo incierta ya que la respuesta al mercurio de una persona puede variar según el sexo, la genética, la salud y el estado nutricional. Este revisor cree que, a pesar de algunas limitaciones, la asociación observada entre el consumo de pescado en Vieques y los riesgos para la salud en estos subgrupos de la población es muy relevante y no se le debe restar importancia. La ATSDR debe agregar a sus recomendaciones en esta área la necesidad de una evaluación del estado de salud y nutricional de los niños de Vieques y la forma en que esos factores pueden influir en el impacto que el consumo de pescado podría tener en la salud de los niños de Vieques. Debería obtenerse cierta información sobre el estado nutricional de adultos y niños de Vieques mediante el sistema BRFSS y la Encuesta de comportamiento de riesgo juvenil (Youth Risk Behavior Survey, YRBS) de PR.

Respuesta de la ATSDR: Gracias por sus comentarios. La Administración de Alimentos y Medicamentos (FDA) de los EE.UU. recomienda a los niños y mujeres embarazadas que eviten el consumo de pescado con el potencial de presentar el nivel más alto de contaminación por mercurio (p. ej., tiburón, pez espada, pez sierra o blanquillo); comer hasta 12 onzas (dos comidas promedio) por semana de diversos pescados y mariscos con un contenido más bajo de
mercurio (p. ej., atún claro enlatado, salmón, abadejo y bagre); y controlar si hay avisos locales sobre la seguridad de los peces capturados en lagos, ríos y áreas costeras de la localidad. Dado que el consumo de pescado en Vieques es muy alto, creemos que se debe atender el consumo de pescado en esta población.

[Comentario]

Tabla 2-2 (página 17): Debería hacerse lo posible por contactar a la Dra. Caro y determinar si los datos se refieren al peso seco o peso húmedo de los peces.

Respuesta de la ATSDR: La Dra. Caro ha fallecido. El laboratorio que realizó los análisis de los peces para el informe de la doctora no ha respondido nuestras llamadas telefónicas o correos electrónicos. Proporcionamos un análisis adicional de los datos de la Dra. Caro en el capítulo 2, sección 2.2.1.

[Comentario]

Capítulo 2. Dado que los autores destacan la falta de conocimiento sobre la estimación de dosis combinadas de exposición (por una sola vía y por múltiples vías) en lo que respecta a posibles efectos de mezcla para los residentes que consumen alimentos de origen marino, la ATSDR debería agregar a las recomendaciones de este capítulo (y a las del informe completo) que se deben estudiar más a fondo los riesgos de posibles efectos combinados para los residentes que consuman alimentos de origen marino.

Respuesta de la ATSDR: En este momento, no es posible evaluar los posibles efectos combinados de sustancias químicas en los peces debido a limitaciones de la ciencia. Este tema se discute en el capítulo 2, sección 2.2.6.

[Comentario]

Capítulo 2.3.2. La lista de recomendaciones del capítulo 2.3.2 podría ser más específica y describir con mayor detalle algunas de las recomendaciones mencionadas anteriormente en el capítulo 2. Además, los autores deberían agregar a las recomendaciones de este capítulo “Obtener muestras adicionales de peces (dentro de cada familia y por localización de los arrecifes) de Vieques”.

Respuesta de la ATSDR: Proporcionamos información adicional en el capítulo 2 que especifica la necesidad de obtener muestras adicionales de peces para permitir el análisis por especies y por localización.

Uso de herramientas de biomonitoreo para evaluar la exposición a metales y otras sustancias químicas peligrosas en sangre, orina o cabello relacionadas con los ejercicios históricos de bombardeo

[Comentario]

Capítulo 3 (página 50). Los autores destacan que los niveles de arsénico inorgánico presente en la orina de los viequenses fueron más altos que los informados en la población general de los EE.UU. según la
encuesta NHANES. Para facilitar el análisis en esta sección, sugiero agregar una tabla con los valores de metales observados en la población general de los EE.UU. según la NHANES.

Respuesta de la ATSDR: En la Tabla 3A-3 y la Tabla 3B-1, la ATSDR incluyó datos de la NHANES que muestran la concentración promedio de metales en orina y sangre.

[Comentario]

Capítulo 3.2 (página 50, cuarto párrafo). Para complementar esa primera oración, los autores deberían incluir un breve resumen de las conclusiones de los estudios realizados por la Dra. Colón de Jorge y la Dra. Ortiz-Roque.

Respuesta de la ATSDR: Las conclusiones de los estudios de la Dra. Colón de Jorge y de la Dra. Ortiz Roque se presentan en el segundo, tercero, quinto y sexto párrafo del capítulo 3, sección 3.2. No se introdujeron cambios en el Informe.

[Comentario] Capítulo 3. sección 3.5.1 Conclusiones: La sección no indica que también se detectaron metales en las heces. Además, la oración 6 de este párrafo comienza con: “Otro punto débil del estudio...”. Dado que ese es el único punto débil que se analiza, la oración debería comenzar con “Un punto débil del estudio...”.

Respuesta de la ATSDR: La ATSDR incluyó las heces en la lista de matrices biológicas en las que se detectaron metales y modificó el texto del análisis sobre la debilidad del estudio”.

[Comentario] Sección 3.5.2 (página 56). En las conclusiones de este capítulo, los autores recomiendan la realización de estudios adicionales de biomonitorio para medir los niveles de mercurio en la sangre y el cabello de los viequenses; esos estudios también deberían considerar otros metales y sustancias en la evaluación. Los autores deberían destacar en este párrafo por qué se necesitan estudios adicionales, dado que la evidencia presentada ya sugiere niveles altos de mercurio (y otros metales) en el cabello y la sangre de los viequenses, lo cual sugiere un peligro para la salud de esta población.

Respuesta de la ATSDR: La ATSDR agregó información adicional a las conclusiones del Informe en el capítulo 3. Si bien la Dra. Ortiz Roque halló varias mujeres con niveles elevados de mercurio en el cabello, el estudio del Departamento de Salud de Puerto Rico no mostró niveles altos de mercurio en la sangre de 500 viequenses. Por lo tanto, subsiste cierta incertidumbre respecto de si una alta exposición a mercurio es prevalente en la isla.

[Comentario] Sección 3.7.1. Resumen de biomonitorio en seres humanos, (página 61, tercera oración): “Esos estudios se mencionan brevemente en el texto principal (no solo en este apéndice) del capítulo 3 y se describen con mayor profundidad...” Debe agregarse la palabra “profundidad” a la oración.

Respuesta de la ATSDR: ATSDR cambió el texto de la oración.

[Comentario] Sección 3.7.2.2. Análisis de la fase 1 del Departamento de Salud de Puerto Rico (final de la página 65-inicio de la página 66) - Dado que los autores mencionan que “Al nivel de la población total, la concentración promedio de algunos metales fue superior a las normas esperadas, según lo estableció Quest Laboratories, pero no superó los niveles tóxicos, también según lo indicado por Quest Laboratories. El manuscrito del Departamento de Salud de Puerto Rico indicó que esto sugiere la
necesidad de profundizar la investigación referente a los distintos factores de riesgo, prestando especial atención a la manera en que el fumar contribuye a la carga corporal de metales”. Por ello, este revisor recomienda que los estudios futuros deben realizar una evaluación completa del consumo de tabaco entre las personas de Vieques. Si bien los datos presentados en algunos de los informes analizados no sugieren una prevalencia más alta de fumar en Vieques que en el resto de PR, es necesario analizar esos datos en profundidad e incluirlos en este informe. Dado que eso es de gran relevancia para diversos temas incluidos en esta evaluación, ¿se debería incluir o se debería recomendar su inclusión en estudios futuros sobre esta población?

Respuesta de la ATSDR: La ATSDR está de acuerdo en que los estudios futuros deberían incluir información detallada sobre el consumo de tabaco de los participantes de los estudios. Dado que el estudio de 2006 del Departamento de Salud de Puerto Rico es confidencial, la ATSDR no puede obtener los datos crudos. En consecuencia, no podemos brindar información más detallada sobre el consumo de tabaco en Vieques.

[Comentario]

Sección 3.7.2.2 (página 66, línea 5)- Con respecto a la siguiente afirmación: “El Departamento de Salud de Puerto Rico concluye que consumir pescado dentro de los 3 días previos a un análisis o el fumar podrían explicar parte, pero no la totalidad, de las cargas corporales de metales elevadas en los participantes”, los autores deberían agregar al texto un análisis de qué otras posibles explicaciones aporta el Departamento de Salud de Puerto Rico para ese resultado.

Respuesta de la ATSDR: La ATSDR está de acuerdo y agregó texto al capítulo 3, secciones 3.7.2.2 y 3.7.4.

[Continuación del comentario]

Los autores destacaron en este apéndice que los datos del Departamento de Salud de Puerto Rico muestran que “En más del 90% de la población, se hallaron niveles detectables de al menos un metal pesado. En más del 20% de los participantes del estudio, los niveles de aluminio en sangre, arsénico en orina y níquel en cabello fueron superiores al umbral de referencia del laboratorio. Las medias geométricas de uranio en orina, mercurio en sangre, plomo en sangre, aluminio en sangre, níquel en cabello y cadmio en orina fueron significativamente más altas que las medias geométricas de la encuesta NHANES de 1999”. No obstante, en las conclusiones del capítulo 3 se recomienda investigaciones adicionales en este campo. Se debería incluir un enunciado que destaque los motivos para esos estudios adicionales en las conclusiones/recomendaciones principales de este capítulo.

Respuesta de la ATSDR: La ATSDR agregó texto que aclara en el Resumen Ejecutivo sus recomendaciones sobre el muestreo biológico futuro y en particular la necesidad de contar con un grupo de comparación adecuado.

[Comentario]

Sección 3.7.5 (página 70). Según el manuscrito de referencia, el tamaño correcto de la muestra del estudio fue 500 participantes (no n=499).
Respuesta de la ATSDR: En el informe preliminar del Departamento de Salud de Puerto Rico se utilizan ambas cifras como tamaño de la muestra: 499 y 500. No está claro cuál es el tamaño correcto de la muestra. Nosotros utilizaremos 500.

[Comentario]

Sección 3.7.7.1 (página 76). Deberían destacarse los resultados de la Dra. Roque sobre los altos niveles de mercurio en el cabello de las mujeres viequenses comparadas con mujeres de la isla principal de PR y de los EE.UU. como evidencia en el texto principal. En especial, dado que existe evidencia del mercurio en el cabello de las embarazadas como indicador de riesgo de enfermedad para el feto.

Respuesta de la ATSDR: Los hallazgos de la Dra. Ortiz Roque se destacan en el texto principal del capítulo 3, en afirmaciones como las siguientes:

Capítulo 3, sección 3.2. La Dra. Ortiz Roque identificó varios residentes con niveles de mercurio en cabello superiores a 12 ppm, el nivel que el Consejo Nacional de Investigación identificó como causante de un aumento del 5% en los efectos neurológicos en niños que estuvieron expuestos in utero (NRC 2000).

Capítulo 3, sección 3.7.8.3. La identificación de la Dra. Ortiz Roque de tres residentes con niveles de mercurio en el cabello superiores a 12 ppm es un hallazgo importante.

[Comentario]

Sección 3.7.8.3. La identificación de la Dra. Ortiz Roque de tres residentes con niveles de mercurio en el cabello superiores a 12 ppm es un hallazgo importante.

Respuesta de la ATSDR: La ATSDR está de acuerdo en que los hallazgos de la Dra. Ortiz Roque son importantes. Lo afirmamos varias veces en el capítulo. En particular, los resultados de biomonitoreo de la Dra. Ortiz Roque demostraron que algunos viequenses tenían un nivel elevado de mercurio en el cabello superior al nivel identificado por la Academia Nacional de Ciencias como agente perjudicial en 5% de los fetos expuestos in utero.

[Comentario]

Sección 3.7.6.2. El manuscrito menciona que el Departamento de Salud de Puerto Rico desarrollará un protocolo para el manejo de personas con sospecha de intoxicación aguda por metales pesados utilizando las pautas del CDC. ¿Cuál es el estado de ese protocolo? ¿Ya se ha creado e implementado? Los autores podrían comunicarse con el Departamento de Salud de Puerto Rico e incluir esa información como parte del manuscrito.

Respuesta de la ATSDR: La ATSDR no pudo determinar si el Departamento de Salud de Puerto Rico ha elaborado e implementado una encuesta sobre plomo en sangre entre los niños viequenses.

[Comentario]

Sección 3.7.6.3 (página 73). La Tabla 3A-3 se enriquecería con la inclusión de los niveles de metales pesados hallados en la población estadounidense según la NHANES.
Respuesta de la ATSDR: Como se sugiere, la ATSDR incluyó datos de la NHANES en las Tablas 3A-3 y 3B-1.

[Comentario]

Sección 3.7.8.2 (página 78, línea 8). Al analizar el estudio de la Dra. Ortiz-Roque, los autores manifiestan que la selección no aleatoria de los participantes podría dar cuenta de algunos factores de confusión que elevan las tasas. No obstante, debería recalparse que dicho procedimiento también podría haberlas reducido.

Respuesta de la ATSDR: La ATSDR está de acuerdo en que una encuesta no aleatoria podría ser un factor de confusión que aumente o disminuya las tasas. Hemos incorporado el cambio sugerido en el texto.

[Comentario]

Sección 3.8.3 (página 94). Agregar una referencia para la siguiente afirmación: “Varios estudios poblacionales de personas que viven en áreas con concentraciones más altas de cadmio en el suelo o con contaminación por cadmio han informado niveles medios de cadmio en sangre y orina que son hasta 10 veces superiores a los de los grupos de control o a datos representativos de los EE.UU.”

Respuesta de la ATSDR: El párrafo con esta afirmación fue borrado del informe; y el lector debe consultar el cuarto informe, que contiene información toxicológica sobre metales.

[Comentario]

Sección 3.8.3 (página 95, primera línea) - Incluir referencias sobre el efecto que podrían tener los niveles de cadmio en sangre u orina para la salud humana.

Respuesta de la ATSDR: El párrafo con esta afirmación fue borrado del informe; y el lector debe consultar el cuarto informe, que contiene información toxicológica sobre metales.

[Comentario]

Resumen del capítulo 4 (página 101). Los autores enfatizan que “Como consecuencia de la pequeña población, todos los estudios carecen, en cierta medida, de potencial estadístico y tienen limitaciones metodológicas que dificultan su interpretación. A pesar de esas limitaciones, los estudios son valiosos para describir el estado de salud de los viequenses. Y en lo que respecta a Vieques en relación con el resto de Puerto Rico, los estudios indican aumentos en la prevalencia de enfermedades crónicas, incidencia de cáncer y mortalidad por cáncer y mortalidad infantil”. Este revisor no está de acuerdo con la afirmación de que la interpretación de esos estudios es complicada. Sugiero reformular la afirmación.

Respuesta de la ATSDR: Cuantificar las diferencias en las tasas de morbilidad y mortalidad es estadísticamente complicado en las poblaciones pequeñas. Las limitaciones mencionadas anteriormente también agregan incertidumbre adicional. A pesar de esas limitaciones, los estudios son valiosos para describir el estado de salud de los viequenses. En relación con el resto de la población en Puerto Rico, esos estudios indican aumentos en la prevalencia de
enfermedades crónicas, la incidencia de cáncer y la mortalidad por cáncer y la mortalidad infantil en Vieques.

Consumo de alimentos (productos agrícola, carne, lácteos, huevos) producidos en la isla

[Comentario]

Capítulo 5. Coincidimos con los autores en que la evidencia muestra que “Los niveles de cadmio en gandules podrían ser potencialmente perjudiciales para niños en edad preescolar que coman más de cuatro porciones de 6 onzas de gandules por semana durante varios años, lo cual posiblemente provocaría problemas de salud más adelante”.

Respuesta de la ATSDR: Gracias por su comentario. Se revisó el texto pertinente de la sección 5.2.2 en función de los comentarios recibidos.

Exposición por aire, suelo y agua en Vieques

[Comentario]

Sección 6.2.1 (página 133, tercer párrafo). Con respecto a las conclusiones de la PHA sobre el aire, los autores mencionan que “Los ejercicios con artefactos explosivos realizados por la Marina en el LIA no representaron un riesgo de salud en las áreas residenciales de Vieques”. Debería aclararse esa afirmación y destacar que se refiere específicamente al riesgo para las áreas residenciales, específicamente por la contaminación atmosférica (aún pueden existir otros riesgos por medio de otras vías).

Respuesta de la ATSDR: La afirmación de referencia resume las conclusiones de nuestra Evaluación de Salud Pública del Aire. El informe actual aclara este tema (ver capítulo 6).

[Comentario]

Sección 6.2.1 (página 134, primer punto). Los autores destacan que los niveles de contaminantes en el aire eran bajos y que no se encontraban a niveles que se asociarían con un riesgo de enfermedad. Con respecto a las conclusiones de la PHA sobre el aire, los autores mencionan que “El polvo transportado por el viento del campo de artefactos explosivos no representaba y no representa un riesgo para la salud de los residentes”. El comentario debería ser más específico, respecto de que los contaminantes se midieron en el aire y que la calidad del aire no se asoció con un riesgo de enfermedad. Eso es de particular importancia ya que no se ha evaluado la exposición acumulada.

Respuesta de la ATSDR: Dado que no hubo un transporte por aire significativo de contaminantes del LIA a las áreas residenciales de Vieques, no hubo un depósito significativo en los suelos ni la consecuente lixiviación de los contaminantes del suelo al agua subterránea. En consecuencia, las vías de exposición a contaminantes del suelo y el agua subterránea (debido a operaciones militares) son incompletas y no hay un fundamento para evaluar la exposición acumulada para esas vías. El Informe sí analiza el problema de la exposición acumulada (en
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

formas de mezclas de sustancias químicas en el consumo de pescado) en el capítulo 2, sección 2.2.6 y en el capítulo 9, sección 9.9.

[Comentario]

Sección 6.2.3 (página 140). Con respecto a la siguiente afirmación del texto: “Además de la reciente evaluación de detonaciones BIP, la Marina ha propuesto la quema prescrita de vegetación del LIA con el fin de acceder de manera segura y retirar el resto de los artefactos explosivos sin detonar. Como apoyo para esa propuesta, la Marina ha realizado modelos adicionales de aire para evaluar los posibles efectos de dicha quema prescrita (CH2M Hill 2008a). Aunque la PHA sobre el aire no atendió la quema de vegetación, sí abordó las operaciones pasadas de quema abierta/detonación abierta (OBOD) del exceso de artefactos explosivos recuperados. Dado que el volumen de artefactos explosivos relacionados con los eventos de OBOD pasados era pequeño en relación con el volumen utilizado en las operaciones navales que entonces estaban en curso, la PHA sobre el aire del 2003 halló que las emisiones atmosféricas de los eventos de OBOD pasados no constituía un peligro para la salud pública de los residentes de Vieques. Una autorización para la quema de vegetación del LIA se encuentra pendiente ante la EPA de los EE.UU. y la Junta de Calidad Ambiental de Puerto Rico. Si así lo solicitan esos organismos o cualquier ciudadano preocupado, la ATSDR continuará evaluando ese tema”. ¿Se ha presentado alguna solicitud? ¿Es necesario esperar a recibir una solicitud para hacer esto o la ATSDR recomienda que se haga de todos modos?

Además de los datos presentados en el capítulo 8 (Vía del agua potable), ¿se ha hecho algo más para determinar el efecto de los contaminantes transportados por el aire en las fuentes de agua?

Respuesta de la ATSDR: Si bien la ATSDR no ha recibido una solicitud específica para evaluar la autorización pendiente sobre la calidad del aire, en el capítulo 6 se incluye un resumen del modelo del aire y de los estudios de monitoreo que respaldan la solicitud de la autorización. Esos estudios indican que la quema de vegetación del LIA no provocará una exposición perjudicial a inhalaciones en las áreas residenciales de Vieques y concuerdan con los resultados de la PHA sobre el aire. No existe un fundamento de salud pública para continuar evaluando este tema. Revisamos el Informe y eliminamos la oración que indica que la ATSDR continuará revisando este tema si se lo solicitan.

[Comentario]

Resumen del capítulo 7 (página 150). Coincidimos con los autores en que “… la necesidad de mantener el acceso restringido al LIA y a otras áreas militares potencialmente contaminadas hasta que la evaluación ambiental y la reparación permitan el acceso al público sin restricciones. A fin de abordar las incertidumbres que subsisten acerca de los problemas de contaminación del suelo en áreas residenciales, la ATSDR recomienda tomar muestras de suelo superficial en las áreas residenciales de la isla”. En especial dado que algunos de los datos evaluados son viejos (de la década de 1970) y posiblemente no representen la realidad del suelo en la actualidad. No obstante, este párrafo del resumen del capítulo 7 debería incluir la recomendación de la limpieza del suelo (como sucede en la sección 7.2.1 del capítulo).
Respuesta de la ATSDR: Gracias por este comentario. Reformulamos la sección pertinente del Informe, el Resumen del capítulo 7 y el capítulo 9, sección 9.7.2, para aclarar que, en efecto, recomendamos continuar con la evaluación ambiental y las actividades de remediación.

[Comentario]

Capítulo 7 sección 7.2.1 (página 158). Los autores mencionan que una limitación del estudio de García (2000) (estudio en el que se recolectaron muestras de suelo del LIA y de las áreas en las que vivieron las personas durante 1999-2000) fue que faltaba información sobre 1) la localización exacta, la profundidad de la obtención de las muestras y 2) una presentación completa de los resultados del estudio.

¿Intentaron los autores comunicarse con García y expertos para aclarar la información faltante? Esa información es importante en esta evaluación, ya que los autores sugieren que los hallazgos de García podrían estar sesgados hacia arriba (conseguir esa información aclararía si esa suposición es, en efecto, correcta).

Respuesta de la ATSDR: La ATSDR intentó comunicarse con el Dr. García en dos oportunidades por correo electrónico, pero todavía no ha recibido respuesta. Los autores solo informaron las concentraciones más altas y las segundas más altas, de modo que eso, por definición, sesgaría las concentraciones hacia arriba.

[Comentario]

Sección 7.2.1 (página 159). Si bien los autores concluyeron que no hay indicios de que los manifestantes que vivieron en el LIA durante 1999-2000 hayan estado expuestos a niveles perjudiciales de contaminantes en el suelo superficial, mencionan que una limitación es que las conclusiones se basaron en una pequeña cantidad de muestras (lo cual invalidaría la conclusión si análisis futuros/representativos mostraran algo diferente). Esto no se condice con la oración de la sección de Resumen de este capítulo (página 149), que dice que “Hay datos suficientes disponibles para concluir que las personas que vivieron en el LIA durante las protestas no estuvieron expuestas a contaminantes del suelo a niveles suficientemente altos para causar efectos adversos en la salud”. Si bien en este momento la evidencia no apoya el riesgo para este grupo, la limitación del tamaño pequeño de la muestra debería incluirse en la afirmación de resumen.

Respuesta de la ATSDR: La limitación que se menciona en el capítulo 7, sección 7.2.1 es una limitación común a cualquier caracterización ambiental. A pesar de esa limitación, los datos del suelo recolectados para los manifestantes que vivieron en el LIA fueron suficientes para caracterizar la posible exposición durante ese tiempo. Las muestras recolectadas en el campamento de los manifestantes fueron diseñadas para que representaran la exposición real de las personas que vivían allí. Las muestras recolectadas en el LIA se obtuvieron de áreas que probablemente tuvieron concentraciones más altas de contaminantes. Es razonable utilizar esas muestras, aunque su número sea limitado, como descriptores protectores de la exposición a la que podrían haber estado sujetos los manifestantes.

[Comentario]
Sección 7.2.4 (página 164, últimas 2 oraciones). Los autores mencionan que “Sin embargo, la detección de residuos explosivos en las muestras de base también sugirió que todas las áreas de la isla, incluida el área residencial, podrían haberse visto afectadas por compuestos explosivos de las actividades pasadas de bombardeo. Si bien los niveles residenciales son bajos en la actualidad, es imposible decir si los niveles pasados lo eran”. Los autores deberían destacar que, si bien no es posible corroborar eso a esta altura, es posible que esas exposiciones hayan tenido un impacto en el pasado; eso debería destacarse en las conclusiones, ya que ahora están sugiriendo que la exposición residencial probablemente haya sido mínima.

Respuesta de la ATSDR: No se introdujeron cambios en el informe. Si bien la verificación de los niveles pasados de explosivos en las áreas residenciales es imposible, el trabajo del modelo descrito en el capítulo 6 y los niveles de residuos en áreas de base en los terrenos adyacentes al LIA en efecto sugieren que cualquier exposición residencial pasada fue pequeña.

[Comentario]

Capítulo 8. Tal como recomienda la ATSDR, es la opinión de este revisor que se necesitan estudios adicionales sobre las tuberías, pozos y sistemas de recolección de aguas pluviales para confirmar la seguridad del consumo de agua potable en Vieques. En el caso del agua subterránea, estamos de acuerdo con los autores en que los resultados actuales no excluyen la posibilidad de otro tipo de contaminación del agua subterránea, provocada por actividades militares o no militares conectadas hidrogeológicamente con el agua subterránea que abastece los pozos de agua. Por tanto, eso avala la necesidad de realizar más investigaciones en ese campo.

Respuesta de la ATSDR: Gracias por el comentario.

[Comentario]

Sección 8.2.2 (página 172, línea 4). Los autores mencionan que “Aún suponiendo que esas detecciones estaban presentes a ese nivel en el agua potable, los niveles de explosivos eran demasiado bajos como para provocar efectos adversos (ATSDR 2001)”. ¿Qué sucede con la exposición acumulada? La posibilidad de que ocurra y el daño potencial deberían incluirse en el texto.

Respuesta de la ATSDR: No se produjo un transporte significativo de contaminantes transportados por el aire desde el LIA hasta las áreas residenciales de Vieques. No se produjo un depósito significativo en los suelos. En consecuencia, las vías de exposición del aire y el suelo estaban incompletas; por tanto, la evaluación de la exposición acumulada para esas vías no tenía fundamento. En el caso del agua potable, los valores de las guías de salud para comparar con los niveles de explosivos posiblemente detectados en esta sección fueron los de las guías de exposición crónica. Se habría supuesto una exposición regular durante más de 1 año. Pero los datos históricos eran extremadamente limitados. Es imposible utilizar dichos datos para sacar conclusiones definitivas sobre la salud pública respecto a exposiciones pasadas o las exposiciones acumuladas pasadas. El Informe sí analiza el problema de la exposición acumulada (en forma de mezclas de sustancias químicas en el consumo de pescado) en capítulo 2, sección 2.2.6 y en el capítulo 9, sección 9.9.
Sección 8.4. Dado que se hallaron varios contaminantes a niveles que harían el agua subterránea no apta para el consumo, se debería destacar la necesidad de realizar más estudios y la limpieza de esas fuentes en las secciones de resumen y recomendaciones de este capítulo, tal como se ha hecho en el capítulo.

Respuesta de la ATSDR: Agregamos recomendaciones para continuar con la evaluación ambiental y la limpieza del agua subterránea afectada por las operaciones militares en el capítulo 8, sección 8.4.2 y capítulo 9, sección 9.8.2 del Informe.

¿El Informe sobre Vieques presenta y describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario]

En general, en el informe se analizan adecuadamente los puntos fuertes y las limitaciones de los estudios. Además de las recomendaciones que ya se incluyeron a ese respecto, se brindan otras recomendaciones específicas a continuación.

Capítulo 3 (página 81). Dada la relación entre las toxicidades por metales y diversas enfermedades y condiciones de salud, el informe debería incluir recomendaciones para realizar estudios adicionales sobre el efecto de las toxicidades por metales en: afecciones cardíacas, afecciones cardiovasculares, alteraciones emocionales, violencia, mala absorción y cáncer.

Respuesta de la ATSDR: Hasta que se disponga de más información que muestre contaminación del medio ambiente con metales específicos o compuestos explosivos y la exposición de los viequenses, no se justifica hacer recomendaciones adicionales para estudiar los efectos de los metales en diversas condiciones de salud.

[Comentario]

Respuesta de la ATSDR: Corregimos el capítulo 4, sección 4.1 del Informe para reflejar el Registro Central de Cáncer de Puerto Rico.

[Comentario]

Capítulo 4. Al describir el Registro de Cáncer de PR, deberían agregarse al texto las siguientes declaraciones/referencias:

“En el año 2003, una auditoría del CDC concluyó que el 95.3% de todos los casos de cáncer diagnosticados o tratados en centros hospitalarios de PR había sido informado adecuadamente al RCCPR; un resultado similar a la mediana para los EE.UU. (95%).”

Respuesta de la ATSDR: Se agregó la declaración al texto del Informe como oración de cierre del siguiente párrafo:

Los datos informados por el RCCPR tienen varios puntos fuertes. Los registros de cáncer suelen ser los mejores conjuntos de datos basados en una población para cualquier condición de salud crónica. Los registros capturan la mayoría de los casos de cáncer debido a los requisitos legales de comunicación, redundancias en el sistema de información (es decir, informes de laboratorios, clínicas, hospitales y oncólogos específicos) y el curso clínico de la mayoría de los casos de cáncer, que requieren un seguimiento considerable y visitas repetidas. Por tanto, el análisis de los datos del registro de cáncer debería representar la evaluación más precisa de la incidencia de cáncer en Vieques. El CDC financia en forma continua el registro de cáncer mediante un acuerdo de cooperación desde 1998 y el registro de cáncer ha mejorado sistemáticamente la precisión de sus datos. Por último, “en el 2003, una revisión del CDC concluyó que el 95.3% de todos los casos de cáncer diagnosticados o tratados en centros hospitalarios de PR se había comunicado adecuadamente al RCCPR; un resultado similar a la mediana para los EE.UU. (95%)”.

[Comentario]

Sección 4.1 (página 103). Aunque no se menciona, otra limitación del BRFSS es que se basa en información auto-reportada. No obstante, dado que la Encuesta Nacional para la Evaluación de la Salud y la Nutrición (NHANES) de los EE.UU. no recopila datos sobre PR, el BRFSS aporta los mejores datos disponibles de morbilidad y comportamientos relativos a la salud basados en la población para PR. A fin de generar datos sistemáticos basados en la población sobre el estado de salud de los habitantes de PR, se debería hacer lo posible por incluir a PR (y a Vieques) en la encuesta NHANES de los EE.UU. La ATSDR podría contribuir para lograrlo.

Respuesta de la ATSDR: El objetivo de la NHANES no es aportar estimaciones nacionales de prevalencia. Por tanto, el BRFSS seguiría siendo una mejor opción de datos basados en la población para evaluar el estado de salud de los residentes de PR.

[Comentario]

Sección 4.2.1 (página 105). El informe destaca que en todos los casos de cáncer de Vieques se confirmó la edad, actividad que no pudo ser realizada en todos los casos de cáncer de PR, donde, si se desconocía la edad de un caso, no se lo incluía en ningún cálculo de tasas. Los autores sugieren que eso podría haber inflado las tasas estandarizadas de incidencia. ¿Existe una indicación en los informes del RCCPR acerca del porcentaje de casos de la isla principal de PR excluidos de los análisis por estos motivos? Eso podría dar una idea de si el potencial de sesgo es bajo o alto. Si los informes no lo especifican, esa información puede obtenerse contactándose con el RCCPR y la Dra. Nayda Figueroa. A pesar de esa limitación, las tasas de mortalidad no se verían afectadas por eso y, de hecho, muestran una mortalidad más alta por ciertos tipos de cáncer en Vieques comparado con PR. Eso debería estar más destacado en
el informe. Además, los resultados de ese análisis quedarían mejor descritos en tablas/gráficas, a fin de dar al lector un sentido del exceso de riesgo observado en Vieques comparado con PR.

Respuesta de la ATSDR: Nos comunicamos con la Dra. Figueroa para solicitar información sobre el porcentaje de casos de PR que fueron excluidos de los análisis debido a la falta de datos que confirmaran la edad. La Dra. Figueroa no nos ha respondido y, por lo tanto, no tenemos nada para agregar a esta respuesta en este momento. Continuamos el seguimiento.

La magnitud del efecto combinado de excluir casos de Puerto Rico y buscar activamente casos en Vieques y no en Puerto Rico haría que la SIR fuera más alta que si no existieran las limitaciones mencionadas. La magnitud de esa parcialidad no está clara: podría modificar o no las conclusiones generales. Estamos de acuerdo en que la mortalidad por ciertos tipos de cáncer es más alta en Vieques que en Puerto Rico. Si bien la mortalidad es una medida importante del estado de salud, creemos que la incidencia de las enfermedades es una mejor medida que la mortalidad para evaluar si las actividades militares afectaron la salud de los viequenses.

[Comentario]

Sección 4.2.2 (página 105). Los autores indican que los datos demográficos de 2 de las 4 comunidades estudiadas por López y Carrosquillo (2002) en el estudio parecen inusuales. ¿En qué se basan los autores para concluir eso y por qué esa es una limitación del estudio? En efecto, los datos demográficos de Vieques son diferentes de los de PR; se debería incluir una referencia del Censo que respalde esta afirmación.

Respuesta de la ATSDR: Una revisión de los datos de los censos de 1990 y 2000 mostró que la población seleccionada para la muestra tenía más edad que la población de Vieques. Además, solo se seleccionaron personas de 5 a 25 años en Luján y solo se seleccionaron personas de 59 a 70 años en la Administración de Reconstrucción de Puerto Rico (PRRA). El porcentaje de personas de la población de muestra que tenían 60 años o más parece ser más alto que el porcentaje de personas dentro de esa misma categoría de edad según los datos del informe de los censos de 1990-2000. Esa no es una limitación sino una incoherencia que observamos.

[Comentario]

La Tabla 4.1 se podría reforzar incluyendo en ella el porcentaje de personas afectadas por cada una de las condiciones médicas (López y Carrosquillo 2002).

Respuesta de la ATSDR: Se agregó el porcentaje de personas afectadas a la Tabla 4.1 como se sugirió.

[Comentario]

Sección 4.2.4 (página 107). Se podría incluir una mejor descripción de los resultados obtenidos en el estudio por Roque (2002) en esta sección. En esta página, la siguiente declaración debería destacarse como una fortaleza: “Por lo general, los datos de mortalidad se basan en una población, con una cobertura casi universal, y son menos propensos a la parcialidad”.

Página | C-57
Respuesta de la ATSDR: Nuestras declaraciones sobre las fortalezas de los datos de mortalidad iban dirigidas al registro de cáncer y a la Dra. Ortiz Roque. Modificamos el párrafo para que ese punto quedara más claro. Los datos de mortalidad informados por el RCCPR y Ortiz Roque también pueden aportar conocimientos significativos sobre el estado de salud de los viequenses y tienen varias fortalezas. Por lo general, los datos de mortalidad se basan en una población, con una cobertura casi universal y son menos propensos a los sesgos. Los análisis de patrones de mortalidad en una población pueden ser útiles para la generación de hipótesis. Pero utilizar esos datos para cuantificar posibles asociaciones en relaciones de exposición-enfermedad tiene limitaciones. Muchas variables de posible confusión no pueden evaluarse (p. ej., acceso a la atención, factores relacionados con el estilo de vida y hábitos alimentarios).

[Comentario]

Sección 4.2.2 (página 108). ¿Se intentó contactar a los investigadores del estudio realizado por López Carrosquillo y obtener información sobre los intervalos de confianza para las estimaciones de la razón de riesgo con el fin de identificar diferencias? A pesar de la ausencia de intervalos de confianza, la magnitud del exceso de riesgo observada en este estudio debería considerarse una fortaleza que respalda una mayor prevalencia de enfermedades en Vieques comparado con PR.

Respuesta de la ATSDR: No intentamos contactarnos con los investigadores para obtener los intervalos de confianza para esta revisión. Nos basamos en los informes como fueron redactados y comentamos los puntos fuertes y débiles de los métodos empleados para producir los resultados.

[Comentario]

Sección 4.2.4 (página 108, línea 15) - Los autores manifiestan que “Por último, no está claro si los datos de prevalencia de enfermedades de Puerto Rico se utilizaron como referencia a partir del Estudio de Morbilidad Crónica (PRCMS) o de alguna otra fuente; el PRCMS se basó en mecanismos de auto reporte sistemáticos (p. ej., el Sistema de vigilancia de factores de riesgo del comportamiento)”. Este enunciado no es claro para este revisor. Los datos del PRCMS se basan en la encuesta continua de PR (vea página 15 del estudio de López y Carrosquillo, 2002).

Respuesta de la ATSDR: Se eliminó ese enunciado. Al momento de la redacción preliminar de este informe, no teníamos un ejemplar de la Encuesta anual de 1994.

[Comentario]

Sección 4.3 Hallazgos (página 108). Sírvanse agregar en esta sección información sobre el informe del RCCPR de 2009, ya que, al parecer, no fue abordado.

[Comentario]

Sección 4.3 (página 109). Los autores sugieren que el hecho de que el 36% de los participantes del estudio de López y Carrosquillo (2002) fueran desempleados podría tener implicaciones para la falta de
cobertura de seguro y de acceso a la atención médica apropiada, lo cual afectaría los datos de morbimilidad y mortalidad. Aunque esto pueda ser parcialmente cierto, los autores deberían reconocer que aproximadamente el 90% de la población de PR tiene seguro y que cerca del 40% de la población de PR está cubierto por la Reforma (el programa de seguro médico público con fondos gubernamentales). Por tanto, la mayoría de los desempleados tendría, de hecho, acceso a la atención médica a través de la Reforma. No obstante, sí existen los obstáculos físicos (como no estar cerca de los proveedores de atención médica) para los residentes de Vieques.

Respuesta de la ATSDR: De los participantes en el estudio de López y Carrosquillo (2002), el 36% era desempleado. Si bien es posible que esos participantes tengan acceso a la atención médica mediante el programa de salud con fondos gubernamentales, sus implicaciones podrían deberse a la falta de acceso a atención especializada, lo cual afectaría los datos de morbilidad y mortalidad.

[Comentario]

Sección 4.4.2 (página 110). Contrariamente a lo que expresan los autores con “Las limitaciones asociadas con esos análisis, en especial las inquietudes metodológicas analizadas en este informe, introducen un grado considerable de incertidumbre y dificultan la interpretación. De todos modos, estos hallazgos sirven como guía para investigaciones futuras sobre el estado de salud de los viequenses”.

Para este revisor los datos provistos sugieren evidencia de una mayor prevalencia de enfermedades crónicas en Vieques comparado con PR. Las recomendaciones para la sección de “Resultados de salud” parecen vagas. ¿Cuáles son las recomendaciones específicas en esta área? Existe suficiente evidencia que apoya una mayor incidencia de cáncer y, en especial, de mortalidad entre los habitantes de Vieques comparado con PR. ¿Cuáles son las recomendaciones específicas respecto a estudios futuros en esta área? Además, se debería agregar la realización futura de estudios sobre la prevalencia de enfermedades crónicas en Vieques comparado con PR en la lista de recomendaciones de esta sección.

Respuesta de la ATSDR: Estamos de acuerdo en que los datos de los resultados de salud sugieren una prevalencia más alta de enfermedades en la población de Vieques comparado con Puerto Rico. Pero también creemos que las limitaciones de los datos disponibles reducen la solidez de esas conclusiones. Las limitaciones incluyen la exhaustividad del registro para buena parte del periodo de análisis y los datos auto-reportados de la encuesta de prevalencia de síntomas. Creemos que los pasos siguientes deben enfocarse en estudios que definan mejor la exposición y que caractericen mejor los casos de morbilidad y mortalidad relacionadas con cáncer y no relacionadas con cáncer. La ATSDR tiene previsto consultar a la comunidad de Vieques, a científicos de Puerto Rico, a funcionarios de salud pública y a otros terceros interesados a fin de determinar los estudios específicos recomendados.

[Comentario]

Capítulo 6. Página 131 (segundo párrafo). ¿Podrían estos sesgados los estudios de toma de muestras de aire realizados por la Marina en la década del 1970, dado que no fueron corroborados o validados por un grupo independiente? ¿Existe alguna manera de validar esos datos?
Respuesta de la ATSDR: La PHA sobre el aire del 2003 incluyó una revisión integral de datos históricos, incluida una determinación de su utilidad como base para realizar determinaciones relativas a la salud pública. La PHA sobre el aire determinó que realizar una evaluación adecuada *post facto* sobre la calidad de los datos era imposible. En consecuencia, elaboramos un estudio de modelos de aire para evaluar las exposiciones históricas. Los resultados de los estudios de modelos de aire son compatibles con todos los estudios de monitoreo de aire y, en conjunto, constituyen un fundamento adecuado para sacar conclusiones relativas a la salud pública.

¿Fueron utilizados adecuadamente los estudios independientes en la determinación de posibles peligros para la salud?

[Comentario]

En general, los estudios independientes fueron utilizados adecuadamente en la determinación de los peligros para la salud. Se han incluido la mayoría de los estudios en el análisis, aunque deberían haber hecho más intentos por comunicarse con los investigadores cuyos resultados no fueron publicados. Además, como ya se ha mencionado en esta evaluación, deberían hacerse más intentos para obtener información específica no disponible de algunos de esos estudios, ya que es muy relevante para una evaluación completa. También, como se mencionó arriba, los resultados de la sección de Resultados de salud parecen sólidos y eso debería ser reconocido en el capítulo. A continuación se describen recomendaciones adicionales.

Aunque en la sección 2.5.1 (página 34) los autores dicen que “Al recolectar solo especies más grandes, las concentraciones promedio pueden haber estado parcializadas hacia arriba, lo que podría haber provocado una sobreestimación del mercurio”, más adelante (página 35) dicen que “La Escuela de Asuntos Ambientales recolectó 52 peces de diversos tamaños”. Esas afirmaciones son incoherentes, sírvanse aclararlas.

Respuesta de la ATSDR: En el capítulo 2 se analizan dos planes de obtención de muestras de peces, uno de la ATSDR y otro de la Dra. Caro. La ATSDR intentó capturar peces más grandes porque estos tienden a presentar concentraciones más altas de contaminantes. Por lo tanto, la muestra de la ATSDR de diversas especies de peces podría mostrar niveles de mercurio parcializados hacia arriba. La parcialidad fue intencional para que la ATSDR se asegurara de obtener muestras de peces con niveles más altos de contaminantes. La Dra. Caro reportó que no pudo hallar una asociación entre el contenido de mercurio y el tamaño de los peces. Atribuyó esa falta de asociación al predominio de peces más pequeños en su estudio. Aportamos información adicional acerca de los datos sobre peces de la Dra. Caro y de la ATSDR en el capítulo 2, secciones 2.2.1 y 2.2.2

[Comentario]

Sección 2.5.6 (página 38). Los autores mencionan que “La Tabla C1 del Apéndice C de la EPA de los EE.UU. (2001a) incluye un resumen completo de todas las comparaciones entre las ubicaciones, paramétricas y no paramétricas, de todas las especies”. Para conveniencia de los lectores, sírvanse considerar la inclusión de esta tabla como un apéndice de este manuscrito.
Respuesta de la ATSDR: Como se solicitó, la Tabla C1 del informe analítico de la EPA de los EE.UU. sobre la muestra de peces realizada por la ATSDR en el 2001 se agregó al Informe, capítulo 2, sección 2.5.6.

[Comentario]

Respuesta de la ATSDR: Las referencias mencionadas en el artículo de López y Carrosquillo no aportaron información adicional sobre morbilidad y mortalidad a la que habíamos obtenido anteriormente de otros informes.

[Comentario]

Capítulo 4. El informe del 2009 del RCCPR, que evaluó la incidencia de cáncer y la mortalidad por cáncer entre 1990-2004, no está resumido en el Apéndice de este manuscrito. Sírvase incluirlos.

Respuesta de la ATSDR: Agregamos un resumen del informe de 2009 del RCCPR al Apéndice A.

[Comentario]

El estudio realizado por el Dr. Carlos Rodríguez Sierra sobre los niveles de arsénico en los habitantes de Vieques (página 272) es muy relevante para el biomonitoreo. Los autores deberían intentar comunicarse con el Dr. Rodríguez Sierra y obtener una copia de los resultados para analizarlos con más profundidad en este informe.

Respuesta de la ATSDR: El 23 de septiembre de 2010, el Dr. Rodríguez Sierra respondió a nuestra solicitud de información adicional sobre sus estudios del arsénico con esta comunicación:

“Con respecto a los resultados del arsénico en Vieques, acabamos de presentar ese trabajo como manuscrito de investigación a una revista científica para evaluar su publicación (el plazo de espera es 6-10 semanas)”. Si el estudio es aceptado para publicación, debería estar disponible en 2011. El Dr. Rodríguez se ha rehusado repetidas veces a compartir sus datos con la ATSDR; es entendible que desee publicar los datos primero. Hasta que sus datos estén disponibles, la ATSDR usará los resultados que el doctor presentó en un seminario por Internet con fines cualitativos únicamente.

En función de la evaluación de la ATSDR de actividades históricas de bombardeo en el informe de Vieques, ¿la ATSDR ha formulado las conclusiones y recomendaciones apropiadas?

[Comentario]

A pesar de algunas limitaciones características de los estudios de investigación, las investigaciones previas sugieren una alta prevalencia de riesgos ambientales para la salud y de condiciones crónicas en
la población viequense. Este revisor concuerda, en general, con las recomendaciones/conclusiones formuladas en el capítulo 9 de este manuscrito. No obstante, a continuación se describen sugerencias específicas.

Vía de los peces

Dado que este manuscrito muestra posibles riesgos para la salud asociados con el consumo de grandes cantidades de pescado en Vieques, este revisor está de acuerdo con las recomendaciones propuestas de realizar estudios adicionales concluyentes en esa área. En esos estudios futuros deben considerarse peces de distintos tamaños, distintas clases de peces de la misma especie familiar y de arrecifes de diferentes ubicaciones.

Respuesta de la ATSDR: Agregamos el concepto de ver las especies de peces y ubicaciones a la recomendación de realizar un estudio adicional sobre peces. Vea los capítulos 2 y 9.

[Comentario]

Biomoniitoreo:

El aumento de los niveles de mercurio en sangre y el cabello de los viequenses ya se ha documentado. Dado que se han comentado algunas limitaciones en el texto sobre estos datos, los autores deberían aclarar en las recomendaciones de este capítulo (capítulo 9) por qué sugieren la realización de estudios adicionales.

- **Respuesta de la ATSDR:** Recomendamos que se realice un estudio de los residentes de Vieques para determinar los tipos, frecuencia y cantidad de pescado consumido. Los resultados de este estudio pueden usarse para realizar evaluaciones adicionales de riesgo y análisis estadísticos para validar nuestras preocupaciones sobre el mercurio en los peces de los arrecifes de Vieques. La ATSDR no está recomendando un esfuerzo de biomoniitoreo completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomoniitoreo si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomoniitoreo humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomoniitoreo, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación.

Recomendamos que los viequenses que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, consulten a su proveedor de atención médica para analizar la necesidad y los costos de los análisis. Un laboratorio cualificado deberá realizar las pruebas y análisis.

[Comentario]

Datos de resultados de salud
El aumento de la prevalencia de enfermedades crónicas, la incidencia de cáncer y la mortalidad por cáncer se documentan en Vieques comparado con PR. Los autores sugieren que los intervalos de confianza son demasiado amplios. ¿A qué estudio hacen referencia con este comentario?

Respuesta de la ATSDR: Nos referimos a la última línea del párrafo 2 de la página 56 del Informe de 2009 sobre incidencia de cáncer y mortalidad por cáncer, que refiere a una baja precisión en los intervalos de confianza. Agregamos texto para aclarar nuestra referencia a la incidencia de cáncer y mortalidad por cáncer en el capítulo 9, sección 9.4.1. La respuesta corregida se refiere a la incidencia de cáncer y la mortalidad por cáncer. La incertidumbre también es evidente en los amplios intervalos de confianza informados, lo cual indica cálculos imprecisos de las relaciones de incidencia de cáncer y mortalidad por cáncer en Vieques en relación con el resto de Puerto Rico (RCCPR 2009).

[Comentario]

Sección 9.4.2 (página 191, cuarta recomendación). ¿Por qué se sugiere el punto 4? Los datos ya aportan evidencia de un aumento del riesgo de enfermedad en esta población. Agradecería recomendaciones más específicas en los motivos para realizar futuros estudios en esa área y las cualidades/focos sugeridos que deberían tener esos estudios.

Respuesta de la ATSDR: Aunque los datos sugieren un aumento de la prevalencia de enfermedades crónicas, creemos que los hallazgos contienen un grado de incertidumbre considerable. Las conclusiones sobre la prevalencia de las enfermedades crónicas distintas del cáncer se basan exclusivamente en un informe. Creemos que los pasos siguientes deben enfocarse en estudios que definan mejor la exposición y que caractericen mejor los casos de morbilidad y mortalidad relacionadas con cáncer y no relacionadas con cáncer.

[Comentario]

Vía de productos agrícolas y ganado local

Dado que la evidencia sugiere la potencial contaminación de alimentos (es decir, gandules), el potencial de captación en los cultivos alimentarios locales de metales presentes en el suelo y la falta de datos definitivos sobre la contaminación de las partes comestibles de los productos agrícolas y ganaderos, este revisor concuerda con la recomendación de obtener más muestras y profundizar la investigación en esa área. Dividir las muestras entre distintos laboratorios para una mayor validación de los resultados es una sugerencia importante.

Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

Vía del aire

¿Hay alguna manera de confirmar los registros de la Marina de los EE.UU. sobre los tipos y cantidades de artefactos explosivos utilizados en el campo de adiestramiento? Las fluctuaciones presentes en esos registros podrían afectar los modelos elaborados para acceder a la exposición de la población.
Respuesta de la ATSDR: La PHA sobre el aire del 2003 incluyó una revisión exhaustiva de los datos sobre uso de artefactos explosivos de la Marina y de las estimaciones de emisiones de metales y subproductos de explosivos que la ATSDR derivó de esos datos. Si bien no hay manera de proporcionar una estimación del uso de artefactos explosivos independiente de los registros navales, cabe destacar que la Marina no conserva dichos registros para fines de evaluación ambiental. La Marina conserva datos sobre el uso de artefactos explosivos con el fin de monitorear las actividades de adiestramiento y, en última instancia, porque deben reponer los artefactos ya usados. En consecuencia, no hay muchos fundamentos para que la Marina subestime el uso de artefactos explosivos.

[Comentario]

El informe concluye que no hay potencial de exposición en las áreas residenciales y, por tanto, no se necesitan más investigaciones en esta área. Dado que este revisor no es un experto en las vías del aire, se recomienda solicitar el aporte de otros revisores en esta área.

Respuesta de la ATSDR: Se ha tomado nota del comentario.

[Comentario]

Vía del suelo

Los resultados presentados en este capítulo sugieren que los niveles de contaminantes del LIA tal vez hayan sido elevados en el pasado y que son potencialmente altos en el presente y, por tanto, pueden representar un daño para la exposición en seres humanos. Por eso, este revisor está de acuerdo con la necesidad de realizar estudios futuros en esta área. Debería realizarse una validación de las muestras entre distintos laboratorios durante esas iniciativas.

Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

Vía del agua potable

Concuerdo con la recomendación de realizar más investigaciones para seguir obteniendo muestras del agua potable de Vieques con el fin de determinar la seguridad de su consumo.

Respuesta de la ATSDR: Gracias por su comentario.

[Comentario]

Sección 9.9 - Resumen final

Los autores sugieren que es necesario un estudio de biomonitorado bien planeado y bien realizado. Deberían ampliar más las características propuestas para este estudio e incluso tener la capacidad de estudiar las mezclas y la exposición acumulada y el efecto que estas tienen en la salud humana en Vieques.

Respuesta de la ATSDR: En este tipo de documento, no es apropiado ampliar la información sobre el diseño del estudio para ningún estudio futuro de biomonitorado en Vieques. Un enfoque más apropiado consiste en primero reunir a científicos y profesionales de la salud que estarían
interesados en un estudio de ese tipo. Tras identificar a dicho grupo o grupos, se necesitaría mucho debate para determinar cuáles son los metales y otros compuestos que podrían monitorearse y que podrían aportar información sobre si los residentes están expuestos en la actualidad a contaminantes de los ejercicios militares del pasado. Incorporar las mezclas a un estudio de ese tipo requeriría muchísima más reflexión y entendimiento. Muchos revisores comentaron que un defecto de los estudios y trabajos anteriores sobre Vieques era la incapacidad de relacionar los contaminantes con bombas y municiones. Por eso, identificar qué metales están relacionados con los ejercicios militares es importante, al igual que es importante si se puede identificar una vía de exposición que justifique la realización de un estudio de biomonitorio. La ATSDR no está recomendando un esfuerzo de biomonitorio completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomonitorio si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitorio humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitorio, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación.

El Informe sí analiza el problema de la exposición acumulada (en forma de mezclas de sustancias químicas en el consumo de pescado) en el capítulo 2, sección 2.2.6 y capítulo 9, sección 9.9. No se introdujeron cambios en el Informe.

Selezione la categoría correspondiente a continuación:

- Haga una lista de los cambios recomendados o los motivos para no recomendarlo
 - Recomendado ()
 - Recomendado con cambios requeridos (X)
 - No recomendado ()

Preguntas adicionales:

- ¿Tiene algún comentario sobre el proceso de revisión por expertos de la ATSDR?

[Comentario]

Este informe menciona el compromiso de la ATSDR con su presencia continua en Vieques y con su trabajo continuo con la comunidad local y los funcionarios de salud y medio ambiente locales para implementar las recomendaciones de este informe. Este revisor considera que ese compromiso es esencial, no solo en materia de conocimientos técnicos sino también en otros recursos, como cuestiones financieras (ya que un futuro estudio integral y equilibrado será costoso).
Respuesta de la ATSDR: Gracias por su comentario.

¿Tiene algún otro comentario?

[Comentario]

Los siguientes términos (y otros) deberían estar abreviados la primera vez que aparecen en el texto; luego debería usarse la abreviatura sistemáticamente en todo el documento.

Área de Impacto de Proyectiles Activos (LIA)
Departamento de Salud de Puerto Rico
Consejo Nacional de Investigación (NRC)
Comisión Reguladora Nuclear (NCR)
Área Oriental de Maniobras (EMA)
Encuesta Nacional para la Evaluación de la Salud y la Nutrición (NHANES)

Respuesta de la ATSDR: Gracias por su comentario. Se han introducido cambios donde correspondiera.

[Comentario]

Sección 2.2.1 (página 16). El término correcto es Parguera (no Parquera), una región ubicada al oeste de la isla principal de Puerto Rico.

Respuesta de la ATSDR: Corregimos la escritura del término.

[Comentario]

Sección 3.3 (página 52). En la página 52 se realiza una descripción de la encuesta NHANES, aunque el estudio se menciona anteriormente en el texto. Esa descripción debería aparecer antes.

Respuesta de la ATSDR: Se ha corregido el uso de NHANES.

[Comentario]

Sección 3.4.1 (página 55). Donde los autores sugieren que antes de que el análisis de cabello pueda convertirse en una herramienta de diagnóstico válida para cualquier tipo de sustancia, se necesitan investigaciones “para” “4) aprender más sobre los compuestos orgánicos en el cabello”. Favor especificar qué tipo de conocimientos se sugieren para esta área.

Respuesta de la ATSDR: Este tipo de análisis está fuera del alcance de este informe.

[Comentario]

Sección 3.4.2 (página 55). Agregar una referencia para el informe de 2005 de la Agencia Federal Ambiental de Alemania.

Respuesta de la ATSDR: La referencia está incluida en la sección de referencias del capítulo 3 y en el texto (vea GFEA 2005 en la sección 3.4.2). No se necesitan cambios en el informe.

[Comentario]
Los resultados de este manuscrito deberían analizarse con investigadores, líderes de la comunidad, el Departamento de Salud de Puerto Rico y otras personas interesadas en la salud de Vieques para ampliar la evaluación y las recomendaciones. Deberían desarrollarse iniciativas multidisciplinarias y colectivas para continuar estudiando y mejorando la salud de esta comunidad.

Respuesta de la ATSDR: Gracias por su comentario. La ATSDR tiene previsto trabajar con sus socios para analizar la implementación de las recomendaciones del Informe.
Revisión por experto 5

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

Nota de la ATSDR: El colega revisor n.º 5 no respondió las seis preguntas que se le enviaron sino que aportó comentarios en el siguiente formato. La ATSDR ha respondido a los comentarios después de cada uno cuando fuera pertinente.

[Comentario]

Crítica del análisis de la vía del aire:

1. Incapacidad de recopilar y manejar datos sobre la contaminación atmosférica: La ATSDR concluyó que los datos sobre contaminación atmosférica estaban mal manejados y, por tanto, no aportaban información confiable sobre la magnitud y la distribución de los contaminantes atmosféricos durante los períodos de alta actividad en el Área de Impacto de Proyectiles Activos.

2. Los resultados de los documentos de la Declaración de Impacto Ambiental (Environmental Impact Statement, EIS) del 1979 de la Marina para continuar con el uso del campo de bombardeo, basados en un programa de 2 meses de obtención de muestra de aire (TAMS 1979) no aportaron información sobre el método de toma de muestras utilizado ni sobre la calidad de los datos. No es posible hallar ninguna documentación que describa los métodos de toma de muestras utilizados o las medidas tomadas para el aseguramiento de la calidad.

Respuesta de la ATSDR: Calidad de los datos empleados en la evaluación: La PHA sobre el aire incluyó una revisión integral de todos los datos de monitoreo del aire, estudios de modelos y datos meteorológicos disponibles. Aunque los datos históricos y los informes de datos no incluyen todas las evaluaciones de calidad de los datos que se exigen en la práctica actual, eso no impide el uso de dichos datos históricos. No obstante, es necesario interpretarlos con precaución. La PHA sobre el aire utilizó datos históricos junto con datos recientes de monitoreo y estudios de modelos. Aunque aisladas entre sí, cada una de esas fuentes de información incluyen aspectos de incertidumbre, combinadas proporcionan una evaluación exhaustiva de la posible exposición transportada por el aire en las áreas residenciales de Vieques.

[Comentario]

Exposición a emisiones por ejercicios de adiestramiento militar con bombas “activas”. Periodos de cálculo de promedios: Se identifica un problema con respecto a los modelos de contaminación atmosférica. Los niveles de contaminación se promediaron con respecto a dos períodos: un año y 24 horas. Eso puede ser relevante para la prevalencia de enfermedades respiratorias crónicas, pero no aborda el potencial de un aumento súbito a corto plazo de la contaminación que exacerba problemas respiratorios existentes, como asma, alergias y bronquitis crónica. Promediar la contaminación de 24 horas podría hacer desaparecer los aumentos súbitos temporales provocados por explosiones periódicas mientras que esos episodios pueden ser bastante relevantes para calcular la dificultad respiratoria en la población.
susceptible. Eso es especialmente problemático en el caso de los niños pequeños, que tienen vías respiratorias inmaduras y más estrechas que los adultos.

Respuesta de la ATSDR: El revisor está en lo correcto al señalar que no hubo una evaluación de las concentraciones de PM10 por períodos inferiores a 24 horas y que las operaciones militares podrían haber provocado concentraciones más altas de PM10 durante períodos inferiores a 24 horas. La EPA de los EE.UU. y la Junta de Revisión del Aire de California (California Air Review Board) han establecido procedimientos recomendados para hacer conversiones entre diversos períodos de cálculo de promedios de las cargas del aire (USEPA 1992; CA ARB 1994). La conversión recomendada para calcular un período de promedio de 1 hora a partir de un período de 24 horas es multiplicar el valor de 24 horas por 2.5 (Figura H.1/Apéndice H, CA ARB, 1994).

Utilizando los supuestos para el límite superior de las emisiones de contaminantes, el uso diario de artefactos explosivos y las condiciones de transporte meteorológico, en la PHA sobre el aire de la ATSDR se estimó que “las bombas activas hicieron que las concentraciones promedio de PM10 de 24 horas en las áreas residenciales aumentaran en 10.2 µg/m³” (página 40, PHA sobre el aire). Utilizando el procedimiento de conversión anterior, el aumento máximo de 1 hora para PM10 sería 25.5 µg/m³ (10.2 µg/m³ x 2.5). Agregar el aumento máximo calculado para 1 hora de 25.5 µg/m³ a la concentración máxima de PM10 medida en 24 horas (94 µg/m³; Isabel Segunda, página C-9, PHA sobre el aire) produce una concentración atmosférica máxima de PM10 a corto plazo de 119.5 µg/m³. Ese valor se encuentra por debajo del estándar de 24 horas para PM10 de 150 µg/m³ y es poco probable que produzca dificultades respiratorias u otros efectos adversos en la salud. Dado que los períodos más cortos para el cálculo de promedios no cambian la determinación relativa a la salud, no se han introducido cambios en el documento a partir de este comentario.

[Comentario]

1. **Tamaño de las partículas:** No se midieron partículas de diámetro bajo (menos de 2.5 micrones de tamaño). Esas partículas finas y ultrafinas pueden permanecer suspendidas durante períodos de tiempo más prolongados, recorrer distancias más largas y asentarse con más profundidad en los pulmones.

 Respuesta de la ATSDR: El capítulo 6, sección 6.2.2 del documento aborda explícitamente el tema de las partículas PM2.5. No es necesario introducir más correcciones.

2. **Polvo transportado por el viento:** Se concluyó que el polvo del LIA transportado por el viento los días en que no había bombardeos no constituyó un peligro para la salud.

 Respuesta de la ATSDR: Gracias por su comentario.

3. **El total de partículas en suspensión (Total Suspended Particulates, TSP):** Es ante todo una medida de partículas transportadas por el aire de mayor diámetro, que probablemente se asienten muy cerca del lugar en el que se generaron. Las partículas de menor diámetro —PM 2.5 micrones de diámetro o menos— tienen muchas más probabilidades de permanecer en la atmósfera durante largos períodos de tiempo y recorrer distancias más largas antes de depositarse. Ni la ATSDR ni la Marina ni
la EPA midieron esas partículas más finas. Esas partículas también pueden actuar como núcleos para otros VOC peligrosos.

Respuesta de la ATSDR: El capítulo 6, sección 6.2.2 del documento de resumen aborda explícitamente el tema de las partículas PM2.5. No es necesario introducir más correcciones.

[Comentario]

1. **Señuelos o reflectores contra radares (Chaff):** Las fibras de los señuelos suelen tener 25 micrones (µm) de grosor y entre 1 y 2 centímetros de largo. Las fibras de señuelos son visibles a simple vista y tienen el aspecto de fibras capilares cortas y muy finas.

 a. La ATSDR estima que se pueden haber arrojado intencionalmente 266,000 libras/año de señuelos sobre Vieques o sus alrededores.

 b. La Marina u otras autoridades gubernamentales nunca monitorearon las concentraciones a nivel del suelo.

Respuesta de la ATSDR – Señuelos (Chaff): Con respecto al tema de las emisiones o exposición por señuelos, la PHA sobre el aire abordó explícitamente el tema de las emisiones de señuelos y la posible exposición. Utilizando supuestos tendientes a proteger la salud con respecto a emisiones, exposición y captación, en la PHA sobre el aire se concluyó que “... el uso de señuelos en Vieques no representa un peligro para la salud pública, independientemente de que las partículas de los señuelos sean inhaladas o se depositen en la boca y se traguen”. El Informe resume ese hallazgo sobre los señuelos y otros contaminantes atmosféricos en el capítulo 6, sección 6.2.1. No es necesario introducir más correcciones o hacer evaluaciones.

Crítica del análisis del agua potable

[Comentario]

1. Las sustancias químicas liberadas en el medio ambiente de la isla de Vieques por la Marina de los EE.UU. puede haber provocado exposición en seres humanos y peligros relacionados para la salud que pueden ser dependientes de la dosis. Un período de 35 años, entre 1943 y 1978, probablemente sea el período más probable en el que la población de la isla estuvo expuesta por la vía del agua potable a posibles compuestos peligrosos liberados por la Marina en el medio ambiente. Y aún así, ese también es un período durante el cual los análisis gubernamentales de la calidad ambiental de la isla fueron mínimos.

Respuesta de la ATSDR: La conclusión actual de que la falta de datos históricos impide llegar a una conclusión definitiva sobre la exposición en el pasado lejano por beber agua de pozo es compatible con este comentario; por lo tanto, no se han introducido cambios. No obstante, creemos que es importante indicar lo que nos señalan la información y los datos limitados del pasado acerca de la probabilidad relativa de la exposición pasada mediante la vía del agua potable. Como se comentó en el capítulo 1, sección 1.2, el adiestramiento con artefactos explosivos en Vieques recién se intensificó en la década de 1970, en especial después de 1975, cuando se interrumpió el adiestramiento en la Isla de Culebra. Por lo tanto, no es ilógico...
suponer que la contaminación de los pozos o cisternas de suministro público era muy improbable antes de mediados de la década de 1970.

[Comentario]

2. Los escasos antecedentes y la calidad de los análisis del agua dificultan reconstruir con precisión un historial de exposición. La Marina no realizaba análisis de rutina de los suministros de agua para detectar sustancias químicas liberadas en el medio ambiente.

Respuesta de la ATSDR: El problema de los datos históricos limitados de monitoreo ambiental no es específico de Vieques. Es común en muchos sitios que operaban en el pasado. La ATSDR evalúa los efectos en la salud pública por posibles exposiciones en el pasado en dichas situaciones mediante una revisión de los datos disponibles sobre el destino y transporte de los contaminantes, aplicando el criterio profesional, haciendo suposiciones sobre la exposición pasada e identificando áreas de incertidumbres.

[Comentario]

3. Las vías más probables de exposición a sustancias químicas liberadas por la Marina en el ambiente de Vieques incluyen: 1) contaminación de pozos de agua potable por sustancias químicas transportadas por el aire que se trasladaron y asentaron en las cuencas que rodean los pozos municipales; 2) contaminación de cisternas por sustancias químicas transportadas por el aire que se trasladaron y asentaron en esos tanques; 3) contaminación por el uso de pesticidas y herbicidas por parte de la Marina; 4) contaminación por emisiones de combustible transportadas por el aire y en la superficie; 5) prácticas de eliminación de residuos.

Respuesta de la ATSDR: Gracias por este comentario. La PHA sobre el agua potable de la ATSDR y el capítulo 8 de este informe analizan la contaminación de los pozos y cisternas de agua potable (sistemas de recolección de aguas pluviales). Las potenciales fuentes de contaminación, incluidos el uso de pesticidas o herbicidas, las emisiones de combustibles y las prácticas de eliminación de residuos se evalúan mediante la evaluación de los niveles de contaminantes asociados en el aire, el suelo o el agua potable, como se hizo en las anteriores PHA de la ATSDR y en este informe.

[Comentario]

4. La mayoría de los estudios informados no están revisados por otros expertos, siguen sin publicarse y, a menudo, se basan en diseños de muestreo con tamaños de muestras excepcionalmente pequeños (que van de 1 a 12 muestras). No se analizan o no se informan los productos de degradación.

Respuesta de la ATSDR: La ATSDR resumió los hallazgos, los puntos fuertes y las limitaciones de los estudios revisados en el Apéndice A de este Informe. A la ATSDR se le solicitó revisar todos los estudios y datos disponibles relacionados con la posibilidad de exposición en Vieques. Aunque muchos de los estudios fueron limitados, sumaron una contribución al conjunto de conocimientos acerca de la exposición ambiental en Vieques.

[Comentario]
5. Dado que el estudio sobre el agua potable de la ATSDR se completó antes que el estudio sobre el aire, las conclusiones de ese informe no son concluyentes. La vía más plausible para la contaminación del agua potable a causa de la actividad de la Marina en la isla es por sustancias químicas transportadas por el aire que se asentaron en los sistemas de agua potable.

Respuesta de la ATSDR: Como se describe en el capítulo 6 y se detalla en la Evaluación de salud pública sobre la vía del aire de la (ATSDR 2003b), la evaluación de la vía del aire sugirió que no había niveles considerables de contaminación atmosférica que hubieran llegado al área residencial de Vieques. La ATSDR no pudo evaluar en forma directa el potencial de exposición por agua de cisterna ya que no hay datos disponibles sobre agua de cisterna.

[Comentario]

6. Estos estudios no aportan una estimación razonable de la contaminación del agua potable que pueda haberse producido antes de que se finalizara la tubería del suministro de agua municipal desde la isla principal de Puerto Rico en 1978.

Respuesta de la ATSDR: Como se concluye en el capítulo 8, sección 8.4.1 y capítulo 9, 9.8.1, la ATSDR admite que los datos de 1978 son insuficientes para sacar conclusiones relativas a la salud pública acerca de exposiciones muy lejanas en el tiempo. Pero como se detalla en los capítulos 6 y 8, consideraciones relativas a los patrones de flujo del agua subterránea, estudios de modelos de aire, patrones reales de bombardeos y resultados de muestreos recientes sugieren que la exposición pasada por el agua potable no fue alta.

[Comentario]

7. Los estudios citados de la EPA no hicieron análisis de pesticidas y herbicidas. Tampoco se ha realizado ni presentado un análisis del uso militar de pesticidas y herbicidas.

Respuesta de la ATSDR: En el Informe no se consideran los pesticidas ni los herbicidas. Como se comentó en la PHA sobre la vía del agua potable (ATSDR 2001), el muestreo de 1995 no había mostrado detecciones de un amplio rango de pesticidas y herbicidas, lo cual indica que los suministros de agua potable no se habían contaminado por pesticidas o herbicidas en ninguna localización. En muchos de los eventos de muestreo del suelo no se analizaron los pesticidas y herbicidas. En los muestreos del NASD y los recientes muestreos del EMA relacionados con actividades de reparación se hallaron unas pocas detecciones de DDT y sus productos de degradación. En todas las ubicaciones menos en una específica, esas detecciones se ubicaron muy por debajo de los valores de comparación basados en la salud; en una localización hubo detecciones más altas que los valores de comparación. La recomendación de la ATSDR de restringir el acceso al LIA y a otras áreas militares potencialmente contaminadas, y de continuar con la evaluación ambiental y las actividades de reparación protegerá al público de cualquier exposición perjudicial a los pesticidas y herbicidas que subsistan de las actividades militares.

[Comentario]

8. Se informó la presencia de RDX (0.04 ppb) y tetrílo (0.05) en los suministros de agua potable de Isabel Segunda (0.5 ppb) y de RDX (0.04 ppb) en el agua potable de Esperanza en mayo de 1978,
según la referencia del informe del Centro Naval de Armas de Superficie (Hoffsommer y Glover 1978; Lai 1978).

Respuesta de la ATSDR: La ATSDR analizó esos hallazgos en El capítulo 8, secciones 8.2.2 y 8.3.1.2 del Informe.

[Comentario]

9. Los estudios interpretados por la ATSDR no demuestran la ausencia de amenazas para la salud asociadas con las actividades navales. En cambio, demuestran la ausencia de análisis apropiados de los suministros de agua potable de la comunidad en su momento de mayor vulnerabilidad en la historia.

Respuesta de la ATSDR: Como se concluye en el capítulo 8, sección 8.4.1 y capítulo 9, sección 9.8.1, la ATSDR reconoce que los datos de 1978 son insuficientes para formular conclusiones relativas a la salud pública acerca de las exposiciones que ocurrieron en el pasado lejano.

Crítica del análisis del suelo:

[Comentario]

1. Incapacidad de recopilar y manejar datos sobre la contaminación del suelo: Sistemáticamente, la Marina no recopiló datos sobre la contaminación del suelo asociada con el adiestramiento y las operaciones. La ausencia de esos datos impidió comprender cuándo y dónde la posible contaminación del suelo podría haber implicado una amenaza para la salud pública. Eso podría ocurrir por partículas que explotan en la atmósfera, que se trasladan por la isla hasta la zona en la que respiran los habitantes, se asientan en los suelos, se infiltran en los suministros de agua, son absorbidas por las plantas, algunas de las cuales tal vez hayan sido alimento de algunos animales que, a su vez, sirvieron de alimento a los humanos. Al no monitorear la contaminación atmosférica, los patrones de depósito en el suelo y otros sedimentos, eso, a su vez, impidió comprender la posible dinámica de la cadena alimentaria.

Respuesta de la ATSDR: Coincidimos en que el problema de la dinámica de la cadena alimentaria no se ha investigado a fondo en Vieques. Se ha observado transporte de gran alcance de ciertos contaminantes (p. ej., depósito aéreo de mercurio) en otros lugares con las condiciones apropiadas (es decir, emisiones continuas de grandes cantidades de una única fuente grande o de múltiples fuentes más pequeñas, combinadas con las condiciones meteorológicas adecuadas). No obstante, los datos concretos de muestreo y el modelo de la dispersión de aire en Vieques no indican que se pueda prever que el transporte ambiental de contaminación originada en las áreas de bombardeo afecte áreas alejadas del campo. Tal parece que todo efecto ambiental de las actividades pasadas de uso del campo es localizado.

[Comentario]

2. Rumiantes y sus derivados: Ni la Marina ni la EPA ni la ATSDR investigaron las actividades de pastoreo por reyes, cabras, ovejas, cerdos y pollos. También es escasa la comprensión sobre su importancia en la dieta de los viequenses pero tiene el potencial de ser una vía adicional importante de exposición a contaminantes. Los miembros de la comunidad expresaron su preocupación acerca
de la posibilidad de que el ganado esté acumulando metales pesados por pastar plantas contaminadas.

Respuesta de la ATSDR: Gracias por su comentario. Al momento de la evaluación de salud pública original en la que se analizó la evaluación de la vía del suelo, se disponía de escasa información o datos relativos al potencial de acumulación de metales pesados en el ganado local. El Departamento de Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino de Monte Carmelo, Martineau, Monte Santo, Esperanza, Luján, Gubeo y el oeste de Vieques para analizar la presencia de cadmio, cobalto, cobre, plomo, manganeso y níquel. La conclusión fue que los productos agrícolas de Vieques no contenían niveles tóxicos de esos contaminantes y eran aptos para consumo (El Nuevo Día 2001).

Desde entonces, se han recopilado datos adicionales sobre las plantas. Pero debido a las limitaciones de los datos, persiste la incertidumbre acerca del grado de posible exposición por consumir productos agrícolas locales. El Informe contiene un análisis detallado de los datos de muestreo disponibles en la actualidad de productos agrícola y de ganado producido a nivel local. A pesar de que los resultados del muestreo del Departamento de Agricultura de Puerto Rico son tranquilizantes, la ATSDR recomienda la obtención de más muestras de productos agrícolas cultivados en el lugar para permitir una evaluación más completa de esta vía de exposición.

[Comentario]

3. Aire, suelo y agua: La hipótesis más plausible sobre el transporte y destino de las sustancias químicas es que las sustancias químicas liberadas en la atmósfera con el tiempo se depositaron en los suelos y las plantas, y luego fueron arrastradas a los acuíferos subterráneos por las lluvias.

Respuesta de la ATSDR: Para evaluar si las emisiones de polvo presentan peligros para la salud pública, la ATSDR evaluó si a las áreas residenciales llegan cantidades considerables de polvo en el viento. Los hallazgos de la Evaluación de la vía del aire, descritos en el capítulo 6, sugieren que no habían llegado niveles considerables de contaminación atmosférica a las áreas residenciales de Vieques.

[Comentario]

4. Contaminación de las plantas: La ATSDR no pudo cuantificar la exposición a contaminantes a partir de esos informes ni sacar conclusiones relativas a la salud acerca de si el consumo de plantas cultivadas en Vieques provocaría efectos perjudiciales para la salud.

Respuesta de la ATSDR: En la mayoría de los estudios relevantes, se obtuvieron muestras de especies vegetales que no suelen consumir los seres humanos, o bien las muestras eran de las partes no comestibles. En consecuencia, los datos no fueron útiles para interpretar el grado de exposición representativo de los productos agrícolas cultivados en la isla. Para subsanar esa falta de datos, la ATSDR recomienda la obtención de más muestras.
Revisión por experto 6

En general, ¿la reevaluación que hizo la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo en Vieques fue apropiada?

[Comentario]

De acuerdo a mi conocimiento, la reevaluación de la ATSDR de problemas de salud pública asociados con los ejercicios históricos de bombardeo llevados a cabo en Vieques es apropiada. Esta opinión se basa en la evidencia presentada, incluidos los propios datos de la ATSDR y los datos generados por científicos e investigadores puertorriqueños. Tal como lo reconoce la ATSDR, hay un enorme grado de incertidumbre en este tipo de análisis y las recomendaciones hechas apuntan a reducir esa incertidumbre. Vieques se utilizó como blanco militar y depósito de municiones explosivas durante más de 60 años y, como es de esperar, esas actividades militares son una importante fuente de contaminación, lo cual constituye una preocupación para la salud humana. Las condiciones pasadas y presentes de Vieques reflejan las dificultades de enfocar este tipo de evaluación de la salud humana basado en datos ambientales que no necesariamente fueron creados para responder el tipo de preguntas asociadas con problemas de salud pública. Además, las condiciones sociales y ambientales de Vieques son muy complejas. Por tanto, siempre persistirá algún grado de incertidumbre. No obstante, las actividades militares siempre se consideraron el principal factor de estrés ambiental y social para los residentes de Vieques. Científicos e investigadores locales han establecido algunas conexiones entre las actividades militares y las preocupaciones relativas a la salud humana en Vieques, y este informe examina muy bien las fortalezas y debilidades científicas de esas conexiones. Este informe también incorpora nuevos datos ambientales, de biomonitorio y de resultados de salud, y repasa los informes anteriores de la ATSDR. En consecuencia, se integran nuevas recomendaciones y hallazgos a este informe.

Respuesta de la ATSDR: Gracias por sus comentarios.

¿La ATSDR ha abordado adecuadamente las vías de exposición humana a contaminantes específicos del campo de bombardeo?

Sirvase incluir comentarios específicos sobre:

Consumo de alimentos de origen marino de arrecifes cercanos a Vieques

[Comentario]

Este tema se abordó adecuadamente. La ATSDR reconoció las limitaciones de los datos para medir los niveles de mercurio en peces y mariscos. También indica que algunos niños nacidos de madres que comían pescado de aguas de los alrededores de Vieques con frecuencia presentaron un mayor riesgo de efectos adversos para la salud y que algunos niños que comían pescado de aguas de los alrededores de Vieques con frecuencia también presentaban riesgo de desarrollar efectos perjudiciales. En función de la información disponible, la ATSDR no pudo establecer una relación con las actividades militares y el nivel de mercurio hallado en el pescado. Entonces, la mejor recomendación es realizar una evaluación del
riesgo en los alrededores del LIA para determinar el efecto que las actividades militares tuvieron en el ecosistema marino.

Respuesta de la ATSDR: Gracias por sus comentarios. Los Centros Nacionales para la Ciencia Costera Oceánica (National Centers for Coastal Ocean Science, NCCOS) de la Organización Nacional de Oceanos y ATMósfera (NOAA), en colaboración con la Oficina de Respuesta y Restauración (Office of Response and Restoration, OR&R) de la NOAA y otros expertos locales y regionales, llevaron a cabo una caracterización de los ecosistemas de arrecifes de coral, contaminantes y patrones de distribución de nutrientes en los alrededores de Vieques (NOAA 2010).

Uso de herramientas de biomonitordeo para evaluar la exposición a metales y otras sustancias químicas peligrosas en sangre, orina o cabello relacionadas con los ejercicios históricos de bombardeo

[Comentario]

Este tema se abordó adecuadamente en cierta medida. La ATSDR revisó el documento del Departamento de Salud de Puerto Rico y algunos otros estudios de investigadores locales, y halló niveles elevados de diversos metales en la sangre, la orina y el cabello de los residentes. La ATSDR destacó que el punto débil de todos esos estudios era la incapacidad de investigar el medio ambiente de cada persona, lo cual imposibilita identificar la fuente de la alta concentración de metales. El Departamento de Salud de Puerto Rico identificó el consumo de cigarrillos, los tintes para el cabello y el consumo de alimentos de origen marino como posibles fuentes de concentraciones altas de metales. La Dra. Ortiz Roque mostró que algunos residentes tenían niveles elevados de mercurio en el cabello y que la fuente más probable era el consumo de pescado. La mejor recomendación para abordar este problema es encuestar a los viequenses para determinar el tipo y la cantidad de pescado consumido, así como un estudio de biomonitordeo para medir el mercurio y otros metales en la sangre y el cabello. La ATSDR debería usar los datos preliminares elaborados por el Departamento de Salud de Puerto Rico y la Dra. Ortiz para implementar un estudio más específico, que incluya una asociación entre los hábitos de los residentes, su situación ambiental y la concentración de metales en distintas partes del cuerpo.

- **Respuesta de la ATSDR:** Gracias por su comentario. Recomendamos que se realice un estudio de los residentes de Vieques para determinar los tipos, frecuencia y cantidad de pescado consumido. Los resultados de este estudio pueden usarse para realizar evaluaciones adicionales de riesgo y análisis estadísticos para validar nuestras preocupaciones sobre mercurio en los peces de los arrecifes de Vieques. La ATSDR no está recomendando

Los residentes de Vieques que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, deberán consultar a su proveedor de atención médica para analizar la necesidad y los costos de los análisis. Un laboratorio cualificado deberá realizar las pruebas y análisis.
Consumo de alimentos (productos agrícolas, carne, lácteos, huevos) producidos en la isla

[Comentario]
Este tema se abordó adecuadamente. La principal conclusión de la ATSDR acerca de este tema es que los datos generales son insuficientes para determinar en forma adecuada la exposición humana o para sacar alguna conclusión de salud válida. La ATSDR evaluó las investigaciones del Dr. Díaz y el Dr. Massols (2003), que hallaron ciertos niveles de cadmio en gandules que tenían el potencial de ser perjudiciales para los niños en edad preescolar. La ATSDR no puede saber con seguridad en qué medida las actividades militares contribuyeron al nivel de cadmio hallado en gandules. Las recomendaciones sugeridas por la ATSDR promueven la obtención de más muestras y la recopilación de datos colaborativa para plantas, ganado y suelo. Basado en los datos recopilados por el Dr. Díaz y el Dr. Massol, la ATSDR debería implementar estudios más específicos acerca de este tema y su relación con las actividades militares.

Respuesta de la ATSDR: Gracias por su comentario. En su función de agencia de asesoría científica no regulatoria, la ATSDR no puede mandar a otras entidades que realicen más estudios ni recolectar muestras de productos agrícolas locales. No obstante, esperamos que las recomendaciones para una iniciativa colectiva de obtención de muestras ayude a resolver las incertidumbres y limitaciones de los datos sobre los productos agrícolas cultivados en el lugar.

Exposición por aire, suelo y agua en Vieques

[Comentario]
Este tema se abordó adecuadamente en cierta medida. El principal objetivo de esta sección era determinar si los contaminantes transportados por el aire tenían el potencial de exponer a los viequenses de las áreas residenciales a niveles perjudiciales de metales y partículas que pudieran provocar efectos perjudiciales en la salud. La ATSDR utilizó toda la información climática y meteorológica disponible así como los datos sobre detonación de artefactos explosivos y datos sobre la calidad del aire de las áreas residenciales. La ATSDR revisó y adaptó una nueva versión de un modelo de dispersión y lo aplicó a Vieques. Mediante este modelo, la ATSDR concluyó que, en las áreas residenciales de Vieques, los contaminantes transportados por el aire de las operaciones militares pasadas habrían sido prácticamente imposibles de detectar y que es poco probable que hayan provocado un efecto perjudicial. Esta conclusión es absolutamente esencial en el sentido de que la mayoría de la población de Vieques recibe los vientos del este (donde se encontraba el LIA) y no vivían lejos del lugar donde se realizaban esas actividades militares. Este modelo debería incorporar la medición de 2.5 pm, que ha demostrado ser perjudicial para los seres humanos. Este modelo también debería incluir la medición de partículas que llegan del desierto del Sahara, ya que está bien documentado que afectan la salud humana en toda la región del Caribe. Una conclusión que sostiene que no hay contaminación atmosférica que haya llegado a los suelos o al agua es algo incierta. El resto de los datos, conclusiones y recomendaciones están muy bien documentados.
Respuesta de la ATSDR: El capítulo 6, sección 6.2.2 del documento de resumen aborda explícitamente el tema de las partículas PM2.5. No es necesario introducir más correcciones. En la PHA sobre el aire del 2003 se evaluaron las implicaciones para la salud pública de la exposición a partículas transportadas por el viento de las tormentas de polvo africanas (páginas 59-61) y se halló que las partículas PM10 (y PM2.5) de dichas tormentas no estaban presentes en Vieques a niveles que constituyeran una preocupación de salud. Pero no había datos específicos de contaminantes sobre el polvo de las tormentas de polvo africanas disponibles al momento de la PHA sobre el aire (en la que se recomendaba continuar las evaluaciones en caso de que se dispusiera de dichos datos específicos de contaminantes). Se presentan datos específicos de contaminantes de polvo en un estudio reciente de Gioda et ál. (2007) y se agregó un análisis de esa información en 6.2.3.

¿El Informe sobre Vieques presenta y describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a contaminantes específicos del campo de bombardeo?

[Comentario]

Sí, en general, el informe describe adecuadamente las limitaciones e incertidumbres de evaluar la exposición humana a las actividades militares. Como se reconoce en el informe, los datos utilizados tienen fortalezas y debilidades y no pueden atender el efecto combinado y la exposición acumulada en la salud de los viequenses.

Respuesta de la ATSDR: Gracias por su comentario; no se necesitan correcciones.

¿Fueron utilizados adecuadamente los estudios independientes en la determinación de posibles peligros para la salud?

[Comentario]

Sí, los estudios independientes incluidos en este informe se utilizan adecuadamente para determinar el posible peligro para la salud de la población de Vieques a causa de las actividades militares pasadas. La mayoría de esos estudios aportan nueva información y datos para avalar nueva evidencia y conclusiones.

Respuesta de la ATSDR: Gracias por su comentario.

En función de la reevaluación de la ATSDR de actividades históricas de bombardeo en el informe de Vieques, ¿la ATSDR ha formulado las conclusiones y recomendaciones apropiadas?

[Comentario]

En función de los datos e información disponibles, en general, la ATSDR llegó a conclusiones y recomendaciones apropiadas. Como se indica en el informe, se podrían realizar más estudios para completar todo el panorama de un problema ambiental y de salud humana realmente complejo. En este momento, la información recolectada representa muchas piezas fragmentadas de un rompecabezas de salud ambiental. Por lo tanto, se podría elaborar un enfoque integrado y holístico para futuros estudios.
Respuesta de la ATSDR: La ATSDR concuerda y ha formulado recomendaciones en el Informe para 1) realizar una encuesta científica entre los viequenses con el fin de evaluar su consumo de alimentos de origen marino y de otros tipos y 2) volver a analizar los datos existentes usando información obtenida de la encuesta. La ATSDR no está recomendando un esfuerzo de biomonitorio completo y sistemático en este momento debido a que encontramos poca evidencia de la exposición a contaminantes por actividades militares pasadas. Muchos químicos tienen un tiempo de vida corto en el cuerpo del ser humano y no pueden ser medidos a con un programa de biomonitorio si la exposición ocurrió hace algún tiempo. Tras la publicación de este informe, funcionarios de salud pública podrían considerar una investigación de biomonitorio humano enfocado. Como por ejemplo, estudiando la exposición excesiva de mercurio por el consumo de pescado. Si se lleva a cabo una investigación de biomonitorio, ésta deberá incluir un grupo de comparación de residentes de Puerto Rico. Si se solicita, los expertos en el tema del CDC/ATSDR brindarán asistencia técnica y respaldo a los funcionarios de salud pública o científicos en la planificación y conducción de dicha investigación. Los residentes de Vieques que sigan preocupados sobre la exposición al mercurio, cadmio, otros metales o metaloides, deberán consultar a su proveedor de atención médica para discutir la necesidad y los costos de los análisis. Un laboratorio cualificado deberá realizar las pruebas y análisis.

Seleccione la categoría correspondiente a continuación:

Haga una lista de los cambios recomendados o los motivos para no recomendarlo

- **Recomendado ()**
- **Recomendado con cambios requeridos (X)**
- **No recomendado ()**

Preguntas adicionales:

¿Tiene algún comentario sobre el proceso de revisión por expertos de la ATSDR?

[Comentario]

El proceso de revisión por expertos está muy documentado y guiado.

Respuesta de la ATSDR: Gracias por su comentario.

¿Tiene algún otro comentario?

[Comentario]

En ocasiones la ciencia no es suficiente para hallar las respuestas a algunos problemas ambientales. En especial, cuando se abordan las dimensiones relativas a la salud humana de esos problemas. Lo fundamental es hallar la mejor respuesta posible al problema de salud ambiental en particular. En el caso de Vieques, creo que un enfoque necesario es elaborar un estudio epidemiológico integral de su población. En ese estudio deberían considerarse todas las condiciones médicas y enfermedades humanas. También deberían considerarse los hábitos, las actividades culturales y la situación personal y
socio-ambiental de las personas. Ese estudio debería complementarse con los numerosos estudios recomendados en las distintas secciones de este informe. Pero en lugar de abordar el problema desde una perspectiva ambiental, sería mejor abordar el análisis desde una dimensión de salud humana. Estoy completamente de acuerdo con que en un estudio integral futuro se deberían investigar los efectos combinados y acumulados de la exposición a actividades militares en Vieques.

Respuesta de la ATSDR: La ATSDR está obligada a enfocarse en las asociaciones ambientales con efectos adversos en la salud. Tampoco es metodológicamente viable considerar “todas las condiciones de salud y enfermedades humanas”. Dado que comprende esas dos facetas, el enfoque de la agencia suele ser identificar la exposición ambiental de interés y luego evaluar efectos biológicamente plausibles en la salud que posiblemente estén asociados con esas exposiciones.

Bibliografía

Gioda et al. 2007. Particulate matter (PM$_{10}$ and PM$_{2.5}$) from Different Areas of Puerto Rico. Fresenius Environmental Bulletin v. 16 No.8; 2007.

López Morales JL. 2005. Determination of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co) and lead (Pb) in “smooth cayenne” pineapple fruit, leaves tissue and soil using inductively coupled plasma-optical emission spectrometry (ICP-OES). Mayagüez, PR: University of Puerto Rico. Disponible en: http://www.conucopr.org/ViewRecord.do;jsessionid=9352FA03CF29511445F3F457499BD7F1?id=11161028 [consultado el 28 de agosto de 2012].

Apéndice D Comentarios Públicos y Respuestas de la ATSDR

Tabla de contenido

Introducción .. D-3
Comentarista 1 ... D-3
Comentarista 2 .. D-19
Comentarista 3 .. D-41
Comentarista 4 .. D-45
Introducción

La ATSDR recibió comentarios de cuatro individuos o grupos en relación a la Evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques, Puerto Rico. Sus comentarios se encuentran a continuación junto con las respuestas de la ATSDR asociadas a los comentarios. Además, a través de nuestras respuestas nos referimos a la evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques, Puerto Rico simplemente como “el informe”.

Comentarista 1

[Comentario]

1. Un periodo de 90 fue dado para hacer comentarios en el documento antes mencionado, el cual tomó más de dos años en prepararse. La siguiente crítica aplica únicamente a aquellas áreas de prioridad en las cuales el Colegio de Médicos y Cirujanos de Puerto Rico han estado directamente envueltos.

Durante el 2009, el Colegio de Médicos y Cirujanos de Puerto Rico expresamos nuestra opinión acerca del riesgo de exposición a contaminantes militares en Vieques y el aumento en morbilidad y mortalidad. Como científicos, médicos, epidemiólogos, y defensores de la salud pública, nosotros identificamos las siguientes prioridades:

1. La necesidad de obtener una declaración completa de TODOS los contaminantes (FÍSICOS, QUÍMICOS, y/o BIOLOGICOS) utilizados en las actividades militares en Vieques por los EE.UU., la Marina y NATO por más de 40 años.

2. Una vez las exposiciones potencialmente más peligrosas son identificadas, el monitoreo biológico correspondiente (en los seres humanos) debe ser realizado para evitar enfermedades por esta causa para ésta y futuras generaciones de viequenses.

Hasta la fecha, no se ha producido una divulgación completa. Por lo tanto, cualquier evaluación de la exposición a agentes militares en Vieques está seriamente limitada por la falta de la información más crítica.

Con lo mencionado anteriormente, procedemos a ofrecer nuestra opinión profesional acerca de algunos aspectos de la evaluación de la ATSDR.

a) Identificación de las exposiciones por la ATSDR

La ATSDR no identificó formalmente o sistemáticamente los agentes peligrosos (químicos, físicos o biológicos), utilizados por las fuerzas militares en Vieques. La información disponible no fue utilizada y se presenta aquí para su beneficio.

i. Desde el 1994, existe documentación del gobierno de los EE.UU. (Informes de Monitoreo de Descargas de la Agencia de Protección Ambiental (EPA)) que identifica concentraciones excesivas de contaminantes militares (la Marina tuvo 102 violaciones de descarga) en las aguas costeras de Vieques. Expediente no. RCRA-02-2000-7301. En particular, MERCURIO fue uno de los encontrados en las violaciones peligrosas identificadas por la EPA.
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

Página 5: D009 es un desperdicio sólido que exhibe las características de toxicidad de mercurio en conformidad con el CFR 261.24

Respuesta de la ATSDR: Expediente no. RCRA-02-2000-7301 es una Orden de Consentimiento que describe las responsabilidades de la EPA de los EE.UU. y la Marina en relación al Área de Entrenamiento con Armas de la Flota del Atlántico. La Marina llevó a cabo una Investigación de Facilidades del RCRA (RFI) para determinar de forma completa la naturaleza y alcance de cualquier descarga de desperdicios peligrosos, desperdicios sólidos, o constituyentes peligrosos en la facilidad o proveniente de la facilidad. La EPA se reservó el derecho de realizar cualquier trabajo que la Orden requiera, incluyendo pero no limitado a cualquier caracterización del sitio, estudio de viabilidad, o respuesta o acción correctiva considerada necesaria para investigar a fondo las instalaciones o para proteger la salud humana o del medio ambiente.

La ATSDR revisó los datos disponibles de muchos contaminantes en el Área de Entrenamiento con Armas de la Flota del Atlántico. La Evaluación del Salud Pública de Suelo del 2003 de la ATSDR revisó los resultados de la muestra de residuos explosivos, y sobre 40 otros químicos. Los resultados del muestreo de más de 300 químicos diferentes fueron considerados como parte de la Evaluación de Salud Pública de Agua Potable del 2001 de la ATSDR, mientras que la Evaluación de Salud Pública de Aire del 2003 modeló el potencial de exposición a casi 100 contaminantes diferentes. Esta información fue revisada nuevamente como parte de este informe, el cual también consideró información de estudios publicados desde la terminación de las Evaluaciones de Salud del 2001-2003.

Mientras que la Orden de Consentimiento no contiene los detalles de las 102 violaciones de descarga, la ATSDR pudo revisar la correspondencia entre la EPA y la Marina que si discute los Informes de Monitoreo de Descargas (Discharge Monitoring Reports) y las excedencias en los límites de efluentes establecidos en el permiso del Sistema Nacional de Eliminación de Descargas de Contaminantes de la Marina (Navy’s National Pollution Discharge Elimination System (NPDES)). La ATSDR revisó la lista de las 126 violaciones de efluentes que ocurrieron durante febrero de 1994 y abril de 1999. Sólo una de las violaciones tuvo que ver con mercurio. La violación por mercurio reportó un valor de 0.0014 mg/L, el cual estaba por encima del límite permitido de 0.001 mg/L, pero por debajo del nivel máximo de contaminación (MCL) que es 0.002 mg/L. La Orden de Consentimiento no añade nada al entendimiento de los niveles de mercurio u otros contaminantes presentes en los diferentes medios del ambiente en la isla o a la cantidad a la cual las personas estaban o están expuestas.

[Comentario]

2. En febrero 11 de 2005, la Región 2 de la EPA documentó una vez más la presencia de mercurio como uno de los contaminantes en Vieques originados por el Área de Entrenamiento con Armas de la Flota del Atlántico (Vieques).

La Amenaza de los contaminantes
Grandes cantidades de municiones sin denotar [sic] y los restos de municiones explosivas [sic] han sido identificadas en las áreas de campo de Vieques, y las aguas circundantes. Las sustancias peligrosas asociadas con las municiones [sic] pueden incluir mercurio, plomo, cobre, magnesio, litio, perchlorato, TNT, napalm y uranio empobrecido, entre otros. En el Área Oriental de Maniobras, y en el NASD, las sustancias peligrosas presentan un rango de productos químicos como PCB, disolventes y pesticidas...

Respuesta de la ATSDR: La Narrativa del Sitio de la EPA de los EE.UU. del 11 de febrero de 2005 solo menciona los posibles contaminantes asociados con las municiones sin detonar. La Narrativa del Sitio no contiene ninguno de los resultados del muestreo u otros datos ambientales. Por lo tanto, esa información no aporta al entendimiento de los niveles de mercurio y otros contaminantes en el medio ambiente de la isla o al entendimiento de los niveles de mercurio a los cuales las personas estaban o están expuestas.

En este informe, el personal de la ATSDR reevaluó la lista de posibles contaminantes en las municiones sin detonar, especialmente mercurio. Las siguientes secciones del capítulo 1.3 (Sustancias químicas en municiones y subproductos de detonaciones) proveen información detallada acerca de los componentes orgánicos e inorgánicos, los diferentes tipos de municiones en el medio ambiente de Vieques y de las vías de exposición.

1.3.1. Compuestos orgánicos en municiones y subproductos de detonaciones

1.3.2. Compuestos inorgánicos en municiones y subproductos de detonaciones

1.3.3. Qué compuestos relacionados con bombas se encontraron en Vieques

1.3.4. Conexión de los contaminantes en Vieques con vías de exposición en seres humanos

Con relación a mercurio en artefactos militares, el informe establece:

“Debido a que el mercurio fue utilizados históricamente en ciertos detonadores, el mercurio ha sido mencionado como un contaminante de interés (García et. a. 2000). Los datos de la composición de la cubierta de las bombas provistos originalmente por la Marina indicaron que las cubiertas no contenían mercurio, lo cual es consistente con la información en las Hojas de Datos de Seguridad de los Materiales disponibles para el acero. La Evaluación de Salud Pública de Aire del 2003 indicó que el total de emisiones anuales estimadas de mercurio de los artefactos altamente explosivos utilizados en el Área de Impacto de Proyectiles Activos [Live Impact Area] (LIA) fueron muy bajos (es decir, menos de 0.5 kg por año). Tras la detonación, el mercurio era presumiblemente un componente de rastreo en la carga explosiva y en el suelo expulsado al aire. Por lo tanto, los artefactos explosivos activados en el LIA no parece ser una fuente significativa de mercurio al medio ambiente de Vieques”.

Para ofrecer perspectiva, la ATSDR ha añadido información de la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (National Emission Standard for Hazardous Air Pollutants (NESHAP)) sobre el mercurio permitido en las emisiones atmosféricas de las plantas de cloro-álcali. Desarrollada por la EPA de los EE.UU. en el 1973 y enmendada en el 2000, esta norma permite que una planta de cloro-álcali libere 2.3 kg de mercurio a la atmósfera diariamente. Por lo tanto, las

Además, si los artefactos militares fueran una fuente significativa de mercurio en el ambiente, el suelo del LIA debería tener niveles significativamente más altos de mercurio que otros suelos alrededor. Sin embargo, el informe indica en la Sección 1.3.3,

“También se consideró al mercurio en esta comparación de datos. El nivel promedio de mercurio en suelos del LIA del conjunto de datos del año 2000 fue 0.02 ppm, y el nivel más alto fue 0.086 ppm (CH2MHILL 2000). Solo una de 29 muestras de suelo tenía un nivel de mercurio que podría considerarse por encima de los niveles naturales comparado con los UTL de trasfondo (0.057 - 0.31 ppm; CH2MHILL 2007)”.

[Comentario]

3. A la fecha, no hay otras fuentes locales de contaminación por mercurio, uranio o napalm que se han identificado en Vieques aparte de las actividades militares.

Repuesta de la ATSDR: Aunque no se ha documentado el uso de napalm por parte de los civiles en Vieques, tanto los militares como los civiles usan gasolina, uno de los ingredientes principales del napalm (Reich y Sidel 1967, Departamento del Ejército de 1984).

Con respecto al uranio, es un radionucleido de origen natural presente en casi todas las rocas. También está presente en los suelos, que se derivan de la erosión de las rocas. El uranio es también un contaminante residual de los fertilizantes fosfatados (ATSDR 1999). La PHA de Agua Potable del 2001 evaluó el incidente del disparo de 263 rondas de uranio empobrecido en el LIA. Durante el 6 al 15 de junio de 2000, la Comisión de Regulación Nuclear (Nuclear Regulatory Commission (NRC)) llevó a cabo una inspección de Vieques para determinar si las rondas de uranio empobrecido contaminaron el medio ambiente. La NRC encontró que las únicas detecciones de uranio, a niveles por encima de los niveles que ocurren naturalmente en el ambiente, fueron medidas en cinco muestras recolectadas en los agujeros donde las rondas de uranio empobrecido fueron encontradas. La NRC concluyó que el uranio empobrecido no se había extendido a áreas fuera del LIA. Por consiguiente, el público no había sido expuesto a la contaminación por uranio empobrecido u otras radiaciones por encima de los niveles que ocurren naturalmente en el ambiente (NRC). La ATSDR revisó el reporte de la NRC y concluyó que los niveles que ocurren naturalmente en el ambiente de Vieques no representan un peligro para la salud pública.

El informe también identifica otras posibles fuentes de mercurio. Por ejemplo, historias de casos en la literatura científica demuestran que la ruptura de termómetros de mercurio y los empastes dentales recuperados pueden exponer a los residentes a mercurio en el hogar. Además, la ATSDR ha añadido los ritos religiosos que usan cápsulas que contienen mercurio como una posible fuente de exposición de mercurio en el aire interior.
4. Las actividades militares en Vieques no estaban, ni están limitadas a la parte este de la isla. El Destacamento de Apoyo de Municiones Navales (Naval Ammunition Storage Detachment (NASD)) se encuentra en el extremo oeste de Vieques.

Respuesta de la ATSDR: Como este comentarista menciona en un comentario posterior, el muestreo de peces de la ATSDR incluyó muestras de peces del extremo oeste de Vieques. El informe también hace referencia a varios estudios que incluyen datos de las muestras ambientales recolectadas al extremo occidental de la isla. Algunos de esos estudios son los siguientes:

Bauer LJ and Kendall MS, eds. 2010. An Ecological Characterization of the Marine Resources of Vieques, Puerto Rico Part II: Field Studies of Habitats, Nutrients, Contaminants, Fish, and Benthic Communities. NOAA Technical Memorandum NOS NCCOS 110. Silver Spring, MD.

CH2MHill. 2007a. Remedial investigation report for solid waste management unit (SWMU) 6, CH2MHill; febrero.

CH2MHill 2007b. Remedial investigation report for area of concern (AOC) J, CH2MHill; mayo.

CH2MHill. 2007c. Remedial investigation report for area of concern (AOC) H, CH2MHill; julio.

CH2MHill. 2008d. Remedial investigation report for area of concern (AOC) I. Tampa, FL: junio.

CH2MHill. 2008e. Remedial investigation report for area of concern (AOC) E. Tampa, FL: julio.

5. Por lo tanto, además de la contaminación global de mercurio, por décadas Vieques ha sido receptor de la contaminación de mercurio de origen militar.

Respuesta de la ATSDR: Los datos de la composición de la cubierta de las bombas provistos originalmente por la Marina indicaron que las cubiertas no contenía mercurio, lo cual es consistente con la información de las Hojas de Datos de Seguridad de los Materiales disponibles para el acero (Material Safety Data Sheets). Sin embargo, los estudios BangBox mostraron que pequeñas cantidades de mercurio pueden estar presentes en la carga explosiva de algunas bombas. La Evaluación de Salud de Aire del 2003 indicó que el total de las emisiones anuales estimadas de
mercurio de artefactos altamente explosivos utilizados en el LIA eran muy bajas (es decir, menos del 0.5 kg por año). Para ofrecer perspectiva, la ATSDR ha añadido información de la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (National Emission Standard for Hazardous Air Pollutants (NESHAP)) sobre el mercurio permitido en las emisiones atmosféricas de las plantas de cloro-álcali. Desarrollada por la EPA de los EE.UU. en el 1973 y enmendada en el 2000, esta norma permite que una planta de cloro-álcali libere 2.3 kg de mercurio a la atmósfera diariamente. Por lo tanto, las emisiones anuales estimadas de mercurio en artefactos altamente explosivos en el LIA (menos de 0.5 kg por año) pueden ser comparadas con la norma de NESHAP para plantas de cloro-álcali (844 kg por año). Más información está disponible en: http://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol8/xml/CFR-2011-title40-vol8-part61.xml#seqnum61.52.

El estimado de menos de una libra de mercurio por año tomó en cuenta la pequeña cantidad de mercurio presente en algunas cargas explosivas y la cantidad de suelo expulsado al aire. Pero la mayoría de los niveles de mercurio en los suelos del LIA parecen estar a niveles que ocurren naturalmente en el ambiente, sin sufrir grandes variaciones espaciales que sugieran que los niveles de mercurio son más altos en el LIA. Por lo tanto, la pequeña cantidad de mercurio en algunas bombas no fue suficiente para elevar los niveles de mercurio en el suelo del LIA, el área más bombardeada en Vieques. Además, la investigación de muestreo de peces de la ATSDR no encontró concentraciones de mercurio inusualmente elevadas en los tejidos de peces de arrecife de Vieques, en comparación con los niveles reportados por la FDA (FDA 2010). Por lo tanto, la artillería que cayó o fue disparada en el LIA no parece ser una fuente significativa de mercurio en el medio ambiental de Vieques. (Véase el informe, capítulo 1, sección 1.3.)

[Comentario]

6. Luego de evaluar nuestra publicación del 2004, la ATSDR concluyó que las mujeres en edad reproductiva y los niños de Vieques están expuestos a niveles de mercurio que pueden ser neurotóxicos para el feto.

Nosotros y el consenso de los expertos de la ATSDR están de acuerdo en que

a) La contaminación por mercurio en mujeres en edad reproductiva en Vieques es un hecho. Mientras que sólo el 6.6% de las mujeres muestreadas en la isla grande de Puerto Rico tenían niveles de mercurio que pudieran causar enfermedades neurológicas a los fetos en desarrollo, en Vieques el 26.8% tenían esos niveles. Las muestras se realizaron en o antes del 2003, antes de que los bombardeos cesaran. A modo de referencia, en los EE.UU. continental sólo el 7% de las mujeres de la muestra superaron la [dosis de referencia] (RfD). El margen de análisis también reveló una exposición al mercurio peligrosa para los viequenses. (Ortiz Roque y Rivera López 2004). Este estudio ha sido publicado internacionalmente y revisado por expertos.

b) La única variable que se correlaciona con los niveles de mercurio en el cabello en las mujeres es el CONSUMO DE PECES LOCALES.

c) Datos no publicados de los mismos investigadores revelaron que los niños de 5 años de edad o menos en Vieques también estaban expuestos de forma peligrosa al mercurio. Mientras que el margen de exposición fue de 30 en los niños de Estados Unidos, el margen de exposición en los
niños de Vieques fue de 4.4. Un margen de exposición de menos de 10 se considera peligroso para una población (Ortiz Roque y López Rivera 2004).

d) Por lo tanto, el biomonitorio directo y la toma de muestras de cabello para determinar niveles de mercurio en los seres humanos más susceptibles en Vieques, utilizando metodología validada internacionalmente, demostró una exposición interna significativa al mercurio y un potencial de enfermedades neurológicas en el ser humano.

Los hallazgos de mercurio ejemplifican la importancia de identificar las exposiciones y el biomonitorio adecuado para los seres humanos.

Un enfoque indirecto, análisis de vía de exposición y uso de especies centinela, requiere un amplio conocimiento ecológico y de investigación que no siempre está disponible, como se demostró en los estudios de muestreo de peces realizados por la ATSDR.

Respuesta de la ATSDR: La ATSDR está de acuerdo en que si algunas mujeres viequenses están embarazadas y son grandes consumidores de pescado, sus fetos están a riesgo de efectos peligrosos en el futuro. Hemos presentado esta conclusión en el informe y recomendamos el desarrollo de un programa educativo sobre el mercurio en peces que incluya información sobre las costumbres y el consumo de mariscos locales de los viequenses.

La citada publicación del 2004 reportó estadísticas en 41 mujeres viequenses junto con información acerca de su consumo de pescados y mariscos. La publicación comparó estos datos con la isla grande de Puerto Rico y con los resultados de la encuesta NHANES del 1999 en los Estados Unidos. Mientras que este estudio mostró que los altos niveles de mercurio fueron asociados con el mayor consumo de pescado de los viequenses, los pacientes en este estudio no fueron seleccionados al azar y el número de participantes fue muy bajo (es decir, 41 mujeres). Por lo tanto, la prevalencia de los viequenses con niveles elevados de mercurio en el cabello es incierta debido a que no se llevó a cabo un estudio sistemático de los niveles de mercurio en el cabello.

El estudio del Departamento de Salud de Puerto Rico del 2006 no encontró niveles excesivos de mercurio en la sangre. El estudio no midió o no reportó niveles de mercurio en el cabello. Por lo tanto, el informe concluye que todavía existe cierta incertidumbre acerca de la prevalencia de altos niveles de mercurio en los viequenses.

Finalmente, el informe concluye que los resultados del biomonitorio no permiten ninguna conclusión acerca de la exposición a los contaminantes relacionados con los bombardeos. (Véase en el informe, el capítulo 3, sección 3.5.)

[Comentario]

7. **Estudios de muestreo de PECES realizados por la ATSDR:**

a) La hipótesis del estudio de muestreo de peces realizado por la ATSDR no fue delineada claramente.

Respuesta de la ATSDR: Las actividades de muestreo y análisis realizadas por la ATSDR en el 2001 se enfocaron en si los tejidos musculares de peces y mariscos comúnmente consumidos contenían...
niveles de metales pesados y compuestos explosivos que pudieran resultar en efectos a la salud (véase la sección IV de la Evaluación de Salud Pública de Pescados y Mariscos del 2003 de la ATSDR). Para el diseño del plan de muestreo y en la recolección de las muestras, la ATSDR trabajó con el Equipo de Respuesta Ambiental de la EPA de los EE.UU., el cual tiene una amplia experiencia en el muestreo y análisis de peces. Además, la ATSDR consultó con el peticionario y los residentes locales para que nos asesoraran en el plan de muestreo.

[Comentario]

b) Parece que está implícito en su análisis que si la contaminación con mercurio se produce en el LIA, no se va a transferir, viajar por aire, el viento o el agua para el resto de Vieques y las aguas circundantes.

Los peces fueron muestreados en varios lugares, que incluyen el LIA, Isabel Segunda, el mercado y el extremo oeste de Vieques.

Respuesta de la ATSDR: El informe indica que cierta migración de los contaminantes en los suelos al ambiente marino, ocurre sin duda en Vieques, así como la erosión de los suelos que ocurre naturalmente en prácticamente cualquier entorno costero. La precipitación y el viento pueden transportar los suelos del LIA—y pueden transportar químicos encontrados en los suelos del LIA—ya sea directamente a las aguas marinas o lagunas interiores. Y esas lagunas tienen el potencial de desbordarse en las aguas de océano cercano. Aunque la migración de contaminantes ocurre claramente, la taza (razón) y la cantidad de la migración química son factores importantes para determinar si cantidades significativas de mercurio realmente están entrando en el ambiente marino. Basado en nuestra evaluación de los suelos del LIA, cantidades significativas de mercurio procedentes de los suelos del LIA no están entrando al ambiente marino. Sin embargo, para investigar esta posible nueva vía de exposición, la ATSDR recolectó varios peces de diferentes arrecifes cerca de Vieques. Una de las fortalezas del plan de muestreo de peces de la ATSDR fue la recolección de peces en cinco lugares diferentes; y los cangrejos de tierra en tres lugares diferentes de la superficie. La investigación de muestreo de peces no encontró concentraciones de mercurio inusualmente elevados en los tejidos de los peces de arrecife de Vieques.

[Comentario]

c) La ATSDR no tenía conocimiento (y aún no lo tiene) sobre las hábitos alimenticios de las mujeres y los niños de Vieques. En particular, los investigadores no sabían que especies de peces y con qué frecuencia estos grupos consumen pescado en Vieques.

Respuesta de la ATSDR: La ATSDR uso múltiples fuentes de información para identificar las especies de peces y mariscos más comúnmente capturadas y consumidas durante la investigación de muestreo de peces del 2001. Una fuente importante es un informe de una universidad puertorriqueña que contiene información de una encuesta sobre la frecuencia y los tipos de pescado que se comen (Caro 2000). La ATSDR corroboró los resultados de la encuesta con la información del peticionario y otros residentes, el Informe de la Comisión Especial de Vieques, y las visitas a los mercados de peces locales. No obstante, la ATSDR está de acuerdo en
que más información acerca de los hábitos de comer pescado de los viequenses podría verificar los hallazgos del informe o permitir una evaluación más precisa sobre comer pescado que contenga mercurio. El informe recomienda una encuesta de los residentes de Vieques para determinar los tipos, la frecuencia y la cantidad de pescado que se consume. La información de esta encuesta podría guiar evaluaciones de riesgo adicionales y análisis estadísticos, si es necesario. Pero cualquier hallazgo que resulte de estas evaluaciones y los análisis posiblemente no cambien el hecho de que las mujeres embarazadas que son grandes consumidoras de pescado están a riesgo de exposición excesiva al mercurio, lo que podría perjudicar a los fetos en desarrollo (bebés que no han nacido).

[Comentario]

d) La ATSDR no sabía (y aún no sabe) [sic] que las actividades militares en Vieques son la única fuente probada de contaminación por mercurio.

Respuesta de la ATSDR: Es poco probable que las actividades militares sean una fuente significativa de mercurio en los viequenses. Los datos sobre la composición de la cubierta de las bombas provistos originalmente por la Marina indicaron que las cubiertas no contenía mercurio, lo cual es consistente con la información en la Hojas de Datos de Seguridad de los Materiales disponibles para el acero (Material Safety Data Sheets). Sin embargo, los estudios BangBox mostraron que pequeñas cantidades de mercurio podrían estar presentes en la carga explosiva de algunas bombas. La Evaluación de Salud de Aire del 2003 de la ATSDR indicó que el total de las emisiones anuales estimadas de mercurio de artefactos altamente explosivos usados en el LIA fueron muy bajos (menos de 0.5 kg por año). Para ofrecer perspectiva, la ATSDR ha añadido información de la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (National Emission Standard for Hazardous Air Pollutants (NESHAP)) sobre el mercurio permitido en las emisiones atmosféricas de las plantas de cloro-álcali. Desarrollada por la EPA de los EE.UU. en el 1973 y enmendada en el 2000, esta norma permite que una planta de cloro-álcali libere 2.3 kg de mercurio a la atmósfera diariamente. Por lo tanto, las emisiones anuales estimadas de mercurio en artefactos altamente explosivos en el LIA (menos de 0.5 kg por año) pueden ser comparadas con la norma de NESHAP para plantas de cloro-alcali (844 kg por año).

El estimado de menos de una libra de mercurio por año tomó en cuenta la pequeña cantidad de mercurio presente en algunas cargas explosivas y la cantidad de suelo expulsado al aire. Pero la mayoría de los niveles de mercurio en los suelos del LIA parecen estar a niveles naturales, sin sufrir grandes variaciones espaciales que sugieren que los niveles de mercurio son más altos en el LIA. Por lo tanto, la pequeña cantidad de mercurio en algunas bombas no fue suficiente para elevar los niveles de mercurio en el suelo del LIA, el área más bombardeada en Vieques.

La exposición al mercurio por comer pescado frecuentemente puede ser una fuente significativa de mercurio para algunos viequenses. El informe también señala otras posibles fuentes de mercurio. Por ejemplo, historias de casos en la literatura científica demuestran que la ruptura de termómetros de mercurio y los empastes dentales recuperados pueden exponer a los residentes a mercurio en el hogar. Además, la ATSDR ha añadido otras fuentes que podrían aumentar la exposición a metales, como utensilios de cocina, residuos de metal en comida (por ejemplo, te y vegetales), consumo de
bebidas con empaques metálicos, ritos religiosos que usan capsulas que contienen mercurio, cremas para la piel, formulaciones de antiácidos y de antiperspirantes.

[Comentario]

e) La ATSDR no sabe cuál es la porción típica de pescado consumido por las mujeres y los niños pequeños viequenses.

f) ATSDR desconoce el peso típico de los viequenses.

g) El extenso cuestionario de Ortiz Roque y López Rivera tiene información sobre el peso de los viequenses, el índice de masa corporal, la dieta, la preferencia de las especies de peces, pero éste no fue consultado por los investigadores de la ATSDR.

Respuesta de la ATSDR: Como resultado de sugerencias durante la consulta científica de noviembre del 2009, la ATSDR consideró en el informe específicamente pesos corporales más bajos que el estándar. Por lo tanto, la ATSDR utilizó un rango de tamaños de porciones de comida específicos para las edades y un amplio rango de pesos corporales para calcular las dosis de exposición al mercurio. A partir de estos cálculos, la ATSDR concluyó que las mujeres con una dieta variada de pescado que normalmente comían más de 2 onzas de pescado diario tenían niveles estimados de mercurio que excedían las dosis de referencia (RfD) de la EPA de los EE.UU. y los niños con una dieta variada de pescado que comían normalmente más de 0.5 onzas de pescado diariamente tenían niveles estimados de mercurio que excedían las dosis de referencia (RfD) de la EPA de EE.UU.

La ATSDR también ha solicitado que él /la commentarista comparta su información acerca del peso, índice de masa corporal, la dieta y la preferencia de especies de peces de los viequenses.

[Comentario]

h) La ATSDR no sabía cuáles son las relaciones de la cadena alimentaria en Vieques.

Respuesta de la ATSDR: La cadena alimentaria que envuelve el ciclo de mercurio en el ambiente es bien conocida y es la fuente de mercurio más probable en la cadena alimentaria marina de los alrededores de Vieques. Sin embargo, aun con el conocimiento de este ciclo de mercurio bien establecido, la ATSDR investigó si las actividades relacionadas con los bombardeos podrían haber contribuido cantidades significativas de mercurio al medio ambiente de Vieques. Nuestra evaluación demuestra que, aunque pequeñas cantidades de mercurio estaban presentes en algunos artefactos militares, la cantidad no fue suficiente para afectar los niveles de mercurio en el medio ambiente o en los peces. No se han detectado niveles elevados de mercurio en el suelo del LIA, y la cantidad de mercurio introducido en el medio ambiente de Vieques por las bombas fue muy pequeña.

[Comentario]

i. El análisis de la dosis de referencia de mercurio de la ATSDR se basó en muestreos de peces que tuvo múltiples limitaciones entre las cuales está la falta de hipótesis, falta de criterios racionales para las especies incluidas en la muestra, falta de confirmación sobre la procedencia del pescado de mercado y muestreo que consistió de individuos únicos para algunas especies.
1. La ATSDR llegó a la conclusión de que la concentración promedio de mercurio en los peces de Vieques fue 0.1066 ppm. Es importante mencionar que se trata de un 200% por encima del nivel de detección de la EPA (0.049 ppm).

2. La ATSDR no sabe si los peces muestreados fueron representativos de la dieta de los viequenses.

3. La ATSDR no encontró una diferencia significativa entre las concentraciones de mercurio en los peces en las diferentes localizaciones en Vieques. El promedio de la mayoría está por encima el nivel de detección de la EPA.

4. Evidentemente, la ATSDR ha asumido conocer los supuestos sitios donde el mercurio puede encontrarse en Vieques, así como conocer su dispersión y bioacumulación ambiental. La ATSDR asumió que los peces se mantienen quietos en un arrecife de coral.

Respuesta de la ATSDR: Las actividades de muestreo y análisis realizadas por la ATSDR en el 2001 se enfocaron en si los tejidos musculares de peces y mariscos comúnmente consumidos contenían niveles de metales pesados y compuestos explosivos que pudieran resultar en efectos a la salud. Para el diseño del plan de muestreo y en la recolección de las muestras, la ATSDR trabajó con el Equipo de Respuesta Ambiental de la EPA de los EE.UU., el cual tiene una amplia experiencia en el muestreo y análisis de peces. Además, la ATSDR consultó con el peticionario y los residentes locales para que nos asesoraran en el plan de muestreo. La ATSDR utilizó múltiples fuentes de información para identificar los tipos preferidos de pescados y mariscos para la recolección. Una fuerte importante fue un informe de una universidad de Puerto Rico que contenía información de una encuesta acerca de la frecuencia y los tipos de pescado consumido (Caro 2000). La ATSDR corroboró los resultados de la encuesta con información del peticionario y de otros residentes, el Informe de la Comisión Especial de Vieques y visitas a los mercados de pescado locales de Vieques. El informe reconoce que el muestreo de peces realizado por la agencia en el 2001 tuvo algunas limitaciones. En particular, aunque la investigación del muestreo de peces fue diseñado utilizando los mejores criterios de la época, el diseño de la muestra del 2001 no fue consistente con algunos de los criterios que se encuentran en los diseños de muestreo actuales para el desarrollo de advertencias de consumo de pescado de la EPA de los EE.UU. y del estado de California. (Véase el informe, capítulo 2, sección 2.2.3.)

Aún con estas limitaciones, los datos del muestreo peces de la ATSDR demostraron que el mercurio en el pescado era muy dependiente de la familia y las especies de peces. El mercurio fue mayor en dos familias de peces (es decir, ronco y mero cabrilla, 0.18 ppm y 0.12, respectivamente), en comparación con otras familias de la muestra (por ejemplo, en los peces cotorro y pargo, 0.01 ppm y 0.05 ppm, respectivamente). El mercurio en el mero cabrilla se asoció con el peso del pescado; los peces mero cabrilla mayores en tamaño típicamente tenían mayores concentraciones de mercurio. Para las 104 muestras de peces recogidas de las áreas marinas cerca de Vieques y del mercado de pescado comercial, el nivel promedio de mercurio fue de 0.1 ppm y el rango no-detectable fue a 0.33 ppm. Los niveles de mercurio detectados en peces de arrecife de Vieques son similares a los niveles reportados por la FDA (FDA 2010). Los niveles de mercurio están el rango entre bajo (0.02
hasta 0,2 ppm) a medio (0,2-0,6 ppm) identificadas por la FDA en su reciente evaluación de riesgos y beneficios (FDA 2009).

El nivel promedio de mercurio en todos los peces (0.1 ppm) superó el nivel de detección de la EPA de 0.049 ppm, el cual fue desarrollado por la EPA para los pescadores de subsistencia (EE.UU. EPA 2000)\(^{41}\). Tenga en cuenta que la superación de un nivel de evaluación (screening level) no significa que posiblemente hayan efectos dañinos, sino más bien que se necesita una evaluación de salud más detallada. La ATSDR realizó esta evaluación de salud más detallada mediante la estimación de la cantidad de mercurio consumido utilizando un amplio rango de ingestas diarias de pescado y pesos corporales. Este enfoque permitió a la ATSDR evaluar la posibilidad de efectos perjudiciales para los viequenses que comen pescado ocasionalmente, así como aquellos que se alimentan de peces frecuentemente. El informe identificó la exposición al mercurio por el consumo frecuente de pescado marino como un potencial peligro para la salud pública. Las mujeres con una dieta variada de pescado que suelen comer más de 2 onzas de pescado diariamente tienen niveles de mercurio estimados que exceden la dosis de referencia (RfD) de la EPA de EE.UU. Y a medida que aumenta el tamaño de las porciones, las dosis estimadas se acercan más al nivel más bajo que puede causar efectos perjudiciales para el feto en desarrollo. La ATSDR concluye que si las mujeres que están embarazadas consumen más de 2 onzas de pescado al día, sus bebés en desarrollo tienen un pequeño aumento en el riesgo de efectos neurológicos más tarde en la vida. El riesgo de efectos perjudiciales aumenta a medida que aumenta el tamaño de las porciones. Los posibles efectos perjudiciales identificados a partir de los estudios de niños viequenses expuestos en el útero envuelven lenguaje, atención y la memoria, y, en menor medida, las funciones visuales / espaciales y motoras.

[Comentario]

8. La ATSDR ignora (no sabe o se niega a reconocer) los informes de la EPA sobre la contaminación por mercurio en Vieques.

Respuesta de la ATSDR: Como se dijo anteriormente, la ATSDR pudo examinar la correspondencia entre la EPA de los EE.UU. y la Marina donde se discuten los Informes de Seguimiento de Descarga y la superación de los límites de efluentes establecidos en el Sistema Nacional de Eliminación de Desperdicio de Contaminación de la Marina (Navy’s National Pollution Discharge Elimination System (NPDES)). La ATSDR revisó la lista de las 126 violaciones de efluentes que ocurrieron durante febrero de 1994 y abril de 1999. Sólo una de las violaciones tuvo que ver con mercurio. La violación por mercurio reportó un valor de 0.0014 mg/L, el cual estaba por encima del límite permitido de 0.001 mg/L, pero por debajo del nivel máximo de contaminación (MCL) que es 0.002 mg/L. La Orden de Consentimiento no añade nada al entendimiento de los niveles de mercurio u otros contaminantes

\(^{41}\)La EPA de los EE.UU. define las personas que comen peces a modo de subsistencia como personas que dependen de los mariscos y del pescado capturado con fines no comerciales como fuente principal de proteínas en sus dietas. En el desarrollo del nivel de detección de los pescadores de subsistencia, la EPA utilizó una tasa de consumo de pescado diaria de 5 onzas (142 gramos) por día. Más información acerca de los niveles de evaluación de la EPA se encuentra en la siguiente dirección Web: http://www.epa.gov/waterscience/fish/advice/volume2/v2cover.pdf.
presentes en los diferentes medios del ambiente en la isla o a la cantidad a la cual las personas estaban o están expuestas.

[Comentario]

9. Además de la contaminación global de mercurio, durante muchos años Vieques ha tenido una importante fuente adicional de contaminación por mercurio: las actividades militares

La ATSDR, basado en su estudio de muestreo de peces, llegó a la conclusión de que el mercurio en los seres humanos fue probablemente debido a la contaminación GLOBAL por mercurio: non sequitur

Respuesta de la ATSDR: La ATSDR concluyó que los niveles de mercurio en los peces en y alrededor del LIA son probablemente el resultado de la reserva global de mercurio que circula en el medio ambiente. Esta conclusión está apoyada por los bajos niveles de mercurio en los suelos del LIA, que parecen estar a niveles de origen natural. Además, el modelo de aire estimó que a partir de la artillería que cayó en la LIA, menos de 0.5 kg por año de mercurio se habrían emitido a la aire. Para ofrecer perspectiva, la ATSDR ha añadido información de la Norma Nacional de Emisión de Contaminantes Atmosféricos Peligrosos (National Emission Standard for Hazardous Air Pollutants (NESHAP)) sobre el mercurio permitido en las emisiones atmosféricas de las plantas de cloro-álcali. Desarrollada por la EPA de los EE.UU. en el 1973 y enmendada en el 2000, esta norma permite que una planta de cloro-álcali libere 2.3 kg de mercurio a la atmósfera diariamente. Por lo tanto, las emisiones anuales estimadas de mercurio en artefactos altamente explosivos en el LIA (menos de 0.5 kg por año) pueden ser comparadas con la norma de NESHAP para plantas de cloro-alcali (844 kg por año). (Véase el informe, capítulo 1, sección 1.3.)

[Comentario]

10. El documento educativo para los viequenses de la ATSDR no pueden ser seguido por un ser humano altamente educado.

 a) La ATSDR concluye que las mujeres en edad reproductiva en Vieques que comen 14 onzas de pescado a la semana excedían la dosis de referencia de la EPA de 0.1 microgramos / kg / día (2 onzas por día). Así, exponiendo a sus fetos a una enfermedad neurológica.

 b) La ATSDR recomienda que las mujeres en edad reproductiva en Vieques consuman hasta 12 onzas de pescado a la semana. (1.7 onzas por día).

 c) La ATSDR no sabe cuál es la porción típica de pescado por comida en la dieta de los viequenses, pero asumió que la porción es de 4 onzas.

 d) ATSDR supone que el típico ser humano puede establecer la diferencia entre 12 onzas y 14 onzas de pescado a la semana o entre porciones de 1.7 onzas y 2 onzas de pescado por día.

 e) No hay evidencia de que un ser humano altamente educado puede seguir estas recomendaciones simplemente porque la diferencia entre el consumo de pescado saludable y el consumo de pescado riesgoso está muy cerca para los viequenses. Una vez más, el margen de exposición es alta para estos grupos susceptibles (fetos y niños).
f) La FDA establece una porción de pescado típico de 6 onzas. ¿Por qué utilizar 4 onzas para Vieques?

Respuesta de la ATSDR: La ATSDR está de acuerdo en que gran parte de esta información es demasiado técnica para el público en general. Por lo tanto, la ATSDR ha desarrollado una hoja informativa sobre consumo de pescado que explica los hallazgos, conclusiones y recomendaciones en un lenguaje sencillo. La hoja informativa también incluye diagramas y dibujos para ayudar a los viequenses entender la diferencia entre el consumo de pescado arriesgado y saludable. Compartimos esta hoja informativa con el Departamento de Salud de Puerto Rico. Estamos en la espera de sus comentarios en cómo hacer que la hoja de la ATSDR sea más relevante y útil para los viequenses.

La ATSDR evaluó una variedad de tamaños de las porciones de comida específicas para las edades en el informe, incluyendo los percentiles 50, 95 y 99. La Tabla 2-6 muestra los tamaños de comida para las distintas edades evaluadas. Tabla 2A-1 muestra las dosis estimadas, que se calcularon en un perfil de peso continuo desde 9.9 hasta 220 libras y el aumento de tamaño de comida hasta el percentil 99 (por ejemplo, adolescentes de 15 a 18 años tienen un percentil de 99 comiendo porciones de comida con pescado de 20 onzas). Este enfoque permitió a la ATSDR evaluar el riesgo de efectos perjudiciales para los viequenses que comen ocasionalmente pescado, así como aquellos con alto consumo de pescado y para desarrollar mensajes de salud para ambos grupos.

[Comentario]

Estudios de mortalidad estandarizados se realizaron utilizando datos de los certificados de defunción recogidos universalmente por el Departamento de Salud de Puerto Rico. Los certificados de defunción son completados por médicos licenciados en Puerto Rico. No hubo ningún cambio significativo en la codificación de las enfermedades durante el período de estudio. Por lo tanto, no hay razón para creer que la recolección de datos estuvo sesgada durante el 1991-1998.

Respuesta de la ATSDR: El informe no reclama que la recolección de datos estuvo sesgada debido a los cambios en la codificación de las enfermedades. El informe hace destacar, sin embargo, que los datos de mortalidad no enumeran todas las causas de muerte, sólo aquellas que estuvieron elevadas.

[Comentario]

12. Biomonitorio

Una vez más, como ha sido la opinión del Colegio de Médicos y Cirujanos de Puerto Rico durante los últimos 2.5 años, el conocimiento adecuado de todas las exposiciones y el biomonitorio estratégico son fundamentales para la evaluación del riesgo humano. La prevención de enfermedades es el objetivo de la salud pública.

Las conclusiones de la ATSDR en el 2011 sobre la falta de exposición humana a contaminantes militares en Vieques no están basadas en evidencia.
Respuesta de la ATSDR: Debido a que el informe encontró poca evidencia de exposición a los contaminantes del lugar, un programa de control biológico integral no se justifica en este momento. Además, muchos productos químicos son de corta duración en el cuerpo humano y por lo tanto no se pueden medir a través de un programa de biomonitorio si la exposición ocurrió hace algún tiempo. No obstante, la ATSDR actualmente está trabajando con nuestros socios en Puerto Rico para explorar el valor de realizar un programa enfocado de biomonitorio humano en Vieques. Por ejemplo, los residentes están preocupados por la exposición al mercurio por comer mariscos de la zona. La medición de mercurio en sangre tiene valor para la salud pública de los viequenses.

Bibliografía de la ATSDR:

information (”Request 2”) Relative to Permit PRG9900001 (”Permit”) and Multi-Sector General Permit Number PRR05A08F (”MSGP”), Attachment 3; 29 de septiembre.

Comentarista 2

[Comentario]

Esta carta sirve como mi comentario oficial sobre el informe titulado "Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques, Puerto Rico", que fue publicado por la Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR) en forma de comentarios públicos el 8 de diciembre de 2011.¹

Como ustedes saben, yo represento a los 3.7 millones de residentes de Puerto Rico, incluyendo los casi 10,000 residentes de Vieques, en el Congreso de los EE.UU. Desde que asumí el cargo en enero de 2009, me he reunido con el director o el director interino de la ATSDR en cinco ocasiones para discutir los problemas de salud y ambientales abordados en la versión de comentarios públicos del informe. Específicamente, me reuní con el Dr. Howard Frumkin el 22 de septiembre de 2009 y el 22 de octubre de 2009, con el Dr. Henry Falk el 4 de febrero de 2010 y con ustedes el 14 de diciembre de 2010 y 7 de diciembre de 2011. Durante nuestra última reunión, se me informó de las conclusiones y las recomendaciones contenidas en el informe de comentarios públicos (el Informe). Al recibir esa información, expresé mis preocupaciones relacionadas con el proceso y el contenido. Ahora que he tenido la oportunidad de estudiar el Informe más detenidamente, quisiera elaborar en estas preocupaciones y hacer seis recomendaciones específicas.

Para comenzar, es importante hacer dos puntos claros. En primer lugar, mi objetivo en proveer comentarios sobre este Informe es proponer un camino a seguir que le permita al gobierno federal cumplir con sus obligaciones con la gente de Vieques—ciudadanos americanos que fueron solicitados por las autoridades federales a un gran sacrificio para avanzar nuestra preparación militar y seguridad nacional. Por lo tanto, mis comentarios, aunque críticos, tienen la intención de ser constructivos. La gente de Vieques no se beneficia ni una pizca de los ataques a la ATSDR, a la Marina o cualquier otra agencia federal. Lo que los residentes quieren—y lo que se merecen—es una evaluación realista, basada en evidencia e imparcial del informe que está diseñado para producir una acción concreta por parte del gobierno federal.

En segundo lugar, desde que la ATSDR publicó el informe, un panel de tres jueces de la Corte de Apelaciones de los EE.UU. del Primer Circuito, en una votación de 2-1, desestimó las reclamaciones de responsabilidad civil que habían sido presentadas por más de 7,000 residentes de Vieques contra el gobierno de los EE.UU.² Las reclamaciones de los demandantes se basan en el argumento de que han sufrido daños a su salud como resultado de la negligencia de la Marina en la emisión de ciertos contaminantes durante los ejercicios de adiestramiento llevados a cabo a lo largo de seis décadas.

El panel de apelaciones desestimó el caso por razones de proceso, no sustantivas y concluyó que los demandantes no están considerados bajo la Ley Federal de Reclamaciones (Federal Tort Claims Act) para presentar demandas por daños en contra de los Estados Unidos. La opinión mayoritaria indicó explícitamente que no tomó “posición sobre si las operaciones de la Marina en Vieques han tenido efectos adversos en los residentes de la isla”. De hecho, el tribunal dijo que si las alegaciones de los demandantes son ciertas, "plantean unas preocupaciones serias de salud”. En virtud de su decisión, sin embargo, el Primer Circuito ha hecho imposible que los méritos de las reclamaciones de los
demandantes y las defensas de la Marina sean juzgados por un juez o un jurado. Un juicio probablemente habría requerido que la Marina proporcionara un recuento completo de sus actividades de adiestramiento, que armas usaron, donde se usaron y por cuánto tiempo fueron usadas. También habría permitido tanto a los demandantes como a la defensa llamar a expertos científicos para testificar acerca de la prevalencia de ciertas enfermedades en Vieques y la relación causal entre las enfermedades y las pasadas actividades de adiestramiento militar en la isla.

A menos que la decisión del panel sea revertida por el tribunal en pleno (sitting en banc) del Primer Circuito o por la Corte Suprema de los EE.UU., la oportunidad para los residentes de Vieques de establecer los hechos y buscar alivio a través del sistema judicial será ejecutada (foreclosed). Esto significa que la gente de Vieques y sus líderes electos, no tienen otra alternativa que el recurir a las otras dos ramas del gobierno nacional: la legislativa y la ejecutiva. Eso explica por qué el panel del Primer Circuito, en el cierre de su dictamen, tomó la medida inusual pero apropiada de afirmar que los problemas de salud planteados por los residentes de Vieques en sus escritos "debiera llevarse a la atención del Congreso". En efecto, los jueces instruyeron al secretario de la corte a "enviar una copia de esta opinión al liderazgo de la Cámara y el Senado".

El 18 de noviembre de 2011, en anticipación de la publicación del Informe de la ATSDR, pedí formalmente que el Comité de la Cámara de Recursos Naturales celebrara una vista “para evaluar la respuesta federal en curso del uso significativo de tierras y los retos de salud ambiental y pública que enfrentan los ciudadanos americanos de Vieques, Puerto Rico” 3. Yo tenía la intención de recomendar al Comité que lo invitara a usted o a una persona designada a comparecer como un testigo de esta vista, con el fin de proveer una declaración sobre las conclusiones del Informe de la ATSDR y explicar que medida la agencia intenta tomar, o recomendar que otras agencias federales tomen, de ahora en adelante.

En resumen, el Informe de la ATSDR reconoce explícitamente que los múltiples estudios de salud humana realizados desde el 1999 indican que los residentes de Vieques tienen tasas más altas de cáncer y otras enfermedades crónicas en comparación con los residentes de la isla grande de Puerto Rico. La pregunta principal que la ATSDR intenta responder en su Informe es si existe evidencia que demuestre o sugiera una relación causal entre los problemas de salud identificados y los ejercicios de adiestramiento militar que se llevaron a cabo en Vieques.

El Informe es una reevaluación de las conclusiones de la ATSDR de una serie de evaluaciones de salud pública que la agencia llevó a cabo en Vieques entre el 2001 y el 2003. En estas evaluaciones, la ATSDR examinó cuatro "vías" a través de las cuales los residentes de Vieques podrían haber estado potencialmente expuestos a contaminantes peligrosos a la salud relacionados con el adiestramiento militar- el aire, el suelo, el pescado y los mariscos, y las aguas subterráneas. La ATSDR concluyó, que aunque hubo contaminantes atribuibles a los ejercicios de adiestramiento en algunas de estas vías, no estaban a los niveles esperados para causar efectos adversos a la salud. La metodología usada por la ATSDR y las conclusiones alcanzadas por la agencia en estas evaluaciones de salud pública fueron objeto de fuertes críticas en Puerto Rico, en los sectores de la comunidad científica y en el Congreso.

En el Informe, la ATSDR volvió a examinar estas cuatro vías de exposición. También examinó una quinta vía, el consumo de productos agrícolas y ganado criado en Vieques. Aunque hay algunas diferencias
modestas, la conclusión general alcanzada por la ATSDR en el Informe es esencialmente la misma conclusión alcanzada por la agencia en sus previas evaluaciones de salud pública, específicamente, que los datos científicos disponibles no establecen o indican que los contaminantes en estas vías, algunos de los cuales pueden estar vinculados a las actividades de adiestramiento militar, estaban a los niveles esperados de causar efectos adversos a la salud que los residentes de Vieques han estado experimentando.

Sin embargo, como la ATSDR en repetidas ocasiones ha reconocido durante todo el Informe, esta conclusión no es definitiva, o incluso estar cerca de serlo, ya que los datos científicos disponibles sobre los cuales se basa la agencia son incompletos e insuficientes en muchos aspectos.

A su crédito, la ATSDR recomienda en el Informe que se hagan más estudios para llenar algunos de los vacíos de información identificados con el fin de que se puedan obtener conclusiones más creíbles y confiables, en particular con relación a las vías del pescado, los productos agrícolas y el ganado, y el suelo. Mi crítica fundamental del Informe es que la agencia no va lo suficientemente lejos. En un comunicado de prensa en noviembre de 2009, la ATSDR declaró que había “identificado vacíos de información en los datos ambientales que podrían ser importantes en la determinación de los efectos de salud”. La ATSDR además afirmó que "espera" "recomendar biomonitoreo para determinar si las personas que viven en Vieques han estado expuestas a químicos dañinos y si es así a qué niveles esos químicos se encuentran en sus cuerpos". Sin embargo, en un movimiento sorprendente que parece tanto inconsistente con su comunicado de prensa de noviembre de 2009 y contrario al sentido común, la ATSDR establece en el Informe que "no está recomendando un esfuerzo exhaustivo y sistemático de biomonitoreo en este momento", aunque "los funcionarios de salud pública podrían considerar una investigación de biomonitoreo humano enfocada." Esta recomendación se hace a pesar del hecho de que la ATSDR reconoce explícitamente que los actuales “datos disponibles de biomonitoreo de los viequenses no se pueden usar para determinar si los residentes de Vieques estuvieron expuestos en el pasado, a constituyentes [es decir, contaminantes] relacionados con los ejercicios militares.”

Con todo respeto, pero con fuerza, afirmo que esta recomendación es inadecuada. Teniendo en cuenta los problemas de salud reportados en Vieques y la posible relación entre estos problemas y las actividades de adiestramiento militar, tales medidas a medias están fuera de lugar. Y ciertamente no es aceptable ni apropiado para la ATSDR sugerir que tales medidas a medias, si se llevan a cabo, deben ser conducidas por los funcionarios locales de salud pública con fondos principalmente locales.

En vista de lo anterior, mis seis recomendaciones son las siguientes:

1. Recomiendo que la ATSDR se adhiera a la letra y al espíritu del comunicado de prensa de noviembre de 2009 y proponga un esfuerzo de biomonitoreo completo para determinar si, y en qué medida, los residentes de Vieques han estado expuestos a químicos nocivos relacionados con las actividades de adiestramiento. A menos que se obtengan los datos, todo este ejercicio parece uno vacío, diseñado para llegar a una conclusión predeterminada de "no daño". Si la ATSDR no modifica sus recomendaciones de proponer biomonitoreo completo, le pido a la agencia que explique claramente por qué no cree que este paso es justificado y apropiado, y que explique por qué evidentemente cambió el curso de su comunicado de prensa de noviembre de 2009.
Respuesta de la ATSDR: Debido a que el Informe encontró poca evidencia de exposición a los contaminantes del lugar, un programa de biomonitoring completo no se justifica en este momento. Además, muchos químicos son de corta duración en el cuerpo humano y por lo tanto no se pueden medir a través de un programa de biomonitoring si la exposición ocurrió hace algún tiempo. No obstante, la ATSDR actualmente está trabajando con nuestros socios en Puerto Rico para explorar el valor de llevar a cabo en Vieques un programa de biomonitoring en humanos enfocado. Por ejemplo, los residentes están preocupados por la exposición al mercurio por comer pescados y mariscos de la zona, un programa de biomonitoring para medir el mercurio en la sangre tendría un valor para la salud pública de los viequenses.

[Comentario]

2. Estoy a favor de las recomendaciones de la ATSDR que estudios adicionales deben realizarse para llenar vacíos de información identificados con relación a las vías de pescado, los productos agrícolas y el ganado, y el suelo. Insisto que estudios adicionales, en la medida en que podrían ser útiles, se lleven a cabo para llenar los vacíos de información que hayan sido identificados con relación a las vías de aire y agua subterráneas. Entiendo perfectamente que no todos los vacíos de información se pueden llenar, pero es evidente que algunos de ellos se pueden y que el gobierno federal debe tomar todas las medidas razonables para asegurarse de que así sea.

Respuesta de la ATSDR: En base a nuestra evaluación de las vías de exposición en el lugar, la ATSDR ha recomendado un programa de biomonitoring enfocado en Vieques. Si este programa de biomonitoring se lleva a cabo con nuestros socios en Puerto Rico, podríamos esperar que a la misma vez se hiciera el muestreo de suelo y los productos de la huerta, y una encuesta alimentaria. Si los resultados de este programa de biomonitoring enfocado lo recomiendan, un programa de biomonitoring más completo podría llevarse a cabo. Si no se lleva a cabo ningún programa de biomonitoring adicional, la ATSDR podría explorar otras formas posibles de llevar a cabo muestreos adicionales, tales como colaborar con otras agencias federales involucradas en las investigaciones ambientales en Vieques.

[Comentario]

3. En general, recomiendo que la ATSDR y otras agencias federales tomen un papel mucho más activo y asertivo en el diseño, la implementación y en especial el financiamiento de los estudios adicionales de salud y ambientales que se necesitan para determinar, con un grado razonable de confianza, la naturaleza exacta y las causas potenciales de los problemas de salud que experimentan los residentes de Vieques. Es desalentador que, más de una década después que la ATSDR concluyó sus primeras evaluaciones de salud pública en Vieques, las preguntas fundamentales sobre la seguridad del ambiente de la isla y la salud de sus residentes permanezcan sin respuestas.

Respuesta de la ATSDR: Debido a los recursos limitados, la ATSDR raramente recolecta muestras ambientales en sitios de desperdicios peligrosos. Por esta razón, confiamos en nuestras agencias asociadas federales y estatales para recolectar estas muestras. Vamos a seguir trabajando con la
Marina, la EPA de los EE.UU. y cualquier otra agencia que pueda recolectar muestras ambientales de Vieques.

El proyecto Tendencias de Riesgo en Áreas Metropolitanas/Micropolitanas Seleccionadas (SMART) es parte del Sistema de Vigilancia de Factores de Riesgo del Comportamiento (BRFSS) y está diseñado para recopilar información sobre la salud a partir de pequeñas unidades geográficas. Hemos recomendado que las agencias de salud pública evalúen la viabilidad de usar los métodos de SMART BRFSS para identificar los estimados de prevalencia de asma, la diabetes, la hipertensión y otras enfermedades crónicas. La implementación de un sistema para Vieques proporcionaría información muy valiosa sobre el estado de salud de los viequenses.

Además, no hemos ofrecido a ayudar a las autoridades de salud de Puerto Rico si se deciden a llevar a cabo un programa de biomonitorio. La ATSDR está dispuesta a brindar asesoramiento técnico y apoyo de laboratorio para el esfuerzo.

[Comentario]

4. A continuación, cito con detalle el testimonio provisto por el Dr. John Wargo, un profesor de la Universidad de Yale, en una vista celebrada el 20 de mayo de 2010 por el Subcomité de Investigaciones y Supervisión del Comité de Ciencia y Tecnología de la Cámara. Ese testimonio sirve como una crítica extensa, vía por vía, de las evaluaciones de salud pública realizadas por la ATSDR en Vieques del 2001 al 2003. Algunas de las deficiencias que el Dr. Wargo identificó en el 2010 con relación a las evaluaciones de la salud pública han sido corregidas en el Informe de 2011. Por ejemplo, a diferencia de las evaluaciones de salud pública, el Informe ha sido revisado por expertos externos y contiene una sección acerca de la vía de “los producto agrícolas locales y la ganadería”. Sin embargo, basado en mi opinión, también parece que muchas de las críticas más incisivas y recomendaciones de Dr. Wargo no han sido abordadas en el Informe. Por lo tanto, creo que sería útil que la ATSDR incluya en su informe final una sección que explique cómo y en qué medida, el informe incorpora las recomendaciones de Dr. Wargo y responde a sus críticas.

Respuesta de la ATSDR: Durante nuestra consulta científica de noviembre de 2009, el Dr. Wargo se reunió con la ATSDR para discutir sus preocupaciones sobre Vieques. Nosotros consideramos sus preocupaciones cuando evaluamos los datos históricos y nuevos en Vieques. Nosotros consideramos sus preocupaciones cuando evaluamos los datos históricos y nuevos en Vieques. Ofrecemos respuestas específicas a sus preocupaciones en una sección más adelante.

[Comentario]

5. Inalto a la ATSDR, que como parte de cualquier respuesta más amplia que provea con relación a las críticas y recomendaciones hechas por el Dr. Wargo, que responda específicamente a lo que considero una de las críticas más intuitivas del Dr. Wargo de las evaluaciones de salud pública de la ATSDR, la cual es, que la agencia "rutinariamente se basó en estudios preparados previamente o datos recolectados por otros en lugar de diseñar nuevos estudios que sean apropiados para las condiciones y problemas locales" y que la agencia "rara vez lleva a cabo su propia investigación sobre la contaminación ambiental, la exposición humana y la prevalencia de las enfermedades, y fallas en cualquiera de los estudios disponibles los llevan a concluir que no existe evidencia creíble de una relación causal entre los materiales peligrosos y las enfermedades "

Página | D-23
Al parecer, esta crítica se aplica con la misma fuerza en el caso del Informe. Debido a que se basa exclusivamente en el trabajo científico de otros, las conclusiones de la ATSDR son tan buenas (o tan malas) como el trabajo en el que están basadas. Según mis cálculos, 32 estudios fueron analizados por la ATSDR en el Informe y usados como base para las conclusiones de la agencia. Sólo tres de estos estudios fueron realizados por agencias federales: uno por la Marina en el 1978, uno por la Agencia de Protección Ambiental (EPA) en el 2001 y uno por la Organización Nacional de Océanos y Atmosfera (NOAA) en el 2010. El estudio de la Marina y el estudio de la EPA no son, de hecho, estudios per se, sino simplemente colecciones de datos de muestreo de niveles de contaminantes y por lo tanto no fueron revisados externamente por expertos. Y el estudio de la NOAA no pretendía ser un estudio sobre la salud humana, o como lo expresó la ATSDR, para “caracterizar el impacto de las actividades de bombardeo.”

Los 29 estudios no federales no parecen ser de igual calidad y rigor. Mientras que los investigadores locales han realizado un trabajo tremendo—incluyendo Arturo Massol-Deyá, Elba Díaz, Carmen Ortiz Roque y los investigadores del Departamento de Salud de Puerto Rico, sólo cuatro de los 29 estudios fueron revisados por expertos externos y sólo tres fueron publicados en revistas científicas.

A mi juicio, este resumen pone de relieve la necesidad de que el gobierno federal, en colaboración con investigadores independientes con experiencia, asuma un papel más prominente en el diseño, la ejecución y el financiamiento de estudios adicionales sobre Vieques.

Respuesta de la ATSDR: La ATSDR no tiene los recursos para llevar a cabo extensas investigaciones ambientales o humanas relacionados con el sitio. Por ello, nos basamos en gran medida en el trabajo preparado por otras agencias y científicos. Además, los procedimientos de CERCLA requieren que la parte responsable, la Marina en este caso, pague y lleve a cabo todas las investigaciones y las actividades de rehabilitación, que la EPA de los EE.UU. supervisa.

Para asegurar que nuestras conclusiones sean sólidas, hemos hecho una serie de recomendaciones sobre la recolección de más datos humanos y ambientales y estamos discutiendo estas recomendaciones con nuestros socios federales y del ELA. Para asegurar que nuestra evaluación de los datos ambientales y humanos sea sólida, se proveyó el Informe a seis científicos para su revisión experta y se hicieron numerosos cambios al Informe basados en sus comentarios.

[Comentario]

6. Por último, durante una reunión reciente en mi oficina, el Dr. James Porter, un decano asociado de la Escuela Odum de Ecología de la Universidad de Georgia, me proporcionó una copia de un artículo que fue coautor, titulado "Los efectos radiológicos, ecológicos y toxicológicos del bombardeo de la Marina sobre los arrecifes de coral de la isla de Vieques, Puerto Rico" ("Ecological, Radiological, and Toxicological Effects of Naval Bombardment on the Coral Reefs of Isla de Vieques, Puerto Rico."). La pieza de casi 60 páginas fue publicada en el 2011- evidentemente no a tiempo para ser citada por la ATSDR en su Informe- como un capítulo de G.E. Machlis et al. (eds.), Warfare Ecology: A New Synthesis for Peace and Security (The NATO Science for Peace and Security Programme). Según el artículo, "Nuestros datos muestran inequívocamente que la filtración de las sustancias tóxicas provenientes de UXO [artefactos explosivos sin detonar] ha entrado a la cadena alimenticia del
arrecife de coral. Como la concentración de los compuestos explosivos es más alta cerca de las municiones sin estallar, se recomienda que los UXO que se encuentren en la superficie del arrecife de coral en Vieques sean recogidos y eliminados del área”. Respetuosamente le pido a la ATSDR que analice este artículo y lo incorpore en el informe final de la agencia, porque el artículo parece proporcionar información muy relevante a la vía de los pescados y los mariscos.

Respuesta de la ATSDR: Hemos revisado una copia de este artículo. No contiene ningún dato ambiental nuevo, sino que sólo contiene los resultados de la muestra ya publicados por el Dr. Porter, revisado por la ATSDR y discutido en el Informe. Por lo tanto, no hemos hecho ningún cambio en el Informe como resultado del artículo de Dr. Porter de 2011.

[Comentario]

Para garantizar una óptima atención y coordinación interagencial, les proporciono una copia de esta carta a los miembros clave del Grupo de Trabajo del Presidente sobre el Estatus de Puerto Rico, incluyendo sus (antiguos y actuales) co-presidentes y sus representantes del Departamento de Salud y Servicios Sociales, la Agencia de Protección Ambiental y el Departamento de Defensa. El Informe de marzo de 2011 del Grupo de Trabajo incluyó una sección sobre Vieques, que dice: "Hay muchas cosas que el Gobierno Federal puede hacer para mejorar la calidad de vida de gente de Vieques". Estoy de acuerdo y mis recomendaciones se basan en esa premisa. Parece evidente que la ATSDR no puede resolver los asuntos pendientes por sí misma, dada la escasez de fondos de la agencia y su mandato.9 En cambio, un enfoque más amplio del gobierno federal es necesario. Si la Administración considera que se requiere un financiamiento adicional o la autoridad del Congreso en orden de implementar oportunamente las recomendaciones que he hecho, pido a la Administración que busque el financiamiento y la autoridad a través de una enmienda a su solicitud de presupuesto para el año fiscal 2013. A su vez, prometo que haré todo lo que este a mi alcance, trabajando con mis aliados en la Cámara y el Senado, para proporcionar a la Administración lo que necesite.

Para poner mis recomendaciones en contexto, algunos antecedentes son útiles.

Las operaciones de la Marina en Vieques10

En la década de 1940, el gobierno federal expropió tierras en las partes este y oeste de Vieques para su uso por la Marina y los residentes de esas zonas que permanecieron en Vieques fueron obligados a trasladarse a la parte central de la isla. La Marina estableció el Campo de Adiestramiento Naval de Vieques al este de Vieques, que consistía de dos instalaciones: (1) la Instalación de Adiestramiento en Armas de la Flota del Atlántico, que se utilizó para barco a costa y los ejercicios de bombardeo aéreo, y comprendía un área de impacto directo y un área de impacto secundario, y (2) el Área de Maniobras del Este (Área Oriental de Maniobras), que se usó principalmente en adiestramiento que envolvía municiones pequeñas. La Marina también estableció el Destacamento de Apoyo de Munición Naval en el oeste de Vieques para almacenar municiones usadas en su adiestramiento en el este de Vieques y disponer de municiones obsoletas o dañadas. La Marina informó que había arrojado (lanzado) entre tres millones y cuatro millones de libras de artefactos (municiones) en Vieques cada año entre el 1983 y el 1998.

El cierre y la transferencia de las instalaciones de la Marina en Vieques
En la Ley de Autorización de Defensa Nacional para el Año Fiscal 2001 (PL 106-398), el Congreso ordenó a la Marina a cerrar sus instalaciones en el oeste de Vieques y transferir aproximadamente 4,000 acres de la propiedad al Municipio de Vieques, aproximadamente 3,100 acres al Departamento del Interior y aproximadamente 800 acres al Fideicomiso de Conservación de Puerto Rico. En la Ley de Autorización de Defensa Nacional para el Año Fiscal 2002 (PL 107-107), el Congreso autorizó la Marina a cerrar sus instalaciones de adiestramiento en el este de Vieques si existían instalaciones de adiestramiento equivalentes en otros lugares y le ordenó a la Marina, que al cerrarse, transferiría la administración de los aproximadamente 15,000 acres de la propiedad al Departamento del Interior. En enero de 2003, la Marina certificó al Congreso que sitios alternativos de adiestramiento habían sido identificados y confirmó que las operaciones de adiestramiento dejarían de operar en Vieques para mayo de 2003.

Las actividades de limpieza en curso en Vieques

La Marina sigue siendo responsable de la administración y el financiamiento de la limpieza de las municiones y la contaminación resultante de sus pasadas actividades en Vieques, sujeto a la supervisión de la Agencia de Protección Ambiental y la Junta de Calidad Ambiental, una agencia del Gobierno de Puerto Rico. En abril de 2011, más de 35,000 municiones habían sido recuperadas y destruidas en Vieques, incluyendo por lo menos 19,000 municiones activas (vivas). Hasta el final del año fiscal 2010, la Marina había gastado un total de $142.4 millones para apoyar la limpieza de sus antiguas instalaciones en Vieques y se estima que se necesitarían $380.6 millones adicionales desde el año fiscal 2011 en adelante para completar todas las acciones de limpieza previstas.

Las evaluaciones de salud pública de la ATSDR en Vieques (2001-2003)

Entre el 2001 y el 2003, la ATSDR realizó una serie de evaluaciones de salud pública en Vieques. La ATSDR examinó cuatro vías por las cuales los residentes de Vieques podrían haber estado expuestos a contaminantes nocivos a su salud: (1) el aire, (2) el suelo, (3) el consumo de pescados y mariscos, y (4) las aguas subterráneas.

En sus evaluaciones de salud pública, la ATSDR concluyó que no había "ningún riesgo aparente para la salud pública" para los residentes de la isla a través de cualquiera de estas vías. Este hallazgo indica que, mientras pueda existir la posibilidad de exposición a un contaminante, dicha exposición no es probable que ocurra a un nivel que podría causar efectos adversos para la salud, basado en los niveles aceptables de exposición establecidos por los estándares de salud pública de cada contaminante. Este hallazgo no confirma ni niega la existencia de ciertos efectos en la salud de una población, sino que indica que el potencial de exposición humana a los contaminantes examinados no parece ser la causa de los efectos en la salud reportados.

La vía de aire ha sido la principal preocupación de la opinión pública debido a que la población que reside en la porción central de Vieques se encuentra viento abajo de la antigua área de impacto de proyectiles activos en el extremo este de la isla. Sin embargo, la evaluación de la ATSDR de la vía de aire está inherentemente limitada por la falta de datos históricos sobre las emisiones que se liberaron durante los ejercicios de adiestramiento durante varias décadas. Dada la ausencia de datos sobre las exposiciones históricas reales a través del aire, la ATSDR evaluó esta vía mediante el uso de modelos de...
datos de calidad del aire, es decir, tratar de estimar las emisiones del pasado basándose en un muestreo más limitado y reciente. Utilizando esta metodología, la ATSDR concluyó:

- Los residentes de Vieques han estado expuestos a los contaminantes emitidos al aire durante los ejercicios de adiestramiento militar de la Marina. Sin embargo, las exposiciones estimadas son inferiores a los niveles que se sabe están asociados con efectos nocivos para la salud. El polvo en suspensión y los contaminantes liberados durante las actividades de adiestramiento en la antigua área de impacto de proyectiles activos se dispersan a niveles extremadamente bajos antes de llegar a los residentes de Vieques.

La vía de suelo también ha sido una fuente de preocupación para los residentes de Vieques. Esta vía está relacionada con la vía de aire, ya que los contaminantes procedentes de las actividades de adiestramiento de la Marina podrían haber estado dispersos en el aire y depositados en el suelo. Sin embargo, la ATSDR concluyó:

- El tocar o ingerir accidentalmente el suelo en Vieques no causaría efectos nocivos para la salud.
- Las actividades de adiestramiento han elevado los niveles de algunos metales en el suelo en la antigua Área de Impacto de Proyectiles Activos. Sin embargo, los niveles son demasiado bajos para ser un problema de salud.

La seguridad del pescado y los mariscos consumidos regularmente por los residentes de Vieques ha sido una preocupación adicional. El ambiente marino podría haber sido contaminado por la filtración de sustancias químicas provenientes de las municiones que cayeron en áreas bajo el agua o de la escorrentía de aguas pluviales contaminadas del campo de adiestramiento al mar. Esto, a su vez, podría haber contaminado peces comestibles y mariscos y resultar en una exposición peligrosa a través del consumo humano. Sin embargo, la ATSDR concluyó:

- Es seguro comer pescados y mariscos de las aguas costeras y las tierras cercanas a la costa de Vieques, incluyendo pescados y mariscos de las zonas norte y sur del Área de Impacto de Proyectiles Activos.
- Varios metales fueron detectados en los pescados y los mariscos recolectados alrededor de Vieques. Sin embargo, las concentraciones de metales fueron demasiado bajas para ser un problema de salud, aun si una persona comiera pescado o mariscos todos los días durante 70 años.
- Los compuestos de explosivos no se detectaron en ninguno de los peces y los mariscos comestibles que fueron muestreados de Vieques.

Por último, los residentes de Vieques han expresado sus preocupaciones de que el suministro de agua potable de la isla podría haber sido contaminado por las actividades de la Marina. La ATSDR concluyó que no parece haber una probabilidad para la migración de la contaminación de las instalaciones de la Marina al centro de la isla donde se encuentra la población residencial. Un estudio del 1999 preparado...
por un contratista, a petición de la Marina, indicó que las aguas subterráneas principalmente no fluyen desde las instalaciones de la Marina a la parte residencial de la isla. Además, el agua subterránea debajo de la parte residencial de la isla no se ha usado como una fuente primaria de agua potable en Vieques desde el 1978, debido a un aumento en la intrusión de agua salada dentro del acuífero. En cambio, los residentes reciben el agua potable principalmente del suministro público de agua potable que se canaliza desde la isla grande de Puerto Rico. La ATSDR evaluó los resultados de un muestreo del suministro público de agua y concluyó:

- El agua no se vio afectada por los contaminantes de las instalaciones de la Marina y era segura para beber.

- Unos pocos pozos de agua subterránea públicos y privados aún existen en el área residencial de la isla y en ocasiones se usan cuando el suministro público de agua se interrumpe. El agua de estos pozos es segura para beber, con la excepción de un pozo privado que contenía agua contaminada con nitratos y nitritos (probablemente procedentes de fuentes agrícolas o de sistemas sépticos cercanos y no por contaminación que migró de las instalaciones de la Marina).

La respuesta a las evaluaciones de la salud pública de la ATSDR

Las conclusiones de la ATSDR fueron controversiales, no sólo entre los residentes de la isla que creen que los efectos a la salud que han experimentado son causados por la exposición a la contaminación de las operaciones de la Marina en Vieques, pero también entre un número de investigadores independientes (es decir, no federales) que han estudiado la contaminación ambiental en Vieques. Estos investigadores han afirmado que los niveles de contaminación en algunos casos son más altos que los reportados por la ATSDR y que los riesgos potenciales para la salud por lo tanto probablemente sean mayores en general que lo que la ATSDR concluyó.

Vista del Subcomité de Investigaciones y Supervisión del Comité de Ciencia y Tecnología de la Cámara del 12 de marzo de 2009

El 12 de marzo de 2009, el Subcomité de Investigaciones y Supervisión del Comité de Ciencia y Tecnología de la Cámara celebró una vista titulada "ATSDR: Los problemas en el pasado, potencial para el futuro."¹²

El personal de la Mayoría del Subcomité, en un informe que preparó de los antecedentes en conexión a la vista, señaló que "muchos científicos independientes y expertos de salud cuestionan" los hallazgos de la ATSDR en Vieques. El Informe preparado por el personal indicó que el profesor James Porter (referencia anterior) había "presentado conclusiones en una conferencia el mes pasado que encontró que las municiones sin detonar de la Marina de los EE.UU. alrededor de la isla eran, de hecho, fugas de sustancias tóxicas, causantes de cáncer, en el océano poniendo en peligro la vida marina". El informe además señaló que, "aunque el profesor Porter advirtió que todavía no está claro qué tipo de impacto estas toxinas han tenido en el plato de comida", otros estudios han mostrado que los residentes de Vieques "tienen una tasa de cáncer 23 por ciento más alta que los de la isla grande de Puerto Rico ", y que "las plantas en la isla tienen altas concentraciones de plomo, mercurio, cadmio, uranio, cobalto, manganeso y aluminio."
Durante la vista, en la que el entonces director Frumkin testificó, los miembros del Subcomité discutieron que las evaluaciones de salud pública de la ATSDR sobre Vieques eran defectuosas e instaron a la agencia a reevaluar sus conclusiones a la luz de la investigación llevada a cabo en la isla por científicos independientes. En respuesta a las preguntas, el entonces director Frumkin indicó: “Estoy muy contento del compromiso de tomar una nueva mirada a la situación de Vieques y recolectar los datos necesarios para clarificar la situación de la salud de la gente de allí.”

Comunicado de Prensa de la ATSDR de noviembre 13 de 2009

En noviembre 13 del 2009, la ATSDR publicó un comunicado de prensa en su sitio de la Red (Internet). En el comunicado, la ATSDR declaró que tenía la intención de publicar un informe revisado que "modifica algunas de sus primeras conclusiones sobre los riesgos para la salud" y "cambia algunas de sus conclusiones anteriores sobre la seguridad de las exposiciones ambientales" en Vieques. Según el comunicado, la decisión "vino después de una revisión exhaustiva de las evaluaciones de salud pública de la ATSDR finalizada en el 2003 y otros estudios ambientales de la isla elaborados en los años siguientes." La ATSDR dijo que su reexaminación de los datos forma parte de una "mirada fresca" que la ATSDR prometió a los residentes de la isla y al Congreso.

El comunicado citó al entonces director Frumkin como diciendo: "Hemos aprendido mucho desde que fuimos la primera vez a Vieques hace una década y hemos identificado vacíos de información en los datos ambientales que pueden ser importantes en la determinación de los efectos de salud.... Los vacíos de información que encontramos indican que no podemos establecer sin duda alguna que no existen riesgos de salud en Vieques. Hemos encontrado razones para hacer más preguntas”.

Por último, la ATSDR indica en el comunicado que "anticipa" “recomendar biomonitoreo para determinar si las personas que viven en Vieques han estado expuestas a químicos dañinos, y si es así, a que niveles esos químicos se encuentran en sus cuerpos” y “trabajar con los oficiales de salud de Puerto Rico para hacer una evaluación más exhaustiva sobre las consecuencias de salud”.

El contenido del comunicado de prensa del 13 de noviembre de 2009 de la ATSDR fue consistente con el mensaje que Dr. Frumkin transmitió personalmente durante nuestras reuniones el 22 de septiembre de 2009 y octubre 22 de 2009.

Vista del Subcomité de Investigaciones y Supervisión del Comité de Ciencia y Tecnología de la Cámara de 20 de mayo de 2010

El 20 de mayo de 2010, el Subcomité de Investigaciones y Supervisión celebró una vista titulada "Previendo el daño – Protegiendo a la salud: Reformando la práctica de salud pública ambiental del CDC". En el "Acta de la Vista", elaborada por el personal de la Mayoría del Subcomité, se observó que las evaluaciones de salud pública de la ATSDR en Vieques habían sido "ampliamente criticadas.”

Testimonio de Dr. John Wargo en la vista del Subcomité el 20 de mayo de 2010

Uno de los testigos en la vista del 20 de mayo de 2010 fue el Dr. John Wargo, profesor de Análisis de Riesgo y Política Ambiental de la Universidad de Yale, que había llevado a cabo investigaciones sobre Vieques durante varios años. El testimonio escrito del Dr. Wargo constituye una de las críticas más completa de las evaluaciones de salud pública de la ATSDR sobre Vieques. Como tal, merece una
Una evaluación de los datos ambientales, biológicos y de salud de la Isla de Vieques (Versión final) Marzo 2013

consideración más cercana aquí—principalmente como una ayuda para analizar si el Informe de la ATSDR de 2011 presenta alguna de las mismas deficiencias que el Dr. Wargo identificó con relación al trabajo anterior de la agencia en la isla.

Dr. Wargo argumentó que las actividades de adiestramiento militar en Vieques "han creado una sopa tóxica, un lio que nunca he visto nada parecido en mi experiencia". Dr. Wargo testificó que las evaluaciones de salud pública de la ATSDR sobre Vieques "contienen fallas en los métodos científicos, análisis e interpretación de la evidencia, sin embargo la agencia siempre llega a la conclusión de que los riesgos para la salud humana son insignificantes".16 Dr. Wargo indicó que “el plomo, el mercurio, el cadmio, el cromo, el arsénico y el uranio han sido todos liberados en el ambiente de Vieques” como resultado de las actividades de adiestramiento militar y que estos elementos "son bien conocidos de [ser] sustancias peligrosas y tienen el potencial de ser absorbido por las plantas, la vida silvestre, los peces y los mariscos”. Dr. Wargo opinó que “una revisión cuidadosa de las evaluaciones de salud pública de la ATSDR revela una agencia determinada a no encontrar ninguna relación causal entre los 60 años de historia del Departamento de Defensa arrojando cerca de 100 millones de libras de armas en una pequeña isla y la incidencia excepcional de enfermedad humana entre los que vivieron a través de esta historia”.

Respuesta de la ATSDR: Estamos de acuerdo en que las actividades de bombardeo probablemente hayan aumentado los niveles de contaminantes en algunas partes del ambiente de Vieques. Hacemos este punto en el capítulo 1, sección 1.3 del Informe.

El análisis de la vías de la ATSDR, sin embargo, es una determinación de si las personas podrían estar expuestas a químicos relacionados con las actividades militares a niveles que podrían ser perjudiciales para su salud y requiere que:

- Las personas tengan contacto con esos químicos,
- Los químicos entren en sus cuerpos y
- La cantidad de exposición (es decir, la dosis) sea a niveles nocivos.

En nuestra revisión del suelo, el aire, las aguas subterráneas y los datos de los mariscos, no pudimos identificar cómo las personas podrían entrar en contacto con los químicos relacionados con las actividades militares a niveles de preocupación para la salud:

- La migración de lo contaminantes en el aire no es suficiente para dar lugar a la exposición por inhalación a niveles de preocupación para la salud.
- Los residentes no tienen contacto con los suelos contaminados en el LIA.
- Los residentes no están bebiendo agua subterránea contaminada.

El único químico que nos pareció que era un problema de salud pública fue el mercurio en el pescado. Y este mercurio probablemente proviene de la reserva global de mercurio que circula en el ambiente y no de las actividades militares en la isla.

El personal de la ATSDR que llevó a cabo el Informe no participó en el desarrollo de los informes previos de la ATSDR en Vieques y el Informe pasó por amplia revisión interna y externa de expertos. El análisis del Informe y las conclusiones se basan en la ciencia actual mejor disponible.
El testimonio oral y escrito del Dr. Wargo también incluyó las siguientes conclusiones:

- La ATSDR “concluyó que la ausencia de evidencia de contaminación es suficiente para concluir la ausencia de amenazas significativas para la salud. Sin embargo, la mala calidad del monitoreo ambiental y la vigilancia hace que sea imposible justificar las declaraciones radicales de seguridad realizadas por la ATSDR”.

Respuesta de la ATSDR: Después de una evaluación de los mejores datos disponibles, la ATSDR considera que no ocurrieron exposiciones que afecten la salud de los viequenses como resultado de las actividades militares llevadas a cabo en la isla. Nuestras recomendaciones sobre el consumo de pescado para los niños y las mujeres embarazadas se basan en nuestras preocupaciones sobre los niveles de mercurio en el pescado que se derivan de la reserva global de mercurio que circula en el ambiente.

[Comentario]

- La ATSDR "rutinariamente se basó en estudios preparados previamente o en datos recopilados por otros en lugar de diseñar nuevos estudios que fuesen apropiados para las condiciones y problemas locales."

- La ATSDR "raramente llevó a cabo su propia investigación sobre la contaminación ambiental, la exposición a los seres humanos, y la prevalencia de enfermedades; y las deficiencias en cualquiera de los estudios disponibles los llevó a concluir que no existe evidencia creíble de una relación causal entre los materiales peligrosos y la enfermedad..."

- La ATSDR "no realizó ninguna prueba para detectar si las sustancias químicas peligrosas liberadas por la Marina estaban presentes en los tejidos de los residentes de la Isla". La ATSDR tampoco "realizó estudios epidemiológicos originales para entender los patrones de prevalencia de enfermedades en la Isla." Sin embargo, "estos tipos de datos son fundamentalmente necesarios para comprender las relaciones entre la enfermedad humana y los productos químicos peligrosos".

Respuesta de la ATSDR: Debido a la limitación de recursos, la ATSDR rara vez recoge muestras ambientales en sitios de desperdicios peligrosos. Confiamos en nuestros socios, las agencias ambientales federales y estatales, para recoger estas muestras. Nosotros seguiremos trabajando con la Marina, con la EPA y con cualquier otra organización que pueda recoger muestras ambientales en Vieques.

Hemos recomendado que las agencias de salud pública evalúen la viabilidad de utilizar los métodos ‘SMART BRFSS’ para obtener estimados de la prevalencia del asma, la diabetes, la hipertensión, y de otras enfermedades crónicas. El proyecto Tendencias de Riesgo en Areas Metropolitanas/Micropolitanas Seleccionadas (Selected Metropolitan/Micropolitan Area Risk Trends, SMART) es parte del Sistema de Vigilancia de Factores de Riesgo del Comportamiento (Behavioral Risk Factor Surveillance System, BRFSS), y está diseñado para recopilar información
sobre la salud de los habitantes en unidades geográficas más pequeñas. La implementación de
tal sistema para Vieques proporcionaría información muy valiosa sobre el estado de salud de los
Viequenses. Además, hemos ofrecido ayudar a los funcionarios de salud de Puerto Rico si
deciden llevar a cabo un programa de biomonitoreo. Además de asesoramiento técnico, la
ATSDR está dispuesta a proveer apoyo de laboratorio por el esfuerzo.

[Comentario]

La Marina "cuidadosamente ha controlado el acceso al campo de bombardeo de manera que ha
impedido el que científicos independientes realicen investigaciones científicas. Cuando el gobierno
controla la ciencia, ellos controlan la narrativa del riesgo para la salud humana. Hay una clara necesidad
de crear una alternativa [institución] para que científicos independientes e imparciales puedan llevar a
cabo estas evaluaciones de salud".

Respuesta de la ATSDR: El acceso al sitio está restringido debido a preocupaciones relacionadas a las
municiones sin detonar, las cuales podrían presentar un peligro físico en el sitio. Aunque el acceso al
sitio está restringido, el muestreo en el LIA por organismos independientes ha ocurrido:

- Investigadores de Casa Pueblo y de la Universidad de Puerto Rico muestrearon la vegetación
del LIA en el 2000 (Massol Deyá and Díaz 2000).
- Servicios Científicos y Técnicos, Inc. recolectó muestras de suelo durante la protesta desde
mayo del 1999 a abril del 2000 (García et ál. 2000).
- La ATSDR/EPA recolectó peces y mariscos en el LIA y sus alrededores en julio del 2001.
- NOAA recolectó cangrejos terrestres y cangrejos violinistas del LIA en Junio del 2005 (Ridolfi
 and NOAA 2005).

Los datos que la ATSDR evaluó están disponibles para cualquier científico que desee revisarlos.

[Comentario]

- Con respecto a la vía aérea, "los datos de contaminación del aire estuvieron mal administrados
por la Marina y por lo tanto, proporcionan información de poca confianza sobre la magnitud de
la distribución de los contaminantes del aire durante periodos de alta actividad de
entrenamiento en el Área de Impacto de Proyectiles Activos". Como resultado, la ATSDR se
basó enteramente en un estudio de modelado para evaluar esta vía, lo que limita el valor
persuasivo de su conclusión de que las "exposiciones estimadas son inferiores a los niveles
conocidos como nocivos para la salud”.

Respuesta de la ATSDR: Este comentario parece corresponder a un estudio de muestreo de aire
que la Marina realizó en los años 70. La ATSDR concluyó que "... se desconoce la calidad de las
concentraciones obtenidas de este esfuerzo de muestreo, porque no se ha podido encontrar
ninguna documentación que describa los métodos de muestreo utilizados o la garantía de
calidad de las medidas tomadas." Es lamentable el que no exista documentación adicional para
este esfuerzo de muestreo, el cual no encontró concentraciones inusualmente elevadas de materia particulada. Sin embargo, en nuestra experiencia, no es raro el encontrar que la documentación de los muestreos que ocurrieron hace 30 años esté incompleta. En una nota relacionada, la ATSDR hizo numerosos intentos para adquirir la documentación para el muestreo de aire que la Junta de Calidad Ambiental de Puerto Rico (JCA) llevó a cabo en Vieques en los años 70; hasta la fecha, ninguna documentación del estudio ha sido proporcionada a la ATSDR. Después de invertir un esfuerzo considerable en tratar de localizar y evaluar eventos de muestreo de aire en Vieques realizados en el pasado, la ATSDR finalmente llegó a la conclusión de que "no existieron programas de muestreo de calidad de aire en Vieques durante los ejercicios de bombardeo con proyectiles activos."

Después de llegar a esta conclusión, ATSDR tuvo que tomar una decisión con respecto a cómo evaluar los niveles de contaminación del aire en el pasado. Todos los ejercicios de bombardeos con proyectiles activos en Vieques habían cesado para el tiempo en que la ATSDR se involucró en el sitio. Por lo tanto, era imposible llevar a cabo un nuevo estudio de muestreo que de alguna manera pudiera cuantificar los niveles de contaminación del aire en el pasado. Debido a que el muestreo no era una opción, las opciones principales de la ATSDR para evaluar los niveles de contaminación del aire en el pasado fueron (1) el uso de estudios de modelado para estimar los niveles de contaminación que pudieran haber existido o (2) afirmar que no existen datos y concluir que los niveles de contaminación del aire en el pasado no pudieron ser determinados. ATSDR optó por perseguir la opción de modelado con el interés de poder comunicar resultados científicos a los residentes de Vieques. Todas las evaluaciones de modelado de aire tienen limitaciones e incertidumbres inherentes, y esto fue reconocido a través del PHA de Aire del 2003. Sin embargo, por múltiples razones citadas en el PHA de Aire del 2003, la ATSDR considera que las asunciones formuladas en la modelación son conservativas (protectoras) y que típicamente erraron en el lado de exagerar las emisiones, y por ende las exposiciones, especialmente a metales y explosivos.

La ATSDR completamente consideró estas incertidumbres y la magnitud de las concentraciones de aire estimadas (cuya magnitud, en la mayoría de los contaminantes, fue inferior en varios órdenes a las concentraciones nocivas para la salud) antes de concluir que el análisis de modelado representa un recuento razonable de las exposiciones que ocurrieron en Vieques y que no subestima las exposiciones que los residentes podrían haber experimentado.

El Informe cuidadosamente evalúa todas las suposiciones e ideas incluidas en el análisis de modelado anterior y concluye lo siguiente: "Revisamos los datos sobre los contaminantes aerotransportados provenientes de ejercicios militares en el antiguo Campo de Adiestramiento Naval de Vieques. Esta revisión confirmó los resultados anteriores e indicó que es muy poco probable el que los contaminantes de aire proveniente de las pasadas operaciones militares hayan tenido efectos sobre la salud de los Viequenses." Para más información al respecto, consulte el PHA de Aire del 2003 y el capítulo 6 del informe.

Un estudio reciente, Gioda et ál. (2007), examinó materia particulada (MP), PM$_{10}$ específicamente, y concentraciones de metales en muestras de aire de varios lugares de Puerto
Rico, incluyendo a Vieques. Mediante este estudio algunos datos específicos de sustancias químicas están disponibles. La mayoría de los metales analizados en las muestras de Gioda et ál. (cadmio, cobalto, cobre, hierro, níquel, plomo y vanadio) están muy por debajo de los valores de comparación de la normativa de salud y no representan un peligro para la salud pública. Para obtener más información sobre este tema vea el capítulo 6, sección 6.2.3 del Informe.

[Comentario]

- Con referencia a la vía de suelo, la Marina y la ATSDR “fallaron en recolectar datos de contaminación de suelo asociados con las operaciones militares. La ausencia de estos datos previno el que ellos y otras personas pudieran entender cuándo y dónde el suelo podría presentar un peligro a la salud pública. Esto podría ocurrir por la explosión de las partículas del suelo hacia la atmósfera, en movimiento a favor del viento, y eventualmente estableciéndose en plantas, terrenos, y tal vez en otras cisternas.” Dr. Wargo cuestionó el por qué la ATSDR no había monitoreado el suelo — así como los tejidos vegetales comestibles y productos de origen animal — para compuestos peligrosos liberados por las actividades de adiestramiento.

Respuesta de la ATSDR: La ATSDR revisó el muestreo de suelos realizado en el LIA. Los resultados demostraron muy pocos casos de contaminación sobre los niveles de referencia o de base (vea el Informe, Capítulo 1, Sección 1.3.3). Los resultados de modelado de aire indicaron que solo pequeñas cantidades de contaminantes relacionados a actividades militares podrían haber migrado a áreas residenciales. Además, el muestreo para explosivos se llevó a cabo a lo largo de la frontera occidental de la EMA en el 1999, y ninguno fue detectado (CH2MHILL and Baker 1999). La ATSDR ha recomendado la colección del suelo y muestras de productos de siembra de zonas residenciales para confirmar que estas áreas no fueron afectadas.

[Comentario]

- Con respecto a la vía de pescado y de mariscos, “las conclusiones de la ATSDR de que el consumo de pescado por los residentes de Vieques no representa un riesgo para la salud, no están apoyadas por los datos en que la Agencia basó su hallazgo.” A pesar de que la ATSDR colectó pescado y los examinó para identificar la presencia de sustancias químicas, “sus diseños de muestreo fueron inapropiados y no fueron sensitivos.”

Respuesta de la ATSDR: La investigación del muestreo de pescado de la ATSDR fue realizada en colaboración con el Equipo de Respuesta Ambiental de la EPA, cuya experiencia en muestreo de pescado es extensiva. El diseño del muestreo utilizó los protocolos disponibles para el tiempo en que éste se llevó a cabo (en el 2001). Adicionalmente, la ATSDR consultó con el peticionario y con los residentes locales para que nos asesoraran con el plan de muestreo. En el presente, la ATSDR no concluye que sea seguro el que todas las personas consuman pescado. Revisamos nuestras conclusiones en el Informe y establecimos recomendaciones acerca del consumo de
pescado en niños y en mujeres embarazadas, en base a nuestras preocupaciones sobre el mercurio.

[Comentario]

- Adicionalmente, la ATSDR equivocadamente “asume que el pescado constituye el único alimento significativo que puede traer consigo contaminante de origen militar a la mesa de cenar.” La Marina, la EPA, y la ATSDR “descuidaron el investigar las actividades de pastoreo de vacas, cabras, ovejas, cerdos, y de gallinas, las cuales podrían haber sido una vía significativa de exposición adicional.” Debido a que la Marina arrendó terrenos a las personas que pastoreaban su ganado, algunos en proximidad al Area de Impacto de Proyectiles Activos, “parece ser prudente el considerar la posibilidad de que los metales, los explosivos, y otros contaminantes de origen militar, sean absorbidos por la vegetación la cual a su vez podría ser consumida por el ganado.” La “atención restricta al pescado, de la ATSDR, parece ser más conveniente que científicamente justificable.”

Respuesta de la ATSDR: El Departamento de Agricultura de Puerto Rico, en colaboración con la Asociación de Agricultores de Puerto Rico, obtuvo muestras de pastos, árboles frutales y ganado bovino de Vieques. El Departamento de Agricultura y la Asociación de Agricultores concluyeron que los productos agrícolas de Vieques eran aptos para el consumo y que no contenían niveles tóxicos de metales. Para confirmar esta conclusión la ATSDR ha recomendado el muestreo de ganado local (vea el Informe, capítulo 5, sección 5.2).

[Comentario]

- Con respecto a la vía de agua subterránea/agua de consumo, la conclusión de la ATSDR de que los suministros públicos de agua potable no representan un peligro a la salud “no está apoyada por un diseño de muestreo estadísticamente válido.” El período de 35 años desde el 1943 al 1978- cuando se completó el suministro de agua pública proveniente de Puerto Rico—es “el periodo con mayor probabilidad de que la población de la Isla de Vieques haya estado expuesta a compuestos peligrosos emitidos por la Marina al ambiente, vía el agua potable.” A la misma vez, “éste también fue un periodo en que el monitoreo de la calidad del ambiente de la Isla, por parte del Gobierno, era mínimo.” El “historial y calidad pobre del monitoreo de calidad de agua hace que sea difícil el reconstruir un historial de exposición con precisión,” debido a que los “suministros de agua en Vieques no fueron rutinariamente muestreados para sustancias químicas intensamente emitidas al ambiente por la Marina” y a que “la ATSDR, por su parte, no condujo ningún muestreo.” En su lugar, la Agencia se basó en estudios previos conducidos por el Departamento de Salud, por la EPA, por el Servicio Geológico de los Estados Unidos, y por una agencia consultora contratada por la Marina. A pesar de que la ATSDR informó la presencia de los explosivos RDX and Tetryl en los suministros de agua potable, la Marina y la ATSDR no proveyeron “una explicación plausible de estos hallazgos.” Los estudios interpretados por la ATSDR “no demuestran la ausencia de peligro a la salud de las actividades de la Marina. Por el contrario, demuestran la ausencia de muestreo por parte de la Marina de los suministros de agua potable para la comunidad.”
Respuesta de la ATSDR: La ATSDR ha revisado los datos disponibles de calidad de agua potable en Vieques. El Informe hizo mención de que cuando los datos históricos no están disponibles, no podemos determinar si el agua era segura para el consumo. El agua subterránea del LIA no fluye hacia el antiguo suministro de agua pública en la Isla. Por lo tanto, las actividades militares del LIA no pudieron haber contaminado esos pozos.

Dado los datos que hemos revisado, el agua en el presente es segura para el consumo. Aún así, la continua seguridad del acueducto de suministro de agua, depende del monitoreo continuo del suministro de agua de acuerdo a los reglamentos federales y, de ser necesario, a la pronta acción para abordar violaciones.

[Comentario]

De forma más general, Dr. Wargo testificó que la ATSDR sufre “de un problema cultural subyacente.” Específicamente, él argumentó que la Agencia ha “malinterpretado la intención de su misión.” El dijo que era claro, en base a las evaluaciones de salud pública, que la ATSDR “cree que su propósito es el hallar evidencia conclusiva de que las sustancias químicas peligrosas han causado pérdida de salud.” Sin embargo, “debido a que los datos necesarios para demostrar la causa a la pérdida de salud... raramente existen, la Agencia normalmente concluye que ‘no existe un riesgo significativo a la salud humana,’ y declara la seguridad de las comunidades en los alrededores. Sin embargo, estas conclusiones son ilógicas, y científicamente débiles. Mientras que la “ATSDR no tiene evidencia suficiente para concluir riesgo a la comunidad, testificó el Dr. Wargo, tampoco tiene “suficiente evidencia para concluir ‘seguridad’ ”

Respuesta de la ATSDR: La misión de la ATSDR es el determinar si las comunidades podrían estar expuestas a niveles de sustancias peligrosas que pudiesen ser dañinos. Si las comunidades están tan expuestas, la Agencia tiene que determinar qué efectos a la salud podrían resultar. En el caso de Vieques, dada la información disponible, la ATSDR concluye que no se espera el que los Viequenses estén expuestos a niveles dañinos de contaminantes relacionados al sitio.

Sin embargo, la ATSDR ha identificado la exposición al mercurio debido al consumo frecuente de pescado marino como un peligro potencial a la salud pública. Nuestras conclusiones y recomendaciones sobre el consumo de pescado de arrecifes de Vieques se presentan en el capítulo 2 y en el Resumen Ejecutivo. No pudimos encontrar ninguna relación entre el mercurio en el pescado y las operaciones militares en Vieques. Una explicación más plausible para los niveles de mercurio encontrados en pescados es que éstos son el resultado del depósito global de mercurio circulando por el ambiente.

[Comentario]

Dr. Wargo recomendó, entre otras cosas, que la ATSDR lleve a cabo pruebas con tejido humano; evaluar la prevalencia de enfermedades; evaluar explícitamente la calidad y la incertidumbre de cada fuente de datos; y establecer normas rigurosas antes de declarar seguridad.
Respuesta de la ATSDR: Según lo mencionado previamente, ATSDR está trabajando con nuestros socios en Puerto Rico para explorar la posibilidad de un programa de biomonitoring enfocado en Vieques. ATSDR también ha recomendado que los oficiales de salud consideren un SMART BRFSS para determinar la prevalencia de varias condiciones de salud en Vieques. ATSDR evaluó la calidad y señaló las limitaciones de cada fuente de datos en el Informe.

Conclusión

Basado en lo anterior, respetuosamente le insisto a la ATSDR el que implemente las seis recomendaciones que he hecho. Espero seguir trabajando con ustedes en este asunto.

Respuesta de la ATSDR: Por favor, vea las respuestas anteriores.
Anotaciones:

2. [link](http://www.ca1.uscourts.gov/pdf_opinions/10-1648P-01A.pdf)
4. Borrador del Informe, página xi.
5. Borrador del Informe, página 59. Vea también el borrador del Informe, página 65 (declara que las cinco investigaciones de biomonitorio llevadas a cabo en Vieques hasta ahora, por oficiales locales, “no permiten ninguna conclusión acerca de la exposición a contaminantes relacionados al bombardeo.”)
6. Estoy consiente de que la ley federal no requiere la revisión de las evaluaciones de salud pública por otros profesionales, pero sí la requiere para otros tipos de estudios de la ATSDR. Ver 42 U.S.C. 9604(i)(13). Por supuesto, el Estatuto tampoco le prohíbe a la ATSDR el pedir revisión de sus evaluaciones de salud pública.
8. [link](http://www.springerlink.com/content/978-007-1214-0#section=902961&page=2&locus=19)
9. Entiendo que la Marina es responsable de los costos de los estudios de la ATSDR en Vieques. Por lo tanto, la suficiencia de la financiación de la Marina será la clave para la implementación de mis recomendaciones.
10. Esta sección y las dos secciones que le siguen, provienen en gran parte de la sección de Resultados de H.R. 1645, la Ley de Recuperación y Desarrollo de Vieques del 2011, introducida el 15 de abril de 2011 y copatrocinada por 21 miembros del Congreso.
11. Esta sección proviene en gran parte de un informe de 34 páginas preparado por el Servicio de Investigación del Congreso (Congressional Research Service) para mi oficina, a mi petición, titulado “Limpieza de las Antiguas Facilidades de la Marina de Guerra en la Isla de Vieques de Puerto Rico (Cleanup of Former U.S. Navy Facilities on Vieques Island, Puerto Rico)” y con fecha del 19 de agosto de 2009.
16. [link](http://gop.science.house.gov/Media/hearings/oversight10/may20/Wargo.pdf).
Referencias de la ATSDR

Comentarista 3

[Comentario]

Estoy comentando sobre el borrador del documento de la ATSDR en Vieques, PR y en particular sobre las preocupaciones planteadas acerca de la exposición de los seres humanos al mercurio y de la fauna que habita en y alrededor de Vieques.

A pesar de la preocupación considerable expresada por individuos y agencias sobre los supuestos niveles altos de mercurio en Vieques y de las varias hipótesis sobre el origen de estos niveles elevados de mercurio, parece haber una omisión evidente de una fuente probable de exposición directa al mercurio elemental en las casas de los habitantes de Vieques, así como en los ambientes terrestres y acuáticos más grandes.

Muchos puertorriqueños utilizan el mercurio elemental en una variedad amplia de prácticas mágico-religiosas, en particular dentro de las religiones del Espiritismo y de la Santería. La creencia genérica detrás de este uso es que el mercurio (azogue, asoque, mercurio) atrae el bien y repele el mal. Muchos de estos usos esotéricos exponen el mercurio al aire interior; siendo más problemática la práctica de esparcir mercurio en los pisos de las viviendas. Este mercurio va a permanecer en el piso por periodos de varias décadas, y mientras, emite niveles neurotóxicos de vapor de mercurio.

Todo el mercurio utilizado en estas prácticas ocultas finalmente entra a los ambientes terrestres y acuáticos más grandes.

En las últimas dos décadas he alertado a la Región 2 de la EPA sobre este problema, tanto aquí, en su sede en Nueva York, como en sus oficinas en Puerto Rico. También he alertado a numerosas autoridades de salud y ambientales y a universidades en Puerto Rico. Sin embargo ninguno de ellos ha llevado a cabo ninguna investigación sustantiva para evaluar los niveles de mercurio en viviendas o botánicas en Puerto Rico. La única investigación sobre el tema que conozco fue hecha por el Dr. Núñez-Molina de la Universidad de Mayagüez (adjunto) en la década de 1990. El Departamento de Asuntos al Consumidor de Puerto Rico hizo el intento en el 1991 de prohibir la importación y distribución de mercurio para la venta de éste en botánicas.

1. ¿Qué han hecho la ATSDR y los establecimientos médicos y ambientales puertorriqueños para evaluar el uso del mercurio en prácticas mágico-religiosas, y la contaminación doméstica y ambiental que esto causa?

Respuesta de la ATSDR: Bajo la Ley Integral de Respuesta, Compensación, y Responsabilidad Ambiental (Comprehensive Environmental Response, Compensation, and Liability Act ó CERCLA, también conocido como Superfundo), el Congreso le proveyó a la ATSDR con la autoridad de llevar a cabo ciertas actividades de salud pública. Note, por favor, que CERCLA le provee a la ATSDR con la autoridad de evaluar en las viviendas, las exposiciones a contaminantes ambientales emitidos por sitios o por facilidades de desperdicios peligrosos, bajo una variedad de escenarios de exposición. Estos escenarios incluyen la posible exposición a contaminantes que puedan ser traídos al hogar,
por infiltración del aire ambiental, atado con las partículas del suelo en los zapatos, o en la ropa del trabajador. Pero CERCLA no le provee la autoridad a la ATSDR de evaluar posibles exposiciones en residencias, relacionadas a sustancias peligrosas que los residentes decidan traer a sus hogares.

Dicho esto, la ATSDR reconoce los potenciales efectos a la salud de la exposición a niveles peligrosos de vapor de mercurio que pueden experimentar los residentes debido al uso del mercurio en prácticas mágico-religiosas (por ejemplo, el uso de cápsulas que contienen mercurio). ATSDR reconoce también que el nivel de exposición residencial al vapor de mercurio, como resultado del uso de mercurio en prácticas mágico-religiosas, no está bien cuantificado. Investigaciones adicionales podrían proporcionar información valiosa sobre este importante tema. Otra vez, CERCLA no le proporciona a la ATSDR la autoridad para llevar a cabo la investigación fundamental necesaria para cuantificar este tipo de exposición.

Sugerimos que el comentarista contacte a las autoridades de salud y ambientales en Puerto Rico para determinar cuáles actividades, si alguna, han sido llevadas a cabo con respecto al uso mágico-religioso del mercurio en los hogares de Puerto Rico. La página de la ATSDR sobre el Mercurio y Su Salud (http://www.atsdr.cdc.gov/mercury/) contiene un anuncio de servicio público (No te Metas con Mercurio) y cuatro hojas informativas en inglés y en español, así como otros varios recursos importantes que podrían ser útiles para el comentarista.

[Comentario]

2. ¿Por qué el documento en cuestión falló en mencionar esta fuente verídica de exposición directa de los seres humanos al mercurio elemental, la cual es aún más cierta que la contaminación por mercurio ambiental?

Respuesta de la ATSDR: Como señala el comentarista, algunos practicantes de ciertas religiones de América Latina y el Caribe, tales como el Vudú, la Santería, y el Palo y Espiritismo, utilizan mercurio ceremonialmente [EPA 2002; Johnson 1999; Masur 2011; Newby et al., 2006; Wendroff 2005; Zayas y Ozuah 1996]. Los usos ceremoniales de mercurio incluyen el aplicarlo a la piel, añadirlo a velas o la aspersión de éste alrededor de la casa. Estas prácticas potencialmente pueden exponer a los practicantes y a sus familias. Debido a que la contaminación por mercurio en el hogar puede persistir por años, el uso ceremonial de mercurio en el hogar podría exponer a los futuros ocupantes y a sus hijos, contribuyendo de esta manera a las disparidades de salud en estas poblaciones. Hemos añadido los ritos religiosos con cápsulas que contienen y que liberan mercurio en el entorno familiar como una posible fuente de exposición al mercurio, entre algunos residentes.

[Comentario]

3. ¿Por qué la preocupación sobre cantidades triviales de mercurio en campos de bombardeo deshabitados, y sin embargo, ninguna preocupación por el total de la contaminación doméstica con mercurio, cuyo promedio es de 9 gramos de mercurio elemental, intencionalmente dispersado en los pisos de los hogares en Puerto Rico?
El informe, según escrito en el borrador, necesita ser enmendado para incluir la contribución en Vieques, de los usos mágico-religiosos del mercurio.

ATSDR Response: Durante la reunión de la ATSDR con científicos puertorriqueños y con otros científicos, éstos expresaron su preocupación de que el mercurio en las bombas podría haber contaminado el ambiente en Vieques, y exponer a los viequenses al mercurio relacionado a las actividades militares. En respuesta a estas preocupaciones, el informe documenta la revisión de los datos ambientales, biológicos, y de salud.

Hemos enmendado el informe para incluir los ritos religiosos que usan capsulas que contienen mercurio, como una posible fuente de exposición al mercurio en Vieques.

Bibliografía

Comentarista 4

[Comentario]

No confío en el informe sobre la situación ambiental de Vieques. También me disgusta mucho que la Marina haya bombardeado allí y que luego la Agencia permita que la Marina de guerra, que es apenas una fuente independiente, haga las pruebas sobre la contaminación que ellos mismos dejaron atrás. No creo que el público de EE.UU. pueda confiar en este informe. ¿Qué le pasó a las autoridades para que dejaran que las mismas personas que bombardearon la isla informaran sobre la contaminación que dejaron atrás? El hecho es que la Marina de guerra y militares de EE.UU. han dejado contaminación en todo el mundo y en toda América. La contaminación dejada atrás en las instalaciones militares siempre es suficiente para matarte. Este informe es falso. Tiene que ser hecho de nuevo por un laboratorio independiente - tal vez un laboratorio de otro país.

Respuesta de la ATSDR: Este sitio siguió los procedimientos que se utilizan para todos los sitios que forman parte de la lista del Superfundo de los EE.UU. Mientras que el propietario o responsable de este sitio, la Marina en este caso, paga y lleva a cabo todo el trabajo de investigación y correctivas, su trabajo es supervisado por la EPA de los EE.UU. Al hacer el informe, la ATSDR utilizó estudios preparados por muchos otros científicos independientes, grupos y agencias, además de los informes preparados por la Marina.