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PREFACE 
 
The mission of the Agency for Toxic Substances and Disease Registry (ATSDR) is to serve the public by 
using the best science, taking responsive public health actions, and providing trusted health information 
to prevent harmful exposures and disease related to toxic substances.  The U.S. Comprehensive 
Environmental Response, Compensation, and Liability Act (CERCLA, also known as the Superfund act) 
mandates that ATSDR determine whether people living near or at a hazardous waste site are being 
exposed, have been exposed, or will be exposed to toxic substances, whether that exposure is harmful, 
and what can be done to stop or reduce harmful exposures.  CERCLA requires that ATSDR consider the 
following factors when evaluating the possible public health impacts of communities near Superfund 
sites:  (1) the nature and extent of contamination at a site; (2) the demographics of the site population; 
(3) exposure pathways that may exist at a site (the extent to which people contact site contaminants); and 
(4) health effects and disease-related data.  In addition, ATSDR is also authorized to conduct public 
health assessments at storage, treatment, and disposal facilities for hazardous wastes when requested by 
EPA, under the 1984 amendments to the Resource Conservation and Recovery Act of 1976 (RCRA).  In 
addition, ATSDR conducts public health assessments for toxic substances, when petitioned by concerned 
community members, physicians, state or federal agencies, or tribal governments.   
 
The ATSDR Public Health Assessment Guidance Manual (ATSDR 2005a) describes a process to prepare 
public health assessments that evaluate environmental data, exposure data, health effects data and 
community concerns.  The products of this process (public health assessments, consultations, and 
advisories) guide the development of public health actions or recommendations such as:  (1) reducing 
exposures (carried out by other appropriate federal, state, or tribal agencies or principal responsible 
parties); (2) recommending further scientific investigations when key exposure or health effects data are 
missing; (3) developing health education programs within an affected community; or (4) identifying 
community health care needs (ATSDR 2005a). 
 
This manual, Framework for Assessing Health Impacts of Multiple Chemicals and Other Stressors, is a 
revision of ATSDR’s 2004 Guidance Manual for the Assessment of Joint Toxic Action of Chemical 
Mixtures (ATSDR 2004a).  The revised manual serves as a supplement to the ATSDR (2005a) Public 
Health Assessment Guidance Manual by describing a recommended process to evaluate the potential 
public health impacts of exposures to multiple chemicals and other stressors, a frequent occurrence and 
concern for people living in the vicinity of sites with toxic substances.  This revised “mixture” manual 
builds on the process described in the 2004 manual and reviews scientific research advancements since 
2000 related to assessing health impacts from exposures to multiple chemicals and other stressors.   
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EXECUTIVE SUMMARY 
 

The Framework for Assessing the Health Impacts of Multiple Chemicals and Other Stressors is an update 

to ATSDR’s 2004 Guidance Manual for Assessment of Joint Toxic Action of Chemical Mixtures (ATSDR 

2004a).  The revised manual is intended to assist ATSDR environmental scientists and toxicologists in 

determining whether combined exposure to multiple chemicals and other stressors (e.g., noise, radiation) 

at sites of environmental contamination may impact public health.  It serves as a basis for ATSDR 

Interaction Profiles, as well as for ATSDR public health assessments and consultations for mixtures of 

toxic substances and other stressors that may be encountered by people living in the vicinity of sites of 

environmental contamination.  

 

Chapter 1 of this manual provides background information that is considered important in understanding 

the ATSDR approach to assessing health impacts of exposure to multiple stressors.  The recommended 

ATSDR approach described in Chapter 2 calls for a 3-tiered approach to the evaluation of exposure and 

toxic effects data to determine how exposure to multiple chemicals and other stressors may impact public 

health in ways not anticipated by single-agent analysis.  Chapter 3 discusses background issues and 

options for assessing health impacts from multiple chemicals and other stressors, including: 

 

1. Discussing quantitative and qualitative approaches to determining sufficient similarity among 
mixtures;  
 

2. Reviewing the science underlying default assumptions of dose addition or response addition for 
component-based approaches; 
 

3. Explaining (a) the hazard index approach, (b) the toxicity-organ target modification of the hazard 
index approach, and (c) the weight-of-evidence schemes to evaluate evidence for additivity and 
interactions among binary components of chemical mixtures; and 
 

4. Briefly discussing the state of the science to incorporate other nonchemical stressors into health 
assessments. 
 

The recommended ATSDR approach in Chapter 2 is meant to supplement the ATSDR (2005a) Public 

Health Assessment Guidance Manual and is generally consistent with approaches articulated by the U.S. 

Environmental Protection Agency (EPA) (1986, 2000, 2003) and other national and international public 

health or regulatory agencies (as described in Appendix C of this manual).  The approach is grounded in 

the law (Comprehensive Environmental Response, Compensation, and Liability Act [CERCLA] and the 

Food Quality Protection Act [FQPA]) with the intent of affording greater assurance of protection against 

adverse health effects than does the assessment of each chemical separately.   
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The ATSDR approach outlined in Chapter 2 emphasizes the importance of an initial problem formulation 

to focus a practical 3-tiered approach to integrating exposure data and epidemiologic and toxicologic data 

and assessing potential health impacts from combined exposure to multiple agents.  Parallel assessments 

are conducted for noncancer effects and cancer.  The conclusions from this assessment can then be taken 

into account, along with biomedical judgment, community-specific health outcome data, and community 

health concerns, to determine the health impacts and public health actions for a site contaminated with 

multiple chemicals or other stressors of concern. 

 

During problem formulation, the ATSDR approach starts with initial scoping, planning, and data 

collection activities.  Problem formulation leads to the focus of the health assessment and includes 

evaluation of site history information, environmental fate and transport data, environmental media 

sampling data, exposure and demographics data, and community health concerns.  Other outcomes of the 

problem formulation step include identification of chemicals and exposure pathways of concern and 

collection of available health-based guidance values (e.g., ATSDR Minimal Risk Levels [MRLs]) for the 

site-specific mixture, a sufficiently similar mixture, defined groups of chemicals within the mixture, or 

individual components.   

 

In the Tier 1 preliminary evaluation, exposure estimates based on environmental media data are compared 

with health guidance values for single agents and chemical mixtures of concern to identify exposure 

pathways and agents requiring further Tier 2 or Tier 3 evaluation.  Exposure pathways of concern are 

those with evidence that community members have, or are likely to, come in contact with a contaminant 

(e.g., drinking contaminated water, breathing in contaminated air, dermally contacting contaminated soil).  

The initial screening comparison of site-specific exposure estimates with health guidance values for 

single agents and defined mixtures are:  (1) the ratio of an exposure estimate to the health guidance value 

for noncancer health effects (the hazard quotient) and (2) the product of the exposure estimate multiplied 

by an EPA-derived cancer slope factor for carcinogenic agents (the cancer risk estimate).  Agents with 

hazard quotients ≥0.1 or cancer risk estimates ≥10-6 are retained for further Tier 2 analysis.  Single agents 

with hazard quotients <0.1 or cancer risk estimates <10-6 (e.g., 10-7 or 10-8) are not expected to pose health 

impacts individually or in combination with other agents and are typically not included in Tier 2 analysis, 

except in those cases when scoping, planning, and data collection activities (including community health 

concerns) indicate that combined exposure to multiple agents could produce adverse health outcomes.   
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The Tier 2 analysis starts with preliminary screening evaluation of noncancer and cancer health impacts 

from combined exposure to multiple agents.  For combined exposure to multiple agents, ATSDR 

recommends the use of:  (1) a hazard index approach to preliminarily evaluate the potential for noncancer 

effects from multiple agents of concern and (2) combined cancer risk estimates from carcinogenic agents 

of concern.  The preliminary hazard index is a sum of hazard quotients of all known agents for site-

specific exposure pathways of concern (i.e., agents with individual hazard quotients ≥0.1), and is based on 

the assumption of dose addition.  The combined cancer risk estimate is a sum of cancer risk estimates of 

all carcinogenic agents of concern associated with a site-specific exposure pathway (i.e., agents with 

individual cancer risk estimates ≥10-6), and is based on the assumption of response addition.   

 

Further Tier 3 analysis is recommended when:  (1) results of Tier 2 analyses indicate that site-specific 

exposure pathways have preliminary screening level hazard indices ≥1 or combined cancer risk estimates 

are ≥10-6; (2) concerns are high for additive or interactive joint actions (greater than or less than additive) 

from multiple site-specific agents of concern; and/or (3) additional site-specific health outcome data 

provide evidence of health effects from combined exposure to multiple agents.  Depending on the 

availability of data and resources, additional Tier 3 analysis can include:   

• evaluating and summarizing what is known and unknown about possible greater-than-additive or 

less-than-additive joint actions among site-specific agents of concern;  

• applying a qualitative weight-of-evidence approach to assessing joint actions of binary 

combinations of agents of concern;  

• using developed mixture/interaction physiologically based pharmacokinetic models to determine 

dose-dependency of possible interactions among agents of concern;  

• applying more refined and stringent applications of the hazard index and combined cancer risk 

estimate approaches that group agents of concern based on common toxicity targets or common 

adverse outcomes mediated by a common mode of action;  

• applying exposure estimates from probabilistic refinement of exposure models in calculating 

hazard indices and combined cancer risk estimates; and  

• developing hazard indices and combined cancer risk estimates for specific subpopulations that 

may be more susceptible to the site-specific agents of concern, especially children.   
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1. INTRODUCTION 
 

1.1. OVERVIEW 
 

Assessing the health impact of chemicals or other stressors (e.g., noise, radiation) in the environment is 

complicated by the reality that most toxicological testing is performed on single chemicals or physical 

agents, but human exposures are rarely limited to single agents.  Exposures resulting from hazardous 

waste sites or other releases into the environment generally involve more than one toxic substance agent 

and other stressors (ATSDR 2005a; Carpenter et al. 2002; De Rosa et al. 1996; Hansen et al. 1998; 

Johnson and De Rosa 1995; MacDonell et al. 2013; Mumtaz et al. 2007, 2011).  This occurrence leads to 

concerns that exposures to multiple chemicals or other stressors may impact public health in ways not 

anticipated by assessing the impacts of each agent alone.  

 

This manual presents a recommended approach to assess potential health impacts of exposures to multiple 

chemicals in ATSDR public health assessments and health consultations.  It is an update of, and replaces, 

the 2004 ATSDR Guidance Manual for the Joint Toxic Action of Chemical Mixtures (ATSDR 2004a).  

This document also provides overviews of the scientific principles and evidence guiding the 

recommended approach. 

 

ATSDR’s public health assessments and U.S. Environmental Protection Agency (EPA) quantitative risk 

assessments both address potential human health effects of environmental exposures to chemicals and 

other agents, but they are approached differently and used for different purposes (ATSDR 2005a).  

ATSDR’s public health assessments consider past, current, and future exposures to chemicals of concern, 

evaluate toxicological or epidemiological data for chemicals or mixtures of concern, and compare 

epidemiological or toxicological dose-response data or public health guidance values (Minimal Risk 

Levels [MRLs] and EPA cancer slope factors) with population exposure estimates to arrive at indices of 

human health impacts.  The ATSDR public health assessment process focuses closely on site-specific 

exposure conditions and health outcome data, and considers specific community health concerns to arrive 

at qualitative recommendations to reduce or prevent harmful exposures or take other public health actions 

(ATSDR 2005a).  ATSDR (2005a) guidelines for public health assessments call for early and continued 

coordination and communications with community members and representatives, principal responsible 

parties (i.e., stakeholders), EPA, and other federal, state, and local agencies.  Effective coordination and 

communication with all interested parties throughout the process can lead to harmonization and 

acceptance of recommended cleanup goals (from EPA) and public health actions.  In contrast, EPA’s 

quantitative risk assessments are used as part of investigations to determine the extent to which site 
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remedial action (e.g., clean up) or restricted use actions (e.g., for pesticides) are needed.  EPA risk 

assessments consider current and potential future exposures for chemicals of concern, evaluate 

toxicological or epidemiological data for chemicals or mixtures of concern, and compare public health 

guidance values (e.g., reference doses [RfDs], reference concentrations [RfCs], and cancer slope factors) 

for mixtures, if available, or components of mixtures, with exposure estimates for specific populations to 

arrive at numerical estimates of health risk if no cleanup occurs.   

 

This first chapter of this framework manual discusses concepts and definitions that are used in 

assessments of potential health impacts or risks from exposure to multiple chemicals and other stressors.  

Chapter 2 presents ATSDR’s recommended 3-tiered approach, and Chapter 3 discusses options and issues 

related to assessing public health impacts from exposure to multiple chemicals and nonchemical stressors.  

Appendices A and B provide additional background information not covered in Chapter 3, and Appendix 

C describes approaches recommended by other U.S. agencies and other national and international 

agencies. 

 

1.2. SOME CONCEPTS AND DEFINITIONS 
 

With the evolvement of methods to assess health impacts or risks from exposure to multiple chemicals or 

other stressors, various terminologies have developed that warrant some explanation in this framework 

(see Tables 1 and 2 for definitions of selected chemical mixture and chemical interaction terms).   

 

“Exposure to a chemical mixture” has traditionally been used to refer to combined environmental 

exposure to multiple chemicals.  Such mixtures can be simple, being comprised of a relatively small 

number of known “components”, or complex, being comprised of many chemicals, often of different 

chemical classes.  Simple mixtures may be associated with hazardous waste sites, when the number of 

components of concern identified in environmental media (i.e., those components presenting exposures 

near to or above public health guidance values) are small.  The composition of complex mixtures may not 

be fully characterized and can vary dependent on production conditions and time since release in the 

environment. 
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Table 1.  Definitions of Chemical Mixture Terms 
 
Mixture Any set of multiple chemicals, regardless of source and spatial or temporal proximity that 

may jointly contribute to actual or potential health effects in a population. 
Components The chemicals that make up a mixture. 
Simple 
mixture 

A combination of a relatively small number of chemicals that has been identified and 
quantified (e.g., the components of concern for a community near a hazardous waste site 
may constitute a simple mixture). 

Complex 
mixture 

A complex mixture has very many chemicals, often of different chemical classes.  The 
composition of complex mixtures may not be fully characterized and can vary dependent 
on production conditions and time since release in the environment.  Components of 
complex mixtures may be generated simultaneously from a single source or process (e.g., 
tobacco smoke), intentionally produced as a commercial product (e.g., gasoline, jet fuels, 
mixtures of pesticides), or coexist in environmental media as a consequence of waste 
disposal operations or release of components into the environment from multiple sources. 

Original 
mixture 

Any combination of all chemicals that are released into the environment at a specific point 
in time and location.  The composition of the original mixture can change with time and 
location due to differential fate and transport properties of the components. 

Mixture of 
concern 

The actual mixture being evaluated in a site-specific risk assessment; often referred to as 
the “whole” mixture. 

Sufficiently 
similar 
mixture 

Sufficiently similar mixtures are those having the same chemicals but in different 
proportions, or having most, but not all, chemicals in common and in similar proportions.  
In addition, similar mixtures and their components have similar environmental fate and 
transport properties, and produce similar health effects, whereas dissimilar mixtures do 
not.  

Chemical 
class 

A group of chemicals that are similar in chemical structure and in eliciting similar 
biochemical sequences of events related to toxic effects, and which frequently occur 
together in the environment, usually because they are generated by the same process, 
such as manufacturing or combustion (e.g., PCBs, CDDs, PAHs). 

Components 
of concern 

The chemicals in a mixture that are likely contributors to health hazard either because their 
individual exposure levels approach or exceed health guidelines, or because joint toxic 
action with other components, including additivity or interactions, may pose a health 
hazard. 

Index 
chemical 

The chemical selected as the basis for standardization of toxicity of components in a group 
of chemicals or agents (e.g., TCDD for the assessment of dioxin-like compounds; 
benzo[a]pyrene for the assessment of carcinogenic PAHs). 

Indicator 
chemical(s) 
 

A chemical (or chemicals) selected to represent the toxicity of a mixture because it is 
characteristic of other components in the mixture and has adequate dose-response data 
(e.g., benzene has been suggested as an indicator chemical for a specific fraction of 
gasoline). 

Aggregate 
exposure 

The combined exposure of a population to a specific agent or stressor via multiple relevant 
routes, pathways, and sources.   

Aggregate 
risk 

The risk resulting from aggregate exposure to a single agent or stressor.  
 

Cumulative 
risk 

Cumulative risk is the combined risks from aggregate exposures to multiple agents or 
stressors.  Cumulative risk assessment is an analysis, characterization, and possible 
quantification of the combined risks to health from multiple agents or stressors. 

 
Sources:  EPA 1986, 1988, 2000, 2003; Fay and Feron 1996; Hertzberg et al. 1999 
 
CDD = chlorinated dibenzo-p-dioxin; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyl; 
TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin 
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Table 2.  Interactions/Mixtures Terminologya,b 

 
Interaction When the effect of a mixture is different from the expectation of additivity based on the 

dose-response relationships of the individual components.  In this context, additivity as 
“no-interaction” is the null hypothesis. 

Additivity When the effect of the mixture can be estimated from the sum of the exposure levels 
(weighted for potency in dose or concentration additivity) or the probabilities of effect 
(response additivity) of the individual components.  
In dose additivity (also called concentration additivity), each chemical behaves as a dilution 
of every other chemical in the mixture.  Most stringently, each chemical contributes to the 
production of a common adverse outcome via a common mechanism of action.  Less 
stringently (for screening level assessments), each chemical contributes to the production 
of a common adverse outcome regardless of mechanism of action.  In response additivity 
(also called independent action), components of a mixture act independently of each other 
and probabilities of response to components are added.   

No apparent 
influence 

When a component that is not toxic to a particular biological system does not influence the 
toxicity of a second component on that system. 

Synergism When the effect of a mixture is greater than that estimated by additivity.  Synergism is 
defined in the context of the definition of no interaction, which is usually dose additivity or 
response additivity.  The use of “greater-than-additive” is preferred over the use of the term 
synergism. 

Potentiation When a component that is not toxic to a particular biological system increases the effect of 
a second chemical on that system. 

Antagonism When the effect of a mixture is less than that estimated by additivity.  Antagonism is 
defined in the context of the definition of no interaction, which is usually dose additivity or 
response additivity.  The use of “less-than-additive” is preferred over the use of the term 
antagonism. 

Inhibition When a component that does not have a toxic effect on a particular biological system 
decreases the apparent effect of a second chemical on that organ system. 

Masking When the components produce opposite or functionally competing effects on the same 
biological system, and diminish the effects of each other, or one overrides the effect of the 
other. 

 
aWhere effect is incidence or measured response, and additivity commonly is dose or response additivity. 
bBased on definitions in EPA (1988, 2000, 2003), Hertzberg et al. (1999), Hertzberg and MacDonell (2002), and 
Mumtaz and Hertzberg (1993).  
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Components of complex mixtures may be generated simultaneously from a single source or process 

(e.g., tobacco smoke, coke oven emissions, diesel engine emissions), intentionally produced as a 

commercial product (e.g., gasoline, jet fuels, transformer coolants containing mixtures of polychlorinated 

biphenyls [PCBs]), or coexist in environmental media as a consequence of waste disposal operations or 

release of components into the environment from multiple sources.   

 

Other terms related to aggregate and cumulative risk assessment have increased in frequency of use 

within the past 10–15 years (EPA 2003; see Table 1).  This manual presents ATSDR framework for 

assessing health impacts from combined exposure to multiple chemicals and nonchemical stressors; the 

ATSDR assessment process fits within the category of cumulative risk assessment.   

 

Assessments of health impacts or risks of simple or complex mixtures can be based on exposure data and 

epidemiologic or toxicologic data for the original mixture.  However, following release to the 

environment, simple or complex mixtures can change with time and distance from the original release 

site, due to the differential fate and transport of their components.  For example, immediately following a 

release of gasoline to soil, inhalation exposure to the more volatile components, especially the low 

molecular weight alkanes, may be a concern.  Contamination of groundwater and surface water with the 

more soluble components (such as benzene, ethylbenzene, toluene, and xylene) may occur over a period 

of weeks to years, possibly impacting drinking water.  The less mobile constituents, such as aliphatic or 

aromatic hydrocarbons with ≥16 carbons, may tend to remain in the soil at the site of the original release 

for extended periods.  Thus, people living near the site of release to the environment are likely to be 

exposed to subsets of the original chemicals at different proportions than in the complete original mixture, 

and chemical composition may continue to change over time.  Health guidance values based on 

toxicological or epidemiological data for the original mixture released into the environment may not be 

applicable to the actual exposures experienced by people living in the vicinity of the release. 

 

One concern for ATSDR in terms of public health is that joint toxic action or interactions among 

components of a mixture of concern may increase the health hazard impact above what would be 

expected from an assessment of each component singly.  A particular issue is whether a mixture of 

components, each of which is present at less than guidance concentrations, may be hazardous due to 

additivity, interactions, or both. 

 

As mentioned above, toxicological interactions can either increase or decrease the apparent toxicity of a 

mixture relative to that expected on the basis of dose-response relationships for the components of the 
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mixture.  Table 2 provides definitions of terms used in describing the results of interactions studies.  

These are the definitions that will be used in this document; other definitions exist.  Some of the terms, 

such as dose additivity or response additivity, refer to the lack of interactions.  Interactions are defined as 

deviations from the results expected on the basis of additivity, either dose additivity or response additivity 

(“no-interactions”-based hypotheses).  Ultimately, the various types of interaction and noninteraction can 

be sorted into three categories:  greater-than-additive (synergism, potentiation), additive (additivity, no 

apparent influence), and less-than-additive (antagonism, inhibition, masking). 

 

The early toxicology literature contains many claims of synergism or antagonism based on study designs 

that were inadequate to support the claims (Boobis et al. 2011; Borgert et al. 2001; Krishnan and Brodeur 

1991).  A typical inadequate design might involve exposure to component A and component B at 

subthreshold exposure levels, and when some biological response to the mixture was observed, a claim of 

synergism might have been made.  However, depending on the individual dose-response relationships for 

the components, the observed response could be consistent with dose addition (a “no-interactions” 

hypothesis), greater-than-additive, or less-than-additive joint toxic action (see Appendix A.3.3 for more 

discussion of evaluating interaction studies).  Borgert et al. (2001) presented five criteria that are useful 

for evaluating toxicological interaction studies and designing valid toxicological tests of interactions:  

 
1. Dose-response curves for the mixture components should be adequately characterized. 

 
2. An appropriate “no-interaction” hypothesis should be explicitly stated and used as the basis for 

assessing synergy and antagonism. 
 

3. Combination of mixture components should be assessed across a sufficient range (of exposure 
levels and mixing ratios) to support the goal of the study. 

 
4. Formal statistical tests should be used to distinguish whether the response produced by a dose 

combination is different (larger or smaller) from that predicted by the ‘no-interactions” 
hypothesis (dose addition or response addition). 

 
5. Interactions should be assessed at relevant levels of biological organizations. 

 
The major mechanisms for toxicant interactions are direct chemical-chemical, pharmacokinetic, and 

pharmacodynamic mechanisms (Mumtaz and Hertzberg, 1993).  Most of these mechanisms affect the 

internal concentrations of the toxicants or their active forms.  Knowledge of these mechanisms for two-

chemical (binary) mixtures and for classes of chemicals can be incorporated qualitatively or quantitatively 

into assessments of mixtures of chemicals using methods described in Chapter 3 of this document.   
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2. ATSDR APPROACH 
 

ATSDR recommends a 3-tiered approach to evaluating exposure and health effects data to assess public 

health impacts in communities in the vicinity of sites of chemical or physical agent contamination, such 

as hazardous waste sites, presenting possible exposures to multiple chemicals and other stressors 

(Figure 1 presents an overview of the approach).  Initial problem formulation activities are followed by as 

many as three tiers of assessment depending on the availability of exposure and health effects data, the 

nature of existing exposure and health effects data, and the extent and nature of community concerns for 

exposure and potential health effects.  Parallel assessments are conducted for noncancer effects and 

cancer (see Figure 1).   

 

2.1. PROBLEM FORMULATION:  SCOPING, PLANNING, DATA COLLECTION 
 

Initial scoping, planning, and data collection activities are essential preliminary steps in preparing a 

defensible assessment of health impacts associated with contamination of a site with toxic agents 

(ATSDR 2005a).  The initial activities are guided by legislative mandates stating ATSDR consider the 

following factors in its assessments. 

1. The nature and extent of contamination:  What are the contaminants of concern?  What are the 

temporal and spatial extents of contamination?  What media are contaminated (air, water, soil, 

sediment, food)? 

2. The demographics of exposure:  Who is expected to be exposed (population size)? What 

potentially susceptible subpopulations may be exposed (e.g., children, elderly, pregnant women)?  

3. The pathways of human exposure (past, present, and future):  How might people be exposed to 

contaminants (drinking water, eating food, breathing air, having skin contact)?  What are site-

specific exposure levels for specific populations based on route, frequencies, and duration of 

exposure and magnitude of media contamination?  

4. Possible health effects associated with site-specific exposure levels:  What toxicologic, 

epidemiologic, medical, or health outcome data are available to identify possible adverse effects 

from exposure to contaminants at a site? 

 

The early phases of information gathering and assessment are instrumental in formulation of the problems 

to be addressed by the health assessment (Figure 1).  Initial activities related to the exposure 
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Figure 1.  ATSDR Tiered Approach to Evaluate Exposure and Health Effects Data to Assess Health Impacts from 
Combined Exposure to Multiple Chemical or Physical Agents 

 
 
*“Single Agents” can include groups of chemicals with TEFs or RPFs or mixtures with health-based guidance values (e.g., MRLs or cancer slope factors).  Groups 
of chemicals with TEFs or RPFs include dioxins, PAHs, and N-methyl carbamates.  Mixtures with ATSDR health-based guidance values include jet fuels (JP-5, JP-
8) and PCB mixtures (Aroclor 1254). 
 
ATSDR = Agency for Toxic Substances and Disease Registry; CRE = cancer risk estimate; CCRE = combined cancer risk estimate; HA = health assessment; HI = 
hazard index; HQ = hazard quotient; MOA = mode of action; MRL = Minimal Risk Level; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyl; 
RPFs = relative potency factors; TEFs = toxic equivalency factors 
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evaluation portion of the assessment include collecting site history data, available environmental 

sampling data, available fate and transport data for the contaminants detected or expected in 

environmental media, and available exposure and demographics data (ATSDR 2005a).  Relevant routes 

of exposure can be identified at this stage.  For example, if residential exposures to contaminated drinking 

water are of concern, considerations should include exposure by ingestion, inhalation when showering, 

and dermal exposure when showering.  Activities for health effects evaluation include collecting existing 

health-based guidance values for acceptable levels of contaminants of concern based on toxicologic, 

epidemiologic, or medical data and any available health outcome data for the community of interest.  

ATSDR (2005a) also strongly recommends that community health concerns and health outcome data be 

collected, evaluated, and included in early phases of any health assessment (see Figure 1 Problem 

Formulation box asking, “Community concerns and health outcome data assessed?”).   

 

At this early phase, it is important to establish if the assessment will proceed using a whole-mixture or 

component-based approach.  Ideally, the noncancer and cancer assessments would be based on existing 

health-based guidance values derived specifically for the site-specific mixture of concern.  Only a few 

complex mixtures have health-based guidance values including certain jet fuels, coke oven emissions, 

diesel engine exhaust, and PCB mixtures (see Section 3.1).  However, it is unlikely that the site-specific 

mixture of concern will be identical in composition to the tested mixture that is the basis for the guidance 

value.  Alternatively, a whole-mixture approach could be used if:  (1) there are high-quality 

epidemiological data or animal toxicological data available for the site-specific mixture of concern that 

could be used to derive a health-based exposure value, or (2) the mixture of concern is considered 

“sufficiently similar” to a tested mixture that is the basis for a guidance value.  However, it is also 

unlikely that appropriate toxicity studies for a site-specific mixture will be available and widely-accepted 

methods for determining sufficient similarity have not been established (see Section 3.2 for more details 

regarding establishment of sufficient similarity).  Therefore, site-specific health assessments often 

proceed using component-based approaches (see details in Section 3.3).  When using a component-based 

approach, lumping of certain chemicals or well-defined mixtures within the complex mixture of concern 

may facilitate the preliminary assessment.  For example, well-defined mixtures with health-based 

guidance values (e.g., JP-8, PCBs) and contaminants that are members of chemical groups with special 

approved methods for assessing health effects (e.g., relative potency factor [RPF] approach for 

carcinogenic polycyclic aromatic hydrocarbons [PAHs], toxic equivalency factor [TEF] approach for 

dioxins, and indicator chemical approach for size classes petroleum hydrocarbons) may be treated as 

single agents during hazard quotient (HQ) and preliminary hazard index calculations (see Tier 1 and 2 

evaluations in Figure 1).  See Sections 2.2, 2.3, and 3.3 for more details on these approaches. 
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It is also important to identify any non-chemical agents (e.g., biological, physical, and psychosocial 

stressors) that may be pertinent to human health during the problem formulation step.  At the current time, 

however, the available scientific information is inadequate to develop specific guidelines for 

incorporating non-chemical agents in assessment of health impacts from multiple stressors with the 

exception of cancer risks associated with ionizing radiation (see Section 2.3.2).  Therefore, the potential 

impact of the majority of non-chemical stressors will only be qualitatively examined in health 

assessments that progress to Tier 3 evaluation (see Section 2.4 for more information).  However, it should 

be noted that combined exposure to noise and ototoxic substances is a recognized emerging risk 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693596/ and https://www.cdc.gov/niosh/nioshtic-

2/20042414.html) 

 

2.2. TIER 1:  PRELIMINARY EVALUATION OF EXPOSURE AND HEALTH EFFECTS DATA 
FOR SINGLE AGENTS AND CHEMICAL MIXTURES WITH HEALTH-BASED 
GUIDANCE VALUES 

 

2.2.1. Preliminary Exposure Evaluation 
 

To identify chemicals of concern, site history information and environmental sampling data are evaluated 

to determine whether or not exposure point concentrations can be determined reliably.  If appropriate and 

reliable environmental sampling data are not available, recommendations may be made for filling this 

critical data gap before proceeding further (ATSDR 2005a).  Often, environmental monitoring data are 

collected by collaborating agencies or companies, such as the EPA or principal responsible parties (PRPs) 

rarely by ATSDR.  The availability of reliable and high quality environmental sampling data, regardless 

of their source, is essential to the ATSDR public health assessment process.  

 

Information about exposure pathways for contaminants of concern is evaluated next for identifying the 

following five elements: 

1. Source of contamination; 

2. Release mechanism into water, soil, air, food, or transfer between media (i.e., fate and transport 

of contaminants in the environment); 

3. Exposure point or area (e.g., drinking water well, soil in a residential yard, sediment in a lake or 

river); 

4. Exposure routes (e.g., ingestion, dermal contact, inhalation); 

5. Potentially exposed population (e.g., adult or children residents, clean-up workers).   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693596/
https://www.cdc.gov/niosh/nioshtic-2/20042414.html
https://www.cdc.gov/niosh/nioshtic-2/20042414.html
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If all elements are identified, a “completed” exposure pathway exists.  If one or more of the elements is 

missing or uncertain, a “potential” exposure pathway exists.  If multiple routes of exposure represent 

“completed” or “potential” exposure pathways, consideration can be given to aggregate exposures across 

routes.  For completed and potential exposure pathways with appropriate exposure-point concentration 

data, ATSDR (2005a) conducts preliminary crude and refined screening-level health effects evaluations 

for each of the individual contaminants of concern (see next section).  If no completed or potential 

exposure pathways are identified, ATSDR (2005a) usually considers that no public health hazards will 

exist. 

 

2.2.2. Preliminary Health Effects Evaluation 
 

The preliminary health effects evaluation for component-based approaches begins with a crude screening 
effort in which maximum values of measured (or modeled) environmental media concentrations of 
individual agents (in air, water, and soil or sediment) are compared to media-specific guideline 
concentrations for individual agents expected to be safe for the general public (i.e., environmental media 
comparison values).  Comparison values for the crude health effects evaluation include: (1) ATSDR 
Environmental Media Evaluation Guides (EMEGs), calculated using ATSDR MRLs for noncancer effects 
from individual agents or defined mixtures of chemicals and standard exposure assumptions; (2) 
Reference Dose Media Evaluation Guides (RMEGs), calculated using EPA RfDs or RfCs for noncancer 
effects (when ATSDR chronic noncancer guidance values are not available) and standard exposure 
assumptions; and (3) Cancer Risk Evaluation Guides (CREGs) calculated using EPA Cancer Oral Slope 
Factors (OSFs) or Inhalation Unit Risks (IURs) (ATSDR 2005a).  Independent and parallel evaluations 
for noncancer and cancer effects are conducted as illustrated in Figure 1.  When appropriate ATSDR or 
EPA comparison values are not available, ATSDR environmental scientists may select from other health-
based guidance values that may be available from other agencies (see ATSDR 2005a for more details).  
For noncancer effects, individual agents are retained for more refined evaluations of health impacts from 
individual agents, when site-specific environmental concentrations exceed the EMEGs or RMEGs.  
ATSDR does not derive cancer slope factors and relies on EPA for their determination.  Cancer slope 
factors are expressed in terms of risk per exposure unit (e.g., risk per mg/kg-day for OSFs or risk per 
mg/m3 for IURs), so the product of an exposure estimate and a cancer slope factor yields a cancer risk 
estimate (CRE).  For the crude screening of individual carcinogenic agents, ATSDR multiplies the site-
specific environmental concentration by the appropriate EPA cancer slope factor (OSF or IUR) and 
appropriate default exposure factors for adults (e.g., 2.4 L water/day for 80-kg adults) to arrive at 
theoretical crude oral or inhalation CREs.  When a resultant crude risk estimate exceeds 10-6 (one in one 
million), the agent is retained for more refined evaluation involving site-specific exposure information 
and consideration of specific subpopulations, such as children or the elderly.  When no environmental 
comparison value is available, a contaminant is retained for refined Tier 1 evaluation with site-specific 
exposure information, if it has a health-based guidance value, such as an MRL or a cancer OSF or IUR, 
the assessment proceeds according to the flow chart (Figure 1) (ATSDR 2005a). 
 

The preliminary screening-level health evaluation of single agents ends with a refined evaluation that 

incorporates site-specific exposure information into the exposure assessment to arrive at administered 

doses (in units of mg/kg/day for ingestion of water or soil) or concentrations (mg/m3 in air), which are 
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compared with health-based guidance values, such as ATSDR MRLs or EPA RfDs/RfCs directly (not 

EMEGs or RMEGs) in the assessment for noncancer effects or used to calculate CREs from EPA OSFs or 

IURs (ATSDR 2005a).  For noncancer effects, the HQ is the comparative method used.  The HQ is the 

ratio of the exposure estimate to the health-based guidance value.  If the exposure estimate is 1 mg 

Chemical X/kg/day and the MRL is 0.1 mg Chemical X/kg/day, the HQ = (1 mg/kg/day) / 

(0.1 mg/kg/day) = 10.  In Figure 1, the central box for Tier 1 analysis calls for calculation of HQs and 

CREs for single agents.  As described in the Problem Formulation section, the term, “single agents” in 

Figure 1 is meant to include groups of chemicals with special approved methods for assessing health or 

mixtures with health-based guidance values (e.g., MRLs).  Recommended refined modifications of the 

hazard index approach can be used to derive HQs for certain groups of chemicals, such as the TEF 

approach for dioxins and dioxin-like compounds and RPF approaches developed by the EPA Office of 

Pesticide Programs (OPP) for certain classes of pesticides (organophosphate, carbamate, and pyrethroid 

insecticides and triazine and chloroacetanillide herbicides).  Sections 3.3.5 and Appendix C (Section C.8) 

of this manual discuss these approaches in more detail.   

 

For sites contaminated with gasoline and other complex petroleum products enriched in hydrocarbons, 

specific component-based approaches could be used to assess noncancer health impacts (e.g., ASTM 

2015; MassDEP 2002; Ohio EPA 2010; Oklahoma DEQ 2012; Total Petroleum Hydrocarbon Criteria 

Working Group 1997, 1998a, 1998b; Weisman 1998).  These approaches involve:  (1) lumping the 

complex mixture into groups of hydrocarbons with similar chemical structures (e.g., aromatic 

hydrocarbons with 5–9 carbons, aliphatic hydrocarbons with 5–8 carbons); (2) collecting data for 

concentrations of these groups of hydrocarbons in environmental media; (3) selecting a representative 

chemical with adequate dose-response data to indicate hazard potential and dose-response relationship for 

each group (i.e., an indicator chemical); and (4) using the guidance value of the indicator chemical 

coupled with exposure estimates for all members of the group in the subject mixture to estimate health 

risk from the group (i.e., calculate class-specific HQs for site-specific exposure pathways).  The approach 

is based on an assumption that toxicity of all detected members of the class can be estimated by the 

indicator chemical.  ATSDR did not derive MRLs for automotive gasoline because of the wide 

compositional range of formulations for gasoline and the likelihood that components have widely 

differing environmental fate and transport properties (ATSDR 1995a, 1999; Pohl et al. 1997).  

Consequently, exposed populations are likely to be exposed to fractions that are not sufficiently similar to 

the original mixture.  The total petroleum hydrocarbon (TPH) approach represents a way to incorporate 

site-specific environmental data in assessments of potential health impacts for fractions of hydrocarbons 

in complex petroleum-based products.   
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Site-specific exposure information to include in the Tier 1 refined exposure assessment can include 

variability in values for media-specific concentrations, exposure frequencies (days/year), exposure 

durations (years), intake rates (e.g., liters of water consumed/day or volume of air inhaled/day), or body 

weights that are different from the crude exposure assumptions.  For example, in a crude assessment, the 

maximum concentration in media samples may have been used, but a refined assessment would consider 

the variability of concentrations in environmental samples, the frequency of “detects” and non-detects” 

among the samples, the degree to which concentration variability may be due to spatial variability or “hot 

spots”, and spatial differences in accessibility to the public (ATSDR 2005a).   

Chemicals (or defined groups/mixtures treated as single agents) are retained for further in-depth analysis, 

when the site-specific exposure estimate exceeds the MRL or RfD/RfC (the HQ is ≥1) or the CRE is ≥10-6 

(see Section 2.2.1).  While agents with HQs <1 or CREs <10-6 (e.g., 10-7 or 10-8) are expected to 

individually pose no health impacts, they may have an impact when combined exposure to multiple 

agents is considered.  Therefore, all agents with HQs ≥0.1 or CREs ≥10-7, are retained for further Tier 2 

analysis of noncancer or cancer health impacts from combined exposure to multiple agents (see Figure 1 

box asking, “Do multiple agents have HQs ≥0.1 or CREs >10-7?”).  If aggregate exposure is identified as 

a concern during problem formulation, HQs should be summed across routes of exposure.  

2.3. TIER 2: PRELIMINARY ANALYSIS OF EXPOSURE AND HEALTH EFFECTS DATA 
FOR MULTIPLE AGENTS 

Exposure pathways and agents retained in the Tier 1 evaluation can be subjected to further analysis 

outlined in this (Tier 2) and the following (Tier 3) sections (see Figure 1).  The health assessment 

outcome of these activities is a qualitative narrative description of whether site exposure conditions are of 

sufficient nature, frequency, and magnitude to adversely impact public health (ATSDR 2005a).  The 

narrative should clearly state what is known and unknown about any of the agents of concern from a site-

specific exposure pathway, indicate how the potential for toxic effects from combined exposures to 

multiple agents at the site was evaluated, and concisely describe the uncertainties in the assessment. 

2.3.1. Noncancer Health Impacts from Multiple Agents 

Consideration of the potential for toxic effects from combined exposure to multiple agents at a 

contaminated site is especially important when: 1) Tier 1 evaluations of single agents and chemicals with 

health guidance values identify multiple agents that approach or exceed MRLs (i.e., the HQ approaches or 
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exceeds 1); and 2) scoping activities indicate the potential contamination of environmental media (water, 

soil, or air) with multiple toxic agents from specific processes or products.  A hazard index approach is 

recommended to preliminarily evaluate the potential for noncancer toxic effects from combined exposure 

to multiple agents at a site.  As discussed in Section 2.1, the problem formulation phase of a health 

assessment should determine whether a whole mixture or component-based method should be applied. 

 

For whole mixture approaches, the preliminary hazard index would be based on the health-based 

guidance value for the mixture of concern or a sufficiently similar mixture, rather than on the sum of the 

HQs for the individual components.  It is important to note that the “sufficiently similar” approach would 

only be a part of the preliminary hazard index, if a specific approach has been developed and received 

widespread review and acceptance.  Currently, only qualitative approaches to sufficient similarity 

determinations have been applied, but statistical approaches are being evaluated and developed (see 

Section 3.2 for more discussion).  One example that could be applied is the ATSDR (2000b) intermediate-

duration oral MRL for PCB mixtures that was based on the assumptions that:  (1) PCB mixtures are 

sufficiently similar for dose-response assessment purposes and (2) an MRL based on the lowest LOAELs 

from studies of specific PCB mixtures (i.e., a simulated environmental mixture and a commercial PCB 

mixture, Aroclor 1254) would be protective for PCB mixtures in general (see Section 3.2 for more 

details). 

 

For component-based approaches, the hazard index is based on the assumption of dose addition, and a 

preliminary hazard index is a sum of HQs ≥0.1 of all known and measured chemicals for site-specific 

exposure pathways.  The preliminary hazard index does not group chemicals based on shared toxicity 

targets (i.e., common adverse outcomes) or modes of action (MOAs); Tier 3 calls for this type of 

refinement if data are available and concerns are high for health effects from combined exposure to 

multiple agents (Figure 1).  Chapter 3 of this manual provides more in-depth discussion of the hazard 

index, the underlying rationale for using the approach, and examples of its applications and modifications.   

 

When a preliminary hazard index value exceeds 1, further evaluation is recommended, following 

guidance for Tier 3 analyses (Figure 1).  If aggregate exposure is identified as a concern during problem 

formulation, preliminary hazard indices can be summed across routes of exposure. 
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2.3.2. Cancer Impacts from Multiple Agents 
 

Public health impacts from combined exposure to multiple carcinogenic agents are assessed with an 

approach that is separate from, and parallel to, the approach for noncarcinogenic agents (see 

Section 3.3.6).  As discussed in Section 2.1, the problem formulation phase of a health assessment should 

determine whether a whole mixture or component-based method should be applied.   

 

For whole mixture-based approaches, the preliminary combined cancer risk estimate (CCRE) would be 

based on the cancer slope factor for the mixture of concern or a sufficiently similar mixture, rather than 

on the sum of the CREs for the individual components.  Limitations of the sufficiently similar approach 

described for noncancer impacts in Section 2.3.1 are applicable to cancer impacts as well. 

 

The component-based approach for cancer, initially recommended by EPA (1986), assumes independent 

action of carcinogenic agents and adopts the most conservative form of response addition (completely 

negative correlation of tolerances; i.e., individuals most sensitive to chemical A are least sensitive to 

chemical B and vice versa; see Appendix A).  Individual CREs are calculated by multiplying the site-

specific exposure estimate by the EPA cancer slope factor (oral exposure) or IUR for the agent of 

concern.  It is recommended that the combined cancer risk estimates (CCREs) be calculated for all 

carcinogenic agents identified in site-specific exposure pathways as presenting individual CREs ≥10-6 (see 

Section 3.3.6).  Because EPA Integrated Risk Information System (IRIS) values for slope factors or unit 

risks are typically upper 95% confidence limit estimates on the lifetime excess cancer risk of individual 

agents, concern has been raised that summing upper bound risks may lead to unreasonably high estimates 

of the mixture risk.  However, an analysis by Kodell and Chen (1994) suggested that the error in the 

simple sum of the upper bound risks is small relative to other uncertainties.  Furthermore, Cogliano 

(1997) concluded that the sum of the upper bound risks provides useful information regarding the overall 

risk from mixtures of carcinogens.  

 

There are embedded variables and assumptions involved in deriving cancer risk estimates for individual 

carcinogenic agents, as well as the basis for assigning agents to weight-of-evidence (WOE) cancer 

classification groups.  Effective description of these variables and assumptions is important when 

communicating cancer hazard potential to a community faced with contamination from chemical 

carcinogens.  In the final health assessment, individual and combined cancer risk estimates should be 

discussed to: (1) qualitatively describe the cancer-causing potentials of identified individual carcinogens 

and (2) compare site-specific exposure estimates with exposure levels resulting in increased risk for 
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cancer in toxicology studies or epidemiology studies forming the basis of the slope factors for oral 

exposure or unit risk estimates for inhalation exposures (ATSDR 2005a).  Combined cancer risk estimates 

from multiple agents in a site-specific exposure pathway in the range of 10-6–10-4 or greater are taken to 

present evidence of a potential health hazard from cancer, but the health assessment narratives should do 

more than just present estimated risk numbers for individual agents or multiple agents (ATSDR 2005a).  

CCREs ≥10-6 warrant additional Tier 3 evaluation by including considerations of: (1) the potential for 

interactions among the identified carcinogenic agents; (2) the relative contributions of specific types of 

cancer to the combined risk; (3) the relative contributions of individual agents to the overall combined 

risk; and (4) and the relationship of the CCRE to any community health outcome data and/or concerns.  

 

For the assessment of cancer from ionizing radiation or radionuclides, experts can be consulted to assist in 

the application of exposure models that estimate radiation dose to specific organs and tissues (ATSDR 

2005a).  These models and health guidance values for different types of ionizing radiation and 

radionuclides can be used to calculate CREs for radiation in an analogous approach to the approach for 

chemical carcinogens.  It is recommended that site-specific cancer risk estimates from ionizing radiation 

and radionuclides be added to those from non-radioactive chemical carcinogens to initially screen for 

CCREs in site-specific exposure pathways.  Estimates of combined cancer risk estimates ≥10-6 warrant 

additional Tier 3 evaluation.  Specific approaches for estimating cancer risks from two classes of 

chemicals, dioxins and dioxin-like compounds and PAHs, are discussed in more detail in Section 3.3.5.  If 

aggregate exposure is identified as a concern during problem formulation, preliminary CCREs should be 

summed across routes of exposure. 

 

2.4. TIER 3: REFINED ANALYSIS OF EXPOSURE AND HEALTH EFFECTS DATA FOR 
MULTIPLE AGENTS  
 

Further analysis of exposure and health effects data and other types of data for multiple agents should be 

conducted when:  (1) results of Tier 2 analyses indicate that site-specific exposure pathways have 

preliminary hazard indices ≥1 or preliminary CCREs ≥10-6; (2) community concerns are high for health 

effects from multiple site-specific agents of concern; and/or (3) additional community health outcome 

data provide evidence of health effects from multiple agents (see Figure 1). 

 

Because the dose-additive hazard index approach for noncancer effects and the response-additive 

approach for adding cancer risks do not account for possible interactions among agents of concern, it is 

important to determine what is known and unknown about possible greater-than additive or less-than-

additive interactions among agents of concern.  A first step is to access the information presented in the 
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Interactions with Other Chemicals sections of the ATSDR Toxicological Profiles for the agents of 

concern, if available.  Section 3.3.1.2 of this framework (Evidence to Support or Refute the Use of Default 

Dose-Additivity Approaches) can also be reviewed.  The in vivo and in vitro research studies reviewed in 

Section 3.3.1.2 provide support that:  (1) dose additivity often provided adequate descriptions of 

responses to defined mixtures of various classes of chemicals; (2) positive and negative deviations from 

dose additivity were small from a risk assessment perspective (generally <5-fold); and (3) observed 

responses to mixtures of chemicals were often below values predicted by dose addition, but higher than 

values predicted by response addition.  Further research may help to confirm or refute the validity of this 

assumption, in particular for chronic exposure scenarios and for early life exposures with possible later 

life health outcomes.  It is important to understand and communicate that recommended approaches using 

default assumptions of dose additivity or response additivity are practical tools, which could overestimate 

or underestimate actual health impacts.  

 

If sufficient data on interaction between mixture components are available, a qualitative WOE approach 

can be used to evaluate scientific evidence that binary combinations of agents of concern may act in an 

additive, greater-than-additive or less-than-additive manner (see Section 3.3.4 and Appendix B for more 

details about this binary weight of evidence [BINWOE] approach).  Based on such analysis, qualitative 

statements can be prepared regarding evidence of interactions that may cause the site-specific exposure 

pathway hazard index or combined cancer risk estimate to overestimate or underestimate health impacts.  

The BINWOE approach was used in ATSDR Interaction Profiles for a number of priority chemical 

mixtures (Pohl and Abadin 2008; Pohl et al. 2003, 2004, 2009; see www.atdr.cdc.gov/interaction 

profiles).  The Interaction Profiles can provide useful recommendations, if the subject mixture 

components overlap with agents of concern for site-specific exposure pathways.   

 

It is also useful to determine if mixture/interaction physiologically based pharmacokinetic/

pharmacodynamic (PBPK/PD) models exist for combinations of site-specific agents of concern.  These 

types of models have been used to determine external exposure levels at which interactions and deviations 

from dose additivity may exist (see Section 3.3.7 for more discussion of developed mixture/interaction 

PBPK and PBPK/PD models and their application).  

 

Because the preliminary screening approach for assessing health impacts from exposure to multiple 

agents is based on simplifying assumptions (e.g., adding HQs or CREs for all agents of concern, 

regardless of toxicity target or MOA), it can be useful to compare the outcome of the preliminary hazard 

index approach with more refined and stringent applications of the hazard index approach.  The most 
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stringent application requires that all components produce a common effect via a common MOA (this 

approach is applied by the EPA OPP to produce cumulative risk assessments for various classes of 

pesticides; see Appendix C, Section C.8), whereas a less stringent application requires that all 

components produce toxic effects in a common target tissue or organ (see Section 3.3.3 for more details 

of the Target-organ Toxicity Dose [TTD] modification to the hazard index approach).  Comparing the 

relative magnitudes of exposure-pathway-specific hazard indices calculated for all agents of concern, all 

agents affecting common toxicity targets, and all agents producing common adverse outcomes via a 

common MOA can convey a qualitative indicator of the magnitude of uncertainty and the effect of 

simplifying assumptions on the estimates of potential health impact of multiple agents associated with 

site-specific exposure pathways.  A separate analogous comparison of the preliminary CCRE for multiple 

carcinogenic agents of concern with refined combined estimates based on agents producing common 

types of cancer and agents producing common types of cancer via common MOAs can also be conducted. 

 

The Tier 3 analysis can also consider probabilistic refinements of exposure models, if appropriate site-

specific information is available, and the development of exposure estimates and hazard indices for 

specific subpopulations of the community that may be more susceptible to the site-specific agents of 

concern, especially children.  Exposure estimates for children and other potentially susceptible 

populations can be developed as a part of the Tier 1 analysis, using general information on the exposures 

and potential susceptibility of children and other susceptible populations found in ATSDR toxicological 

profiles on the agents of concern. 

 

If exposures to physical agents are experienced by communities with contaminated sites and if health 

guidance values are developed, Tier 3 analyses can:  (1) include exposure estimates in site-specific 

exposure pathways, and (2) calculate individual HQs or individual cancer risks for the physical agent, and 

3) add them to the preliminary hazard indices or CCREs for site-specific exposure pathways.  Currently, 

the only class of physical agents pertaining to this recommendation is ionizing radiation.   

 

As discussed in Section 3.3.8 of this framework manual, there have been calls for developing guidelines 

for including nonchemical stressors including biological, physical, and psychosocial stressors in 

cumulative assessments of health impacts or risks of multiple agents.  At the current time, however, the 

available scientific information is inadequate to develop more specific guidelines for incorporating 

biological, physical, or psychosocial stressors in assessing health impacts from multiple stressors.  
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2.5. PRESENTING FINDINGS IN THE HEALTH ASSESSMENT DOCUMENT 
 

Upon completion of the ATSDR 3-tiered approach, assessors should consult Section 8.7 of the ATSDR 

(2005a) Public Health Assessment Guidance Manual for guidance on preparing clear and concise 

narratives that communicate to the public the findings of the analysis of potential health impacts from 

single and multiple agents of concern.  The health assessment document should contain a narrative of the 

uncertainties associated with the hazard assessment, regardless of what tier the assessment reached (e.g., 

uncertainties in exposure modeling, unidentified fractions of the mixture, components with no health 

effects information, multiple chemicals with HQs near 0.1).   
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3. OPTIONS AND ISSUES FOR ASSESSING HEALTH IMPACTS OF 
EXPOSURES TO MULTIPLE CHEMICALS AND OTHER STRESSORS 

 

In general, assessments of health impacts or risks associated with exposures to multiple chemicals and 

other stressors use one of three approaches:  (1) use exposure data and epidemiologic and toxicologic data 

for the actual mixture of concern; (2) use data for a sufficiently similar mixture; or (3) use data on the 

components of the mixture.  Background information on these approaches is discussed in this chapter in 

order of preference. 

 

3.1. MIXTURE OF CONCERN APPROACH 
 

When exposure data and health effects data are available for the mixture of concern, use of these data has 

traditionally been the preferred approach (EPA 1986, 2000, 2003; see Chapter 2 for ATSDR approach 

and Chapter 4 for recommendations from other agencies).  However, data on the mixture of concern are 

rarely available.  When available, such data tend to be for complex mixtures that are considered a health 

hazard because they are generated in large quantities and are thought to cause adverse health effects.  In 

addition, the exposures of concern generally occur at the source of the mixture.   

 

Examples of complex mixtures with sufficient data for hazard identification and, in some cases, dose-

response assessment include coke oven emissions, diesel engine exhaust, and manufactured gas emissions 

and residues.   

 

• Coke oven emissions were determined by EPA to be carcinogenic to humans based on increased 

risk of mortality from cancer of the lung, trachea, bronchus, and other tissue sites in workers 

exposed to coke oven emissions as well as increased tumors in animals exposed by inhalation to 

aerosols of condensates of coke oven emissions (EPA 1984).  Based on an analysis of respiratory 

cancer mortality data and exposure data for a cohort of steel workers, EPA estimated that lifetime 

exposure to a concentration of 0.2 µg/m3 benzene-soluble organic material from coke oven 

emissions would produce a 1/100,000 extra risk of dying from respiratory cancer (EPA 1984).  

Based on recent epidemiological and mechanistic studies, the International Agency for Research 

on Cancer (IARC) determined in 2012 that sufficient evidence was available to determine that 

coke production is carcinogenic to humans.  IARC’s (2012a) determination was based on 

sufficient evidence for a causal relationship with lung cancer in occupationally exposed workers.  

IARC (2012a) also determined that there was:  (1) sufficient evidence in experimental animals for 

the carcinogenicity of samples of tar taken from coke ovens; (2) strong evidence for a genotoxic 
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mechanism involving mutagenic PAHs based on both human and experimental animal studies; 

and (3) suggestive evidence that multiple mechanisms, including epigenetic mechanisms, may be 

involved in the carcinogenic response to coke oven emissions.   

 

• Diesel engine exhaust was determined by EPA (2002c) to be likely carcinogenic to humans by 

inhalation based on:  (1) strong, but less than sufficient, evidence for a causal association between 

diesel exhaust exposure and increased lung cancer risk in workers from varied occupations with 

diesel exhaust exposure; (2) supporting positive results in genotoxicity tests with diesel exhaust 

and organic constituents; (3) knowledge that a number of components of diesel exhaust have 

produced positive results in genotoxicity and carcinogenicity tests; and (4) positive results in 

cancer bioassays with rodents exposed to high intratracheal instillation doses of whole diesel 

exhaust, in skin painting studies using extracts of organic whole diesel exhaust, and in many 

chronic inhalation rat studies showing a positive lung cancer response at high exposures.  A 

quantitative estimate of cancer risk, however, was not developed, because of inadequate 

exposure-response data from human studies and a determination that doses at which toxicity was 

observed in rats were much higher than expected environmental exposure levels” (EPA 2002c).  

A chronic inhalation RfC of 5 µg/m3 was derived based on a rat NOAEL of 0.46 mg/m3 for 

pulmonary inflammation transformed to a human equivalent concentration using a deposition and 

clearance model for diesel particulate matter and divided by uncertainty factors of 3 to account 

for residual interspecies extrapolation uncertainties and 10 for human variability (EPA 2002c).  

After review of recent epidemiology data, IARC (2014) determined that diesel engine exhaust is 

carcinogenic to humans based on sufficient evidence in humans indicating a causal relationship 

with lung cancer and a positive association with urinary bladder cancer.  IARC (2014) also 

determined that there was sufficient evidence for carcinogenicity of whole diesel engine exhaust 

and particulate matter in experimental animals, but inadequate evidence for carcinogenicity of 

gas-phase diesel engine exhaust in laboratory animals.  

 

• Occupational exposure during coal gasification was determined by IARC (2010, 2012b) to be 

carcinogenic to humans based on consistent evidence for increased risk of lung cancer in studies 

of cohorts of coal gasification workers.  Coal gasification workers are expected to be exposed to a 

wide range of chemicals including asbestos, silica, amines, numerous metals, aliphatic and 

aromatic hydrocarbons, sulfur dioxide, and aldehydes (IARC 2012b).  In support of this 

determination, IARC also determined that there was:  (1) sufficient evidence for the 

carcinogenicity of coal tars from gas works and manufactured gas plant residues in experimental 
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animals after dermal or oral exposure; and (2) strong evidence in experimental animals for a 

genotoxic carcinogenic mechanism involving mutagenic PAHs in coal gasification samples.  The 

EPA IRIS (IRIS 2015) has not assessed the carcinogenicity of occupational exposure during coal 

gasification or manufactured gas residues.  

   

The advantage of using toxicological or epidemiological data on the mixture of concern to determine a 

public health guidance value is that any interactions among the components of the mixture should be 

represented by the health effects data for the original mixture.  Limitations of the use of original mixture 

data include the uncertainties regarding the extent to which the mixture of concern matches the mixture 

that is the basis for the health guidance value, due to changes in mixture composition with time and 

distance from the release, and/or differences in the original mixture released into the environment.  Thus, 

for most exposure scenarios, the mixture of concern will likely not be identical to the mixture that is the 

basis for the health guidance value, even when it is called by the same name (e.g., toxaphene, commercial 

mixtures of PCBs). 

 

3.2. SUFFICIENTLY SIMILAR MIXTURE APPROACH 
 

If no adequate data are available on the mixture of concern, but health effects data or guidance values are 

available on a sufficiently similar mixture, the health hazard assessment may be based on the health 

effects data for the sufficiently similar mixture (see Chapter 2; EPA 1986, 2000, 2003).   

 

Sufficiently similar mixtures are those having the same chemicals but in different proportions, or having 

most, but not all, chemicals in common and in similar proportions.  In addition, sufficiently similar 

mixtures and their components have similar fate, transport, and health effects, whereas dissimilar 

mixtures do not.   

 

ATSDR recommends the qualitative approach used by EPA (2000) in determining (or providing support 

for an assumption of) sufficient similarity.  The approach considers the following criteria: 

 

1. establish that common effects or common effects mediated by a common MOA are caused by 
short- or long-term exposure to the mixtures or their principal components;  
 

2. identify common components across the mixtures in similar proportions; 
 

3.  establish a common source or process of formation across the mixtures; and  
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4. consider the results of time-dependent transformations of mixtures introduced into the 
environment.   

 

3.2.1. Examples of Sufficient Similarity Approaches used for Hazard Identification and 
Dose-response Assessments 

 

Discussion follows of several examples of mixtures that have been variously (not systematically) 

evaluated for sufficient similarity for hazard identification and dose-response assessment purposes:  jet 

fuels (ATSDR 2015), gasolines (ASTM 2015; ATSDR 1995a, 1999; MassDEP 2002; Ohio EPA 2010; 

Oklahoma DEQ 2012; Total Petroleum Hydrocarbon Criteria Working Group 1997, 1998a, 1998b; 

Weisman 1998), PCB mixtures (ATSDR 2000b; EPA 1996; IARC 2015), and comparative potency 

method for combustion products (Albert et al. 1983; Lewtas 1985, 1988). 

 

Jet fuels (JP-5, JP-8, and Jet A) are kerosene-based fuels refined from crude or shale-derived oil by 

straight or catalyst-assisted distillation (ATSDR 2015).  Jet fuels are generally refined under more 

stringent performance-related conditions than kerosene and contain >200 aliphatic and aromatic 

hydrocarbons (C6–C17) as principal components, as well as additives (such as antioxidants, corrosion 

inhibitors, and biocides) that can vary from one fuel type to the other (ATSDR 2015).  In 1998, ATSDR 

derived an intermediate-duration inhalation MRL for both JP-5 and JP-8 based on a study identifying 

liver effects in rats exposed by inhalation to JP-5 vapor (ATSDR 1998a).  Although a formal 

consideration of sufficient similarity was not conducted in 1998, the recommendation to use the JP-5-

based MRL for JP-8 exposures was based on a sufficient similarity assumption.  ATSDR derived updated 

MRLs for jet fuels in 2013 using more recent animal toxicology studies indicating that jet fuels may not 

produce common critical effects (ATSDR 2015).  ATSDR derived separate intermediate-duration 

inhalation MRLs for JP-5 (based on liver effects in rats) and JP-8 (based on neurotoxic effects in rats) and 

did not derive one for Jet A due to inadequate data.  For oral exposures, ATSDR derived acute- and 

intermediate-duration oral MRLs for JP-8 (based on immunotoxic effects in mice), but no oral MRLs for 

JP-5 or Jet A due to inadequate data.  The 2015 ATSDR Toxicological Profile did not directly discuss the 

possible utilization of MRLs based on data for one jet fuel type as surrogates (i.e., sufficiently similar 

mixtures) for jet fuels with inadequate data (ATSDR 2015).   

 
ATSDR did not derive MRLs for automotive gasoline because of the wide compositional range of 

formulations for gasoline and the likelihood that components have widely differing environmental fate 

and transport properties (ATSDR 1995a, 1999; Pohl et al. 1997).  This decision represented an 

application of several of the recommended qualitative determination criteria listed above.  Consequently, 

exposed populations are likely to be exposed to fractions that are not sufficiently similar to the original 
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mixture.  Parallel to this determination, other agencies have recommended modified component-based 

approaches to assessing risks from sites contaminated with gasoline and other petroleum products (e.g., 

ASTM 2015; MassDEP 2002; Ohio EPA 2010; Oklahoma DEQ 2012; Total Petroleum Hydrocarbon 

Criteria Working Group 1997, 1998a, 1998b; Weisman 1998).  These approaches involve separating the 

complex mixture into groups of chemicals with similar chemical structures (e.g., aromatic hydrocarbons 

with 5–9 carbons, aliphatic hydrocarbons with 5–8 carbons), selecting a representative chemical with 

adequate dose-response data to indicate hazard potential and dose-response relationship for each group 

(i.e., an indicator chemical), and using the guidance value of the indicator chemical coupled with 

exposure estimates for all members of the group in the subject mixture to estimate health risk from the 

group.   

 
PCBs are a class of 209 aromatic congeners, each containing 1–10 chlorines attached to the core biphenyl 

molecule (ATSDR 2000b; IARC 2015).  Commercial PCB mixtures, previously used as coolants in 

electrical capacitors and transformers, were mixtures of many PCB congeners of variable composition 

(ATSDR 2000b; IARC 2015).  The composition of environmental PCB mixtures can be different from 

that of commercial mixtures, because rates of weathering and biotransformation vary across PCB 

congeners and environmental conditions (ATSDR 2000b; IARC 2015).  Discussion follows of three 

examples of assessments made for PCB mixtures that are variably dependent on an assumption of 

sufficient similarity.   

 

IARC (2015) determined that PCBs in general and dioxin-like PCBs (PCBs that produce toxic effects 

through aryl hydrocarbon receptor mediation) are carcinogenic to humans, based on sufficient evidence of 

carcinogenicity from >70 epidemiology studies of PCB mixture-exposed workers and studies of 

experimental animals exposed to individual PCB congeners, commercial PCB mixtures, or synthetic 

mixtures of various PCB congeners, including simulated environmental mixtures of PCB congeners.  

Based on mechanistic data, IARC (2015) determined that individual PCBs cause cancer through multiple 

mechanisms and that the carcinogenicity of PCB mixtures cannot be solely attributed to the dioxin-like 

PCBs.   

 

ATSDR derived an intermediate-duration oral MRL for PCB mixtures based on a LOAEL for 

neurobehavioral changes in infant monkeys exposed to a simulated environmental PCB mixture 

containing 80% of the congeners typically found in human breast milk samples (i.e., a simulated 

environmental mixture) and a chronic-duration oral MRL based on a LOAEL for immunological effects 

in adult monkeys fed encapsulated doses of a commercial PCB mixture (Aroclor 1254) for 23–55 months 
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(ATSDR 2000b).  ATSDR acknowledged the compositional variation among commercial and 

environmental PCB mixtures, but derived oral MRLs for PCB mixtures by evaluating all available 

toxicity studies on commercial and synthetic PCB mixtures and selecting the studies with the lowest 

LOAEL values as the basis of the MRLs.  Inherent in this process are the assumptions that PCB mixtures 

are sufficiently similar for dose-response assessment purposes and basing the MRLs on the lowest 

LOAELs from studies of specific PCB mixtures (i.e., a simulated environmental mixture and Aroclor 

1254) would be protective for PCB mixtures in general.  In support of the latter assumption, ATSDR 

noted that the chronic MRL based on immunological effects in adult monkeys was similar to a chronic 

MRL based on an estimated NOAEL for the lack of developmental effects in a study of children of North 

Carolina women exposed to environmental PCB mixtures as indicated by PCB levels in breast milk 

samples (ATSDR 2000b). 

 

In a cancer dose-response assessment for PCB mixtures, EPA (1996) recommended a tiered risk 

assessment approach that used different slope factors (based on cancer bioassays with different 

commercial PCB mixtures differing in chlorine content) for different exposure scenarios.  Exposure 

scenarios were grouped in consideration of how environmental processes influence the distribution of 

PCB congeners in environmental media.  This recommendation was based on several pieces of evidence, 

including:  (1) environmental PCB mixtures are expected to present increased risk for cancer because the 

compositional range of PCB congeners in commercial mixtures overlaps with the range in environmental 

PCB mixtures; (2) higher chlorinated congeners tend to be more potent and more persistent in soils and 

sediments than lower chlorinated congeners; (3) PCB congeners found in water or air tend to be lower in 

chlorine content than congeners found in soil, sediment, and tissues of animal species high in the food 

chain; and (4) bioaccumulative, high-chlorine content PCB congeners appear to be more potent 

carcinogens than commercial Aroclor mixtures.  Individual human oral cancer slope factors were derived 

from tumor incidence data from five 2-year bioassays with rats exposed to one of four Aroclor PCB 

mixtures (1016, 1242, 1254, and 1260) varying in percentage chlorine content (41, 42, 54, and 60%, 

respectively).  The OSFs (95th upper confidence limits on slope in units of risk per mg/kg/day) were:  0.07 

(Aroclor 1016); 0.4 (Aroclor 1242); 1.5 (Aroclor 1254); 0.5 (Aroclor 1260); and 2.2 (Aroclor 1260).  A 

composite OSF of 2 per mg/kg/day was recommended for high risk and persistence exposures including 

food-chain exposure, sediment or soil ingestion, dust or aerosol inhalation, and early-life exposures by 

any pathway.  A composite OSF of 0.4 per mg/kg/day was recommended for low risk and persistence 

exposures, including ingestion of water-soluble congeners, inhalation of evaporated congeners, and 

dermal exposures.  The lowest slope factor of 0.07 per mg/kg-day was recommended for exposure to PCB 

mixtures containing PCB congeners with more than four chlorines, accounting for <0.05% of total PCBs. 
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The comparative potency method uses data for a set of similar mixtures to estimate a scaling factor that 

relates cancer potency derived from a chronic animal study or human epidemiology study to potency in a 

mouse skin painting assay.  The cancer potency factor for an additional similar mixture for which only 

data from the skin painting assay are available can be estimated using this scaling factor (Calabrese 1991; 

EPA 2000; Hertzberg et al. 1999; NRC 1988).  This method was used in the estimation of human cancer 

risk from very complex mixtures of combustion emissions from various sources (Albert et al. 1983; 

Lewtas 1985, 1988), but it has not been applied in site-specific public health or risk assessments. 

 

3.2.2. Future Approaches to Sufficient Similarity Assessments 
 

Recent methods have been proposed for determining sufficient similarity among mixtures of pyrethroid 

insecticides found in surface wipe samples from U.S. child care centers (Marshall et al. 2013) and 

mixtures of disinfection byproducts in drinking water (Feder et al. 2009a, 2009b).  These methods require 

additional review across expert panels and regulatory and public health agencies before they are widely 

accepted. 

 

Marshall et al. (2013) developed a statistical method for assessing sufficient similarity of mixtures of up 

to 15 pyrethroid insecticides detected in floor wipe samples collected in 2001 from multiple locations in 

168 U.S. licensed child care centers, relative to a reference mixture (of five pyrethroids) with dose-

response data from an acute, oral exposure study of a neurological end point (motor activity) in rats 

(Wolansky et al. 2009).  In this analysis, each floor-wipe sample was considered a unique mixture without 

any dose-response data.  The composition and mixing ratio of the five-pyrethroid reference mixture was 

based on the average percent composition of the six most prevalent components in the floor-wipe samples 

with the top 10% highest total pyrethroid concentrations; the most prevalent components included cis- 

and trans-permethrin, which were combined into one-component (permethrins) in the five-component 

reference mixture.  The method used to test whether or not any of the floor-wipe “mixtures” were 

sufficiently similar to the reference mixture was a modification of a statistical method described by Stork 

et al. (2008), which uses equivalence testing methodology comparing Euclidean distances between 

benchmark dose (BMD) estimates for different mixtures.  Because the floor-wipe mixture did not have 

dose-response data to derive BMDs, a modification of the Stork et al. (2008) method was made, based on 

an assumption that BMDs for the “floor-wipe mixtures” could be estimated from the proportions of the 

analyzed 15 pyrethroids in them and the BMD for the reference mixture.  Among the 168 floor-wipe 

samples, 42 had concentrations for each of the 15 pyrethroids that were below the detection limit.  For the 
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remaining 126 floor-wipe samples, seven were determined to be sufficiently similar to the reference 

mixture using the modified method.  In a subsequent analysis that adjusted the floor-wipe-mixture 

estimated BMDs and the BMD for the reference mixture by relative potency factors for the individual 

pyrethroids, 114/126 floor-wipe samples were determined to be sufficiently similar to the reference 

mixture. 

 

Feder et al. (2009a, 2009b) applied multivariate statistical procedures to a data set describing chemical 

composition variables associated with disinfection processes and mutagenic activities of samples of 

finished water and distribution system water from five water treatment plants.  The analysis included six 

chemical characteristics (total organic carbon, total organic halogens, total trihalomethanes, six haloacetic 

acids, percent brominated total trihalomethanes, and percent brominated haloacetic acids) and mutagenic 

activities of the samples.  The statistical analysis indicated that the finished (post treatment) samples from 

the groundwater treatment plant were significantly different from the finished samples from the four 

surface water treatment plants, and that differences among the four surface water treatment plants were 

less clearly indicated.  The four samples were sufficiently similar mixtures  

 

Other future applications to predict high, medium, or low cancer potencies of very complex mixtures may 

involve predictions from analyses of gene expression profiles from short-term exposure (Tilton et al. 

2015).  Tilton et al. (2015) analyzed gene expression profiles in skin of mice collected 12 hours after 

applying tumor-initiating doses of individual PAHs (benzo[a]pyrene or dibenzo[def,p] chrysene) or very 

complex PAH-containing mixtures (diesel particulate extracts, coal tar extracts, or cigarette smoke 

condensate) and compared the results of the analysis with tumor outcomes.  The analyses identified short-

term-initiated biological signaling pathways that were predictive of tumor initiation potency classified as 

high, medium, or low (Tilton et al. 2015).  

 

A more quantitative experimental basis to the determination of sufficient similarity among complex 

mixtures involves:  (1) advanced chemical analytical capabilities (e.g., gas chromatography [GC]/mass 

spectrometry [MS], GC/flame ionization detection, and 2-dimensional GC); (2) statistical techniques for 

pattern recognition and principal component analysis; and (3) multivariate regression techniques to link 

chemical components with activity in biological tests (Eide et al. 2002, 2004; Feder et al. 2009a, 2009b; 

Teuschler 2007; Tian et al. 2015; Ventura et al. 2011).  For example, Eide et al. (2002, 2004) used 

principal component analysis to analyze GC/MS data for 20–33 samples of organic extracts of exhaust 

particles collected from diesel engines, gas-fired furnaces, or fuel oil furnaces, followed by multivariate 

regression analysis to correlate the compositional data with measured activities of the samples in the 
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Ames mutagenicity test.  A regression model was developed that identified compounds in the mixtures 

that co-varied with biological activity.  The regression model could be used to predict mutagenicity of 

another exhaust particle sample with GC/MS data and provide quantitative information to determine 

sufficient similarity of two or more exhaust particle samples.  Tian et al. (2015) used a similar approach to 

relate in vitro Chinese hamster ovary cell cytotoxicity of 40 samples of complex mixtures of organic 

chemicals extracted from polluted water in Shenqiu County of the Huai River basin in China with 

compositional data from GC/MS.  A regression model was constructed from training datasets from 32 of 

the 40 samples.  The model was used to compare predicted and observed cytotoxicity values obtained 

from eight “test” samples.  The model explained about 92% of the cytotoxicity variability in the training 

data set, but only about 40% in the test data sets.  This result suggests an inadequacy of the model to 

explain the variability in the test data sets and indicates compositional or biological activity dissimilarities 

between the training and test data samples (Tian et al. 2015). 

 

Another research effort has developed a series of statistical screening models to predict several types of 

toxic end points (general, developmental, reproductive, and genetic toxicity) based on the polycyclic 

aromatic compound contents of a class of complex petroleum-derived mixtures called high-boiling 

petroleum substances (HBPS) (Gray et al. 2013; McKee et al. 2013; Murray et al. 2013a, 2013b; Nicolich 

et al. 2013; Roth et al. 2013)  HBPS are complex mixtures typically composed of thousands of chemicals 

with final boiling points ≥~650°F (Gray et al. 2013).  HBPS include various substances from petroleum 

refining streams called asphalts, aromatic extracts, crude oils, gas oils, heavy fuel oils, lubricating oil 

basestock, waxes, and residual hydrocarbon wastes (Gray et al. 2013).  The composition of HBPS (even 

those with the same name) can vary due to compositional variations in crude oil starting materials, 

refining conditions, and product specifications (Gray et al. 2013).  In a seminal research report examining 

systemic and developmental effects following repeated dermal exposure of rats to a number of HBPS (gas 

oils, heavy fuel oil components, and distillate aromatic extracts), common outcomes included increased 

liver weight, decreased thymus weight, decreased blood end points, increased resorption frequency, and 

decreased fetal weight (Feuston et al. 1994).  The lowest-observed-effect levels in these studies were 

correlated (Spearman rank test) with the polycyclic aromatic compound weight percent of dimethyl 

sulfoxide (DMSO) extracts of the test HBPS samples, providing evidence that the polycyclic aromatic 

compound components were related to the effects of the original mixtures.  Subsequent efforts used data 

from 39 dermal toxicity studies of HBPS samples with polycyclic aromatic compound compositional data 

to develop predictive models for repeated dose and developmental toxicity end points (Murray et al. 

2013a, 2013b; Nicolich et al. 2013; Roth et al. 2013) and data from bacterial mutagenicity assays from 

193 samples from several types of HBPS to develop predictive models for mutagenicity end points 
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(McKee et al. 2013).  The statistical correlation models linearly regressed four repeated-dose end points 

(absolute thymus weight, hemoglobin count, platelet count, and relative liver weight) and three 

developmental end points (liver fetus count, fetal weight, and percent resorptions) against polycyclic 

aromatic compound contents (and other explanatory variables) (Nicolich et al. 2013).  Several analytical 

measures of polycyclic aromatic compound contents were investigated as explanatory variables for the 

models, but the best fits were obtained with weight-percent of DMSO-extracts in seven aromatic ring 

classes (1, 2, 3, 4, 5, 6, and 7 and more rings) and other biological variables (such as body weight, gender, 

and duration of exposure for the systemic repeated dose end points and control group values for the 

developmental end points) (Murray et al. 2013a; Roth et al. 2013).  Correlations (“r values) between 

observed doses associated with specific responses and values predicted with the final models were 

>0.9 (Nicolich et al. 2013).  The authors suggested that the systemic and developmental toxicity models 

would be useful for screening untested complex mixture samples with polycyclic aromatic compound 

compositional data for setting priorities for further biological testing (Nicolich et al. 2013).  They further 

noted that the data should not be used to draw conclusions about whether the polycyclic aromatic 

compound content is the cause of the repeated-dose or developmental toxicity, only that the polycyclic 

aromatic compound content of a petroleum substance may allow an estimate of toxicity through 

modeling.  The statistical model developed to predict the general mutagenic outcome for HBPS samples 

in a modified Salmonella assay based on the polycyclic aromatic compound content of the samples 

predicted the mutagenic outcome of 99% of the 193 data sets used to develop the model and 94% of 49 

data sets not used to develop the model (McKee et al. 2013).  The general outcome used a concept termed 

the “mutagenicity index,” defined as the slope of the initial portion of the dose-response curve.  The 

model predicted a final binary mutagenicity index outcome as either <1 or ≥1.  

 

3.2.3. Current Limitations to Sufficient Similarity Approaches 
 

As discussed earlier in this chapter, determination of sufficient similarity between mixtures often requires 

qualitative judgement after evaluation of available information on the chemical composition and 

biological activities of any two or more mixtures.  Chemical information alone may not be sufficient to 

have confidence in a determination of sufficient similarity for hazard identification or dose-response 

purposes, especially for complex mixtures like engine exhausts, wood preserving wastes, coal tars, or 

manufactured gas waste residues (Cizmas et al. 2004; DeMarini et al. 1989; Simmons and Berman 1989).  

Even with data on comparative biological activities, determination and validation of sufficient similarity 

among complex mixtures is challenging due to:  (1) variable source and weathering conditions that can 

influence chemical composition; (2) unidentified and variable toxic chemicals in the mixtures; and (3) 
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unexpected or unknown interactions that may occur among mixture components (Cizmas et al. 2004; Eide 

et al. 2002, 2004; Rice et al. 2009; Teuschler 2007).  For example, in a study of two wood preserving 

waste mixtures containing PAHs, pentachlorophenol, and other chemicals, the order of the observed 

activities of fractionated crude extracts of the mixtures in in vitro genotoxicity tests were not well 

correlated with the activities that were expected based on chemical composition and relative potencies of 

the known components (Cizmas et al. 2004).   

 

3.3. COMPONENT-BASED APPROACHES 
 

3.3.1. Issues Related to Component-Based Approaches 
 

3.3.1.1 Concepts of Additivity 
 

Due to the lack of suitable health criteria for the mixture of concern or a sufficiently similar mixture, 

approaches involving the components of a mixture are commonly used for mixtures associated with 

contaminated sites.  These methods are based on an assumption that the exposures or the responses to the 

mixture components are additive.  The classical statistical concepts of dose addition and response addition 

are based on assumptions of common or different modes or mechanisms of action, respectively (Bliss 

1939; Finney 1971), whereas a more generalized dose-addition concept proposed by Berenbaum (1985) 

and Gennings et al. (2005) does not require assumptions about mechanisms of action.   

 

Dose Addition.  Dose addition, also known as concentration addition, simple similar action, and similar 

joint action, assumes that the components of a mixture behave as concentrations or dilutions of one 

another, differing only in their potencies (Bliss 1939; Finney 1971; Loewe and Muischnek 1926).  The 

dose-response curves are parallel (i.e., the regression lines of probits on log doses are parallel), and 

tolerance (or susceptibility) to the components is completely positively correlated (the organisms most 

susceptible to chemical A also will be most susceptible to chemical B).  The response to the mixture can 

be predicted by summing the doses of the components after adjusting for the differences in potencies.  

Dose addition is considered most appropriate for mixtures with components that affect the same end point 

by the same MOA (EPA 1986, 1988, 2000).  It has been suggested that the requirement for parallel dose-

response curves and complete correlation of tolerances may be too stringent (e.g., Plackett and Hewlett 

1952; Svendsgaard and Hertzberg 1994), and that in the low-dose region in which the response is linear, 

dose additivity may hold for independently acting chemicals as well (Svendsgaard and Hertzberg 1994).  

Dose addition is the underlying assumption of the hazard index method, and the TEF and RPF approaches 

(Sections 3.3.2 and 3.3.5). 
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Response Addition.  Response addition, also known as simple independent action and independent joint 

action (Bliss 1939), assumes that the chemicals act independently and by different MOAs.  Three 

mathematical definitions of response addition have been described based on the direction and degree to 

which the distribution of tolerance (or susceptibility) to one component may or may not be correlated with 

the distribution of tolerance to another component.  When tolerances are completely positively correlated 

(r=+1), the order of individual tolerances to chemical A are identical to that of individual tolerances to 

chemical B.  When the tolerances are completely negatively correlated (r=-1), the orders of individual 

tolerances to chemicals A and B are directly opposite.  The third condition for the mathematical 

description of response addition is when there is no correlation (r=0) between the order of individual 

tolerances to chemicals A and B.  The response-additive equations estimate the response to a mixture 

from the probabilities of response to the individual components and the conditional correlation of 

tolerances.  Response addition is the underlying assumption of:  (1) an approach to cancer risk assessment 

for components of mixtures at Superfund sites (EPA 1989a); (2) EPA’s (EPA 2000) and ATSDR’s 

default screening-level approach to noncancer health assessment for components with dissimilar toxicity 

targets, when whole-mixture data and interaction data are not available and exposure levels for 

components are below guidance values (RfCs, RfDs, or MRLs); and (3) the American Conference of 

Governmental Industrial Hygienists (ACGIH) approach to assessing the hazard of occupational exposure 

to agents that act independently (see Section 3.3.6 and Appendix C, Section C.1). 

 

Generalized Dose Addition.  Berenbaum (1985) described a general definition of additivity, which does 

not require chemicals in a mixture to have a common mechanism of action and which Gennings et al. 

(2005) algebraically related to statistical additivity models to be used in a method for assessing 

toxicological interactions in mixtures.  In the statistical additivity models, when the rate of change in 

response of a chemical in a mixture (i.e., the slope of the dose-response relationship) does not change in 

response to other chemicals in the mixture, the chemical is claimed to act additively with the other 

chemicals (i.e., no interaction occurs).  When the slope changes, an interaction (a deviation from 

additivity) is claimed.  The method described by Gennings et al. (2002, 2004, 2005) requires descriptive 

dose-response data for each individual chemical in the mixture, as well as dose-response data for the 

mixture, but does not require the assumption of common mechanism of action or common adverse 

outcome for mixture components.  This method was used to determine whether or not deviations from 

additivity occurred in responses of serum thyroxine levels in rats given four daily gavage doses of an 

18-component mixture of polyhalogenated aromatic compounds at six dose levels (Crofton et al. 2005).  
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On theoretical grounds, Bosgra et al. (2009) questioned the general applicability of Berenbaum’s general 

definition of additivity and provided an example of a biochemical mechanism in which two chemicals do 

not interact, but for which methods based on Berenbaum’s definition would predict interaction.  Bosgra et 

al. (2009) recognized the pragmatic usefulness of statistical methods based on Berenbaum’s general 

definition in empirically assessing joint toxic action of chemicals in a mixture, but warned that deviations 

from additivity with these methods are incapable of defining specific biochemical mechanisms of 

interaction.  

 

Dose Addition as a Public Health Protective Action.  An underlying public health protective impetus of 

recommendations for screening level dose additivity is demonstrated by considering exposure to two 

theoretical chemicals, A and B, at exposure levels (0.9 units for A and 9 units for B), slightly below their 

respective toxicity guidance values (such as MRLs or RfDs) of 1 and 10 units (see also Appendix A for 

further illustrations).  Response addition for the condition of completely negative correlations between 

susceptibilities to A and B predicts that exposure to A and B at these subtoxic levels would not produce 

an adverse effect [(response to A + B) = (response to A = 0) + (response to B = 0) = 0], but dose addition, 

using the concept of adding HQs (the exposure level to an agent divided by its toxicity guidance value), 

would indicate a concern for health hazard (hazard index = HQ A + HQ B = (0.9/1) + (9/10) = 0.9 + 0.9 = 

1.8; see next section for further discussion of the hazard index approach, where HQs and hazard indices 

<1 indicate no hazard, and HQs and hazard indices >1 indicate increased risk for hazard). 

 

Additional detail regarding dose addition and response addition is provided in Appendix A. 

 

3.3.1.2 Evidence to Support or Refute the Use of Default Dose-Additivity Approaches 
 

Until 1991, most published toxicological studies of possible interactions among environmental chemicals 

involved only pairs of chemicals (Hertzberg and Teuschler 2002; Krishnan and Brodeur 1991).  Although 

the principles for statistically assessing deviations from additivity (either dose addition or response 

addition) had long been laid out in the published literature (e.g., Bliss 1939; Loewe and Muischnek 1926), 

many published toxicological studies on binary mixtures of environmental chemicals or drugs claiming to 

provide evidence for synergy or antagonism were inadequately designed to support the claims 

(Berenbaum 1989, 1990; Boobis et al. 2011; Borgert et al. 2001; Hertzberg and Teuschler 2002; Krishnan 

and Brodeur 1991).  Most of the studies lacked suitable designs to conduct formal statistical tests to 

determine whether the responses to the mixture were different from the “no-interaction” hypotheses of 

dose additivity or response additivity.  However, several early studies using overtly toxic acute doses of 
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binary mixtures showed that deviations from dose additivity were generally less than a factor of 5 (e.g., 

Smyth et al. 1969, 1970; Withey and Hall 1975; see Appendix A for more discussion).  Likewise, toxicity 

studies on guppies and frogs using mixtures of 3 to as many as 50 components also tended to indicate that 

deviations from dose addition were not substantial (e.g., Dawson 1994; Hermens et al. 1985; Konemann 

1981).  Other studies were designed to test whether or not adverse effects could be observed when 

components of four- to nine-component mixtures were at NOAELs, but these studies lacked suitable 

designs to conduct formal statistical tests to determine whether the responses to the mixture were different 

from the “no-interaction” hypotheses of dose additivity or response additivity.  Dose-additivity appeared 

to adequately describe the toxic action of a mixture of four kidney toxicants with a common MOA in rats 

fed a mixture of the four components in food for 4 weeks (Feron et al. 1995), whereas less-than-dose 

additivity or response additivity appeared to adequately describe toxic actions of mixtures of eight (Jonker 

et al. 1990) or nine (Groten et al. 1997) chemicals with dissimilar MOAs and targets, or a mixture of four 

kidney toxicants with dissimilar MOAs (Jonker et al. 1993).  These types of observations have been used 

to support recommendations to use screening-level, component-based, dose-addition approaches for 

mixtures of chemicals having common MOAs or common adverse outcomes or target organs (e.g., this 

framework and ACGIH 2015; EPA 1986, 2000, 2002b, 2003; Meek et al. 2011, NRC 2004b).  For 

mixtures of chemicals not having common MOAs or common adverse outcomes or target organs, some 

organizations recommend screening-level, component-based approaches based on response addition (i.e., 

independent action) (ACGIH 2015; EPA 2000). 

 

Results from in vivo Studies.  A number of animal studies conducted after the seminal review by 

Krishnan and Brodeur (1991) have used adequate designs to examine whether or not dose addition or 

response addition provided adequate descriptions of dose-response data for defined mixtures of more than 

two environmental chemicals having common MOAs or common adverse outcomes and to determine 

whether or not there were interactions among the components (Borgert et al. 2012; Cao et al. 2011; 

Christiansen et al. 2009; Crofton et al. 2005; EPA 2006b, 2007b, 2011b; Fattore et al. 2000; Gao et al. 

1999; Gennings et al. 2002; Hamm et al. 2003; Hass et al. 2007; Hertzberg et al. 2013; Howdeshell et al. 

2008; Jarvis et al. 2014; Moser et al. 2005, 2006, 2012; Nesnow et al. 1998; NRC 2008; Padilla 2006; 

Rider et al. 2008; Starr et al. 2012; Tajima et al. 2002;Van den Berg et al. 2006; Walker et al. 2005; 

Wolansky et al. 2009).  In the context of these studies (summaries of results follow) and this framework, 

interactions among components of a mixture are defined as deviations from what would be expected if 

there were no interactions.  If dose addition is the expected “no interaction” model, then observations 

greater than responses predicted by dose additivity are synonymous with synergy and observations less 

than predicted responses are synonymous with antagonism.  
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• Greater-than-response additive effects (synergy) at lower doses and less-than-response additive 

effects (antagonism) at higher doses were observed in lung tumor responses in mice exposed to 

single intraperitoneal injections of two dose levels of a mixture of five nonsubstituted PAHs at 

ratios similar to ratios in environmental air and combustion samples (Nesnow et al. 1998).  The 

experimental design was a 25 factorial, 32-dose group scheme yielding lung adenoma per mouse 

data (8 months after dose administration).  A response surface model based on response addition 

was used to predict lung tumor responses to compare with observed responses for each of the 

32 “quintary” dose groups.  Deviations from response additivity were small and less than about 

2-fold different from the response additivity predictions.  Earlier in vivo and in vitro studies of 

binary combinations of PAHs in producing cancer or cancer-related effects provided conflicting 

evidence for both greater-than-additive and less-than-additive interactions, depending on the 

evaluated compounds, examined end points, and test system, although most of these studies were 

not adequately designed to statistically test for consistency with dose additivity or response 

additivity (Jarvis et al. 2014; Nesnow et al. 1998).  Possible contributing factors to deviations 

from additivity have been proposed, such as competitive inhibition or differential induction of 

bioactivating or detoxifying enzymes, but definitive conclusions about the underlying 

mechanisms of biochemical interactions among PAHs cannot be drawn because of the complexity 

of bioactivation and detoxification mechanisms and the complexity of the development of cancer 

(Jarvis et al. 2014; Nesnow et al. 1998).   

 

• Greater-than-dose-additive effects were observed on several neurological end points in adult or 

weanling rats orally exposed to mixtures of five or four organophosphorus insecticides at relative 

proportions similar to those observed in the U.S. diet (Moser et al. 2005, 2006; Padilla 2006).  

Comparison of predicted (using a dose-additive model based on dose-response relationships for 

the individual pesticides) and empirical ED20 and ED50 values for the end points indicated that the 

greater-than-additive effects were small, from about 1.2–3-fold in magnitude.  Earlier studies of 

the lethality of 43 pairs of organophosphorus insecticides in rats indicated that dose additivity 

explained 21 pairs, 18 pairs showed less-than-additive effects, and only 4 pairs showed greater-

than-additive effects (Dubois 1961).  The EPA (2006b) cumulative risk assessment for 

organophosphorus insecticides concluded that dose addition is a reasonable approach for 

estimating cumulative risk of mixtures of organophosphorus insecticides, and that the available 

data did not provide a sufficient basis to depart from dose additivity, based on:  (1) these data; 

(2) other data indicating that toxicokinetic interactions between organophosphorus insecticides 
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can be complex; and (3) evidence that organophosphorus insecticides have a common mechanism 

of action (cholinesterase inhibition) in producing neurological effects.   

 

• Dose additivity adequately explained adverse neurological end points (e.g., brain cholinesterase 

activity and motor activity) in adult rats given single oral doses at five levels of a seven-

component mixture of N-methyl carbamates (EPA 2007b).  The mixture was designed to deliver 

equipotent contributions by the components to brain cholinesterase inhibition based on dose-

response relationships characterized for each component alone.  Ninety-five percent confidence 

intervals for brain cholinesterase activities predicted by dose additivity overlapped with observed 

values.  The EPA (2007b) cumulative risk assessment for N-methyl carbamates concluded that 

dose additivity for cumulative risk assessment of mixtures of these pesticides is “reasonable” for 

this group of insecticides representing a common mechanism of action group (cholinesterase 

inhibition by a different mechanism than organophosphorus insecticides).  An expanded study 

examined motor activity and cholinesterase activities (brain and red blood cells) in adult and 

weanling rats given single oral doses of five levels of the seven-component equipotent mixture or 

another environmentally relevant mixture containing the same components in a different mixing 

ratio based on California sales data for these pesticides (Moser et al. 2012).  Using a statistical 

approach described by Hertzberg et al. (2013), the equipotent mixture results for adult rats 

showed dose additivity for red blood cell cholinesterase and motor activity and greater-than-dose 

additivity for brain cholinesterase at a middle dose level only; for weanling rats, brain 

cholinesterase and motor activity were dose additive and red blood cell cholinesterase was 

slightly less-than-dose additive.  Exposure of both ages to the other mixture showed greater than 

dose additivity (synergy) on all three end points, but the magnitude of deviation from dose 

additivity was small, ranging from 1.5- to 2.6-fold for the different end points in the two ages of 

rat (Moser et al. 2012).  The results also indicate that interactions (i.e., deviations from dose 

additivity) can be dependent on end point examined, age or stage of development, and mixing 

ratios of components.   

 

• Dose additivity adequately explained the joint action of mixtures of 11 pyrethroid insecticides 

(Wolansky et al. 2009) or 5 pyrethroid insecticides (Starr et al. 2012) on motor activity in rats 

given single gavage doses of the mixtures.  No statistically significant differences were found in 

observed motor activity values and predicted responses based on dose additivity and descriptions 

of the dose-response relationships for the individual components.  A companion in vitro study 

assessing sodium influx in cerebrocortical neurons (presumably mediated by voltage-gated 



  36 
 

 
 
 
 
 

sodium channels) found no statistically significant differences between observed effects from the 

11-component mixture and effects predicted by a dose-additivity model (Cao et al. 2011).  Based 

on results from these studies, the EPA (2011b) concluded that dose addition is a reasonable 

approach for estimating cumulative risk of exposures to mixtures of pyrethroids, noting several 

areas of uncertainty associated with this conclusion including whether dose additivity would 

predict responses to mixtures with different mixing ratios of components or by different exposure 

routes and duration.   

 

• Statistically significant, greater-than-dose-additive effects at high doses and no significant 

deviation from dose additivity at low doses were observed on serum total thyroxine levels in 

young female rats given four daily gavage doses of an 18-component mixture of polyhalogenated 

aromatic hydrocarbons (2 dioxins, 4 dibenzofurans, and 12 PCBs, including dioxin-like and non-

dioxin-like PCBs) (Crofton et al. 2005).  The mixing ratio of the components was based on ratios 

of these chemicals found in breast milk, fish, and other sources of human exposure, and the 

mixture was given to rats at six dose levels ranging from approximately background levels to 

100-fold greater than human background levels.  The study included six to nine dose groups for 

each component to adequately characterize individual dose-response relationships.  The statistical 

analysis used methods described by Gennings et al. (2002, 2004) and the definition of additivity 

described by Berenbaum (1985).  Predicted responses based on additivity were about 2–3-fold 

less than observed responses at the three highest dose levels of the mixture, indicating a dose-

dependent, greater-than-dose additive joint toxic action of relatively small magnitude.  

 

• In several studies examining male reproductive system developmental end points (e.g., anogenital 

distance, nipple retention, testosterone production, other reproductive tissue malformations) in 

offspring of rats orally exposed to mixtures of chemicals that variably produce anti-androgenic 

effects via different mechanisms, dose-additive models provided adequate predictions of 

observed effects for most of the studies.  The studied mixtures included vinclozolin, flutamide, 

and procymidone (Hass et al. 2007); diethylhexyl phthalate, vinclozolin, prochloraz, and 

fiansteride (Christiansen et al. 2009); di(n)butyl phthalate and diethylhexyl phthalate (Howdeshell 

et al. 2007); butyl benzyl phthalate, diethylhexyl phthalate, di(n)butyl phthalate, diisobutyl 

phthalate, and dipentyl phthalate (Howdeshell et al. 2008); and vinclozolin, procymidone, 

prochloraz, linuron, butyl benzyl phthalate, diethylhexyl phthalate, and di(n)butyl phthalate 

(Rider et al. 2008).  Based on the results in these studies, the National Research Council (NRC) 

report, Phthalates and Cumulative Risk Assessment: Tasks Ahead (NRC 2008), recommended 
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that cumulative risk assessments should be conducted for phthalates producing common adverse 

outcomes on the developing male reproductive system using a dose-additive approach, regardless 

of mechanisms of action.  Borgert et al. (2012) presented a critical evaluation of this 

recommendation noting several areas of uncertainty including limitations of the supporting study 

designs and analyses (e.g., each of the studies only looked at one mixing ratio of the 

components), extrapolations from relatively high exposure levels used in the rat studies to lower 

exposure levels expected to be experienced by humans, and evidence that humans may be less 

sensitive than rats to anti-androgenic chemicals, and commenting that a dose-additive/common 

adverse outcome approach to cumulative risk for phthalates and other anti-androgenic agents 

should only be used as a coarse, screening-level assessment.  

 

• The TEF approach to assessing risks from mixtures of chlorinated dibenzo dioxins (CDDs) and 

related compounds is based on the assumption of dose additivity (see Section 3.3.5 for more 

details of this approach).  Results from in vivo studies of animals exposed to defined mixtures of 

dioxins and dioxin-like compounds indicated that World Health Organization (WHO) 

recommended TEF values (Van den Berg et al. 2006) predicted mixture toxicities within a factor 

of about 2 or less (Fattore et al. 2000; Gao et al. 1999; Hamm et al. 2003; Walker et al. 2005), 

providing evidence that the dose additivity assumption in the TEF approach for dioxins and 

dioxin-like compounds is useful.   

 

Results from in vitro Studies.  Results from adequately designed in vitro studies of several end points 

(e.g., androgen receptor (AR) antagonism, estrogen receptor (ER) activation, ER-mediated cell 

proliferation, several genotoxicity end points) in cultured cells exposed to synthetic mixtures of up to 20–

30 chemicals provide similar evidence that deviations from concentration addition (i.e., dose addition), 

when found, were small from a risk assessment perspective (mostly <5-fold deviation).   

 

Androgen Receptor Antagonism Studies 

 

• Concentration addition provided reasonable predictions of anti-androgenic activity (AR 

antagonism) in cultured human breast cells (MDA-kb2) exposed to mixtures of 8 pesticides 

showing only AR antagonism (Orton et al. 2012) and 17 AR antagonists with varying structural 

features (Ermler et al. 2011).  The reporter gene assay used in these studies measured luciferase 

induction after AR activation by binding of an AR agonist (alpha-dihydrotestosterone, DHT); AR 

antagonism was measured in terms of suppression of DHT-induced luciferase-mediated 
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luminescence.  The eight pesticides with only AR antagonism were fludioxonil, fenhexamid, 

ortho-phenyl phenol, imazalil, tebucoanzole, diethomorph, methiocarb, and primiphos-methyl.  

The 17 AR antagonists included several parabens (e.g., n-butyl paraben), UV-filter substances, 

benzo[a]pyrene, antioxidants (e.g., butylated hydroxytoluol), perfluorinated compounds, 

polybrominated and polychlorinated biphenyl ethers, and bisphenol A.   

 

• Statistically significant deviations from concentration addition predictions were observed with 

mixtures of 5 pesticides, each showing both AR antagonism and agonism activities (cypronil, 

pyrimethanil, viclosolin, chlorpropham, and linuron tested at two mixing ratios) or mixtures of 

13 pesticides (8 AR antagonists only and 5 with mixed antagonism and agonism activities tested 

at four mixing ratios), but these deviations were generally not large (Orton et al. 2012).  Values of 

predicted ICs (IC10 or IC50) for anti-androgenicity that were statistically significantly different 

from observed values (n=6) were mostly within 2-fold of observed values:  five were lower than 

observed values but within 2-fold and one predicted value was greater than the observed value by 

about 6-fold (Orton et al. 2012).   

 
• In another study with the same reporter gene assay, MDA-kb2 cells were exposed to mixtures of 

30 AR antagonists from various classes of chemicals at three mixing ratios (Orton et al. 2014).  

Chemicals included pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol A, 

benzo[a]pyrene, perfluorooctane sulfonate, and pentabromodiphenyl ether.  IC values predicted 

by concentration addition were slightly lower than observed values (within 2-fold) at all mixing 

ratios, whereas IC values predicted by independent action were greater than observed values by 

2–4-fold (Orton et al. 2014).   

 
• Concentration addition provided reasonable predictions of AR antagonism in an AR-reporter 

gene assay with Chinese hamster ovary CHO-K1 cells exposed to an equimolar mixture of two 

azole fungicides and one dithiocarbamate fungicide (biteranol, propiconazole, and mancozeb), 

but underestimated observed responses to an equimolar mixture of one triazine herbicide, two 

azole fungicides, one pyrethroid insecticide, and one organophosphate insecticide (terbuthylazine, 

biteranol, propiconazole, cypermethrin, and malathion) (Kjeldsen et al. 2013).  For the 

five-component mixture, concentration addition predicted IC70, IC80, and IC90 values that were 

about 3-, 4-, and 9-fold higher than observed values (indicating greater-than-additive joint 

action).  
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• Another study reported that concentration addition adequately predicted the AR-antagonistic 

response in transfected CHO-K1 cells exposed to an equimolar mixture of five dissimilarly acting 

pesticides, deltamethrin (a pyrethroid insecticide), methiocarb (a carbamate insecticide), 

prochloraz (an azole fungicide), tribenuron-methyl (a sulfonylurea herbicide), and simazine (a 

triazine herbicide) (Birkhǿj et al. 2004).   

 

ER Activation or ER-Mediated Cell Proliferation Studies 

 

• Concentration addition provided reasonable predictions of ER activation, with some reports of 

small deviations from additivity, in reporter gene assays of transfected mammalian cells or yeast 

cells exposed to mixtures of up to 3–17 estrogenic chemicals (Charles et al. 2002a, 2002b, 2007; 

Evans et al. 2012; Le Page et al. 2006; Payne et al. 2000; Rajapakse et al. 2002; Silva et al. 2002), 

as well as in cell proliferation assays in ER-competent MCF-7 human breast cancer cells exposed 

to mixtures of up to 17 estrogenic chemicals (Evans et al. 2012; Payne et al. 2001; Rajapakse et 

al. 2004; Silva et al. 2011; van Meeuwen et al. 2007).  Results from a sample of these studies 

follows. 

 

o ER activation in transfected human MCF-7 breast cancer cells exposed to a fixed-ratio 

mixture of six synthetic chemicals with estrogenic activity (methoxychlor, o,p-DDT, 

octylphenol, bisphenol A, β-hexachlorocyclohexane, and 2,3-bis-(4-hydoxyphenyl)-

propionitrile) was less than additive across a range of concentrations, but the magnitudes 

of deviation from concentration addition at each of the tested concentrations were <3-fold 

(Charles et al. 2007).  In a companion in vivo immature rat uterotrophic assay, observed 

uterine weight responses to a mixture of these chemicals were statistically consistent with 

dose addition (Charles et al. 2007).   

 

o Responses to mixtures of 13–17 estrogenic chemicals at various mixing ratios were 

generally consistent with concentration addition in an ER reporter gene assay with human 

T47D-KBluc breast cancer cells and in a cell proliferation assay with MCF-7 cells (Evans 

et al. 2012).  Low concentrations in the nanomolar range of a mixture of 16 chemicals 

(each component with minimal estrogenicity alone) did not affect the cell proliferative 

response of MCF-7 cells to a 14-component mixture of estrogenic chemicals, but 

inhibited the response at concentrations in the micromolar range.   
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o Cell proliferation responses in MCF-7 cells exposed to mixtures of six phytoestrogens 

(coumestrol, genistein, naringenin, catechin, epicatechin, and quercetin), six synthetic 

chemicals with estrogenic activity (4-nonylphenol, octylphenol, β-hexachlorohexane, 

bisphenol A, methoxychlor, and dibutyl phthalate), or a combination of both mixtures 

showed no statistically significant deviations from concentration addition predictions 

(van Meeuwen et al. 2007).   

 

o Mixtures of 8, 10, 11, or 16 estrogenic chemicals produced cell proliferative responses in 

MCF-7 cells that were:  (1) adequately predicted by concentration addition for the 

8-component mixture and (2) overestimated by concentration addition for the 10-, 11-, 

and 16-component mixtures, indicative of less-than-additive joint action (Silva et al. 

2011).  For the latter three mixtures, observed effective concentrations were greater than 

predicted values by factors ranging from about 1.5- to 5-fold (Silva et al. 2011).   

 
Genotoxic End Point Studies 

 
• Concentration addition adequately explained effects on micronuclei formation in CHO-K1 cells 

exposed to a mixture of seven aneugenic benzimidazole pesticides, which act by a similar 

mechanism:  inhibition of microtubule formation by binding to β-tubulin monomers at the 

colchicine-binding site (Ermler et al. 2013).  In a subsequent study of mixtures of four to five 

chemicals inducing micronuclei by different mechanisms (aneugens and clastogens), the observed 

micronuclei responses to the mixtures were larger than responses predicted by independent action 

(i.e., response addition), but less than those predicted by concentration addition (Ermler et al. 

2014).   

 

• Studies with cultured cells of mouse lymphoma cells (L5178Y) and human cell lines (TK 6 and 

WTK1) exposed to gamma-ionizing radiation from 137Cs and ethyl methanesulfonate, showed 

micronuclei induction responses in the human cell lines that were consistent with concentration 

addition, but greater-than-additive action (40% supra-additive effect) in L5178Y cells (Lutz et al. 

2002). 

 

• Concentration addition predictions were not significantly different from observed mutation 

responses in bacteria (Salmonella Ames assay) to a mixture of three PAHs (benzo[a]pyrene, 

benz[a]anthracene, and dibenz[a,c]anthracene) (Lutz et al. 2002).  
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• Concentration addition predictions were mostly greater than observed mutation responses in 

several strains of Salmonella to complex mixtures that were nonpolar fractions of extracts from 

10 soils contaminated with complex PAH-containing mixtures (Lemieux et al. 2008).  The soils 

were from Swedish sites at which creosote wood preservation (n=7), coke production (n=1), or 

gas manufacturing (n=2) had occurred for many years.  The concentration addition predictions 

were made based on individual relative potencies for eight nonsubstituted, homocyclic PAHs 

showing positive activity in the assay conducted with three Salmonella typhimurium strains.  

(Sixteen PAHs identified by the EPA as Priority PAHs were tested, and 8 showed positive 

results.)  Sixty-eight percent of predicted values were statistically significantly greater than 

observed values; 94% of these values were within about 4-fold of observed values, and one was 

greater by about 8-fold (Lemieux et al. 2008).  Twelve percent of predicted values were not 

significantly different from observed values, and 20% were less than corresponding observed 

values (Lemieux et al. 2008).  In a subsequent study of mutagenic activities of nonpolar fractions 

of extracts of the same soils in an in vitro version of the LacZ transgenic rodent mutation assay, 

predicted values of mutagenic activity based on dose addition of individual mutagenic PAHs 

were within 2-fold of observed values for 9 out of 10 of the nonpolar fractions of soil extracts 

(Lemieux et al. 2015). 

 

• In a tiered experimental design, deviations from response additivity, both greater-than-additive 

and less-than-additive, were detected in studies of the effects of mixtures of five mycotoxins with 

different mechanisms of action on inhibition of DNA synthesis in mouse fibroblast L929 cells 

(Tajima et al. 2002).   

 

Summary of Evidence Related to Dose Additivity as a Default Assumption for Component-Based 

Approaches to Assessing Noncancer Health Impacts.  Based on the above in vivo and in vitro evidence, 

the dose-additivity assumption appears to be a reasonable default assumption for screening-level 

assessments of mixtures of chemicals with similar effects or the same target organ.  Results from 

adequately designed studies of various end points affected by defined mixtures of various classes of 

chemicals showed that:  (1) dose additivity often provided adequate descriptions of the mixture responses 

and (2) positive and negative deviations from dose additivity were small from a risk assessment 

perspective (generally <5-fold).  In addition, results from a few studies of end points in cells exposed to 

mixtures of components with differing MOAs indicated that observed responses were intermediate 

between the values predicted by concentration addition (i.e., dose addition) and response addition 

(independent action) (Ermler et al. 2014; Orton et al. 2014). 
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In support of these conclusions, an independent analysis of research studies (published between 1990 and 

2008) reporting “synergy” at dose levels close to PODs for individual mixture components (i.e., “low” 

doses) identified only 11 out of 90 studies reporting “synergy” in which the magnitude of “synergy” was 

calculated (Boobis et al. 2011).  Among those 11 studies, 6 studies used comparable methods to indicate 

that the magnitude of synergy was small from a risk assessment perspective, ranging from about 1.9- to 

3.5-fold greater than additivity (Boobis et al. 2011).  Three of the six studies (Crofton et al. 2005; Moser 

et al. 2005, 2006) were described in the bulleted items above. 

 

Although the research results reviewed herein provide support for the use of dose-additivity as a default 

assumption in component-based approaches, they also provide evidence for cases of deviations from 

additivity.  In addition, much of the evidence is based on short-term exposures.  Further research may 

help to confirm or refute the validity of this assumption, in particular for chronic exposure scenarios and 

for early life exposures with possible later life health outcomes.  As such, environmental scientists should 

be aware that currently recommended approaches to assess health impacts from combined exposure to 

multiple agents (as discussed in Chapter 2) are practical tools which could overestimate or underestimate 

actual health impacts. 

 
3.3.2. Hazard Index Approach 
 

The hazard index approach uses the assumption of dose additivity to assess the noncancer health effects 

of a mixture from the data on the components.  The approach, or some modification of it, is used or 

recommended by a number of agencies (including ATSDR), especially as a tool for screening-level 

assessments (see Chapter 4 of this document:  ACGIH 2015; CPSC 2014; DEPA 2009; EC 2012; EFSA 

2013; EPA 1986, 1989a, 2000, 2011c; Feron et al. 2004; Meek 2013; Meek et al. 2011; Mumtaz et al. 

1994a, 1997; NAS 1974; Norwegian Scientific Committee for Food Safety 2013; NRC 1989; OSHA 

1993, 2001; Yu et al. 2010, 2013).  In this approach, exposures or doses for the various components of a 

mixture of concern are compared with a defined level of exposure generally regarded as acceptable or 

safe (public health guidance value) by the agency performing the assessment.  The defined levels could be 

ATSDR MRLs, EPA RfDs or RfCs, ACGIH threshold limit values (TLVs), or Occupational Safety and 

Health Administration (OSHA) permissible exposure limits (PELs).  The general equation for the hazard 

index (HI) is: 

 

  (1) 
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In Equation 1, E1 is the level of exposure to the first chemical in the mixture and DL1 is some defined 

level of “safe” exposure to the first chemical, E2 and DL2 are the corresponding levels for chemical 2, and 

the summation can extend to any number of chemicals, signified by the n.  Each chemical-specific ratio 

(e.g., E1 /DL1) is called a hazard quotient (HQ).  Therefore, the hazard index can be expressed as the sum 

of the HQs: 

  (2) 
 

When the HQ for a single chemical exceeds unity, concern for the potential hazard of the chemical 

increases.  Similarly, when the hazard index for a mixture exceeds unity, concern for the potential hazard 

of the mixture increases.   

 

Separate hazard indices are usually estimated for each exposure pathway and exposure duration of 

concern.  For a given duration, hazard indices can be summed across pertinent exposure pathways that 

affect the same receptor population, giving an indication of cumulative impact or risk from components in 

the mixture. 

 

The obvious advantage of this method is its simplicity.  Because it is based on the assumption of dose 

additivity, the hazard index method is most appropriately applied to components that cause the same 

effect by the same mechanism or mode of action.  In practice, it may be applied to components with 

different target organs as a screening measure.  The method is also frequently applied to components with 

the same critical target organ or critical effect (effect that is the basis for the MRL, RfD, or other health 

guideline), without regard to mechanism or mode of action.  For Superfund risk assessments, strong 

evidence is required to indicate that two compounds producing adverse effects on the same organ system, 

although by different mechanisms, should not be treated as dose additive (EPA 1989a, 2000).  See also 

the discussion in Section 3.3.1.2 (Evidence to Support or Refute the Use of Default Dose-Additivity 

Approaches). 

 

The ATSDR (2005a) Public Health Assessment Guidance Manual notes that there is no evidence of 

additive toxicity from exposure to components of a mixture when individual chemicals are administered 

well below their individual apparent toxicity thresholds (Seed et al. 1995; Wade et al. 2002).  It 

recommends that when the site-specific hazard index is <1.0, “it is highly unlikely that significant 

HI = 

n


i=1

HQi 
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additive or toxic interactions would occur, so no further evaluation is necessary.”  When the hazard index 

exceeds 1.0, further evaluation is recommended, specifically that the assessor should compare the 

estimated exposure level for each component to the NOAEL on which the MRL is based.  These 

comparisons represent POD HQs, as opposed to “guidance value” HQs.  ATSDR (2005a) recommends 

that if exposure to one or more of the components is within 1 order of magnitude of the guidance value 

NOAEL (0.1xNOAEL), the assessor should conduct more in-depth analysis such as calculating hazard 

indices for components with common adverse effects (i.e., target organ or tissue) or common adverse 

effects via a common MOA and qualitatively evaluating information on possible interactions among 

components.  Furthermore, ATSDR (2005a) recommends that if estimated exposure levels of all 

components are less than one-tenth of the respective PODs (i.e., NOAEL, LOAEL, or BMDL), then 

significant additive or interactive effects are unlikely and further in-depth evaluation of potential health 

impacts from exposures to multiple chemicals at the site is unnecessary.  However, ATSDR (2005a) also 

noted that assessors may proceed with further evaluations in some instances, such as when several or 

more components in the mixture produce the same health effect either by different or common MOAs, 

when there are concerns for sensitive populations in the community, when the PODs for the MRLs are 

uncertain, or for other reasons (see Chapter 2 of this document for more specific and extensive discussion 

of assessing health impacts from multiple agents).   

 

The hazard index method does not take into account interactions among the components of the mixture, 

but methods to modify the method by incorporating data on possible interactions (deviations from 

additivity) among components are described in Section 3.3.3.   

 

Additional information on the hazard index method is provided in EPA (1986, 1989a, 2000). 

 

3.3.3. Target-organ Toxicity Dose (TTD) Modification to Hazard Index Approach 
 

The TTD approach, which is a refinement of the hazard index approach, was devised in order to 

accommodate the assessment of mixtures whose components do not all have the same critical effect 

(i.e., the most sensitive effect providing the basis of the public health guidance value), but may produce 

toxic effects in common target organs dependent on exposure level.  It takes into account the reality that 

most components of contaminated-site-related mixtures affect other target organs at doses higher than 

those that cause the critical effect of the guidance value.  These other effects may vary from component to 

component and may be important in assessing the health effects of the mixture.  EPA (1989a) suggested 

that separate hazard indices be estimated for all end points of concern, and that the RfD be used not only 
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in generating HQs for the critical effect of a component, but also in estimating HQs for effects that occur 

at higher exposure levels.  As acknowledged by EPA (1989a) and demonstrated by Mumtaz et al. (1994a, 

1997), this practice may overestimate the hazard for effects occurring at exposure levels higher than those 

associated with the critical effect.  The use of TTDs was therefore suggested (Mumtaz and Colman 1993; 

Mumtaz et al. 1997).  TTDs are developed for the chemicals that affect an end point at a dose higher than 

that for the critical effect for the same chemical.  A TTD for each end point of concern is calculated using 

appropriate MRL (or RfD) methodology, and then used in estimating the end-point-specific HQs and 

hazard indices.  The MRL (or RfD) is used for the critical effect for each chemical and the TTD is used 

for the other end points of concern for the chemical.  When any of the end-point-specific hazard indices 

exceeds unity, concern for the potential hazard of the mixture increases. 

 

The derivation of TTDs for use in assessment of the joint toxic action of chemical mixtures is analogous 

to the derivation of MRLs, and should follow the applicable portions of ATSDR MRL guidance (ATSDR 

1996).  TTDs are based on the other major characteristic effects of a chemical, which are known to occur 

at the same or higher exposure levels as the critical effects.  Like the derivation of an MRL, the derivation 

of a TTD is not recommended for an end point that is affected only at the relatively high levels of 

exposure associated with severe effects.  Because the purpose of TTD derivation is to support the 

estimation of end-point-specific hazard indices (Mumtaz et al. 1994a, 1997), TTD derivations should be 

performed for end points that are common to more than one component of a given mixture.  In addition, 

end points identified as concerns in populations exposed to the mixture should be considered. 

 

Like MRLs (or RfDs), TTDs are specific for route and exposure period.  The TTD should be based on the 

highest NOAEL that does not exceed a LOAEL for the particular end point, as determined from the 

information in toxicological profiles, including the Levels of Significant Exposure tables.  If such a 

NOAEL is not available, the TTD would be based on the lowest LOAEL for that end point; PODs for 

TTDs should be from a representative, high-quality study involving the route and exposure duration of 

concern.  When data for the exposure duration of concern are not available, a TTD derived for one 

duration may sometimes be applicable for other duration(s) of the same route, if supported by the overall 

database.  An additional uncertainty factor may be applied to account for uncertainty associated with 

duration extrapolation, based on scientific judgment.  Dose adjustments and interspecies, intraspecies, and 

LOAEL-to-NOAEL extrapolation (i.e., uncertainty factors) should be performed and explained as for an 

MRL.  When suitable data are available, and when appropriate, TTDs can also be derived using BMD 

PODs (Crump 1984, 1995; EPA 2012a; Gaylor et al. 1998) to define the BMDL, which is used in place of 

a NOAEL as the basis for TTD derivation, similar to the procedure for MRL derivation.   
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An illustrative example follows of the application of the TTD-modification of the hazard index to a 

hypothetical site-specific mixture of chemicals 1, 2, 3, and 4 to which intermediate-duration oral exposure 

is of concern.  The intermediate oral MRLs are based on critical hepatic effects for chemicals 1 and 2, and 

critical renal and critical developmental effects, respectively, for chemicals 3 and 4.  Each of these end 

points also is affected by at least one other mixture component for which it is not the critical effect.  Other 

major effects in common for two or more of these chemicals for this route and duration include 

neurological and developmental effects.  In addition, chemical 1 causes immunological effects and 

chemical 4 causes endocrine (adrenal) effects during intermediate oral exposure.  At levels of exposure 

that cause high mortality, chemical 1 also causes hematological effects in rats.  This information is 

summarized in Table 3.   

 

Table 3.  End Points Affected by Chemicals 1, 2, 3, and 4 
 
 Affected by: 
End point Chemical 1 Chemical 2 Chemical 3 Chemical 4 
Hematological With mortality No No No 
Hepatic YesCMRL YesCMRL No Yes 
Renal Yes No YesCMRL Yes 
Endocrine (adrenal) No No No Yes 
Immunological Yes No No No 
Neurological Yes Yes Yes No 
Developmental Yes Yes Yes YesCMRL 
 
MRL = Minimal Risk Level 
 

The end points of concern chosen for TTD derivation, based on the critical effects of the chemicals and 

on other major effects in common for this set of chemicals, are hepatic, renal, neurological, and 

developmental effects.  These end points are shown in bold italicized print in the table.  Since adrenal and 

immunological effects each are caused by only one chemical, and are not the critical effects for any of the 

components of the mixture, the estimation of end-point-specific hazard indices is not needed for these end 

points, and TTDs are accordingly not developed.  For a different mixture of chemicals that included 

chemical #1, the immunological end point may warrant TTD derivation if at least one other chemical in 

the mixture also causes this effect.  Similar reasoning would apply for chemical #4 and adrenal effects.  

The hematological effects are not a suitable basis for TTD derivation for chemical #1 not only because 

they are caused by only one chemical, but also because they occurred only at levels of exposure that 

caused significant mortality. 
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For the purposes of illustration, a TTD for renal effects will be derived for chemical #1.  The intermediate 

oral MRL for chemical #1 is 0.15 mg/kg/day based on a NOAEL of 15 mg/kg/day for hepatic effects in 

experimental animals given the chemical orally for an intermediate duration.  The NOAEL was divided 

by an uncertainty factor of 100 (10 for interspecies and 10 for intraspecies variability) to estimate the 

MRL.  The LOAEL for hepatic effects in the same study was 30 mg/kg/day.  The NOAEL and LOAEL 

values for renal effects in this study were 30 and 45 mg/kg/day, respectively, and were the most reliable 

data for this effect.  In addition, the NOAEL was the highest NOAEL for this effect.  A TTDRENAL of 

0.3 mg/kg/day for chemical #1 is derived by dividing the NOAELRENAL of 30 mg/kg/day by an 

uncertainty factor of 100 (10 for interspecies and 10 for intraspecies variability).  Derivation of TTDs for 

the other effects would proceed in a similar manner. 

 

Following derivation of the TTDs, end-point-specific hazard indices are calculated as follows: 

 

  (3) 

 

where HIENDPOINT is the hazard index for indicated end point (HEPATIC, RENAL, NEURO [neurological], 

DEV [developmental]), Ei is the exposure for the ith chemical (1, 2, 3, or 4 in the above example), MRLi is 

the MRL for the ith chemical, and TTDi is the TTD for the ith chemical for the indicated end point.  (If an 

MRL is not available, a suitable RfD can be used.)  Although developmental toxicity is the critical effect 

for only one of the four chemicals, all four produce the effect, and it is conceivable that it may be a 

sensitive effect for the mixture.  Neurological effects are not the critical effect for any of the chemicals, 

but three of the chemicals cause this effect at equivalent or higher exposure levels than associated with 

the critical effect.  Thus, use of the TTD modification of the hazard index for mixtures of chemicals that 

do not have the same critical effect may increase the understanding of the potential impact of the mixture 

on public health.  Additional information regarding this method is provided by Mumtaz et al. (1994a, 

1997).   
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The development of TTDs can be analytically intensive.  TTDs have been developed for a variety of 

chemicals in a pilot study (Mumtaz et al. 1997) and in a number of ATSDR interaction profiles (Pohl and 

Abadin 2008; Pohl et al. 2003, 2004, 2009; see www.atdr.cdc.gov/interaction profiles).  The derivations 

in the interaction profiles are subjected to a review process that is similar to that for MRLs.  Currently, 

ATSDR Toxicological Profiles only present MRLs for subject chemicals and do not present TTDs.  

 

3.3.4. Weight-of-Evidence (WOE) Modification to the Hazard Index Approach 
 

As noted above, the hazard index approach does not incorporate information on interactions among 

components of the mixture.  A WOE method proposed by Mumtaz and Durkin (1992) was the first 

systematic attempt to address this need.  The method implemented and expanded on the suggestion made 

by the NRC (1989) that, in recognition of the difficulties of quantifying interactions, an uncertainty factor 

be used to account for interactions among components of a mixture.  The method was designed to modify 

the hazard index to account for interactions, using the WOE for interactions among pairs of mixture 

components.  Although subsequent experience with the algorithm used to generate the interactions hazard 

index has revealed that it does not account for changes in proportions of mixture components in a 

reasonable manner, the method is useful qualitatively for predicting whether a hazard may be greater or 

less than indicated by the hazard index. 

 

The method evaluates data relevant to joint action for each possible pair of chemicals in the mixture in 

order to make qualitative binary WOE (BINWOE) determinations for the effect of each chemical on the 

toxicity of every other chemical.  Two BINWOEs are needed for each pair:  one for the effect of chemical 

A on the toxicity of chemical B, and another for the effect of chemical B on the toxicity of chemical A.  

The BINWOE determination is a classification that indicates the expected direction of an interaction 

(greater than additive, less than additive, additive, or indeterminate), and scores the data qualitatively, 

using an alphanumeric scheme that takes into account mechanistic understanding, toxicological 

significance, and relevance of the exposure duration, sequence, bioassay (in vitro versus in vivo), and 

route of exposure.  The alphanumeric terms in the classification scheme can then be converted to a single 

numerical score, by multiplying the corresponding direction factor by the data quality weighting factor.  

Although earlier publications of the WOE method did not discuss the need for target organ consideration 

in BINWOE determinations (Mumtaz and Durkin 1992), experience in application of the WOE method, 

including preparation of the ATSDR interaction profiles and a study by Mumtaz et al. (1998), has 

indicated that the WOE evaluations should be target-organ specific. 
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The qualitative BINWOE classifications are shown in the left column of Table 4 and the direction factors 

and data quality weighting factors are shown in the far right column.  An alphanumeric (qualitative) 

BINWOE classification of >II.B.2.a.i for the effect of one chemical on the toxicity of another thus 

corresponds to greater-than-additive interaction, mechanistic data on related chemicals, inferred 

toxicological significance, different duration or sequence, in vivo data, and anticipated route of exposure.  

The corresponding BINWOE score is +1(0.71)(0.71)(0.79)(1)(1)=+0.40.   
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Table 4.  Binary Weight-of-Evidence Scheme for the Assessment of Chemical 
Interactions 

 
Classification Factor 

Direction of Interaction Direction  
 
 

= 
> 
< 
? 

Additive 
Greater than additive 
Less than additive 
Indeterminate 

  0 
+1 
−1 
  0 

Quality of the Data Weighting  
 Mechanistic Understanding  
 I. Direct and Unambiguous Mechanistic Data:  The mechanism(s) by which the 

interactions could occur has been well characterized and leads to an unambiguous 
interpretation of the direction of the interaction. 

 1.0 

 II. Mechanistic Data on Related Compounds:  The mechanism(s) by which the 
interactions could occur have not been well characterized for the chemicals of 
concern but structure-activity relationships, either quantitative or informal, can be 
used to infer the likely mechanisms(s) and the direction of the interaction. 

 0.71 

 III. Inadequate or Ambiguous Mechanistic Data:  The mechanism(s) by which the 
interactions could occur has not been well characterized or information on the 
mechanism(s) does not clearly indicate the direction that the interaction will have. 

 0.32 

 Toxicological Significance  
 A. The toxicological significance of the interaction has been directly demonstrated.  1.0 
 B. The toxicological significance of the interaction can be inferred or has been 

demonstrated for related chemicals. 
 0.71 

 C. The toxicological significance of the interaction is unclear.  0.32 
 Modifiers  
 1. 

2. 
Anticipated exposure duration and sequence. 
Different exposure duration or sequence. 

 1.0 
0.79 

 a. 
b. 

In vivo data 
In vitro data 

 1.0 
0.79 

 i. 
ii. 

Anticipated route of exposure 
Different route of exposure 

 1.0 
0.79 

 
Weighting factor = product of weighting scores:  maximum = 1.0, minimum = 0.05 
 
BINWOE = direction factor x weighting factor:  ranges from −1 through 0 to +1 
 
Sources:  Mumtaz and Durkin 1992; Mumtaz et al. 1994a 
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 The qualitative WOE approach, focusing on application of the BINWOE scores to hazardous waste site 

assessment, was suggested by Mumtaz and Durkin (1992).  This approach was recommended for a 

mixture where the scaled doses (HQs) for all of the components are similar, or toxicologically significant.  

The qualitative BINWOE scores for the components, if similar in direction, are the basis for a conclusion.  

For example, consider a mixture of four components, all present at toxicologically significant levels.  The 

number of possible chemical pairs in a mixture of N components is (N2-N)/2.  Thus, this mixture of 

4 components has 6 pairs of components and potentially 12 BINWOEs.  Suppose nine of the BINWOEs 

are greater than additive (positive) with alphanumeric classifications indicating a relatively high degree of 

confidence, and the remaining three BINWOEs are additive (0), also with relatively high degrees of 

confidence.  In this case, the WOE suggests that the mixture is likely to pose a greater hazard than that 

indicated by the hazard index. 

 

A likely pattern of qualitative BINWOEs for a mixture is a mixed pattern (some greater-than-additive, 

some less-than-additive, and some additive BINWOEs).  In this case, the qualitative WOE approach is 

extended to include conversion of the qualitative BINWOE scores to numerical scores, and summing the 

scores to give a combined score.  If the combined BINWOE score is positive and significantly different 

from zero, then the WOE suggests that the mixture is likely to pose a greater hazard than indicated by the 

hazard index.  Conversely, if the combined BINWOE score is negative and significantly different from 

zero, then the WOE suggests that the health hazard is unlikely to be greater than indicated by the hazard 

index.  Professional judgment is used in the interpretation of the impact of the WOE on the hazard index. 

 

Although the WOE method was developed for assessing interactions for noncarcinogenic effects, the 

qualitative WOE method is equally applicable to assessing interactions for carcinogenic effects.   

 

The WOE method has undergone evaluation, and appeared to perform well qualitatively (Mumtaz and 

Durkin 1992; Mumtaz et al. 1994a).  The application of the method for deriving BINWOE classifications 

was considered consistent by expert toxicologists who reviewed the results of exercises in which several 

teams of toxicologists and risk assessors independently determined BINWOE classifications for the same 

pairs of chemicals (Mumtaz et al. 1994b).  In tests of the WOE method to predict the toxicity of some 

simple chemical mixtures to animals, BINWOEs for three pairs of chemicals qualitatively predicted 

whether the results of animal studies would be less than additive, additive, or greater than additive 

(Mumtaz et al. 1998).  Used with an exponential dose-response model and dose addition to model relative 

kidney weights, the quantitative WOE method closely predicted the observed dose-response in female rats 

for intermediate-duration oral exposure to a mixture of four nephrotoxic chemicals with similar MOAs 
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(Mumtaz et al. 1998).  The observed dose-response was less than dose additive.  The BINWOEs were 

focused on renal toxicity, and the uncertainty factor used in the algorithm was 10.  The WOE method 

underestimated the relative liver weights in the same animals.  The observed dose-response for relative 

liver weight was slightly greater than dose additive.  Thus, the WOE method did not predict toxicity to a 

target organ that was different from the one for which the BINWOEs were derived.  The WOE method 

slightly overpredicted the observed dose-response for relative kidney weight in male rats for a mixture of 

dissimilarly acting nephrotoxins (in female rats, the data variability was so great that the exponential 

model did not fit the observed responses) (Mumtaz et al. 1998).  Although these results are suggestive, 

limitations of this test of the complete WOE method include the substantial variability in the responses of 

individual animals, small numbers of animals per group, testing of only two dose levels of the mixtures, 

and lack of rationale for using relative organ weight as an index of toxicity (several other indicators of 

renal and hepatic toxicity were monitored in the studies that provided the experimental data [Jonker et al. 

1993, 1996]). 

 

Possible applications of the qualitative BINWOE approach during refined Tier 3 analysis (see 

Section 2.4) include qualitative assessment that a hazard index is overprotective when evidence indicates 

that dose responses are less-than-additive or under-protective when evidence indicates that dose responses 

are greater-than-additive for any two (or more) components in the evaluated mixture.   

 

A modification of the original WOE method was adopted as part of EPA’s mixtures guidance (EPA 

2000).  This modification includes a slightly different classification scheme and a method of calculating 

an interactions-modified hazard index.  The method encourages greater use of quantitative interaction 

data through the use of magnitude-of-interaction factors for each chemical pair.  The classification 

scheme, while more integrated in nature, requires more judgment, and the type of quantitative interaction 

data required to estimate the magnitude factor is rarely available (see Boobis et al. 2011).  The algorithm 

for this modification appears to handle changes in proportions of mixture components more reasonably 

than does the original algorithm, but additional evaluation with regard to predicting experimental results 

is desirable. 

 

A basic assumption of both WOE methods is that interactive interference will not be significant.  For 

example, if chemicals A and B interact in a certain way, the presence of chemical C will not cause the 

interaction to be substantially different.  Thus, the assumption is that pairwise interactions will dominate 

in the mixture and will adequately represent all of the interactions. 
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Additional detail regarding both methods is provided in Appendix B. 

 
3.3.5. Relative Potency Factor (RPF) Approaches (including Toxicity Equivalency Factor 
[TEF] Approaches) 
 

RPF approaches are developed and used to evaluate mixtures of related chemicals that are assumed to be 

toxicologically similar, for cases in which dose-response data for one chemical in the chemical group 

(termed the index chemical or compound) are sufficient to derive a guidance value (e.g., an MRL, RfD, or 

cancer slope factor), but dose-response information for the other chemicals is less complete (EPA 2000).  

RPF approaches require both exposure and toxicity data and scale exposure concentrations of the non-

index chemicals relative to the potency of the index chemical using scaling factors (i.e., RPFs) based on a 

specific toxic effect, route of exposure, or duration of exposure.  A TEF approach is a special type of RPF 

approach for a group of chemicals sufficiently well studied to have confidence that the scaling factors 

(i.e., TEFs) are applicable to all health endpoints, all routes of exposure, and all durations of exposure.  

Compared with a generalized RPF approach, a TEF approach is based on more high-quality and abundant 

mechanistic data yielding considerable certainty about the MOA leading to all shared toxic effects from 

members in the group (EPA 2000).  In essence, a TEF may be developed if there is confidence that a 

single MOA or toxicity pathway is shared by all members of the group.  The classic example of a TEF 

approach is the one developed for dioxins and dioxin-related compounds, which share a key event 

(binding to the aryl hydrocarbon receptor) leading to downstream adverse effects (see next paragraph).   

 

The most widely accepted TEF approach is used with the CDDs and structurally related chemical classes 

such as the chlorinated dibenzo-p-furans (CDFs) and the coplanar PCBs that are expected to have a 

common mechanism of action in producing common adverse outcomes (Ahlborg et al. 1994; ATSDR 

1998b; EPA 1989b, 1994, 2010b 2012b; Safe 1998; Van den Berg et al. 1998, 2006).  This method 

estimates TEFs for the various congeners in the mixture based on the key assumptions that CDD and CDF 

congeners produce nonneoplastic and neoplastic effects through a common receptor-mediated MOA (aryl 

hydrocarbon receptor), and act in a dose-additive manner.  The TEF approach uses data from in vitro and 

in vivo studies comparing the potency of individual congeners to produce toxic or biological effects, with 

that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the best-studied of this chemical class.  Relative 

potencies are calculated from these studies as the ratio of the EC50 for a congener to the EC50 for 

2,3,7,8-TCDD (Van den Berg et al. 2006).  2,3,7,8-TCDD is assigned a TEF of one, and TEF values for 

the other congeners are determined by an evaluation of the range of relative potency estimates from the 

available studies (Van den Berg et al. 2006).  The most recent consensus values for TEFs for CDDs, 

CDFs, and dioxin-like PCBs were determined by an expert panel convened by the WHO (Van den Berg et 
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al. 2006).  A 2011 expert consultation evaluated the possible inclusion of brominated analogues of the 

dioxin-like compounds in the WHO TEF scheme, and recommended the use of similar interim TEF 

values for brominated and chlorinated congeners for human health risk assessment (Van den Berg et al.  

2013).  

 

To assess exposure to a specific mixture of CDDs and dioxin-like compounds, the concentrations of 

congeners present in a mixture in environmental media are determined and multiplied by their TEF values 

and then summed to give the total 2,3,7,8-TCDD toxic equivalents (TEQs) of the mixture: 

 

  (4) 
 

where Ci is the concentration and TEFi is the TEF for the ith component of the mixture.  The TEQ thus 

represents the concentrations of all of the components as an equivalent concentration of the index 

chemical, 2,3,7,8-TCDD, based on the assumption of dose additivity.  The TEQs are used in exposure 

models to estimate intakes for target populations and specific exposure scenarios.  An index of hazard for 

noncancer health effects is estimated by comparing (via HQs) the TEQ intake with the appropriate MRL 

for 2,3,7,8-TCDD or other health-based criteria (e.g., the EPA RfD for 2,3,7,8-TCDD) (ATSDR 1998b, 

2008b; De Rosa et al. 1997a, 1997b, 1997c, 1998; EPA 2010b; Mumtaz and Hertzberg 1993; Pohl et al. 

1995).  If the ratio of the TEQs to the guidance value for 2,3,7,8-TCDD is >1, there is concern for 

increased risk of hazard; values <1 do not merit concern for increased risk.  For cancer risk assessment, 

an estimate of cancer risk is obtained by multiplying the TEQ (in appropriate units of mg/kg/day or 

mg/m3) by a cancer slope factor or unit risk for 2,3,7,8-TCDD (EPA 1994, 1996; Mumtaz and Hertzberg 

1993).  

 

This TEF approach is considered suitable for the assessment of health effects of dioxin-like compounds 

that are mediated through the aryl hydrocarbon receptor, but is not applicable for those that are not 

(ATSDR 1998b; Van den Berg et al. 2006).  Aryl hydrocarbon receptor mediation is thought to be a key 

event in the mechanism of action for effects produced by this class of chemicals including 

carcinogenicity, immunotoxicity, and developmental and reproductive toxicity (the basis for oral MRLs 

and the EPA IRIS [2012] RfD for 2,3,7,8-TCDD) (ATSDR 1998b; EPA 2010b, 2012b; Van den Berg et 

al. 2006).  Limitations to this method are that:  (1) some of the nondioxin-like PCB congeners have been 

shown to inhibit or enhance responses to 2,3,7,8-TCDD, depending on dose and assay system (Birnbaum 

TEQs = 

n


i=1

Ci  TEFi 
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and DeVito 1995; Pohl and Holler 1995; Safe 1998); (2) some PCB congeners with many relative 

potency studies have a very broad range of relative potency estimates (Safe 1998; Van den Berg et al. 

2006); and (3) a slope factor for 2,3,7,8-TCDD is not available on the EPA IRIS (2012).  The TEF 

approach continues to evolve and undergo additional testing and validation.  ATSDR considers the 

approach less suitable for PCBs, and has derived MRLs for PCBs (ATSDR 2000b).  ATSDR uses the 

TEF method as a tool for assessing health effects of dioxin and dioxin-like compounds (primarily CDDs 

and CDFs) in soil (ATSDR 1998b, 2008b; De Rosa et al. 1997a, 1997b, 1997c, 1998).  The most recent 

consensus TEF values presented by WHO (Van den Berg et al. 2006) are part of the methods used by 

ATSDR (2008b) and EPA (2010b) to assess human health risks of mixtures with dioxins and dioxin-like 

compounds.  Results from in vivo studies of defined mixtures of dioxins and dioxin-like compounds 

indicated that WHO TEF values predicted mixture toxicity within a factor of ≤2 (Fattore et al. 2000; Gao 

et al. 1999; Hamm et al. 2003; Walker et al. 2005), providing evidence that the dose-additivity 

assumption in the TEF approach for dioxins and dioxin-like compounds is useful.  Evidence that 

bioavailability of CDDs and CDFs can be limited in soils, and the fact that most TEFs for CDDs, CDFs, 

and dioxin-like PCBs are based on data from studies of laboratory animals fed test compounds in food, 

has led to recommendations that adjustments be made to account for decreased bioavailability in soil, 

when risks are assessed from exposures to dioxins and dioxin-like compounds in soil (EPA 2007a, 2010a; 

Van den Berg et al. 2006). 

 

An RPF approach has been developed for nonsubstituted PAHs that have been classified as 

B2 carcinogens by EPA (ATSDR 1995b; EPA 1993).  The RPFs (termed estimated order of potency by 

EPA [1993]) were estimated on the basis of potency relative to that of benzo[a]pyrene in mouse skin 

tumor studies.  RPFs for a wider number of individual nonsubstituted PAHs (up to 24) have been 

developed by a number of groups (see Jarvis et al. [2014] for review).  Benzo[a]pyrene is the best-studied 

member of this class and has a cancer OSF available on IRIS (1998a).  Similar to the TEF approach, the 

concentrations of PAHs with RPFs are first determined in environmental media.  Exposure models are 

then used to estimate oral intakes of each PAH for target populations, and individual PAH intakes are 

converted to benzo[a]pyrene equivalents with the appropriate RPF.  The benzo[a]pyrene equivalents are 

then summed and multiplied by the benzo[a]pyrene cancer slope factor to obtain an estimate of the cancer 

risk in the target population from the carcinogenic PAHs in the mixture.  The mechanistic underpinnings 

of the RPF approach for the PAHs are less compliant than CDDs with the assumption of a single 

common, mechanism-of-action key event, as multiple mechanisms are likely involved for different PAHs 

(see Boström et al. 2002; Jarvis et al. 2014).  In addition, some of the same issues noted for the 

application of the TEF approach for CDDs also are issues for the use of the RPF approach for PAHs, 
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including evidence for greater-than-additive and less-than-additive interactions among binary and more 

complex mixtures of PAHs and the wide range in published RPF values for many individual PAHs (see 

Jarvis et al. [2014] for review).  Several reports have indicated that the RPF approach may be inadequate 

for predicting carcinogenic responses in mouse-skin tumor-initiation studies of complex PAH-containing 

mixtures or certain PAHs (e.g., dibenzo[def,p]chrysene) having mechanisms of action different from 

those of benzo[a]pyrene (Courter et al. 2008; Siddens et al. 2012; Tilton et al. 2015).  Other reports 

suggest that the mutagenic activities of extracts of PAH-contaminated soil are inadequately predicted by 

dose addition and RPFs due to competing factors of:  (1) possible less-than-additive, metabolism-related, 

interactions among components and (2) contributions from non-identified mutagenic components in the 

extracts (Lemieux et al. 2015, 2008).  However, in these studies, mutagenic activities predicted by dose 

addition of PAH components were mostly within 2–4-fold of observed mutagenic activities of nonpolar 

fractions of extracts of 10 soils contaminated with complex PAH-containing mixtures (Lemieux et al. 

2015, 2008).  

 

EPA OPP has developed cumulative risk assessments for classes of pesticides whose members produce 

common effects by a common mechanism using an RPF approach coupled with a POD/Margin of 

Exposure (MOE) approach as an index of risk (EPA 2002b).  The EPA OPP approach for cumulative risk 

assessments involves:  (1) determination of whether or not a group of structurally related pesticides 

produces a common effect by a common mechanism; (2) selection of an index chemical and 

determination of RPFs for members of the group; (3) determination of concentrations of member 

chemicals in foods and environmental media; (4) estimation of intakes for target population for multiple 

exposure pathways using exposure models; and (5) assessment of risks for target populations using a 

POD/MOE hazard indicator method when appropriate data are available (EPA 2002b).  

 

The OPP cumulative risk assessments each began with a WOE evaluation identifying a group of 

chemicals that produce a common effect by a common mechanism (EPA 2002b).  Using this type of 

evaluation, OPP determined that there was sufficient evidence for a common effect by a common 

mechanism for five pesticide classes (three insecticide classes and two herbicide classes) including 

organophosphates (EPA 2006b), N-methyl carbamates (EPA 2007b), pyrethrins/pyrethroids (EPA 

2011b), triazines (EPA 2006d), and chloroacetanillides (EPA 2006c), but insufficient evidence for 

members of the thiocarbamate class (EPA 2001a) or members of the dithiocarbamate class (EPA 2001b). 

 

The index chemical for the common assessment group is selected as the representative chemical in the 

group with the best available dose-response data for all exposure routes under consideration.  When 
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adequate data are available, RPFs are determined by dose-response modeling of a common end point 

(pertinent to the common mechanism of action) to arrive at a POD (such as a BMD10) and dividing the 

POD for each component by that of the index chemical (a unitless number).  Concentrations of member 

components in food and environmental media are converted to index chemical equivalents by multiplying 

the concentrations by the appropriate RPF, and then equivalent concentrations are summed.  The summed 

equivalent concentrations are used in exposure models to estimate total index chemical equivalent intakes 

for target populations for multiple pathways and exposure scenarios.  The ratio between the POD for the 

index chemical (PODindex chemical) and the total index chemical equivalent intake (i.e., exposure) is termed 

the MOE, which is used as EPA OPP’s indicator of risk: 

 

 Margin of exposure (MOE) = PODindex chemical ÷ exposure to index chemical equivalents 

 

Uncertainties in the exposure assessment and toxicity database are considered in selecting a suitable target 

MOE to indicate concern for increased risk of the common effect and characterizing the risk for target 

populations and exposure scenarios.  An illustration of the whole process can be found in the description 

of the EPA (2007b) cumulative risk assessment for N-methyl carbamates in Appendix C.8 of this 

document.  Wilkinson et al. (2000) have argued that the POD/MOE approach is more transparent than the 

hazard index approach, because the application of data-derived uncertainty factors and default policy-

driven uncertainty factors are separated in the POD/MOE approach, but masked within the RfDs or MRLs 

used in the hazard index approach.   
 

3.3.6. Total Cancer Risk Approach 
 

A response-addition approach has been recommended for the assessment of risk from mixtures of 

carcinogenic chemicals (De Rosa et al. 1993; EPA 1986, 2000; Mumtaz et al. 1994a; NRC 1989).  The 

most conservative form of response addition, completely negative correlation of tolerances (i.e., 

individuals most sensitive to chemical A are least sensitive to chemical B and vice versa) was 

recommended by EPA (1986).  Accordingly, the response or risk for the mixture is the sum of the risks 

for the components:   

  (5) 

 

Risk = 

n


i=1

Riski = 

n


i=1

diBi 
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where Riski is the risk, di is the dose, and Bi is a potency parameter (slope factor or unit risk) for the ith 

carcinogen.  The equation is appropriate when risks for the individual chemicals are <0.01 and the sum of 

the individual risks is <0.1 (EPA 1989a).  This equation is equivalent to dose addition if the dose-

response curves for the chemicals are within the linear (low-dose) range, and have no threshold (EPA 

1986, 2000).  EPA (2000) recommends the response-addition model for independent action (as in 

Equation 18 of Appendix A) for cancer risk, noting that when component risks are small, the formula 

collapses to the simple addition of component risks (Equation 5 above).  Use of the IRIS values for slope 

factor or unit risk result in plausible upper bounds to the lifetime excess cancer risk of the components.  

Concern has been raised that summing upper bound risks may lead to unreasonably high estimates of the 

mixture risk, but an analysis by Kodell and Chen (1994) suggested that the error in the simple sum of the 

upper bound risks is small relative to other uncertainties, and Cogliano (1997) concluded that the sum of 

the upper bound risks provides useful information regarding the overall risk from mixtures of 

carcinogens.  

 

3.3.7. Applications of PBPK and PBPK/PD Models to Chemical Mixture Assessments  
 

PBPK models for single chemicals are biological models that incorporate pharmacokinetic information 

(i.e., about absorption, distribution, metabolism, and elimination; also known as toxicokinetic 

information) to estimate internal doses of a chemical in the body from externally applied doses or 

concentrations.  PBPK/PD models also incorporate information about the response of target tissues or 

cells to the chemical (i.e., pharmacodynamic information) (Caldwell et al. 2012; Mumtaz et al. 2012; Tan 

et al. 2011).  PBPK models for single chemicals have been used to better inform human health dose-

response assessment extrapolations from high doses to low doses, across species (e.g., from rats to 

humans), and across durations and routes of exposure (Caldwell et al. 2012; EPA 2006a; Mumtaz et al. 

2012).  Examples of toxicity guidance values that were developed using PBPK models for single 

chemicals include the EPA IRIS RfCs or cancer slope factors for dichloromethane (IRIS 2011a), 

trichloroethylene (IRIS 2011b), and vinyl chloride (IRIS 2003b), and the ATSDR MRLs for 

dichloromethane (methylene chloride) (ATSDR 2000a), 1,4-dioxane (ATSDR 2012b), cadmium (ATSDR 

2012a), and trichloroethylene (ATSDR 2014).  Single-chemical PBPK modeling is part of a process, 

termed quantitative in vitro to in vivo extrapolation, that is currently being investigated for use in 

extrapolating in vitro toxicity results to in vivo exposure scenarios via reverse dosimetry (Meek and 

Lipscomb 2015; Shin et al. 2015; Thomas et al. 2013; Wetmore 2015; Wetmore et al. 2012; Yoon et al. 

2015).  
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Models for mixtures of two or more components have been developed by linking PBPK and/or PBPK/PD 

models for the individual components at points of potential pharmacokinetic or pharmacodynamic 

interaction, most commonly at hepatic metabolic inhibition (Andersen and Dennison 2004; Krishnan et al. 

2002; El-Masri et al. 2004; Mumtaz et al. 2012; Tan et al. 2011).  Following optimization and validation 

of the potential mechanisms of interaction by comparing model predictions of an internal dose metric or 

toxic outcome with experimental data, the mixture/interaction models have been used to investigate the 

dose-dependency of the magnitude of interactions and external exposure levels at which interactions (i.e., 

deviations from additivity) may or may not exist (Barton et al. 1995; Dobrev et al. 2001, 2002; Haddad et 

al. 1999a, 1999b, 2000a, 2000b; El-Masri et al. 1996, 2004; Krishnan et al. 2002; Pelekis and Krishnan 

1997; Tardif et al. 1997).  For example, Tardif et al. (1997) found that rat PBPK models for toluene, 

m-xylene, and ethylbenzene linked with competitive metabolic inhibition in the liver provided plausible 

agreement with results from gas uptake studies.  Simulations of human models (scaled from the rat 

models) and results from volunteer studies showed that alveolar air concentrations and urinary metabolite 

concentrations, at exposure levels below permissible occupational exposure levels, were not significantly 

different between exposure to the individual components and exposure to the mixture.  The results 

indicated the lack of an antagonistic metabolic interaction at these low exposure levels (Tardif et al. 

1997).  Similarly, El-Masri et al. (2004) demonstrated an interaction threshold for oral exposure of rats to 

a binary mixture of two organophosphorus insecticides that inhibit acetylcholinesterase after bioactivation 

by CYP enzymatic transformation:  chlorpyrifos and parathion.  Rat PBPK/PD models for each 

insecticide were developed to estimate blood concentrations of their metabolites and estimate kinetics of 

percent inhibition of free plasma acetylcholinesterase.  A mixture model was developed that included 

interactions at:  (1) the CYP enzymatic bioactivation step and (2) acetylcholinesterase binding sites.  

Model simulations with oral exposure to various dose levels of each insecticide alone and 1:1 mixtures 

indicated that the mixture model predicted responses that were increasingly smaller than the responses 

predicted by response additivity from the individual models at doses in the range of 1–10 mg/kg, thereby 

indicating antagonism (less-than-additive action) that increased with dose.  No difference between the two 

methods became apparent at 0.08 mg/kg, the apparent interaction threshold for this binary mixture (El-

Masri et al. 2004).  Rat PBPK models for more complex mixtures of up to five volatile organic 

components (benzene, toluene, ethylbenzene, and xylenes [BTEX] and dichloromethane) have been 

developed that consist of PBPK models of the individual components linked by competitive metabolism 

in the liver (Haddad et al. 1999a, 1999b, 2000a, 2000b; Krishnan et al. 2002).  The interaction-based 

mixture models adequately simulated measured internal dose metrics for each component following short-

term inhalation exposure to various combinations and concentrations of the components.  Simulations 

with a dichloromethane/BTEX model for humans (scaled from the rat model) indicated that competitive 
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metabolic inhibition would:  (1) decrease hazard indices for anoxia (i.e., carboxyhemoglobin formation) 

from dichloromethane depending on mixing ratios with, and concentrations of, other components; (2) 

increase blood concentration x time profiles for each component at higher concentrations compared with 

dose additivity expectations with implications for prolonging acute central nervous system effects from 

all components; and (3) likely, at high concentrations, increase cancer risk from dichloromethane by 

shifting metabolism to a putatively cancer-related pathway (GSH conjugation vs. CYP) and decrease 

cancer risk from benzene by inhibiting formation of putatively carcinogenic reactive metabolites by CYP 

enzymes (Haddad et al. 2001).  A noted limitation of applying this model to subchronic or chronic 

exposure scenarios is that it was developed with acute duration kinetics data and other points of metabolic 

interaction (e.g., enzyme induction) could arise with repeated exposure to the mixture (Krishnan et al. 

2002).  

 

An approach to dealing with very complex mixtures is to model fractions of the mixture as single 

components or lumps.  This approach has been used to predict whether the metabolism of benzene to 

genotoxic metabolites is affected by the other components of gasoline in the mouse (Bond et al. 1998).  A 

similar approach was proposed and partially developed for studying the acute toxicology of JP-5, a Navy 

jet fuel that contains a complex mixture of petroleum hydrocarbons in the C9–C18 range (Verhaar et al. 

1997; Yang et al. 1998).  The lumping concept for very complex mixtures has been applied to develop rat 

PBPK models for gasoline (Dennison et al. 2003, 2004).  Results from gas-uptake studies of rats exposed 

for 6 hours to whole gasoline vapors or fractions of whole gasoline vapors were used to develop PBPK 

models that linked individual PBPK models for five individual components (n-hexane, benzene, toluene, 

ethylbenzene, and o-xylene) and a lumped component of the remaining evaporative components 

(principally hydrocarbons representing about 90% by weight of the complex mixture) by competitive 

metabolism in the liver.  Stepwise optimization was used to estimate model parameters by comparison of 

time profiles of GC-measured chamber concentrations of the five individual components and the lumped 

component with model predictions.  The internal dose metric of interest in these models was blood 

concentration of each individual component.  Simulations with the developed rat models indicated that 

competitive metabolic inhibition for most of the components occurred at ≥300 ppm for whole gasoline 

vapors and ≥200 ppm for fractions of whole gasoline vapor that were expected to be more relevant to 

environmental exposure scenarios experienced by humans than whole gasoline vapors (Dennison et al. 

2003, 2004).  

 

To date, PBPK/PD models developed for mixtures have not been routinely applied in the development of 

risk-based guidance values for mixtures or cumulative risk assessments for specific mixtures.  However, 
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ATSDR (2004b) used simulations from the BTEX PBPK model (Haddad et al. 1999a, 1999b, 2000, 2001; 

Krishnan et al. 2002) in support of recommendations for conducting exposure-based assessments of 

neurological, hematological, and cancer hazards from BTEX mixtures.  Recommendations included a 

component-based hazard index approach that assumes dose additivity and uses ATSDR MRLs based on 

neurological impairment for neurological hazards, based on the implications from the PBPK model that 

joint neurotoxic action is dose additive at concentrations below about 20 ppm for each component.  It was 

also recommended that the inhalation cancer slope factor for benzene be used for assessing cancer risk 

from BTEX exposures.  ATSDR noted that the BTEX PBPK model simulations indicated that as 

exposure concentrations increase beyond 20 ppm for each component, the potential for neurotoxicity may 

increase and the potential for hematotoxicity/carcinogenicity may decrease beyond dose-additivity 

expectations due to competitive metabolic interactions among mixture components (ATSDR 2004b).  

 

3.3.8. Approaches to Assessing Health Risks from Combined Exposure to Multiple 
Chemicals and Nonchemical Stressors 

 

U.S. governmental agencies have responded to calls for developing guidance and guidelines for 

cumulative risk assessment for multiple chemical and nonchemical stressors (see Sexton [2012] for a 

historical review).  Nonchemical stressors include biological (e.g., infectious microorganisms), physical 

(e.g., noise, vibrations), and psychosocial stressors (e.g., low socioeconomic status, dilapidated housing, 

residential crowding, and lack of access to health care).  EPA (2003) prepared a Framework for 

Cumulative Risk Assessment that described a simple, flexible structure for conducting cumulative risk 

assessments, meaning “an analysis, characterization, and possible quantification of the combined risks to 

health or the environment from multiple agents or stressors.”  The framework described three main phases 

to cumulative risk assessments (i.e., planning, scoping, and problem formulation; analysis; and risk 

characterization), but did not describe specific protocols or guidance for any of these phases.  The EPA 

framework document, however, acknowledged a shift in its risk assessment processes to:  (1) focus on 

identifying at-risk communities in contrast to the traditional focus of quantitatively estimating 

hypothetical individual risks for maximally exposed individuals from point sources or other types of 

environmental exposures to single or multiple chemicals; (2) use of qualitative or semi-quantitative data, 

such as broad exposure or toxicity indicators, in cases where the complexity of exposure and data 

deficiencies may hinder quantitative approaches; and (3) incorporate nonchemical stressors.  The EPA 

viewed the framework as a first step in the long-term development of such guidance, and noted that 

incorporating “nonconventional stressors or risk factors (e.g., lifestyle, access to health care)” would need 

continued research.  A report from a committee of the NRC (2009) reinforced the need for additional 

research to aid the development of cumulative risk assessment methods for multiple chemical and 
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nonchemical stressors, noting that EPA had not included, at that time, nonchemical stressors in 

quantitative or qualitative cumulative risk assessments.  

 

The EPA (2003) discussion of incorporating nonchemical stressors into the analysis phase of cumulative 

risk assessments focused on a four-component concept of vulnerability of individuals or subgroups of the 

general population:  (1) susceptibility or sensitivity related to biological differences associated with life-

stage, genetics, or disease state; (2) differential exposure (i.e., disproportionate exposure relative to other 

groups or individuals) extending to historical exposure; (3) differential preparedness to withstand insult 

from a stressor; and (4) differential ability to recover from insults from a stressor (i.e., resiliency).  Lack 

of access to health care, income differences, unemployment, or lack of insurance were given as examples 

of social factors that may influence a community’s ability to prepare or recover from an insult from a 

stressor.  Within this concept of vulnerability, Lewis et al. (2011) prepared a list of potential indicators of 

individual or community vulnerability compiled from several sources (Cal/EPA 2010; deFur et al. 2007; 

Morello-Frosch and Shenassa 2006; O’Neill et al. 2003).  The list included indicators of biological 

susceptibility and sensitivity, such as inherited diseases, genetic polymorphisms, age, developmental or 

physiological stage (e.g., pregnancy), race/ethnicity/culture, mental health-related coping skills, and low 

intelligence or birth weight.  Indicators of differential exposure related to either individual or community 

vulnerability included old/substandard housing, substandard sanitation, increased air pollutant exposure, 

and proximity to industrial release sites or hazardous waste sites.  Indicators of either differential 

individual or community preparedness and recovery included low socioeconomic status, family 

instability, inadequate nutrition or food supply, limited health care access or insurance, high incidence of 

obesity, smoking or drug addiction, crime and violence, and lack of general community resources.  

Similarly, ATSDR (2014) developed a social vulnerability index approach that enables public health 

officials and emergency planners to identify and map communities that are socially vulnerable 

http://grasp.cdc.gov/grasp_intranet/grasp_svi.aspx  Several efforts to develop tools to incorporate 

nonchemical stressors such as those associated with differential exposure and differential preparedness 

and ability to recover have been reported, but the tools are qualitative in nature and their usefulness is 

limited to ranking or prioritizing communities for further cumulative risk assessment investigations 

(Alexeeff et al. 2012; NJDEP 2009; Su et al. 2009).  For example, The California Environmental 

Protection Agency is developing a screening tool for assessing differential cumulative impacts in different 

geographical regions incorporating chemical pollution data and community public health characteristics 

(Alexeeff et al. 2012).  In a pilot analysis and application of the method to 30 ZIP mail code regions in 

California, ranking scores for exposure indicators (range of 1–10 based on PM2.5 and ozone air 

concentrations, EPA Toxics Release Inventory data, traffic volumes, and pesticide use), public health 

http://grasp.cdc.gov/grasp_intranet/grasp_svi.aspx
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effects (range of 1–5, based on data for birth weight, heart disease and cancer mortality, and asthma 

hospitalization), and environmental effects (range of 1–5, based on numbers of hazardous waste and 

clean-up sites and spills and leaks from underground fuel tanks) were added together and then multiplied 

by the sum of scores for sensitive populations (score of 1–3, based on census data for percent <5 and >65 

years of age) and socioeconomic factors (score of 1–3, based on percent with less than a high school 

education, median household income, and percent below 2 times the national poverty level).  Cumulative 

impact scores could range between 6 and 120.  Alexeeff et al. (2012) emphasized that the method does 

not quantitatively estimate human health risks, but is a screening-level ranking tool.  In another approach, 

Su et al. (2009) used air contaminant concentration data for three pollutants (NO2, PM2.5, diesel 

particulate matter) to estimate environmental hazards and percentage of residents who are non-white or 

percentages of residents with incomes lower than 2 times the national poverty level to measure 

socioeconomic characteristics of census-based tracts (i.e., regions) within Los Angeles county and related 

the cumulative environmental hazards (combined either with a population-weighted multiplicative model 

or an additive model) to either of the socioeconomic characteristics with a ranking index (termed a 

cumulative hazard inequality index) to explore demographic inequalities in environmental hazard.  The 

calculated indices reinforced the concept that demographic inequalities existed using either 

socioeconomic characteristic.  Lewis et al. (2011) noted that these ranking approaches do not 

quantitatively attribute relative contributions of chemical and nonchemical stressors to health risks, and 

that additional research is needed to develop such quantitative approaches.  

 

Physical stressors known to affect similar target organs as chemicals are likely to be incorporated into 

quantitative health impact or risk assessments with multiple chemical stressors sooner than psychosocial 

stressors, because methods to measure the intensity of exposure to physical stressors are available and 

characterization of dose-response relationships is thus more straightforward (Rider et al. 2014).  Physical 

stressors with evidence that they can produce toxicity or modify the toxicity of chemicals include 

sunlight, noise, radiation, and temperature (Rider et al. 2014), but quantitative cumulative risk 

assessments including these stressors with chemical stressors that may affect similar toxicity targets are 

rare.   

 

A recent case study shows how these assessments may proceed.  Evans et al. (2014) conducted a 

screening-level cumulative risk assessment for potential hearing impairment from joint exposure to 

traffic-related noise and airborne concentrations of three volatile organic compounds (VOCs) (toluene, 

ethylbenzene, and mixed isomer xylenes) in San Francisco County, California.  A component-based 

hazard index approach was used based on a dose-additivity assumption for these four components 
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determined to cause hearing impairment in other epidemiology and/or toxicology studies.  Acceptable or 

“safe” levels for chronic exposure to each of the components were used to calculate HQs for each 

component: 70 decibels (dB) for noise as determined by WHO (1999) and EPA IRIS RfCs of 5 mg/m3 for 

toluene (IRIS 2007), 1 mg/m3 for ethylbenzene (IRIS 1998b), and 0.1 mg/m3 for xylenes (IRIS 2003c).  A 

noise map for San Francisco County was developed using a model of traffic-induced noise levels 

developed by the U.S. Federal Highway Administration.  Geographical block groups within the county as 

determined by the 2000 U.S. census were the geographical units for the assessment.  To estimate noise 

levels within each block group, the modeled noise level of streets within each block were averaged and 

placed into one of four noise categories: 45–60, 61–65, 66–70, and 71–75 dB.  Because appropriate 

block-level data were not available for airborne concentrations of the VOCs, these were estimated 

(extrapolated) by quantile regression modeling of sociodemographic data (race, gender, education, and 

smoking status: these types of data were also available for the San Francisco block groups) and personal 

air VOC concentration data from 648 individuals with both types of data in the 1999–2000 U.S. National 

Health and Nutrition Examination Survey (NHANES).  Hazard indices for each block were calculated by 

adding the block-level HQs for noise, toluene, ethylbenzene, and mixed xylenes.  County-averaged 

hazard indices ranged from 0.8 for the tenth percentile of combined VOC exposure and the low noise 

category (45–60 dB) to 1.7 for the 90th percentile of combined VOC exposure and the high noise category 

(71–75 dB). 
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APPENDIX A.  BACKGROUND INFORMATION ON THE ASSESSMENT OF 
ADDITIVITY AND INTERACTIONS 

 

A.1.  INTRODUCTION 
 

The approaches to assessing the joint action of components of a mixture are based in large measure on the 

conceptual groundwork laid by Bliss (1939) and Finney (1971), and are mathematical rather than 

biological in nature.  The approaches commonly known as dose addition and response addition, discussed 

in the following sections, are non-interactive forms of joint action that assume the chemicals in the 

mixture do not affect the toxicity of one another (i.e., that they act independently).  These assumptions are 

the bases for methods of risk and health assessment discussed in this Framework Manual.  In addition, the 

assessment of interactions depends on being able to define what constitutes non-interaction. 

 

The available studies of toxicological interactions often pose a problem for the environmental scientists 

because the results may be ambiguous, often due to poor study design, or the results of several studies on 

the same mixture may appear to be conflicting, or the relevance of the study or studies to the exposure 

scenario of interest is uncertain.  Approaches for dealing with these uncertainties are introduced in this 

appendix and further discussed in Appendices B and C. 

 

A.2. MODELS FOR JOINT ACTION 
 

A.2.1. Dose Addition 
 

As introduced in this Framework, dose addition, also known as concentration addition, simple similar 

action, and similar joint action, assumes that the components of a mixture behave as concentrations or 

dilutions of one another, differing only in their potencies (Bliss 1939; Finney 1971).  The dose-response 

curves are parallel (i.e., the regression lines of probits on log doses are parallel), and tolerance (or 

susceptibility) to the components is completely positively correlated (the organisms most susceptible to 

chemical A also will be most susceptible to chemical B).  The response to the mixture can be predicted by 

summing the doses of the components after adjusting for the differences in potencies.  Dose addition is 

considered most appropriate for mixtures with components that affect the same end point by the same 

mechanism of action (EPA 1986, 1988, 2000).  It has been suggested that the requirement for parallel 

dose-response curves and complete correlation of tolerances may be too stringent (e.g., Plackett and 

Hewlett 1952; Svendsgaard and Hertzberg 1994), and that in the low-dose region in which the response is 

linear, dose additivity may hold for independently-acting chemicals as well (Svendsgaard and Hertzberg 
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1994).  Dose addition is the underlying assumption of the hazard index method, the TEF approach for 

CDDs, and RPF approaches for carcinogenic effects from PAHs and neurological effects from groups of 

insecticides with common mechanisms (Section 3.3.5). 

 

The regression lines for two chemicals (1 and 2) that act in a dose-additive manner can be represented as: 

 

  (1) 
 

  (2) 
 

where x is dose or concentration, Yi is the probit response for the ith chemical, β is the slope (by definition 

the same for both chemicals), and αi is the intercept on the exposure axis (the value of Y when x is zero) 

for the ith chemical.  The potency ρ of chemical 2 relative to chemical 1 is: 

 

  (3) 
 

Using Equation 3 to convert the dose of the second chemical into an equivalent amount of the first, 

Equation 2 can be rewritten as: 

 

  (4) 

 

Thus, for a mixture of chemicals 1 and 2 in which the exposures are x1 and x2, the response is dose 

additive if it equals that produced by a dose (x1 + ρx2) of the first chemical alone, as expressed by the 

following equation: 

 

  (5) 

 

Alternatively, if the mixture is regarded as a total dose x, in which the proportions of the two chemicals 

are π1 and π2, Equation 5 can be written as: 

 

  (6) 
 

Equations 5 and 6 can be generalized for a greater number of components. 

Y1 = βlogx + α1 

Y2 = βlogx + α2 

logρ = 
(α2 Bα1)

β  

Y2 = βlog(ρx) + α1 

Y = α1 + βlog(x1 + ρx2) 

Y = α1 + βlog(π1 + ρπ2) + βlogx 
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Relationships that may be useful in analyzing interactions data (Finney 1971) can be derived from 

Equation 6.  If for a mixture of defined proportions of chemical 1 and 2, some uniform measure of 

toxicity (risk-specific dose or equally effective dose, e.g., ED50) is known for the two chemicals and 

designated by ζ1 and ζ2, respectively, then: 

 

  (7) 
 

The toxicity ζm of any mixture of chemicals 1 and 2 can be predicted as follows under the assumption of 

dose addition: 

 

  (8) 
 

Equation 8 can also be written in the following form: 

 

  (9) 
 

Based on equation 7, 1/ζ2 can be substituted for ρ/ζ1 in Equation 9 to give: 

 

  (10) 
 

This form of the equation can be used to predict the ED50 (or other uniform measure of toxicity) of a 

mixture from the proportions and ED50s of the components. 

 

A.2.2. Applications of Dose Addition to Health and Risk Assessment 
 

The TEQ approach and hazard index approach are based on the assumption of dose addition.  The 

response to the mixture is considered dose additive if it equals that produced by a dose of the first 

chemical alone.  The mixture dose (X), expressed as an equivalent dose of the first chemical alone, is: 

 

ζ2 = 
ζ1

ρ  

ζm = 
ζ1

(π1+ρπ2)
 

1
ζm

 = 






1

ζ1
π1 + 







ρ

ζ1
π2 

1
ζm

 = 
π1

ζ1
 + 

π2

ζ2
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  (11) 
 

where ρi is the potency of the ith component relative to the first chemical and xi is the concentration or 

dose of the ith component.  Note that ρ1 = 1, the potency of chemical 1 relative to itself.  

 

In the TEQ approach for CDDs and related compounds, the first or index chemical is 2,3,7,8-TCDD, 

which is assigned a TEF of unity, representing its potency relative to itself.  TEFs for the other congeners 

are based on their potency relative to 2,3,7,8-TCDD.  The concentrations or doses of all active congeners 

are multiplied by their TEF values and summed to give the TEQs for the mixture, which is the 

concentration of the mixture expressed as an equivalent concentration of the index chemical, 

2,3,7,8-TCDD: 

  (12) 
 

where TEFi is the potency of the ith component relative to 2,3,7,8-TCDD and Ci is the concentration of the 

ith component (ATSDR 1998b; EPA 2010b; Van den Berg et al. 2006).  Equation 12 is equivalent to 

Equation 5 of the Framework manual.   

 

The relative potency method for PAHs (ATSDR 1995b; EPA 1993) is a similar application of dose 

addition.  Additional information and references are provided in Section 3.3.5 of the Framework manual. 

 

The hazard index approach uses 1/DL (where DL is a defined level of exposure such as an MRL or RfD) 

as an indicator of potency (because the larger the DL, the less the potency) for the components of a 

mixture.  If E is the total mixture dose or exposure expressed as the equivalent dose of chemical 1, where 

chemical 1 can be any component of the mixture, then, under dose addition: 

 

  (13) 
 

where DLi is the defined level for the ith component, and Ei is the exposure to the ith component, in the 

same units.   

 

X = ρ1x1 + ρ2x2 + ρ3x3 +  + ρnxn 

TEQs = TEF1C1 + TEF2C2 + TEF3C3 +  + TEFnCn = 

n


i=1

TEFiCi 

E = 
DL1
DL1

E1 + 
DL1
DL2

E2 + 
DL1
DL3

E3 +  + 
DL1

DLn
En 
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Factoring out DL1 from the numerators, Equation 13 becomes: 

 

  (14) 
 

Dividing both sides of Equation 14 by DL1 gives the expression for the hazard index (HI): 

 

  (15) 
 

The hazard index approach is discussed in Section 3.3.2 of the Framework manual.   

 

Limitations of the hazard index approach include the requirement imposed by the dose addition model 

that the MOA of the chemicals be similar, and the weakness of the assumption that the defined levels 

(MRLs or RfDs) represent isoeffective doses.  Potential improvements to the approach include the use of 

toxicity thresholds or BMD or effective dose levels (e.g., BMD10 or ED10 values), rather than MRLs or 

other defined levels.  The EPA OPP’s (EPA 2002b) approach for cumulative risk assessment of common 

effects from groups of pesticides sharing a common mechanism uses an RPF approach linked with a POD 

(e.g., BMD10)/MOE approach to characterizing the risk.  See Sections 3.3.5 and 4.8 for more details on 

how this approach incorporates uncertainty factors into these assessments.   

 

A.2.3. Response Addition 
 

Response addition, as introduced in Section 3.3.1, also known as simple independent action and 

independent joint action (Bliss 1939), assumes that the chemicals act independently and by different 

MOAs.  Because the MOAs are different, tolerance (or susceptibility) to the components is not 

necessarily positively correlated under response addition.  The response to the mixture (expressed as the 

percent in a population responding) can be predicted from the responses to the individual components and 

the correlation of tolerance distributions (also termed susceptibility distributions) among components of 

the mixture (the proportion of members of a population responding as the exposure level of the 

component increases).  Response addition is the underlying assumption of an approach to cancer risk 

assessment for mixtures at Superfund sites, EPA’s and ATSDR’s approach to noncancer risk assessment 

when exposure levels for components are near the individual NOAELs from well-designed toxicology 

E = DL1





E1

DL1
 + 

E2
DL2

 + 
E3
DL3

 +  + 
En

DLn
 

E
DL1

 = HI = 
E1
DL1

 + 
E2
DL2

 + 
E3
DL3

 +  + 
En

DLn
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studies, and ACGIH’s approach to assessing the hazards of occupational exposure to agents that act 

independently.  

 

The form of response addition for populations will be different depending on the correlation of 

susceptibility to the components of the mixture.  If the individuals most sensitive to chemical 1 are also 

most sensitive to chemical 2, susceptibilities to chemicals 1 and 2 are completely and positively 

correlated.  The correlation coefficient r is equal to one.  The expected response P to the mixture of 

chemicals 1 and 2 at doses that individually produce responses P1 and P2 is equivalent to that for the 

chemical with the highest response.  Thus: 

 

  (16) 
 

In other words, if the dose of chemical 1 would be expected to cause a response in 8% of individuals and 

chemical 2 would be expected to cause a response in 17% of individuals, the expected response to the 

mixture of these two chemicals at these doses is 17% when susceptibilities are completely positively 

correlated. 

 

If the individuals most sensitive to chemical 1 are least sensitive to chemical 2 and vice versa, 

susceptibilities to chemicals 1 and 2 are completely and negatively correlated.  Under this circumstance, 

the predicted response of the population to the mixture would be simply additive (8 + 17 = 25%) as long 

as the total of the responses to chemicals 1 and 2 was less than unity. 

 

  (17) 
 

Intermediate to these two extremes is the circumstance when the susceptibility to the two chemicals are 

statistically independent; the order of individuals showing toxic effects from chemical 1 has no apparent 

relationship with the ordering of individuals showing toxic effects from chemical 2 (r=0).  In this case, 

some of the organisms that would not respond to chemical 1 would respond to chemical 2, so that the 

total response rate for the mixture is: 

 

  (18) 
 

P = P1  if r=1    P1 > P2
P = P2  if r=1    P2 > P1

 

P = P1 + P2   if r=-1      (P1 + P2) 1 

P = P1 + P2(1 - P1)
  = P1 + P2 - P1P2
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Using the same response rates as in the previous examples, the response to the mixture would be 

estimated as 100(0.08 + 0.17 - (0.08  0.17)) = 23.6%.  The general form of the equation for multiple 

component mixtures is:  Pmixture = 1- (1-P1) * (1-P2) * (1-P3) …..   

 

The above equations can be generalized for a greater number of components.  EPA (2000) commented 

that response addition formulas for populations, as illustrated in the examples above, have received 

limited use in risk assessment because detailed data for tolerance distributions are often not available and 

the concepts of tolerance correlation only works well if there are two chemicals in a mixture.  

Nevertheless, several applications of response addition assumptions are described in the next section.   

 

A.2.4. Applications of Response Addition to Health or Risk Assessment 
 

An approach similar to response addition assuming completely positive correlation of tolerances 

(Equation 16 of this appendix for a two-component mixture:  Pmixture = P1, if r = 1 and P1 > P2; Pmixture = P2, 

if r = 1 and P2 > P1) has been applied by ACGIH to the assessment of mixtures whose components are 

expected to cause effects that are independent from each other, such as purely local effects on different 

organ systems.  The threshold limit for the mixture is considered to be exceeded only if the HQ for at 

least one of the components exceeds unity (Section C.1). 

 

The calculation of total cancer risk based on response addition with completely negative correlation of 

tolerances has been recommended as an approach for adding cancer risks for mixtures of a few chemicals 

(EPA 2000; see Chapter 2).  The responses (risks) for the individual components of the mixture are 

summed to estimate the response to the mixture as in equation 17 of this appendix.  EPA (2000) 

recommended that the full general equation for independently acting carcinogens [i.e., Pmixture = 1- (1-P1) 

* (1-P2) * (1-P3) …..] be applied to mixtures with more than a few carcinogens. 

 

For low exposure levels (i.e., levels near individual component NOAELs from well-designed toxicology 

studies), toxicologically dissimilar chemicals are assumed to be independent, and response addition is 

assumed to be useful for noncancer risk assessment by EPA (2000) and this ATSDR framework (see 

Chapter 2).  As such, when exposure to each component of a mixture is below the RfD, RfC, or MRL 

(estimated risk from each component = 0), the risk of adverse outcome from the mixture is usually 

assumed to be negligible.  EPA (2000) noted that in these cases, “0 is used to denote a risk that is either 

subthreshold (a true zero risk) or small enough to be general considered virtually safe.”  EPA (2000) 

further noted that when the number of components in a mixture is large, and all component exposures are 
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close to, but below, respective guidance values (RfD, RfC, or MRL), “the toxicity data should be 

carefully examined to ensure that all effects and MOAs are being considered when deciding functional 

independence.”  With poor quality data supporting the guidance value or the exposure assessment, “the 

conclusion of negligible risk is similarly uncertain (EPA 2000).”   

 

A.3. INTERACTIONS 
 

A.3.1. Introduction to Interaction Models 
 

The assessment of interactions involves assumptions regarding what constitutes an additive or non-

interactive response.  Thus, the assumed form of additivity often drives experimental design and the 

assessment of joint action.  Knowledge of the MOA of the individual components of the mixture is often 

used in selecting a plausible additivity model. 

 

If interactions appear to exist, as determined from deviations from the assumed form of additivity, 

mathematic models for quantifying the interactions may be used.  Finney (1942, 1971) proposed the 

following interaction model, which is a modification of Equation 5 for dose addition: 

 

  (19) 
 

where κ is the interaction coefficient.  Positive values of κ indicate synergism, negative values indicate 

antagonism, and a value of zero indicates dose addition. 

 

A.3.2. Early Experimental Studies Examining Dose Additivity 
 

Experimental studies of toxicological interactions, particularly those designed primarily to investigate the 

mechanism of action of the chemical of interest, may not reflect the models discussed above.  From the 

material already presented in this appendix, it follows that, in general, an understanding of the joint action 

of the components of a mixture depends upon an understanding of the dose-response relationships for the 

individual components.  There are exceptions to this generalization.  An example is the case where one 

component is known to be inactive with regard to the effect of concern.  In this case, only the dose-

response curves for the active component with and without the addition of the inactive component may be 

necessary. 

 

Y = α1 + βlog(x1 + ρx2) + κ(ρx1x2)
0.5 



  A-9 
 

 
 
 
 
 

Other interaction studies do use dose addition or response addition models in the evaluation of additivity 

versus interactions.  For example, Smyth et al. (1969) used Equation 10 to predict the toxicity (LD50) of 

the 350 possible binary mixtures of 27 industrial chemicals administered in equivolume combinations.  

(One pair of chemicals proved impossible because it reacted vigorously upon mixing before 

administration.)  The ratio between the predicted (P) and observed (O) values, calculated for each pair, 

ranged from 0.23 to 5.09, indicating that the magnitude of deviation from dose additivity was 

approximately a factor of ≤5.  This is not a remarkable deviation from additivity and thus suggests that 

dose additivity is a reasonable default model for joint action.  The upper end of the range of the deviation 

from additivity of 5 also has been used as the basis for a default magnitude of interaction factor in the 

modified WOE method (EPA 2000) described in Appendix B.  Smyth et al. (1970) retested 53 chemical 

pairs from this set in equitoxic combinations.  Because the distribution of ratios for the first (equivolume) 

study was skewed, the investigators normalized the ratios in that study and in the equitoxic study using 

the following adjustment: 

 

where P/O>1; adjusted ratio = (P/O)  1 

where P/O<1; adjusted ratio = 1  (O/P) 

 

With the adjusted ratios, a positive value indicates greater-than-additive joint action, a negative value 

indicates less-than-additive joint action, and a value of zero indicates additivity.   

 

The equivolume and equitoxic experiments used different proportions of the chemicals for each pair.  The 

difference in proportions should not affect the ability of equation 10 to predict the LD50 for the mixture.  

A comparison of the adjusted ratios in the equivolume and equitoxic experiments on the same pairs of 

chemicals showed that the correlation between the two sets of ratios was good.  These results further 

support dose addition as a reasonable default model for joint action. 

 

A.3.3. Evaluating Interaction Studies 
 

To assess potential additivity and interactions that may occur among chemicals in a mixture and the effect 

that interactions will have on the inherent toxicity of the individual components of the mixture requires a 

thorough evaluation of the available studies on joint toxic action for the mixture and/or components of the 

mixture.  The studies should be assessed based on the quality of the study and the applicability of the 

study design to predicting interactions or additivity.  
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ATSDR has adopted the NRC (1984) Guidelines for Assessing the Quality of Individual Studies, which 

appear in Toxicity Testing: Strategies to Determine Needs and Priorities.  The NRC considers a report of 

scientific findings adequate for use in health hazard assessment if the report meets the following basic 

criteria: 

 

1. All elements of exposure are clearly described. 
 

2. Results in test subjects are predictive of human response, and test subjects are sensitive to the 
effects of the substance. 
 

3. Controls are comparable with test subjects in all respects except the treatment variable. 
 

4. End points answer the specific questions addressed in the study. 
 

5. Observed effects are sufficient in number or degree to establish a dose-response relationship that 
can be used in estimating the hazard to the target species. 
 

6. Both the design and the interpretation of the study allow for appropriate statistical analysis of the 
data. 
 

Criteria for good studies further developed with the use of systematic reviews (Lynch et al. 2016; Rooney 
et al. 2014). 
 

ATSDR recommends that good quality studies designed to assess the possible mode by which two or 

more chemicals affect a biological outcome should include: 

 

1. Characterization of the effects of the individual components (and their dose-response 
relationships) on the outcome.   
 

2. Generation of a hypothesis regarding the mode of joint action (e.g., dose addition or response 
addition).   
 

3. Prediction of responses to mixtures of the components based on the postulated mode of joint 
action. 
 

4. Observations of the response to mixtures of the components. 
 

5. Statistical comparison of the predicted responses with the observed responses to the mixture. 
 

These criteria are reflective of, and supplemented by, the criteria articulated by Borgert et al. (2001) for 

evaluating toxicological interaction studies:   

 

1. Dose-response curves for the mixture components should be adequately characterized. 
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2. An appropriate “no-interaction” hypothesis should be explicitly stated and used as the basis for 
assessing synergy and antagonism. 
 

3. Combination of mixture components should be assessed across a sufficient range (of exposure 
levels and mixing ratios) to support the goal of the study. 
 

4. Formal statistical tests should be used to distinguish whether the response produced by a dose 
combination is different (larger or smaller) from that predicted by the ‘no-interactions” 
hypothesis (dose addition or response addition). 
 

5. Interactions should be assessed at relevant levels of biological organizations. 
 

An illustration of an adequate type of study involves two chemicals (A and B) that both individually 

affect a biological outcome.  Dose-response data for each chemical alone indicate that linear dose-

response models are adequate to describe dose-response relationships, and that A is 3 times more potent 

than B.  Based on postulated joint additive action in which the null hypothesis is that the two chemicals 

behave as if they were concentrations or dilutions of one another (dose addition), a mixture of 1 dose unit 

of A plus 3 dose units B would be predicted to produce a response equivalent to that produced by: 

 

• 2 dose units of A alone,  
 

• 6 dose units of B alone, or 
 

• a mixture of 0.33 dose unit of A and 5 dose units of B.  
 

If observed responses to the mixture are greater than predicted responses, evidence is provided of a 

greater-than-dose-additive joint action.  Conversely, if observed responses are less than predicted 

responses, there is evidence of a less-than-dose-additive joint action.  If the dose-response relationships 

for the components and the mixture are not linear (e.g., show a sigmoidal shape), these specific 

predictions do not apply.  With adequate characterization of the individual sigmoidal dose-response 

relationships, however, sufficient predictions of the combined effect by either dose addition or response 

addition can be calculated, and statistical tests comparing observed and predicted responses can be 

applied to assess deviations from either of these “no-interactions” hypotheses.   

 

Unfortunately, the early toxicological literature on possible interactions among chemicals contains only 

limited numbers of studies that have all of the features of an optimal joint toxic action study.  A standard 

design that was often followed (2x2 factorial design) involves a zero dose group (control), and chemicals 

A and B tested alone at doses of A1 and B1 and in combination at a dose of A1+B1.  This type of design 

does not provide a full characterization of joint action, and the statistical analysis provided in such studies 
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often provides only information as to which treatment results are significantly different from other 

treatment results, rather than an indication of whether the results are indicative of a departure from dose 

addition or response addition (i.e., an interaction).  

 

More complete discussion of statistical methods (and study design characteristics) to compare predicted 

and observed responses to mixtures are discussed by Berenbaum (1981), Bosgra et al. (2009), Calabrese 

(1991), Gennings et al. (2004, 2005), Hertzberg et al. (2013), Lutz et al. (2002), Scholze et al. (2014), and 

Svendsgaard and Hertzberg (1994). 

 

Interaction studies also should be evaluated as to whether other components of the experimental design 

are relevant for assessing potential health outcomes of populations living near hazardous waste sites, 

including exposure route, duration of exposure, sequence of chemical administration, vehicle, dose and 

mixing ratio, and end points.  Inhalation, oral, and dermal exposure are the most likely routes of exposure 

for human populations, and emphasis should be placed on interaction studies using these exposure routes.  

In the absence of data for a particular exposure route, data from other exposure routes may be used to 

predict interactions and health outcomes.  

 

Use of data from another route would be based on the assumption that once a chemical has entered the 

body, there are no route-specific differences in toxicity or potency.  However, this assumption may not be 

true if portal-of-entry effects or first-pass effects occur.  First-pass effect refers to the metabolism that can 

take place in the portal-of-entry tissue, prior to entry into the systemic circulation, and can modulate the 

dose to remote or systemic target tissues in a route-dependent fashion.  First-pass effect is usually 

considered with oral exposure because many chemicals are directly delivered from the gastrointestinal 

tract to the liver via the portal vein.  The respiratory tract can also exhibit a first-pass effect after 

inhalation exposure.  Although parenteral exposure is not an exposure route of concern, parenteral 

administration studies should be reviewed and evaluated if few or no studies using more relevant routes 

are available, because these data can provide valuable information on potential interactions and can 

provide mechanistic data.  The relevance of parenteral studies to interactions involving oral exposure to 

the metals, however, needs careful consideration because parenteral administration bypasses homeostatic 

mechanisms and potential points of interaction related to absorption from the gastrointestinal tract. 

 

Interactions among chemicals in a mixture can vary with duration of exposure.  This is particularly true 

for chemicals that are toxic following chronic exposure but have low acute toxicity, or for chemicals 

whose biotransformation involves enzyme induction.  When reviewing interaction data, the applicability 
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of the results to different exposure durations should be carefully considered.  The toxicity/carcinogenicity 

and toxicokinetic databases for the chemicals of concern may provide useful information to support or 

refute extrapolation across exposure durations. 

 

Interaction studies have utilized two patterns of administration:  simultaneous and sequential.  In the 

simultaneous administration study design, the mixture components are administered at the same time, or 

virtually the same time, using the same or different exposure routes.  As this pattern of administration 

most closely resembles environmental exposure, greater emphasis should be placed on these data.  Prior 

to 1991, many interaction studies employed a sequential pattern of administration, in which a chemical 

that alters metabolism or physiology in a known manner was administered before a single dose or 

exposure of the chemical of concern, in order to investigate the impact on the second chemical’s toxicity 

(Hertzberg and Durkin 1994; Mumtaz and Durkin 1992).  This study design provided data useful in 

elucidating the mechanism of action of the second chemical, but may not be as useful in understanding 

potential joint toxic action involving low-level, long-term simultaneous exposure. 

 

Dose or exposure level and mixing ratio are also important factors to consider when evaluating interaction 

studies.  In general, an understanding of the dose-response relationships for the individual components of 

the mixture is important for understanding potential interactions and health outcomes following exposure 

to the mixture.  For example, if the dose tested is much lower than the threshold for the toxic end point of 

concern, then a potential interaction may not be detected by the study.  On the other hand, if the dose used 

is too high, the dose may overwhelm the normal metabolic processes, resulting in different metabolites or 

an accumulation of a particular metabolite.  Similarly, when examining potential interactions for a certain 

health effect, it is important to examine what other effects are occurring at the tested doses, and, in 

particular, whether the dose is so high that it is causing serious health effects in other organ systems, or 

death.  Likewise, results from an interaction study evaluating a mixture with relative proportions of 

components different from the relative proportions in environmental mixtures may be of uncertain 

relevance to evaluating potential deviations from additivity in environmental mixtures.  
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APPENDIX B.  CHEMICAL INTERACTIONS WEIGHT-OF-EVIDENCE (WOE) 
METHODS  

 

B.1 INTRODUCTION 
 

The WOE methods for the assessment of chemical interactions described in this appendix were designed 

to facilitate the use of interactions data in the components-based assessment of noncancer health effects 

from exposure to chemical mixtures.  As noted above, the hazard index method does not incorporate 

information on interactions among components of the mixture.  A WOE method proposed by Mumtaz 

and Durkin (1992) was the first systematic attempt to address this need.  The method implemented and 

expanded on the suggestion of the NRC (1989) that an uncertainty factor be used to account for 

interactions among components of a mixture.  The value of the uncertainty factor can reflect the concern 

for interactions, and is modified using data regarding the WOE for interactions (Mumtaz and Durkin 

1992; Mumtaz et al. 1994a).  As suggested by the NRC, the uncertainty factor is applied to the additivity-

based hazard index to estimate an interactions-adjusted hazard index.  Subsequent experience with the 

algorithm that is used to generate the interactions-adjusted hazard index has revealed, however, that it 

does not handle changes in the proportions of mixture components in a reasonable manner.  The method 

remains useful in the qualitative prediction of whether a hazard may be greater or less than indicated by 

the hazard index (Sections B.1.2 and B.2.2). 

 

A modification to the WOE method was developed by EPA (2000) in order to explicitly incorporate 

information on the magnitudes of the pairwise interactions into the risk assessment.  This modified 

method addresses some of the limitations of the original method, but introduces a new set of limitations:  

(1) greater judgment may be required in the scoring of the WOE; and (2) information on the magnitude of 

interactions is rarely available. 

 

An abbreviated description of the original method was presented in the main body of the Mixtures 

Guidance manual; some of the information will be repeated here for the sake of completeness and to 

facilitate comparison of the two methods.  The following sections provide additional details of these 

methods. 
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B.2 ORIGINAL WOE METHOD 
 

B.2.1.  BINWOE Scores 
 

The first step in applying the WOE method is to assess data relevant to joint action for each possible pair 

of chemicals in the mixture in order to make a qualitative BINWOE determination for interactions.  The 

BINWOE determination is a classification that reflects the quality of the available information and 

categorizes the most plausible nature of the potential influence of one chemical on the toxicity of another 

chemical for a given exposure scenario (duration, route, and sequence).  This determination includes 

evaluating information regarding the toxicity, pharmacokinetics, and mechanism of action of the 

individual chemicals; interactions data on each chemical pair; and interactions and mechanistic data on 

related chemicals.  Although earlier publications of the WOE method did not discuss the need for target 

organ consideration in BINWOE determinations (Mumtaz and Durkin 1992), experience in application of 

the WOE method has indicated that the WOE evaluations should be target-organ specific (Mumtaz et al. 

1998).  Two BINWOE determinations are made for each pair:  one for the effect of chemical A on the 

toxicity of chemical B, and the other for the effect of chemical B on the toxicity of chemical A (Mumtaz 

and Durkin 1992; Mumtaz et al. 1994a).  The criteria and scoring system for the BINWOE determinations 

are presented in Table B-1. 

 

The classification of direction of interactions in Table B-1 has the following categories:  additive, greater-

than-additive, less-than-additive, and indeterminate.  The additive category refers to results that are 

additive by a defined model of additivity (e.g., dose or response addition), and results that demonstrate no 

effect of one chemical on the toxicity of the other.  The greater-than-additive category refers to synergism 

or potentiation.  The less-than-additive category refers to antagonism, inhibition, or masking.  

Indeterminate refers to instances of ambiguous, conflicting, or no data. 

 

The classification of the quality of the data in Table B-1 includes two main categories:  mechanistic 

understanding and toxicological significance.  The rating for mechanistic understanding reflects the 

quality of the available mechanistic data supporting a toxicological interaction and the extent to which 

this information indicates the direction of the interaction.  Mechanistic information is information 

regarding the manner in which a chemical causes a given toxic effect or interaction, and may include 

chemical, biological, and physical processes at the molecular level and at higher levels of biological or 

physiological organization.  The rating for toxicological significance reflects the quality of the available 

toxicological interactions data and the extent to which it indicates that the chemicals will interact in a 

manner that significantly impacts the health of the exposed population.  Both the mechanistic and 
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toxicological categories allow for, and encourage, the use of structure-activity data in reaching 

conclusions.  The modifiers in Table B-1 are used when the mechanistic and toxicological ratings do not 

account for the additional concerns for differences in duration, sequence, bioassay (in vitro versus in 

vivo), or route of exposure between the site-specific exposures and the mechanistic and toxicological data 

used for the BINWOE determinations (Mumtaz and Durkin 1992). 

 

Table B-1.  Binary Weight-of-Evidence Scheme for the Assessment of Chemical 
Interactions 

 
Classification Factor 

Direction of Interaction Direction  
 = 

> 
< 
? 

Additive 
Greater than additive 
Less than additive 
Indeterminate 

  0 
+1 
B1 
  0 

Quality of the Data Weighting  
 Mechanistic Understanding  
 I. Direct and Unambiguous Mechanistic Data:  The mechanism(s) by which the 

interactions could occur has been well characterized and leads to an unambiguous 
interpretation of the direction of the interaction. 

 1.0 

 II. Mechanistic Data on Related Compounds:  The mechanism(s) by which the 
interactions could occur have not been well characterized for the chemicals of 
concern but structure-activity relationships, either quantitative or informal, can be 
used to infer the likely mechanisms(s) and the direction of the interaction. 

 0.71 

 III. Inadequate or Ambiguous Mechanistic Data:  The mechanism(s) by which the 
interactions could occur has not been well characterized or information on the 
mechanism(s) does not clearly indicate the direction that the interaction will have. 

 0.32 

 Toxicological Significance  
 A. The toxicological significance of the interaction has been directly demonstrated.  1.0 
 B. The toxicological significance of the interaction can be inferred or has been 

demonstrated for related chemicals. 
 0.71 

 C. The toxicological significance of the interaction is unclear.  0.32 
 Modifiers  
 1. 

2. 
Anticipated exposure duration and sequence. 
Different exposure duration or sequence. 

 1.0 
0.79 

 a. 
b. 

In vivo data 
In vitro data 

 1.0 
0.79 

 i. 
ii. 

Anticipated route of exposure 
Different route of exposure 

 1.0 
0.79 

 
Weighting factor = product of weighting scores:  maximum = 1.0, minimum = 0.05 
 
BINWOE = direction factor x weighting factor:  ranges from 1 through 0 to +1 
 
Sources:  Mumtaz and Durkin 1992; Mumtaz et al. 1994a 
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The qualitative direction and alphanumeric data quality terms are shown in the left column of Table B-1.  

The corresponding direction factor and numerical data quality weighting factors are shown in the right 

column.  The qualitative scores can be converted to a single numerical score by multiplying the direction 

factors (labeled Direction in the table) and the data quality weighting factors (labeled Weight in the table).  

Thus, an alphanumeric (qualitative) BINWOE classification of >II.B.2.a.i. corresponds to greater-than-

additive interaction, mechanistic data on related chemicals, inferred toxicological significance, different 

duration or sequence, in vivo data, and anticipated route of exposure.  The corresponding numerical 

BINWOE score is +1(0.71)(0.71)(0.79)(1)(1) = +0.40. 

 

The data quality weighting factors were selected using the following reasoning:  the optimum score for 

data quality is unity, and corresponds to the first level of scoring (categories I and A for the primary 

classifications of mechanistic or toxicological significance and 1, a, and I for the modifiers).  For the 

primary classifications, the value of 0.71 was selected for the second level of scoring (categories II and B) 

so that if both factors were selected, the score would be about one-half of the optimum score 

(0.71  0.71  0.50).  Similarly, for the third level of scoring (categories III and C), the value of 0.32 was 

selected so that if both factors were selected, the score would be about one-tenth of the optimum score 

(0.32  0.32  0.1).  For the modifiers, a value of 0.79 was selected for the second level of scoring (2, b, 

and ii) so that all three factors combined would lower the score by a factor of about 

0.5 (0.79  0.79  0.79  0.5).  The numerical weighting values reflect judgment as to the relative 

importance of the data quality classifications in determining the WOE (Mumtaz and Durkin 1992). 

 

The BINWOE determinations do not explicitly consider the relevance of dose to the anticipated exposure 

scenario.  It is not uncommon to find that, for a well-studied binary mixture, the available information 

suggests that no interactions occur at low doses, but that an interaction, either greater-than-additive or 

less-than-additive, occurs at higher doses.  The BINWOE for this situation would reflect the interaction 

observed at higher doses.  Dose is taken into account in the calculation of interaction factors 

(Section B.2.2).  Additional guidance for the determination of BINWOEs is provided in the ATSDR 

Guidance for the Preparation of an Interaction Profile (ATSDR 2001). 
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B.2.2.  Qualitative WOE Method 
 

A qualitative WOE approach, focusing on application of the BINWOE scores to hazardous waste site 

assessment, was suggested by Mumtaz and Durkin (1992).  This approach is appropriate for a mixture 

where the scaled doses (HQs) for all of the components are similar, or toxicologically significant.  The 

qualitative BINWOE scores for the components, if similar in direction, are the basis for a conclusion.  For 

example, consider a mixture of four components, all present at toxicologically significant levels.  The 

number of possible chemical pairs in a mixture of N components is (N2-N)/2.  Thus, this mixture of 4 

components has 6 pairs of components and potentially 12 BINWOEs.  Suppose nine of the BINWOEs are 

greater-than-additive (positive) with alphanumeric classifications indicating a relatively high degree of 

confidence, and the remaining three BINWOEs are additive (0), also with relatively high degrees of 

confidence.  In this case, the WOE suggests that the mixture is likely to pose a greater hazard than that 

indicated by the hazard index. 

 

A likely pattern of qualitative BINWOEs for a mixture is a mixed pattern (some greater-than-additive, 

some less-than-additive, and some additive BINWOEs).  In this case, the qualitative WOE approach is 

extended to include conversion of the qualitative BINWOE scores to numerical scores, and summing the 

scores to give a combined score.  If the combined BINWOE score is positive and significantly different 

from zero, then the WOE suggests that the mixture is likely to pose a greater hazard than indicated by the 

hazard index.  Conversely, if the combined BINWOE score is negative and significantly different from 

zero, then the WOE suggests that the health hazard is unlikely to be greater than indicated by the hazard 

index.  Professional judgment is used in the interpretation of the impact of the WOE on the hazard index. 

 

Although the above WOE method was developed for assessing interactions for noncarcinogenic effects, 

the qualitative WOE method is equally applicable to assessing interactions for carcinogenic effects.   

 

B.2.3.  Interaction Factors 
 

The quantitative application of the WOE method is described in this section, and continues through 

Section B.2.5.  As mentioned previously, this quantitative application does not handle changes in the 

proportions of mixture components in a reasonable manner, and is no longer in use.  The description is 

retained in this document because the method represents an interesting and original attempt to modify the 

hazard index for interactions. 
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In this quantitative application, the BINWOEs are used as interaction terms in the calculation of 

interaction factors, IFi,j and IFj,i (where IFi,j is the effect of j on the toxicity of i and IFj,i is the effect of i 

on the toxicity of j) as follows: 

 

  (1) 

  (2) 

 

The two equations are identical except that Equation 1 calculates the interaction factor for the effect of j 

on the toxicity of i, and Equation 2 calculates the interaction factor for the effect of i on the toxicity of j. 

 

The first set of terms in these equations weights the interaction factor by the contribution of the chemical 

whose toxicity is affected to the total toxicity of the mixture, expressed as the ratio of the HQ (HQi) of 

that chemical to the total additivity-based hazard index (HIadd) of the mixture (Mumtaz and Durkin 1992; 

Mumtaz et al. 1994a).  This approach is adapted from one developed by Durkin (1981) to account for 

asymmetrical interactions under the assumption of dose additivity.  Asymmetrical interactions are those in 

which the magnitude of the interaction, and sometimes the direction of the interaction, vary with the 

proportions of the components in the mixture.   

 

The BINWOE score is the interaction term that quantifies concern for interaction between a chemical 

pair.  Estimation of the BINWOE score was discussed in the previous section. 

 

The last set of terms in these two equations is the geometric mean of the HQs for the two chemicals.  

Finney (1942, 1971) proposed a similar term for modeling symmetrical interactions under the assumption 

of dose additivity.  The use of the geometric mean lowers the value of the interaction factor as exposure to 

either of the two chemicals falls below the defined level (denominator of the HQ; e.g., MRL) for that 

chemical (i.e., as either HQ falls below unity).  This property of the WOE approach is consistent with the 

general observation that as exposure levels and the probability of responses due to the individual 

components decrease, the toxicological significance of interactions in a mixture will decrease (Mumtaz 

and Durkin 1992; Mumtaz et al. 1994a).  In addition, the use of the geometric mean lowers the value of 

the interactions factor as the HQs of the two components deviate from each other.  This is consistent with 

the assumption that the greatest departure from additivity (greatest interaction) will occur when both 

IFi,j = 
HQi
HIadd

  BINWOEi, j (HQi  HQj)
0.5  

IFj,i = 
HQj
HIadd

  BINWOEj, i (HQi  HQj)
0.5  
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components of a binary mixture are present in equitoxic amounts.  This assumption also is expressed in 

Finney’s model of a deviation from dose additivity (Finney 1942, 1971), presented in Appendix A. 

 

B.2.4.  WOE 
 

The next step in this method is to sum the interaction factors to express the overall direction and WOE for 

the toxicological interactions of the site-specific mixture, WOES. 

 

  (3) 

 

The double summation sign indicates that each component of the mixture is evaluated for the effect that 

every other component could have on its toxicity.  The overall process (substituting the full expression for 

the interaction factors into Equation 3) can be represented by Equation 4. 

 

  (4) 

 

The WOES score has no absolute or clear interpretation.  For example, a score of -0.16 could be a 

composite of interaction factors for antagonism (-0.223) and synergism (+0.060) or a composite of 

interaction factors all of which reflect very low confidence in antagonism (e.g., -0.01, -0.04, -0.05,  

-0.01, -0.02, -0.03).  Therefore, Mumtaz and Durkin (1992) recommended that the WOE be normalized 

by dividing the WOES by the maximum possible score that the site-specific mixture would have generated 

if all of the interaction information had indicated a consistent direction of interaction and had been 

assigned weighting scores indicating the highest possible degree of confidence (BINWOE determinations 

of I.A.1.a.i. with corresponding BINWOE scores of 1.0).  Because the BINWOE scores are 1, they 

essentially drop out of Equations 1 and 2 for the interactions factors, and therefore out of Equation 4.  

Accordingly, the maximum possible score, WOEMAX, can be calculated by summing the simplified 

expressions for the interaction factors as follows: 

 

  (5) 

 

WOES = 
i j 

IFi, j  

WOES = 
i j 

HQi

HIadd
  BINWOEi, j  (HQi HQj)

0.5  

WOEMAX = 
i j 

HQi

HIadd
  (HQi  HQj)

0.5 



  B-8 
 

 
 
 
 
 

The normalized WOE for the site-specific mixture, WOEN, is: 

 

  (6) 

 

The WOEN is an expression of the strength of the evidence suggesting that interactions may be 

toxicologically significant relative to the highest possible level of confidence that can be expressed for the 

site-specific mixture using this method.  For example, consider the previously mentioned site-specific 

mixture with an estimated WOES of 0.16 (the sum of interaction factors indicating less-than-additive and 

greater-than-additive interactions).  Suppose the WOEMAX for this site is 0.75.  The WOEN is calculated as 

0.16/0.75 = 0.21.  Thus, the strength of the available data on the binary interactions, when used with 

the exposure data from the site, suggests that the net effect of interactions for the mixture is likely to be 

less-than-additive, as indicated by the minus sign in the WOES and WOEN scores.  Relative to 

(hypothetical) interactions data of the highest possible quality for the same mixture and exposures, overall 

confidence in the assessment of less-than-additive toxicity for this site-specific mixture is about 20%, as 

indicated by the magnitude of the WOEN score (Mumtaz and Durkin 1992; Mumtaz et al. 1994a). 

 

B.2.5.  Interactions-Based Hazard Index 
 

Consistent with the suggestion by the NRC (1989) that the hazard index be adjusted for interactions 

through the application of an uncertainty factor, and with EPA and ATSDR approaches to assessing the 

noncancer toxicity of individual chemicals, Mumtaz and Durkin (1992) suggest that the hazard index be 

adjusted for the uncertainty of interactions by the application of an uncertainty factor.  The uncertainty 

factor is modified by the normalized WOE score, WOEN.  The adjustment is performed as follows: 

 

  (7) 

 

where HII is the interactions-based hazard index, HIadd is the additivity-based hazard index, and UFI is an 

uncertainty factor for interactions.  Thus, the hazard index is multiplied by the uncertainty factor for 

interactions to the power of WOEN. 

 

The NRC (1989) discussed the use of an uncertainty factor in the range of 1–100 depending on the 

available interactions information and the concentrations of the components.  Mumtaz and Durkin (1992) 

WOEN = 
WOES
WOEMAX

 

HII = HIadd  UFWOEN
I
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note that the value of the uncertainty factor UFI could be set by taking into account the concern for the 

magnitude of an interaction, but that suitable data regarding magnitude generally are not available.  For 

the purposes of illustration, an uncertainty factor of 10 has been used in the various examples and 

exercises performed with this WOE methodology.  Because WOEN can range from -1 (for the highest 

possible confidence in less-than-additive interactions) to +1 (for the highest possible confidence in 

greater-than-additive interactions), UFI to the power of WOEN can range from 0.1 to 10.  The net effect 

can be to increase or decrease the hazard index by a factor of 10.  The WOE approach therefore differs 

from the NRC (1989) approach, which uses an uncertainty factor only to increase the hazard index.  It 

also differs from ATSDR and EPA approaches to assessing the noncancer toxicity of individual chemicals 

through the derivation of MRLs, RfDs, and RfCs, in which uncertainty factors are applied to make the 

health criterion more conservative. 

 

As an example of the application of the WOE method, the WOEN of -0.21 discussed in the previous 

section and an additivity-based hazard index of 2 are substituted into Equation 7 to estimate the 

interactions-based hazard index, as follows: 

 

  (8) 

 

For a WOEN of +0.22, and a hazard index of 2, the interactions-based hazard index would be 3.3.  A 

larger value of WOEN, +0.75, applied to a hazard index of 2 would result in an interactions-based hazard 

index of 11. 

 

B.2.6.  Strengths and Limitations of the Original WOE Method 
 

The highly prescriptive method for BINWOE classification is designed to encourage a consistent 

application of the methodology.  The application was considered consistent by expert toxicologists who 

reviewed the results of exercises in which 5–6 teams of toxicologists and risk assessors independently 

determined BINWOE classifications for the same pairs of chemicals, using the same data (Mumtaz et al. 

1994b). 

HII = 2  10-0.22 = 1.2 
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The separation of mechanistic understanding from toxicological significance and equal weighting of these 

two categories has been questioned on the grounds that mechanistic understanding is important in risk 

assessment only as it serves to support or modify toxicological significance.  Based on analyses of 

interactions data, the sequence of exposure appears to have a more profound impact on the nature of the 

interaction than does route or possibly duration (Hertzberg and Durkin 1994).  It has been suggested that 

the sequence of exposure be separated from duration and given a separate weighting factor to better 

reflect the impact of sequence on the nature of the interaction (Mumtaz and Durkin 1992). 

 

The algorithms do not provide a means for using information on the magnitudes of the interactions for 

specific pairs of components, should such information be available.  Rather, the magnitudes of the 

interactions among the components of a mixture are represented by a single uncertainty factor, which is 

modified by the WOE determinations, and then applied to the hazard index.  Given the scarcity of suitable 

data for determining the magnitude of interactions (see Boobis et al. 2011), this may not be a limitation.  

The normalization process was considered useful as an indicator of confidence in the assessment of 

direction of interactions for the site-specific mixture and when there is a need to compare scores across 

hazardous waste sites.  It also constrained the value of the interactions-modified uncertainty factor within 

reasonable limits (0.1–10). 

 

The WOE method (Mumtaz and Durkin 1992; Mumtaz et al. 1994a) has undergone evaluation, and 

appeared to perform well qualitatively, and quantitatively under some circumstances.  The application of 

the method for deriving BINWOE classifications was considered consistent by expert toxicologists who 

reviewed the results of exercises in which several teams of toxicologists and risk assessors independently 

determined BINWOE classifications for the same pairs of chemicals (Mumtaz et al. 1994b).  In tests of 

the WOE method to predict the toxicity of some simple chemical mixtures to animals, BINWOEs for 

three pairs of chemicals qualitatively predicted whether the results of animal studies would be less-than-

additive, additive, or greater-than-additive (Mumtaz et al. 1998).  Used with an exponential dose-response 

model and dose addition to model relative kidney weights, the quantitative WOE method closely 

predicted the observed dose-response in female rats for intermediate-duration oral exposure to a mixture 

of four nephrotoxic chemicals with similar MOAs (Mumtaz et al. 1998).  The observed dose-response 

was less than dose additive.  The BINWOEs were focused on renal toxicity, and the uncertainty factor 

used in the algorithm was 10.  The WOE method underestimated the relative liver weights in the same 

animals.  The observed dose-response for relative liver weight was slightly greater than dose additive.  

Thus, the WOE method did not predict toxicity to a target organ that was different from the one for which 
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the BINWOEs were derived.  The WOE method slightly overpredicted the observed dose-response for 

relative kidney weight in male rats for a mixture of dissimilarly acting nephrotoxins (in female rats, the 

data variability was so great that the exponential model did not fit the observed responses) (Mumtaz et al. 

1998).  Although these results are suggestive, limitations of this test of the complete WOE method 

include the substantial variability in the responses of individual animals, small numbers of animals per 

group, testing of only two dose levels of the mixtures, and lack of rationale for using relative organ 

weight as an index of toxicity (several other indicators of renal and hepatic toxicity were monitored in the 

studies that provided the experimental data [Jonker et al. 1993, 1996]). 

 

Subsequent experience with the WOE method revealed, however, that the algorithm does not handle 

changes in mixture component exposure levels in a reasonable manner.  Hertzberg and Teuschler (2002) 

pointed out that for the conditions involving perfect evidence for synergy (when all BINWOEij = 1), the 

value of the equation describing the interaction-based hazard index (HIint = HI x UFI
WOEN) becomes 

constant, regardless of changes in mixture composition.  Hertzberg and Teuschler (2002) also noted that 

the uncertainty factor for interaction (UFI) works differently than uncertainty factors for RfDs or MRL.  

Weak data lead to larger uncertainty factors for RfD/MRL development, thereby leading to lower, more 

public-health-protective, values of estimated safe dose; weak interaction data, in contrast, have minimal 

influence on hazard index values and thus, do not make the hazard index formula more or less public 

health protective.  ATSDR does not recommend the use of the algorithm and recommends a qualitative 

WOE approach (Section B.2.2), as suggested by Mumtaz and Durkin (1992). 

 

B.3. MODIFIED WOE METHOD 
 

B.3.1.  Modified BINWOE Scores 
 

The modification of the original WOE method that was adopted as part of EPA’s mixtures guidance (EPA 

2000) employs an alternative WOE classification scheme that focuses on a more integrated interpretation 

of the data.  The suggested numerical weights for the various classifications range from 0 to 1.0 as in the 

original methodology.  As in the original method, two BINWOE determinations are made for each pair:  

one for the effect of chemical A on the toxicity of chemical B, and the other for the effect of chemical B 

on the toxicity of chemical A.  Unlike the original methodology, less weight is given to less-than-additive 

interactions under circumstances where there is some uncertainty regarding the interaction (categories II 

and III).  The scheme is shown in Table B-2. 
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Table B-2.  Modified Binary Weight-of-Evidence Scheme for the Assessment of 
Chemical Interactions 

 
Default Weighting Factors 

 Direction 

Category Description 

Greater 
than 
additive 

Less 
than 
additive 

 I. The interaction has been shown to be relevant to human health 
effects and the direction of the interaction is unequivocal. 

1.0 -1.0 

 II. The direction of the interaction has been demonstrated in vivo in an 
appropriate animal model and the relevance to potential human 
health effects is likely. 

0.75 -0.50 

 III. An interaction in a particular direction is plausible but the evidence 
supporting the interaction and its relevance to human health effects is 
weak. 

0.5 0.0 

 IV. The assumption of additivity has been demonstrated or is accepted 
because the information is: 

0.0 0.0 

  A.  Insufficient to determine the direction of any potential interaction. 
B.  Insufficient to determine whether any interaction would occur. 
C.  Adequate as evidence that no toxicologic interaction between the 

components is plausible. 

  

 
Source:  EPA 2000 

 

This modified scheme facilitates the integration of toxicological and mechanistic data to support 

classification in an appropriate category.  In common with the original scheme, it encourages the use of 

structure-activity information to support a classification.  Because it is less prescriptive than the original 

BINWOE classification scheme, the modified scheme may require a greater degree of judgment in actual 

use. 

 

Like the original method, the modified method does not take dose into account during the BINWOE 

determination, but rather during application of the algorithms (Section B.3.2). 

 

B.3.2.  Modified Interactions-Based Hazard Index 
 

The modified WOE method modifies each component’s HQ (where HQi is the HQ of the ith component) 

by the influences of all the other potentially interacting components, resulting in a HQ modified for 

interactions (HQi
I
).  The interactions-modified HQs are then summed to estimate the interactions-based 

hazard index (HII): 
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  (9) 

 

  (10) 

 

The overall process is shown in the following equation (EPA 2000).  Some of the terms in Equations 9–

11 are modified slightly from those in the cited publications for consistency with the terms used in the 

original methodology. 

 

  (11) 

 

The term fj,i scales the interactions contribution of chemical j by its importance relative to all of the other 

chemicals interacting with chemical i.  The toxicological importance is represented by the HQ: 

 

  (12) 

 

Mi,j is the magnitude of the interaction, defined as an estimate of the maximum effect that chemical j has 

on the threshold or risk-specific dose (e.g., ED10) of chemical i.  When, as is often the case, data regarding 

the magnitude are not available, a default value of 5 is used, which is consistent with the upper end of the 

range of deviation from additivity shown by Smyth et al. (1969).  The direction of the interaction is not 

incorporated into M, but rather is part of the term BINWOEi,j, which is the BINWOE score.  Positive 

values indicate that the interaction is greater-than-additive, negative values indicate less-than-additive, 

and the value of zero indicates additivity.  Mi,j, raised to the power of BINWOEi,j  θi,j, functions as an 

uncertainty or modifying factor in the estimation of the interactions-based HQs.  The term θi,j reflects the 

degree to which components i and j are present in equitoxic amounts, based on the HQs.  This term is 

incorporated into the algorithm to account for the assumption that the greatest deviation from additivity 

will occur when both components in a binary mixture are present in equitoxic amounts (EPA 2000).  As 

discussed previously, this assumption is explicit in a model of a deviation from dose additivity proposed 

HQi
I
 = 

n


ij

HQi fj,i M
BINWOEi, jθi, j

i,j
 

HII = 

n


i=1

HQiI
 

HII = 

n


i=1

(HQi  

n


j i

 fj,i M
BINWOEi , jθi, j
i, j

)  

fj,i = 
HQj

HIadd-HQi
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by Finney (1942, 1971).  The measure of the deviation from equitoxic amounts is the ratio (θi,j) of the 

geometric mean to the arithmetic mean of the HQs: 

 

  (13) 

 

As HQi approaches HQj, θi,j approaches 1, and as HQi and HQj deviate from each other, θi,j approaches 0.  

Thus, the term θi,j reflects how close to equitoxic the two chemicals’ doses are.  The value for of θi,j is the 

same (0.94) for two components with HQs of 0.01 and 0.02, or 0.1 and 0.2, or 1 and 2. 

 

B.3.3.  Strengths and Limitations of the Modified WOE Method 
 

The modified WOE method may require more judgment in the determination of BINWOEs than the 

original WOE method.  The increased flexibility and the integration of toxicological and mechanistic 

information could lead to a more holistic assessment, but the flexibility also could lead to an erratic 

application of the methodology.  Consistency of application has not been tested. 

 

Although both WOE methods use BINWOE scores to modify an uncertainty (or magnitude) factor that 

can be based on the magnitude of the interactions, the original method focuses on a single uncertainty 

factor for the entire mixture, whereas the modified method focuses on individual magnitude factors (M) 

for the effect of each component on the toxicity of each other component.  Thus, the potential advantage 

of the modified WOE method is that information on the magnitude of interactions can be applied directly 

to the HQ of the chemical whose toxicity is affected.  A default magnitude value of 5 is used when data 

regarding magnitude are not available.   

 

B.4. PRACTICAL CONSIDERATIONS FOR IMPLEMENTATION OF A WOE METHOD IN 
PUBLIC HEALTH ASSESSMENTS 

 

The number of possible pairs in a mixture of N components is (N2-N)/2.  Thus, a mixture of 4 chemicals 

has 6 possible pairs needing 12 BINWOEs, a mixture of 6 chemicals has 15 possible pairs needing 

30 BINWOEs, and a mixture of 9 chemicals has (81-9)/2 = 36 possible pairs needing 72 BINWOEs.  

Obviously, the practicality of either WOE method may be an issue for mixtures with >4–5 components 

because of the large numbers of BINWOE determinations that would be required.  If an algorithm is used, 

the calculations are fairly extensive. 

θi, j = 
(HQi  HQj)

0.5

(HQi + HQj)2
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Some ways of addressing this issue of practicality are as follows: 

 

$ Limit the use of the WOE method to those situations where clarification of the public health 
hazard is needed, such as sites where exposures to individual components are high enough, 
relative to health guidelines, that additivity and interactions may result in a significant health 
hazard. 
 

$ Focus the BINWOE effort on chemical pairs that frequently pose the above situation for ATSDR 
health assessments. 
 

$ Make BINWOE determinations available through an easily accessible and readily updated 
medium, such as the ATSDR website or Interaction Profiles. 
 

$ Further develop the patterns approach to analyzing and predicting interactions (Durkin et al. 
1995) (see also Appendix A, Section A.3.3) as a potentially cost-effective means of generating 
BINWOEs. 
 

$ Develop a spreadsheet programmed with the appropriate equations to carry out the WOE 
calculations (if an appropriate algorithm is developed/fully evaluated/selected). 
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APPENDIX C.  METHODS USED OR PROPOSED BY OTHER AGENCIES 
 

C.1. AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS 
(ACGIH) 

 

ACGIH first discussed its procedure for dealing with exposure to mixtures in 1963 (ACGIH 1984); the 

procedures have changed little to the present day.  ACGIH (2015) recommends additivity approaches for 

the assessment of occupational hazard to mixtures of chemicals.  For mixtures of two or more hazardous 

agents that act on the same organ system, the ratio of the exposure concentration to the TLV for each 

component is summed (dose addition, hazard index approach).  If the sum exceeds one, then the TLV for 

the mixture is considered as being exceeded.  Exceptions to the hazard index approach can be made when 

there is good reason to expect that the chief effects of the components are not dose additive (i.e., are 

independent).  According to ACGIH (2015), this can occur when components of the mixture do not have 

similar toxicological effects or target organs.  When the effects are expected to be independent, the TLV 

for the mixture is exceeded only if at least one component has a HQ that exceeds unity.  In effect, the 

hazard index for the mixture would be the highest HQ for any of the components.  (This resembles 

response addition with completely positive correlation of tolerances, Appendix B.)  ACGIH (2015) 

recommends evaluating synergism or potentiation on a case-by-case basis, and further states that 

interactions are characteristically exhibited at high concentrations and are less likely at low 

concentrations.  

 

ACGIH (2015) recommends a special case method for deriving occupational exposure limits for vapors of 

mixtures of certain refined hydrocarbon solvents containing components that produce acute central 

nervous system depression and irritation of the eyes and respiratory tract.  The method is based on the 

assumption of dose addition and the mass percent makeup of the following designated groups:  C5–C6 

alkanes (with the exception of n-hexane), C7–C8 alkanes, C5–C6 cycloalkanes, C7–C8 cycloalkanes, C7–

C8 aromatics (with the exception of toluene), C9–C15 alkanes, C9–C15 cycloalkanes, and C9–C15 

aromatics (with the exceptions of naphthalene, methylnaphthalene, and indene).  More details of the 

method are detailed in Appendix H of ACGIH (2015) and McKee et al. (2005).   

 

C.2. U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) 
 

OSHA (1993, 2001) also recommends a hazard index approach that employs the ratio of the exposure 

concentration to the PEL for each chemical and sums the ratios.  If the sum of the ratios exceeds one, then 
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the exposure limit for the mixture is exceeded.  OSHA does not restrict the approach to chemicals with 

similar effects. 

 

C.3. U.S. NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH) 
 

NIOSH (1976) adopted a similar approach in recommending exposure limits for dichloromethane when 

carbon monoxide was also present because of the known additivity of the two chemicals with regard to 

formation of carboxyhemoglobin.  NIOSH recommended that the sum of the ratios of each chemical to 

their recommended exposure limits not exceed one, and that the PELs for dichloromethane be adjusted 

downward when carbon monoxide levels were >9 ppm in order to keep the sum from exceeding unity.  

(More recent NIOSH [1992] recommendations are based on carcinogenicity.).  In 2004, NIOSH 

introduced mixtures research agenda, showing the importance of a mixtures program to occupational 

exposures https://www.cdc.gov/niosh/docs/2005-106/pdfs/2005-106.pdf 

 

C.4. U.S. CONSUMER PRODUCT SAFETY COMMISSION (CPSC)  
 

In response to the U.S. Consumer Product Safety Improvement Act of 2008, the CPSC convened a 

Chronic Hazard Advisory Panel (CHAP) to study the health effects of all phthalates and phthalate 

alternatives as used in children’s toys and child care articles (CPSC 2014).  The panel report concluded 

that the most sensitive and most extensively studied health effect in animals from phthalates with three to 

seven or eight carbon atoms in the backbone of the alkyl side chain is referred to as the rat phthalate 

syndrome (CPSC 2014).  In this syndrome, exposing pregnant rat dams causes a syndrome of anti-

androgenic effects in male offspring including male reproductive tissue malformations (e.g., 

hypospadias), retention of nipples/areolae, and reduced anogenital distance depending on dose level and 

time and duration of exposure.  The CPSC (2014) conducted a cumulative risk assessment for five 

phthalates demonstrated to cause rat phthalate syndrome effects:  di(2-ethylhexyl) phthalate, dibutyl 

phthalate, diisobutyl phthalate, butylbenzyl phthalate, and diisononyl phthalate.  The approach used a 

modified hazard index approach in which estimates of daily intakes of these phthalates were estimated 

from urine biomonitoring data for phthalate metabolites in individual pregnant women and women of 

reproductive age in the U.S. NHANES of 2005–2006 and individual children from 2 to 36 months of age 

in a study called the Study for Future Families (CPSC 2014).  The estimates of daily intakes of each of 

the subject phthalates were divided by a “potency estimate for antiandrogenicity” for the subject phthalate 

(a value comparable to an RfD derived from a POD in a selected rat study divided by uncertainty factors) 

to derive a HQ.  The hazard index for each individual subject was derived by summing the HQs for the 

subject phthalates.  The distributions of the hazard indices for these phthalates in pregnant women and 

https://www.cdc.gov/niosh/docs/2005-106/pdfs/2005-106.pdf
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children were assessed:  about 10% of the studied pregnant women and about 5% of studied mothers and 

children had hazard indices >1 (CPSC 2014).   

 

C.5. EPA OFFICE OF RESEARCH AND DEVELOPMENT (ORD) 
 

The EPA ORD (EPA 1986) guidelines for risk assessment of chemical mixtures recommended the use of 

exposure and health effects data for the mixture of concern or a similar mixture if available.  If not, the 

use of data for the components was recommended.  When more than one of these approaches is feasible, 

EPA (1986) recommended a comparison of results from the different approaches. 

 
The guidelines recommended the assessment of interactions data, when available, in terms of relevance to 

subchronic or chronic exposure and suitability for quantitatively altering the risk assessment.  Interactions 

data were considered likely to be available mainly for pairs of chemicals, which could be assessed 

separately from those with no such information.  The guidelines recommended, however, exploring the 

possibility that other components of the mixture may interfere with the interaction of the chemical pair on 

which quantitative interaction data are available.  If interference appears likely, then quantitative 

alteration of the risk assessment may not be justifiable.   

 

The assessment of the noncarcinogenic effects of the components usually proceeds by the hazard index 

method.  Because it assumes dose additivity, the hazard index method is most suitable for chemicals with 

similar effects.  If the mixture includes chemicals that have different effects, then EPA recommended the 

calculation of separate hazard indices for each end point of concern.  The guidelines mentioned that if 

data are sufficient to derive individual acceptable levels for a spectrum of effects, the hazard index may 

suggest what types of effects might be expected from the mixture exposure.  Subsequent guidance for 

Superfund risk assessment gave further explicit directions for the hazard index approach, including the 

combining of hazard indices for multi-route exposure and the calculation of separate hazard indices for 

different target organ toxicities (EPA 1989a).  For carcinogenic effects, the guidelines recommended 

summing the risks across carcinogenic components (i.e., assume response addition). 

 

EPA ORD developed additional mixtures guidance for risk assessment (EPA 2000), which supplemented, 

but did not replace, the broad principles and concepts in the original EPA ORD guidelines (EPA 1986).  

The supplementation emphasized an interactive and iterative problem formulation step to supplement the 

four parts of the EPA paradigm for assessing human health risks applied to chemical mixtures:  hazard 

identification, dose-response assessment, exposure assessment, and risk characterization.  The 

recommended problem formulation process involved the following three steps:  (1) evaluate the nature of 
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the problem; (2) define the objectives of the risk assessment; and (3) develop a data analysis and risk 

characterization plan.  The problem formulation should:  (1) assess the quality, quantity and pertinence of 

available information, (2) select end points to be assessed; and (3) review conceptual models that describe 

the relationships between exposure to the mixtures and risk for adverse health outcomes.  Figure C-1 is 

presented to illustrate the different types of risk assessment processes that could be implemented based on 

the availability and quality of the data for the mixture of concern.  EPA (2000) recommended that all 

possible assessment paths should be performed. 

 

The guidance focused on procedures for dose-response assessment and risk characterization, noting that 

other EPA guidance existed to address exposure assessment and specific toxic end point evaluations.  The 

supplemental guidance provided descriptions of methods for using whole-mixture data on a 

toxicologically similar mixture, methods on incorporating information on toxicologic interactions to 

modify a hazard index, and generalized procedures for mixtures involving classes of similar chemicals 

(EPA 2000).  Expanded discussion was also included of concerns and uncertainties to be considered when 

using only whole-mixtures data (e.g., environmental transformations) or only data on the individual 

chemical components (e.g., the possible existence of interactions among the components—i.e., deviations 

from additivity).   

 

C.6. EPA OFFICE OF AIR AND RADIATION (OAR) 
 

The EPA OAR has completed four National Air Toxic Assessments (NATAs) for data collected in 1996, 

1999, 2002, and 2005.  The NATAs estimate chronic cancer risk and noncancer hazard from inhaling 

chemicals identified as air toxics (see EPA 2013).  The assessments are based on collected ambient air 

concentration data for air toxics from stationary sources (e.g., large industrial facilities and smaller 

sources such as gasoline stations), mobile sources (e.g., cars and trucks), background sources (e.g., natural 

emission sources) and secondary formation (i.e., pollutants formed from other pollutants emitted in air) 

across broad geographic areas in the United States (e.g., counties, states).  In the latest NATA, data for 

177 air toxics plus diesel exhaust particulate matter were collected in 2005 and risk estimates of cancer or 

noncancer effects were developed for a subset of 139 chemicals with health data based on chronic 

exposure (cancer results for 80 air toxics and noncancer results for 110 air toxics) (EPA 2011c).  

Exposures were estimated from atmospheric dispersion models and human activity pattern data.  Cancer 

risks for individual carcinogenic air toxics in outdoor air were calculated by multiplying estimates of 

chronic lifetime exposure levels by upper-bound inhalation unit risk estimates.  Individual cancer risks  
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Figure C-1.  EPA (2000) Description of Different Risk Assessment Paths for 
Chemical Mixtures Based on the Availability and Quality of the Data 

 
 

 
 
EPA = Environmental Protection Agency; RfD/C = reference dose/concentration 
 
Source:  EPA 2000  
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were added under the assumption of response addition (independent action) to estimate cumulative cancer 

risks.  When the risks from all carcinogenic air toxics were added, the approach estimated that there were 

about 3,100 census tracts (5% of about 66,000 census tracts in the United States) with increased cancer 

risks greater than 100 in a million.  A target-organ, dose-additivity hazard index approach was used to 

estimate hazard potential for noncancer respiratory and neurological effects.  Adequate toxicity data were 

available to calculate respiratory-effects HQs for 41 air toxics.  The cumulative respiratory hazard indices 

for U.S. census tracts indicated that about 69 million people (of about 285 million U.S. residents) lived in 

regions with respiratory hazard indices >1.0 and about 174,000 people lived in regions with respiratory 

hazard indices >10.  The EPA emphasized that the “NATA is a prioritization tool to identify geographic 

areas, pollutants and emission sources that should be evaluated further to gain a better understanding of 

health risks posed by air toxics.”   

 

C.7. EPA RISK ASSESSMENT FORUM 
 

The EPA Risk Assessment Forum (EPA 2003) described a framework for conducting cumulative risk 

assessment, defined as “an analysis, characterization, and possible quantification of the combined risks to 

health or the environment from multiple agents or stressors.”  The framework does not limit “agents or 

stressors” to only chemicals, but includes other biological or physical agents or conditions, and specifies 

that “combined risk” does not mean that risks are necessarily added, but rather that some analysis should 

be conducted to assess how the targeted agents or stressors may interact.”  Three phases to the framework 

were described:  (1) planning, scoping, and problem formulation; (2) analysis; and (3) risk 

characterization.  The first phase entails the establishment of the goals, breadth, depth, and focus of the 

assessment and the production of a conceptual model that establishes the stressors to be evaluated, the 

health or environmental effects to be evaluated, and what is known about exposure-response relationships 

for the subject agents or stressors.  The analysis phase includes developing exposure profiles, considering 

potential interactions among agents or stressors, and estimating risks to the population or populations 

under consideration.  The end product of phase 2 is an analysis of the risks associated with the multiple 

agents or stressors to which the studied population or populations are exposed.  The third phase evaluates 

the significance of the risk estimates, the reliability of the estimates and associated uncertainties, and the 

overall confidence in the assessment.  Discussion of other details of this framework were previously 

discussed in Section 3.3.8 of this document. 
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C.8. EPA OPP 
 

The EPA OPP is required under legislative statutes to determine with reasonable certainty that 

consumption of raw agricultural commodities or processed foods containing residues of a specific 

pesticide will not cause harm to humans, especially infants and children (EPA 2002b).  The FQPA of 

1996 further requires EPA to:  (1) base its risk assessment for each pesticide chemical on aggregate 

exposure (total food, drinking water, residential, and other nonoccupational exposures); (2) consider 

available evidence concerning the cumulative effect on infants and children of pesticide chemicals having 

a common mechanism of toxicity; and (3) use an additional 10-fold margin of safety to take into account 

potential pre- and postnatal toxicity and completeness of the toxicity and exposure databases (EPA 

2002a).  This additional safety factor is often referred to as the FQPA Safety Factor. 

 

As described earlier, the EPA OPP approach for cumulative risk assessments for pesticides sharing a 

common effect through a common mechanism involves:  (1) determination of whether or not a group of 

structurally related pesticides produces a common effect by a common mechanism; (2) selection of an 

index chemical and determination of RPFs for members of the group; (3) determination of concentrations 

of member chemicals in foods and environmental media; (4) estimation of intakes for target population 

for multiple exposure pathways using exposure models; and (5) assessment of risks for target populations 

using a POD/MOE hazard indicator method when appropriate data are available (EPA 2002b).  

 

The EPA OPP cumulative risk assessment for N-methyl carbamates provides an illustrative example of 

the approach.  EPA (2007b) determined that N-methyl carbamate insecticides represent a common 

mechanism group based on similar structural characteristics and shared ability to produce neurological 

effects via inhibition of acetylcholine esterase (AChE) at the active enzymatic site.  A multi-chemical, 

multi-pathway PBPK/PD model could not be developed for the cumulative risk assessment, because 

appropriate pharmacokinetic data for model development were only available for one carbamate 

insecticide, carbaryl.  Based on an analysis of available data, including data collected by EPA and data 

submitted for registration, acute AChE inhibition, measured at the peak time of effect in rats, was 

determined to be the most sensitive effect from exposure to carbamates and thus, the pertinent effect of 

concern.  A component-based RPF approach, assuming dose additivity, was used in the cumulative risk 

assessment.  RPFs for 10 carbamates (and several carbamate metabolites—aldicarb sulfone, aldicarb 

sulfoxide, and 3- and 5-hydroxycarbofuran) were developed based on brain AChE inhibition data for 

adult rats (Table 6).  The rat brain AChE inhibition data were modeled with a dose-time response model 

to estimate BMD10 values (doses at which AChE was inhibited by 10%), and the RPF values were 
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calculated by dividing the BMD10 value for the subject carbamate by the BMD10 value for the index 

carbamate, oxamyl.  Oxamyl was chosen as the index chemical, because oxamyl, compared with the other 

nine carbamates, had the most robust data base for all three pertinent routes of exposure (oral, dermal, 

inhalation).  

 

Uncertainty and extrapolation factors were incorporated into the cumulative risk assessment in two ways: 

 

1. Adjustment of the RPF:  Chemical-specific information was evaluated, when available, to 
determine chemical-specific inter-species uncertainty factors (animal to human extrapolation) and 
FQPA factors to arrive at adjusted RPF values for children and adults (Table 7).  Chemical-
specific FQPA factors were calculated, when appropriate data were available, by dividing an 
adult BMD10 by a pup BMD10 for AChE inhibition.  In the absence of appropriate data, the default 
FQPA safety factor value of 10 was used.  Chemical-specific interspecies uncertainty factors 
were calculated similarly when appropriate data were available to compare human BMD10 values 
for AChE inhibition with rat BMD10 values.  In the absence of appropriate data, a default 
interspecies uncertainty factor of 10 was used (see Table 7). 

 
2. Incorporation into the target MOE:  A default uncertainty factor of 10 for intrahuman variability 

was taken as the target MOE for each of the carbamate insecticides.  The PODs, used in the 
cumulative risk assessments to compare against exposure-based TEQs estimates were the route-
specific rat BMDL10 values for brain AChE inhibition shown in Table 8. 

 

Table C-1.  EPA RPFs for Oral, Dermal, and Inhalation Exposure to Carbamate 
Insecticides Based on Rat Brain 

 
Acetylcholinesterase Inhibition 

Chemical  Oral RPF Dermal RPF Inhalation RPF 
Aldicarb 
Aldicarb sulfonea 
Aldicarb sulfoxidea 
Carbaryl 
Carbofuran 
3- and 5-Hydroxycarbofurana 
Formetanate hydrochloride 
Methiocarb 
Methomyl 
Oxamyl 
Primicarb 
Propoxur 
Thiodicarb 

4 
3.44 
3.68 
0.15 
2.4 
2.4 
2.18 
0.18 
0.67 
1 
0.02 
0.11 
0.89 

NDb 
ND 
ND 

0.71 
ND 
ND 
ND 

0.09 
ND 

1 
ND 

0.03 
ND 

ND 
ND 
ND 

0.51 
ND 
ND 
ND 

0.62 
ND 

1 
ND 

0.18 
ND 

 
aValues for aldicarb sulfone and aldicarb sulfoxide were calculated based on molecular weight conversions from 
aldicarb assuming equipotency to aldicarb.  3- and 5-Hydroxycarbofuran were assumed to be equipotent to 
carbofuran. 
bND = not derived due to lack of data. 
 
EPA = Environmental Protection Agency; RPF = relative potency factor  
 
Source:  EPA 2007b 
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Table C-2.  EPA Adjusted Oral RPFs for Children and Adults Exposed to N-Methyl 
Carbamates Based on Interspecies and FQPA Factors 

 

Chemical 
Oral 
RPF 

Interspecies 
factor 

FQPA factor 
for children 

Adjusted RPF 
for children 

Adjusted 
for adults 

RPF 

Aldicarb 
Aldicarb sulfone 
Aldicarb sulfoxide 
Carbaryl 
Carbofuran 
3- and 5-Hydroxycarbofuran 
Formetanate hydrochloride 
Methiocarb 
Methomyl 
Oxamyl 
Primicarb 
Propoxur 
Thiodicarb 

4 
3.44 
3.68 
0.15 
2.4 
2.4 
2.18 
0.18 
0.67 
1 
0.02 
0.11 
0.89 

2 
2 
2 

10 
10 
10 
10 
10 

5 
3 

10 
10 
10 

2 
2 
2 
1.8 
2.75 
2.75 
2.03 

10 
3.05 
3.48 

10 
10 
10 

16 
13.8 
14.7 

2.7 
66 
66 
44 
18 
10 
10 

2 
11 
89 

8 
6.9 
7.4 
1.5 

24 
24 
22 
1.8 
3.3 
3 
0.2 
1.1 
8.9 

 
EPA = Environmental Protection Agency; FQPA = Food Quality and Protection Act; 
 
Source:  EPA 2007b 

RPF = relative potency factor 

 

Table C-3.  Oral, Dermal, and Inhalation BMD10 and BMDL10 Values for Rat Brain 
Acetylcholinesterase Inhibition by Oxamyl, the Index Chemical for the EPA 

Cumulative Risk Assessment for N-Methyl Carbamates 
 

End point Oral Dermal Inhalation 
BMD10 0.24 mg/kg 34.91 mg/kg 0.0047 mg/L 
BMDL10 0.18 mg/kg 17.05 mg/kg 0.0038 mg/L (converted to 0.66 mg/kg) 
 
BMD = benchmark dose; BMDL = benchmark dose limit; EPA = Environmental Protection Agency  
 
Source:  EPA 2007b 
 

EPA (2007b) conducted route-specific cumulative risk assessments for adult and children exposures to 

N-methyl carbamate insecticides by incorporating the RPF values into an MOE approach applied to food, 

water, and residential exposure pathways.  The residential pathways comprised oral, dermal, and 

inhalation exposures.  Concentrations of carbamate residues in appropriate media (e.g., food, drinking 

water) were multiplied by appropriate interspecies- and FQPA-adjusted RPF values (Table 7) and 

summed to arrive at oxamyl-equivalent concentrations (TEQs), which were then used in exposure models 

to estimate oxamyl equivalent intakes (in units of mg/kg body weight) for appropriate exposure scenarios 



  C-10 
 

 
 
 
 
 

for groups of adults and children in the general population.  MOE values were calculated by dividing the 

appropriate oxamyl POD (e.g., the oral rat BMDL10—Table 8—for oral exposure scenarios) by the 

estimated oxamyl TEQ intake.  MOE values <10 were taken as values requiring some mitigation action; 

those >10 were assessed to be without the need for mitigation.  EPA (2007b) determined total MOE 

values for combined estimates of food, water, and residential exposure scenarios (i.e., aggregate 

exposure), showing with a sensitivity analysis that the food pathway was the dominant exposure pathway 

for the general population.  

 

C.9. U.S. NATIONAL ACADEMY OF SCIENCE (NAS)/NATIONAL RESEARCH COUNCIL 
(NRC) 

 

In 1972, at the request of the EPA, the NAS recommended health-based stream criteria for a large number 

of pollutants.  A component of this appraisal was multiple chemical exposure (NAS 1974).  The NAS 

recommended a hazard index approach, whereby the sum of the ratios of the measured concentrations to 

the acceptable concentrations for the components was to be kept at a level equal to or lower than unity.   

 

In 1989, at the request of EPA, The Safe Drinking Water Committee of the NRC suggested possible 

modifications of the then-current approaches for estimating the toxicity of mixtures in drinking water 

(NRC 1989).  The NRC suggested that mixture components be grouped by end point, such as specific 

organ toxicity and carcinogenicity in order to assess their combined risk or hazard. 

 

For noncancer end points, the NRC (1989) suggested a modified hazard index that sums similar toxicities 

and an uncertainty factor for possible synergism, depending on the information regarding interactions and 

the concentrations of the components.  The uncertainty factor could range from one to 100.  If 

information regarding potential interactions is available and suggests that interactions are not likely, or if 

the concentrations are low, the uncertainty factor could be set at one.  The NRC also suggested that 

separate hazard indices be calculated for each toxic end point, including those that occur at higher 

exposure levels than the end point that is the basis for the acceptable exposure level for a component.  A 

weighting factor would be applied to account for the lesser sensitivity of the other end points, unless an 

acceptable exposure level for the other end points was available.  The method is similar to the TTD 

modification of the hazard index method, discussed previously, except that the NRC further suggested 

summing the hazard indices across all toxic end points. 
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For carcinogenic end points, the NRC (1989) concluded that it was appropriate to sum the risks (response 

addition with completely negative correlation of tolerances) for low-dose exposure to a mixture of 

carcinogens (doses with relative risks of <1.01). 

 

The NRC (2004a) report, Air Quality Management in the United States, recommended that the EPA 

address multiple pollutants in its National Ambient Air Quality Standards (NAAQS) review and standard 

setting process.  However, the committee making this recommendation did not “believe that the science 

has evolved to a sufficient extent to permit the development of multipollutant NAAQS, it would be 

scientifically prudent to begin to review and develop NAAQS for related pollutants in parallel and 

simultaneously.”  In response to this recommendation, EPA convened a public workshop in 2011 to 

discuss scientific issues and data gaps related to adopting multipollutant science and risk assessment 

approaches for priority hazardous air pollutants identified by the EPA under the Clean Air Act (Johns et 

al. 2012).  The major conclusion from the workshop called for the development and adoption of a 

framework and methods for conducting multipollutant science and risk assessments of the well-studied 

priority air pollutants (Johns et al. 2012).   

 

The NRC (2008) report, Phthalates and Cumulative Risk Assessment:  Tasks Ahead, recommended that 

the EPA should conduct a cumulative risk assessment for phthalates using the dose-addition concept to all 

phthalates that have anti-androgenic activity.  This recommendation was based on studies examining 

effects on developing male reproductive end points in rats after oral exposures to mixtures of phthalates 

or phthalates plus other anti-androgenic compounds showing that dose-addition models provided 

adequate fit to observed dose-response data (Christiansen et al. 2009; Hass et al. 2007; Howdeshell et al. 

2007, 2008; Rider et al. 2008; see Section 3.3.1.2 Evidence to Support or Refute the Use of Default Dose-

Additivity Approaches).  To date, EPA has not conducted a cumulative risk assessment for phthalates or 

other anti-androgenic chemicals, but CPSC (2014) published a cumulative risk assessment for anti-

androgenic effects from five phthalates, using a modified hazard index approach (see Section C.4).  

 

C.10. U.S. DEPARTMENT OF ENERGY (DOE) 
 

To estimate potential health effects to workers and the public exposed to unplanned release of mixtures of 

chemicals, the U.S. DOE followed the principles of the EPA (1986, 2000) chemical mixtures guidelines 

to establish a chemical mixtures methodology using a dose-additive hazard index approach (Yu et al. 

2010, 2013).  In this method, a hazard index (comparable to EPA’s HQ) for each chemical in the mixture 

is calculated that is the ratio of the exposure concentration for the component “at a given receptor site” to 
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the toxicity guidance value for the component.  Exposure concentrations are estimated with Gaussian 

atmospheric dispersion models that calculate exposure concentrations based on the amount of each 

chemical in the mixture available for release to the atmosphere, the manner of release (e.g., spill or 

explosion), the chemical and physical properties of each chemical, the time within the release plume, 

release event parameters, and meteorological conditions.  The default, screening-level approach uses 

Protective Action Criteria (PACs) that are determined from (in order of priority) Acute Exposure 

Guideline Level (AEGL) values, Emergency Response Planning Guideline (ERPG) values or Temporary 

Emergency Exposure Limit (TEEL) values.  Different PAC benchmark values are established to indicate 

threshold concentrations for increasing severity of acute effects (i.e., levels below the threshold value are 

not expected to produce effects of the indicated severity):  PAC-0, threshold for no adverse effects; PAC-

1 threshold for mild or transient effects; PAC-2, threshold for irreversible or serious effect that could 

impair a person’s ability to take protective actions; and PAC-3: threshold for life-threatening effects.  As 

an initial screen to provide protection for first responders using this method, a cumulative hazard index is 

calculated by summing individual component hazard indices using PAC-1 or PAC-2 values for all known 

components in the mixtures, regardless of their target organ or expected MOA; cumulative hazard indices 

>1 indicate risks from acute exposure to the mixture and the need to take some mitigating action.  A 

refinement to the screening level cumulative hazard index approach is analogous to the TTD method 

described in Section 3.3.3 of this document, in which cumulative hazard indices for chemicals in the 

mixture producing the same or similar effects are calculated.  All chemicals in the DOE database with 

PACs (approximately 3,300 chemicals) are assigned any number of 60 health code numbers as guided by 

available toxicity data for the individual chemical (see Table 1 in Yu et al. 2013).  Some of the health 

code numbers are for acute effects, others are for chronic effects.  The health code numbers are used to 

group individual hazard indices for chemicals in the mixture of concern affecting the same or similar 

target organs, which are then used to calculate cumulative hazard indices for specific target organs or 

effects.  The approach assumes that acute and chronic effects are independent and for a specific target 

organ calculates separate cumulative hazard indices for acute and chronic effects.  For example, separate 

cumulative hazard indices are calculated for acute reproductive effects (health code number, 5.00) and 

chronic reproductive effects (health code number, 5.11).  Yu et al. (2013) reported that activities were 

ongoing to evaluate modifications to the target organ/effect hazard index approach.  The modifications 

under consideration involved the development of weighting factors for target organ hazard indices based 

on rankings of health code numbers for each type of PAC value.   
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C.11. WORLD HEALTH ORGANIZATION (WHO)/INTERNATIONAL PROGRAMME ON 
CHEMICAL SAFETY (IPCS) 

 

Based on a workshop convened by the WHO/IPCS, a framework for assessing health risks from 

combined exposure to multiple chemicals has been described (Meek 2013; Meek et al. 2011).  The 

framework entails tiered parallel assessments of exposure and hazard that increase in refinement and data 

depth and are accompanied by an iterative problem formulation process that asks key questions about the 

nature and likelihood of exposure to multiple chemicals and the rationale for considering multiple 

chemicals in an assessment group (Figure C-2).  Within each tier of assessment, information on exposure 

and hazard from the mixture are brought together to assess the MOE (the ratio of some POD assessment 

(NOAEL/LOAEL or BMD10) of combined toxicity to an estimate of exposure).  From this MOE 

assessment, decisions are made about continuing (or not) with iterative refinements based on the 

availability of appropriate data and scope of the assessment.  Tier 0 of the framework calls for simple 

semi-quantitative estimates of exposure and a default dose-addition hazard approach for all components 

of the mixture.  Tier 1 calls for refined exposure scenarios using conservative point estimates and refined 

PODs.  Tier 2 calls for increased use of actual data in the exposure assessment and more refined potency 

and groupings based on MOA.  Tier 3 calls for probabilistic exposure estimates and refined probabilistic 

estimates of hazard risk involving PBPK and PBPK/PD modeling when appropriate.  The tiered approach 

allows consideration of the efficiency of use of resources:  each progressive tier is more refined, requiring 

more labor and data (Meek 2013).   

 

A case study applied the WHO/IPCS framework to conduct a screening-level assessment under the 

Canadian Environmental Protection Act of a group of seven polybrominated diphenyl ethers (PBDEs) 

present in commercial mixtures used as flame retardants in a number of consumer products (Meek et al. 

2011).  In the Tier 0 assessment, semi-quantitative measures of exposure was determined through 

comparison of relative rankings, physicochemical properties, and use patterns with those for congeners 

with deterministic estimates of exposure.  In the absence of toxicity guidance values for the individual 

congeners, a hazard index could not be calculated, but the summation of semiquantitative estimates of 

exposure was greater than the LOAEL for the most toxic congener with toxicity data.  This simplified 

MOE was used to prompt a Tier 1 assessment.  In the Tier 1 assessment, upper-bounding estimates of 

total intakes of PBDEs were developed based on maximum levels in air, water, dust, foods, and human 

breast milk and reference intake values for six age groups within the Canadian population.  Based on 

review of available results from animal toxicity tests with several of the individual congeners or 

commercial PBDE mixtures identifying effects on liver, thyroid, and neurological (behavioral) 

development in neonatal mice, a LOAEL of 0.8 mg/kg body weight/day for effects on locomotion, 
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rearing, and total activity was selected as the critical (most sensitive) POD.  A MOE of about 300 was 

calculated based on a comparison of this POD with the upper bounding intake estimate of 0.0026 mg/kg 

body weight/day.  Descriptions and considerations of the uncertainties in the Tier 1 exposure and dose-

response assessments were used to make recommendations for additional risk assessment and research 

activities.  Assessments at the Tier 2 or 3 levels were not conducted (Meek et al. 2011).  

 

Figure C-2.  World Health Organization/International Programme on Chemical 
Safety Framework for Evaluating the Risk of Combined Exposure to Multiple 

Chemicals 
 

 
 
BBDR = biologically based dose-response; PBPK = physiologically based pharmacokinetic; POD = point 
of departure 
 
Source: Meek et al. 2011 
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C.12. HEALTH COUNCIL OF NETHERLANDS 
 
The Health Council of Netherlands published a report outlining a decision flow chart to guide hazard 

identification and risk assessments for chemical mixtures (Figure C-3).  The approach was developed to 

guide hazard identification and risk assessment for specified combinations of chemicals, as well as for 

more complex mixtures that may have components that are unknown.  The flow diagram recommended 

using toxicity data on the mixture of concern or a “comparable mixture” if data are available, and using 

toxicity data on constituents (i.e., components) if toxicity data for the mixture itself or a comparable 

mixture are not available.  For the component-based approaches, the decision tree called for determining 

whether or not few components or many components were present in the mixture.   

 

For the case of many components, a step was recommended to decide whether or not a few components 

of most concern (based on a combination of severity of hazard and concentration in the mixture) should 

be used to estimate toxicity of the mixture, or a grouping or lumping approach such as that described by 

Verhaar et al. (1997) should be used.  Continuing in the component-based path, the approach called for 

grouping chemicals with similar toxicological action, assessing information on possible interactions and 

using dose addition approaches for assessing risks.  For components with dissimilar toxicological action, 

a response-addition approach was recommended, using exposure limits for individual agents for risk 

assessment.  To evaluate evidence for interactions among components of the mixture, the approaches 

described by Mumtaz and Durkin (1992) and EPA (2000) were recommended. 

 

C.13. NORWEGIAN SCIENTIFIC COMMITTEE FOR FOOD SAFETY 
 

The Norwegian Scientific Committee for Food Safety (2013) published a report, Combined Toxic Effects 

of Multiple Chemical Exposures, outlining a decision-tree flow chart for use in human health risk 

assessments of chemical mixtures or concurrent exposure.  The flow chart did not suggest approaches for 

the cases where toxicity data may exist for the mixture of concern or a similar mixture.  Two key opinions 

incorporated into the flow chart, which represents a component-based approach (see Figure C-4), are as 

follows: 

1. For chemicals with similar MOAs, adverse effects from multiple exposures occur due to dose 
addition, even if exposures to components are below their respective acceptable or tolerable daily 
intakes. 
 

2. For chemicals with dissimilar MOAs, adverse effects from multiple exposures are not expected 
when the exposures to the individual components are below the respective acceptable or tolerable 
daily intakes.  When compounds in the mixture are thought to act independently of each other, the 
recommended approach is a chemical-specific approach for each component, if pertinent toxicity 
data are available. 



  C-16 
 

 
 
 
 
 

Figure C-3.  Health Council of Netherlands Framework for Evaluating the Risk of 
Combined Exposure to Multiple Chemicals 

 

 
*Stop = data required to complete the evaluation. 
**“Top n” and “pseudo top n;” n represents the most “risky” chemicals or groups of chemicals, 
respectively. 
 
Source:  Feron et al. 2004 (Reprinted from Environmental Toxicology and Pharmacology, 18(3):215-222.  
Copyright (2004), with permission from Elsevier) 
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Figure C-4.  Norwegian Scientific Committee for Food Safety Flow Chart for Use 
in Risk Assessments of Multiple Chemical Exposures 

 

 
 
HI = hazard index; MOE = margin of exposure; MOS = margin of safety; PODI = point of departure index; 
TEF = toxic equivalency factor 
 
Source:  Norwegian Scientific Committee for Food Safety 2013 
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C.14. DANISH MINISTRY OF THE ENVIRONMENT 
 

The Danish Ministry of the Environment (DEPA 2009) convened a workshop to examine existing 

scientific knowledge on combination effects of endocrine disrupters, with a focus on regulatory aspects.  

Several consensus recommendations were made by workshop participants: 

 

1. “Cumulative risk assessment for endocrine disrupters was seen as both necessary and 
feasible.  The predominant chemical-by-chemical approach in risk assessment was 
regarded as insufficiently protective against the possibility of mixture effects/ effects of 
combined exposure. 
 

2. The application of dose (or concentration) addition as an assessment method was 
recommended as a default, until evidence as to the suitability of alternative assessment 
concepts emerges. 
 

3. A pre-occupation with mechanisms or modes of action as the starting point for the 
grouping of endocrine disrupters into classes to be subjected to mixtures risk assessment 
was seen as not practical and scientifically hard to justify.  Instead, grouping criteria 
should focus on common health related effects and the likelihood of co-exposures. 
 

4. The full potential of cumulative risk assessment for endocrine disrupters cannot be 
reached without filling a number of data gaps, most importantly in the area of mixtures 
exposure assessment. 
 

5. An enhancement of the legal framework in Europe with a view to mandating cumulative 
risk assessment should be given serious consideration.” 

 

C.15. EUROPEAN FOOD SAFETY AUTHORITY 
 

The European Food Safety Authority’s Panel on Plant Protection Products and their Residues evaluated 

existing methodologies for assessing risks of exposure to two or more pesticides in combination and made 

recommendations for refining the methodologies (EFSA 2008).  The panel noted that their 

recommendations were for component-based approaches for groups of pesticides producing common 

adverse outcomes or MOAs.  For mixtures of pesticides with different targets or MOAs, the panel 

concluded that there was no evidence for dose additivity at low exposure levels below toxicological 

reference values, and that risk associated with such mixtures are determined by the component with the 

highest HQ.  This conclusion is consistent with the concept of response addition (i.e., independent action) 

for these cases.  The panel also concluded that no more than dose additive effects were expected for 

pesticides with a common target or MOA, noting that:  (1) pesticide residues are generally below 

individual NOAELs and (2) “although toxic interactions from pesticide residues cannot be ruled out, there 



  C-19 
 

 
 
 
 
 

is no empirical evidence for their occurrence at the expected levels of exposure from pesticide residues in 

food.”  The recommendations call for: 

 

1. A tiered parallel assessment of exposure and hazard, conducting iterative, increasingly complex 
and data-intensive risk assessments by MOE comparisons between exposure and hazard estimates 
using increasingly data intensive methods (i.e., methods of increasing refinement).  
 

2. Initially identifying the common assessment group “in broad terms,” evaluating the evidence for 
common adverse outcomes or MOAs, and refining the group with more refined assessments of 
hazard. 
 

3. Dose-additive, hazard index approaches, initially for all components or components with 
common effects and proceeding through more refined approaches involving RPFs derived from 
NOAELs or BMDs and, finally, RPFs refined by PBPK/PD models, if appropriate models are 
available. 
 

4. Tiered exposure assessments, initially using deterministic modeling approaches, proceeding 
through probabilistic modeling approaches if appropriate data are available. 
 

5. Recognition and articulation of uncertainties in both the exposure and hazard assessment portions 
of the risk assessment, noting a qualitative scheme for evaluating sources of uncertainties that 
may cause small, medium, or large, over- or under-estimation of risk.  The panel noted that 
sources with large uncertainty potential warrant sensitivity analysis and “provide the greatest 
scope for refinement of the assessment.” 

 

In a related Scientific Opinion, the Panel on Plant Protection Products and their Residues evaluated 

existing methods for assessing chemicals acting by dissimilar MOAs and recommended dose-addition 

approaches for the assessment of multiple pesticides with dissimilar MOAs, provided that they produce a 

common adverse outcome (EFSA 2013).  The recommendation to group pesticides with common adverse 

outcomes together in common assessment groups and use dose addition to assess cumulative risk was 

viewed as a pragmatic and conservative default approach.  The use of a default dose addition model, 

regardless of mechanism of action, was also recommended by an EFSA colloquium convened to 

harmonize of human and ecological risk assessment of combined exposure to multiple chemicals (EFSA 

2015).  This default approach was considered conservative and health-protective during “lower tier” 

assessments, and that the default approach could be modified to include more-than- or less-than-additive 

predictions if adequate data were available in “higher tier” analyses.  However, the colloquium concluded 

that further development of available tools (e.g., PBPK models, quantitative structure-activity relationship 

models, adverse outcome pathways, etc.) are needed prior to routine integration of these models in human 

and ecological risk assessment.   
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C.16. EUROPEAN COMMISSION NON-FOOD SCIENTIFIC COMMITTEES 
 

The European Commission non-food scientific committees (Scientific Committee on Consumer Safety, 

Scientific Committee on Health and Environmental Risks, Scientific Committee on Emerging and Newly 

Identified Health Risks) reviewed available scientific literature on the toxicity of chemical mixtures, drew 

conclusions from the review, and proposed a decision tree flow chart for evaluating the risk of chemical 

mixtures (EC 2012).  Conclusions reached included the following: 

1. “Chemicals with common modes of action will act jointly to produce combination effects 
that are larger than the effects of each mixture component applied singly.  These effects 
can be described by dose/concentration addition. 
 

2. For chemicals with different modes of action (independently acting), no robust evidence 
is available that exposure to a mixture of such substances is of health or environmental 
concern if the individual chemicals are present at or below their zero-effect levels. 
 

3. Interactions (including antagonism, potentiation, and synergies) usually occur at medium 
or high dose levels (relative to the lowest effect levels).  At low exposure levels, they are 
either unlikely to occur or are toxicologically insignificant. 
 

4. In view of the almost infinite number of possible combinations of chemicals to which 
humans and environmental species are exposed, some form of initial filter to allow a 
focus on mixtures of potential concern is necessary.  Several criteria for such screening 
are offered. 
 

5. With regard to the assessment of chemical mixtures, a major knowledge gap at the 
present time is the lack of exposure information and the rather limited number of 
chemicals for which there is sufficient information on their mode of action.  Currently, 
there is neither an agreed inventory of mode of actions, nor a defined set of criteria [on] 
how to characterize or predict mode of action for data-poor chemicals. 
 

6. If no mode of action information is available, the dose/concentration addition method 
should be preferred over the independent action approach.  Prediction of possible 
interaction requires expert judgement and hence needs to be considered on a case-by-case 
basis.” 

 
The decision tree flow chart for evaluating chemical mixtures, illustrated in Figure C-5, calls for: 

 
1. An initial assessment that significant human exposure is likely or plausible.  Significance of 

exposure was to be determined by the frequency, duration, and magnitude of exposure. 
 

2. Utilization of toxicity data on the mixture as a whole if available. 
 

3. Use of dose-addition approaches if the mixture components produce common effects via a 
common MOA, and response addition approaches if mixture components are known to act 
independently. 
 

4. Use of dose-addition approaches as a default approach if MOA information is not available.   
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Figure C-5.  European Commission Non-food Scientific Committees’ 
Recommended Decision Tree for Assessing Risks from Chemical Mixtures 

 

 
 
*“Significant” exposure is determined by the frequency, duration, and magnitude of exposure. 
**For the environment, an exposure-driven assessment without at least a preliminary risk characterization, as well as 
the TTC model, is hardly acceptable.  Therefore, it must be considered as significant any exposure produced by 
emissions capable to modify the natural background conditions. 
***Evidence for interaction can be found at various steps of the decision tree (e.g., comparing product information 
with compound-based assessment). 
 
MOA = mode of action; RA = risk assessment; TTC = threshold of toxicological concern 
 
Source:  EC 2012 (© European Union, 1995–2015)  
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