ATSDR CV Supplemental Guidance

Health Guidelines and Cancer Risk

When media-specific screening levels are met or exceeded during the initial screening phase of the Agency for Toxic Substances and Disease Registry’s (ATSDR) public health assessment process, health assessors typically conduct further evaluation. This involves calculating site-specific exposure estimates (oral exposure doses, adjusted air concentrations, and cancer risks), and incorporating noncancer health guidelines and cancer risk estimates into their site-specific assessments to evaluate the potential for health effects. For noncancer, oral health guidelines include ATSDR minimal risk levels (MRLs) and EPA reference doses (RfDs). Inhalation health guidelines include ATSDR MRLs and Environmental Protection Agency (EPA) reference concentrations (RfCs). For cancer, health assessors use EPA’s oral cancer slope factors (CSFs) and inhalation unit risks (IURs). The Health Guidelines and Cancer Risk tables in the Public Health Assessment Site Tool (PHAST) present ATSDR’s oral and inhalation MRLs and EPA’s RfDs, RfCs, CSFs, and IURs. PHAST also presents cancer classifications for EPA, the National Toxicological Program (NTP), the International Agency for Research on Cancer (IARC), and the National Institute for Occupational Safety and Health (NIOSH). Provided below are the conversion formulas for inhalation MRLs, definitions, and cancer classifications for the table.

Conversion Formulas for Inhalation MRLs:
Concentration in \(\mu g/m^3 \) = Concentration in parts per billion (ppb) x contaminant molecular weight (grams/mole) / 24.45

Concentration in ppb = Concentration in micrograms per cubic meter (\(\mu g/m^3 \)) x 24.45 / contaminant molecular weight (grams/mole)

Abbreviation, Acronym, and Unit Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Acronym</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASRN</td>
<td>Chemical Abstracts Services Registry Number</td>
<td>(\mu g/m^3)</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>CSF</td>
<td>oral cancer slope factor (EPA)</td>
<td>mg/kg/day</td>
<td>milligrams per kilogram per day</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
<td>MRL</td>
<td>minimal risk level (ATSDR)</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
<td>Mut</td>
<td>mutagen</td>
</tr>
<tr>
<td>IUR</td>
<td>inhalation unit risk (EPA)</td>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
</tbody>
</table>
Health Guidelines and Cancer Risk (continued)

Cancer Classifications (Note: Per ATSDR guidance, contaminants that are considered probable, likely, or reasonably anticipated to cause cancer in humans should be evaluated as if they are known human carcinogens.)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Human carcinogen</td>
</tr>
<tr>
<td>B1</td>
<td>Probable human carcinogen (limited human, sufficient animal studies)</td>
</tr>
<tr>
<td>B2</td>
<td>Probable human carcinogen (inadequate human, sufficient animal studies)</td>
</tr>
<tr>
<td>C</td>
<td>Possible human carcinogen (no human, limited animal studies)</td>
</tr>
<tr>
<td>D</td>
<td>Not classified as to human carcinogenicity</td>
</tr>
<tr>
<td>E</td>
<td>Evidence of non-carcinogenicity for humans</td>
</tr>
</tbody>
</table>

EPA (Based on 1996 cancer assessment guidelines; EPA/600/P-92/003C)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL</td>
<td>Known/Likely human carcinogen</td>
</tr>
<tr>
<td>CN</td>
<td>Carcinogenic potential cannot be determined</td>
</tr>
<tr>
<td>NO</td>
<td>Not likely to be carcinogenic to humans</td>
</tr>
</tbody>
</table>

EPA (Based on 1999 cancer assessment guidelines; Review Draft NCEA-F-0644)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Carcinogenic to humans</td>
</tr>
<tr>
<td>LI</td>
<td>Likely to be carcinogenic to humans</td>
</tr>
<tr>
<td>NS</td>
<td>Suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic potential</td>
</tr>
<tr>
<td>DI</td>
<td>Data are inadequate for assessment of human carcinogenic potential</td>
</tr>
<tr>
<td>NL</td>
<td>Not likely to be carcinogenic to humans</td>
</tr>
</tbody>
</table>

EPA (Based on 2005 cancer assessment guidelines; EPA/630/P-03/001F; EPA/630/R-03/003F)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>Carcinogenic to humans</td>
</tr>
<tr>
<td>LC</td>
<td>Likely to be carcinogenic to humans</td>
</tr>
<tr>
<td>SU</td>
<td>Suggestive evidence of carcinogenic potential</td>
</tr>
<tr>
<td>IN</td>
<td>Inadequate information to assess carcinogenic potential</td>
</tr>
<tr>
<td>NC</td>
<td>Not likely to be carcinogenic to humans</td>
</tr>
</tbody>
</table>

NTP

1. Known human carcinogen
2. Reasonably anticipated to be a carcinogen

IARC

1. Carcinogenic to humans (sufficient human evidence)
2A. Probably carcinogenic to humans (limited human evidence; sufficient evidence in animals)
2B. Possibly carcinogenic to humans (limited human evidence; less than sufficient evidence in animals)
3. Not classifiable
4. Probably not carcinogenic to humans

NIOSH

OC. Occupational carcinogen
Soil CVs (ppm)

Comparison values (CVs) are ATSDR-derived contaminant- and media-specific concentrations used by health assessors during the initial screening phase of ATSDR’s public health assessment process to identify environmental contaminants that require further evaluation. When several CVs are available for a contaminant, the lowest of the available CVs (the most health-protective) is ATSDR’s recommended CV, which should be used for screening to identify contaminants of potential concern (with the exception of arsenic in soil\(^1\)). ATSDR derives CVs using epidemiological and toxicological data and applying uncertainty or safety factors to ensure they adequately protect public health. Therefore, contaminants detected in concentrations less than CVs are unlikely to pose a health threat. Media-specific CVs incorporate standard default exposure assumptions and are not site-specific. ATSDR has developed CVs based on cancer health effects, called cancer risk evaluation guides (CREGs), and on noncancer health effects, which are environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs). The Soil CVs (ppm) table in PHAST presents ATSDR’s CREGs, EMEGs, and RMEGs. Provided below are the definitions and ATSDR CV exposure assumptions for the table.

NOTE: Contaminant concentrations that meet or exceed their respective CVs do not necessarily pose a health threat. Contaminants detected at or above CVs require additional evaluation as part of ATSDR’s public health assessment process to determine their potential health impact.

Acronym and Unit Definitions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASRN</td>
<td>Chemical Abstracts Services Registry Number</td>
</tr>
<tr>
<td>CREG</td>
<td>cancer risk evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>EMEG</td>
<td>environmental media evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RMEG</td>
<td>reference dose media evaluation guide (ATSDR)</td>
</tr>
</tbody>
</table>

EMEG/RMEG Formula Exposure Assumptions

Adult
- Body weight = 80 kg
- Water intake rate = 100 mg/day

Child
- Body weight = 7.8 kg (birth to < 1 year)
- Soil intake rate = 150 mg/day
- Pica soil intake rate = 5,000 mg; 3 days/week

CREG Age-Group Specific Formula Exposure Assumptions

- **Birth to 1 year**: Body weight = 7.8 kg, soil intake rate = 150 milligrams/day
- **1 to < 2 years**: Body weight = 11.4 kg, soil intake rate: 200 milligrams/day
- **2 to < 6 years**: Body weight = 17.4 kg, soil intake rate: 200 milligrams/day
- **6 to < 11 years**: Body weight = 31.8 kg, soil intake rate: 200 milligrams/day
- **11 to < 16 years**: Body weight = 56.8 kg, soil intake rate: 100 milligrams/day
- **16 to < 21 years**: Body weight = 71.6 kg, soil intake rate: 100 milligrams/day
- **Adult**: Body weight = 80 kg, soil intake rate: 100 milligrams/day

\(^1\) Note: In the case of arsenic, the cancer risk evaluation guide (the lowest CV) is below background levels, so it is not the recommended ATSDR CV. In this case, ATSDR chooses the next lowest value to screen arsenic.
ATSDR has derived noncancer comparison values (CVs) in soil, called environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs), and cancer CVs referred to as cancer risk evaluation guides (CREGs). As detailed below, for CREGs, ATSDR uses formulas that sum information for each age group for non-mutagenic contaminants and mutagenic contaminants. The CREG equations for mutagens incorporate age-dependent adjustment factors (ADAFs) for each age group: 10 for exposures occurring from birth to < 2 years, and 3 for exposures occurring from 2 to < 16 years (1 is applied in the formula for older age groups). For trichloroethylene (TCE), refer to the “TCE cancer risk equations” file on the PHAST Resources page. See the “Soil CVs” tab in this file for the exposure assumptions ATSDR uses in these formulas.

Soil EMEG in ppm (mg/kg) = \[
\frac{\text{MRL} \times \text{BW}}{\text{IR} \times \text{CF}}
\]

Where,
- MRL = ATSDR minimal risk level (mg/kg/day)
- BW = body weight (kg)
- IR = soil intake rate (mg/day)
- CF = conversion factor of 10^-6 (kg/mg)

Pica Soil EMEG in ppm (mg/kg) = \[
\frac{\text{MRL} \times \text{BW}}{\text{IR} \times \text{EF} \times \text{CF}}
\]

Where,
- MRL = ATSDR minimal risk level (mg/kg/day)
- BW = body weight (kg)
- IR = pica soil intake rate (mg/day)
- EF = pica default exposure frequency (3 days/7 days)
- CF = conversion factor of 10^-6 (kg/mg)

Soil RMEG in ppm (mg/kg) = \[
\frac{\text{RfD} \times \text{BW}}{\text{IR} \times \text{CF}}
\]

Where,
- RfD = EPA reference dose (mg/kg/day)
- BW = body weight (kg)
- IR = soil intake rate (mg/day)
- CF = conversion factor of 10^-6 (kg/mg)

Soil CREG Formulas (shown below)

Where,
- Target risk = 0.0000001 (or 1 x 10^-6)
- Oral CSF = contaminant-specific oral cancer slope factor (mg/kg/day)^-1
- ED = age-specific exposure duration (yrs)
- ADAF = age-dependent adjustment factor (mutagens only)
- BW = age-specific body weight (kg)
- IR = soil intake rate (mg/day)

Soil CREG Formula for Non-Mutagens

\[
\text{Soil CREG (non-ADAF) in ppm (mg/kg) = } \left(\frac{0.0000001 \times 78}{\text{oral CSF}} \right) \times \left[\sum \frac{\text{IR} \times \text{Conversion factor} \times \text{ED}}{\text{BW}} \right]_1
\]

Soil CREG (non-ADAF) in ppm (mg/kg) = (0.000001 * 78) / oral CSF) * ((birth to 1 year RME intake rate * 0.000001 * 1 / birth to < 1 year body weight) + (1 to < 2 years RME intake rate * 0.000001 * 1 / 1 to < 2 years body weight) + (2 to < 6 years RME intake rate * 0.000001 * 4 / 2 to < 6 years body weight) + (6 to < 11 years RME intake rate * 0.000001 * 5 / 6 to < 11 years body weight) + (11 to < 16 years RME intake rate * 0.000001 * 5 / 11 to < 16 years body weight) + (16 to < 21 years RME intake rate * 0.000001 * 5 / 16 to < 21 years body weight) + (adult RME intake rate * 0.000001 * 57 / adult body weight)) \]

Soil CREG Formula for Mutagens

\[
\text{Soil CREG (ADAF) in ppm (mg/kg) = } \left(\frac{0.0000001 \times 78}{\text{oral CSF}} \right) \times \left[\sum \frac{\text{IR} \times \text{Conversion factor} \times \text{ED} \times \text{ADAF}}{\text{BW}} \right]_1
\]

Soil CREG (ADAF) in ppm (mg/kg) = (0.000001 * 78) / oral CSF) * ((birth to 1 year RME intake rate * 0.000001 * 1 / birth to < 1 year body weight) + (1 to < 2 years RME intake rate * 0.000001 * 1 / 1 to < 2 years body weight) + (2 to < 6 years RME intake rate * 0.000001 * 4 / 2 to < 6 years body weight) + (6 to < 11 years RME intake rate * 0.000001 * 5 / 6 to < 11 years body weight) + (11 to < 16 years RME intake rate * 0.000001 * 5 / 11 to < 16 years body weight) + (16 to < 21 years RME intake rate * 0.000001 * 5 / 16 to < 21 years body weight) + (adult RME intake rate * 0.000001 * 57 / adult body weight)) \]
Comparison values (CVs) are ATSDR-derived contaminant- and media-specific concentrations used by health assessors during the initial screening phase of ATSDR’s public health assessment process to identify environmental contaminants that require further evaluation. When several CVs are available for a contaminant, the lowest of the available CVs (the most health-protective) is ATSDR’s recommended CV, which should be used for screening to identify contaminants of potential concern. ATSDR derives CVs using epidemiological and toxicological data and applying uncertainty or safety factors to ensure they adequately protect public health. Therefore, contaminants detected in concentrations less than CVs are unlikely to pose a health threat. Media-specific CVs incorporate standard default exposure assumptions and are not site-specific. ATSDR has developed CVs based on cancer health effects, called cancer risk evaluation guides (CREGs), and on noncancer health effects, which are environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs). Health assessors might also compare contaminant concentrations to additional screening levels for water, including EPA’s maximum contaminant levels (MCLs), maximum contaminant level goals (MCLGs), and lifetime health advisories (LTHAs). The Drinking Water CVs (ppb) table in PHAST presents ATSDR’s CREGs, EMEGs, and RMEGs, as well as EPA’s MCLs, MCLGs, and LTHAs. Provided below are the definitions and ATSDR CV exposure assumptions for the table.

NOTE: Contaminant concentrations that meet or exceed their respective CVs do not necessarily pose a health threat. Contaminants detected at or above CVs require additional evaluation as part of ATSDR’s public health assessment process to determine their potential health impact.

Acronym and Unit Definitions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASRN</td>
<td>Chemical Abstracts Services Registry Number</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level (EPA)</td>
</tr>
<tr>
<td>CREG</td>
<td>cancer risk evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>EMEG</td>
<td>environmental media evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>LTHA</td>
<td>lifetime health advisory (EPA)</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>MCLG</td>
<td>maximum contaminant level goal (EPA)</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>RMEG</td>
<td>reference dose media evaluation guide (ATSDR)</td>
</tr>
</tbody>
</table>

EMEG/RMEG Formula Exposure Assumptions

<table>
<thead>
<tr>
<th>Adult</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight = 80 kg</td>
<td>Body weight = 7.8 kg (birth to 1 year)</td>
</tr>
<tr>
<td>Water intake rate = 3.092 L/day</td>
<td>Water intake rate = 1.113 L/day</td>
</tr>
</tbody>
</table>

CREG Age-Group Specific Formula Exposure Assumptions

| Birth to 1 year: Body weight = 7.8 kg, water intake rate = 1.113 L/day |
| 1 to < 2 years: Body weight = 11.4 kg, water intake rate: 0.893 L/day |
| 2 to < 6 years: Body weight = 17.4 kg, water intake rate: 0.977 L/day |
| 6 to < 11 years: Body weight = 31.8 kg, water intake rate: 1.404 L/day |
| 11 to < 16 years: Body weight = 56.8 kg, water intake rate: 1.976 L/day |
| 16 to < 21 years: Body weight = 71.6 kg, water intake rate: 2.444 L/day |
| Adult: Body weight = 80 kg, water intake rate = 3.092 L/day |
Formulas for ATSDR’s Drinking Water CVs

ATSDR has derived noncancer comparison values (CVs) in water, called environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs), and cancer CVs referred to as cancer risk evaluation guides (CREGs). As detailed below, for CREGs, ATSDR uses formulas that sum information for each age group for non-mutagenic contaminants and mutagenic contaminants. The CREG equations for mutagens incorporate age-dependent adjustment factors (ADAFs) for each age group: 10 for exposures occurring from birth to < 2 years, and 3 for exposures occurring from 2 to < 16 years (1 is applied in the formula for older age groups). For trichloroethylene (TCE), refer to the “TCE cancer risk equations” file on the PHAST Resources page. See the “Drinking Water CVs” tab in this file for the exposure assumptions ATSDR uses in these formulas.

Drinking Water EMEG in ppb (µg/L) =

\[
\frac{[\text{MRL} \times \text{BW}]}{[\text{IR} \times \text{CF}]} \]

Where,

- MRL = ATSDR minimal risk level (mg/kg/day)
- BW = body weight (kg)
- IR = water intake rate (L/day)
- CF = conversion factor of 0.001 (mg/µg)

Drinking Water RMEG in ppb (µg/L) =

\[
\frac{[\text{RfD} \times \text{BW}]}{[\text{IR} \times \text{CF}]} \]

Where,

- RfD = EPA reference dose (mg/kg/day)
- BW = body weight (kg)
- IR = water intake rate (L/day)
- CF = conversion factor of 0.001 (unitless)

Drinking Water CREG Formulas (as shown at the end of the formulas, the sum is multiplied by 1,000 to go from ppm to ppb)

Where,

- Target risk = 0.000001 (or 1 x 10⁻⁶)
- Oral CSF = contaminant-specific oral cancer slope factor (mg/kg/day)
- IR = water intake rate (L/day)
- ED = age-specific exposure duration (yrs)
- BW = age-specific body weight (kg)
- ADAF = age-dependent adjustment factor (mutagens only)

Drinking Water CREG Formula for Non-Mutagens

\[
\frac{\text{Target Risk -78 years}}{\text{Oral CSF}} \times \left(\sum \frac{\text{IR} \times \text{ED} \times \text{ADAF}}{\text{BW}} \right)^{-1} \]

Drinking Water CREG (non-ADAF) in ppb (µg/L) = (0.000001 * 78 / oral CSF) * ((birth to < 1 year RME water intake rate * 1 / birth to < 1 year body weight) + (1 to < 2 years RME water intake rate * 1 / 1 to < 2 years body weight) + (2 to < 6 years RME water intake rate * 4 / 2 to < 6 years body weight) + (6 to < 11 years RME water intake rate * 5 / 6 to < 11 years body weight) + (11 to < 16 years RME water intake rate * 5 / 11 to < 16 years body weight) + (16 to < 21 years RME water intake rate * 5 / 16 to < 21 years body weight) + (adult RME water intake rate * 57 / adult body weight))⁻¹ * 1,000

Drinking Water CREG Formula for Mutagens

\[
\frac{\text{Target Risk -78 years}}{\text{Oral CSF}} \times \left(\sum \frac{\text{IR} \times \text{ED} \times \text{ADAF}}{\text{BW}} \right)^{-1} \]

Drinking Water CREG (ADAF) in ppb (µg/L) = (0.000001 * 78 / oral CSF) * ((birth to < 1 year RME water intake rate * 1 * birth to < 1 year ADAF / birth to < 1 year body weight) + (1 to < 2 years RME water intake rate * 1 * 1 to < 2 years ADAF / 1 to < 2 years body weight) + (2 to < 6 years RME water intake rate * 4 * 2 to < 6 years ADAF / 2 to < 6 years body weight) + (6 to < 11 years RME water intake rate * 5 * 6 to < 11 years ADAF / 6 to < 11 years body weight) + (11 to < 16 years RME water intake rate * 5 * 11 to < 16 years ADAF / 11 to < 16 years body weight) + (16 to < 21 years RME water intake rate * 5 * 16 to < 21 years ADAF / 16 to < 21 years body weight) + (adult RME water intake rate * 57 * adult ADAF / adult body weight))⁻¹ * 1,000
Air CVs (µg/m³) and Air CVs for VOCs (ppb)

Comparison values (CVs) are ATSDR-derived contaminant- and media-specific concentrations used by health assessors during the initial screening phase of ATSDR’s public health assessment process to identify environmental contaminants that require further evaluation. When several CVs are available for a contaminant, the lowest of the available CVs (the most health-protective) is ATSDR’s recommended CV, which should be used for screening to identify contaminants of potential concern. ATSDR derives CVs using epidemiological and toxicological data and applying uncertainty or safety factors to ensure they adequately protect public health. Therefore, contaminants detected in concentrations less than CVs are unlikely to pose a health threat. Media-specific CVs incorporate standard default exposure assumptions and are not site-specific. ATSDR has developed CVs based on cancer health effects, called cancer risk evaluation guides (CREGs), and noncancer health effects, which are environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs). The Air CVs (µg/m³) and Air CVs for VOCs [Volatile Organic Compounds] (ppb) tables in PHAST present ATSDR’s CREGs, EMEGs, and RMEGs. Provided below are the conversion formulas for air CVs and definitions for the tables.

NOTE: Contaminant concentrations that meet or exceed their respective CVs do not necessarily pose a health threat. Contaminants detected at or above CVs require additional evaluation as part of ATSDR’s public health assessment process to determine their potential health impact.

Conversion Formulas for Air CVs:
Concentration in µg/m³ = Concentration in parts per billion (ppb) x contaminant molecular weight (grams/mole) / 24.45
Concentration in ppb = Concentration in micrograms per cubic meter (µg/m³) x 24.45 / contaminant molecular weight (grams/mole)

Acronym and Unit Definitions
- CASRN: Chemical Abstracts Services Registry Number
- CREG: cancer risk evaluation guide (ATSDR)
- EMEG: environmental media evaluation guide (ATSDR)
- µg/m³: micrograms per cubic meter
- ppb: parts per billion
- RMEG: reference dose media evaluation guide (ATSDR)
- VOC: volatile organic compound
Formulas for ATSDR’s Air CVs

ATSDR has derived noncancer comparison values (CVs) in air, called environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs), and cancer CVs, referred to as cancer risk evaluation guides (CREGs). There is no formula to calculate inhalation EMEGs and RMEGs, as inhalation EMEG = ATSDR minimal risk level (MRL) and inhalation RMEG = Environmental Protection Agency (EPA) reference concentration (RfC) and are considered protective of all age groups. ATSDR’s formulas to calculate air CREGs are detailed below. The air CREG equation for mutagens sums information by age group and incorporate age-dependent adjustment factors (ADAFs) for each group: 10 for exposures occurring from birth to < 2 years, and 3 for exposures occurring from 2 to < 16 years (1 is applied in the formula for older age groups). For trichloroethylene (TCE), refer to the “TCE cancer risk equations” file on the PHAST Resources page.

Conversion Formulas for Air CVs:
Concentration in \(\mu g/m^3 \) = Concentration in parts per billion (ppb) x contaminant molecular weight (grams/mole) / 24.45
Concentration in ppb = Concentration in micrograms per cubic meter \((\mu g/m^3) \) x 24.45 / contaminant molecular weight (grams/mole)

Air CREG Formulas (shown below)
Where,
- TR = target risk (0.000001 or \(1 \times 10^{-6} \))
- IUR = contaminant-specific inhalation unit risk \((\mu g/m^3)^{-1} \)
- ED = age-specific exposure duration (mutagens only)
- ADAF = age-dependent adjustment factor (mutagens only)

Air CREG Formula for Non-Mutagens
\[
\text{Air CREG (non-ADAF) } (\mu g/m^3) = \frac{0.000001 \times 78}{\text{EPA IUR} \times (\mu g/m^3)^{-1}} \]

Air CREG Formula for Mutagens
\[
\text{Air CREG (ADAF) } (\mu g/m^3)^{-1} = \frac{0.000001 \times 78}{\text{EPA IUR} \times ((\mu g/m^3)^{-1})} * \left((1 \times \text{birth to } < 1 \text{ year ADAF}) + (1 \times 1 \text{ to } < 2 \text{ years ADAF}) + (4 \times 2 \text{ to } < 6 \text{ years ADAF}) + (5 \times 6 \text{ to } < 11 \text{ years ADAF}) + (5 \times 11 \text{ to } < 16 \text{ years ADAF}) + (5 \times 16 \text{ to } < 21 \text{ years ADAF}) + (57 \times \text{adult ADAF}) \right)
\]
Soil Vapor Intrusion-Soil Gas CVs ($\mu g/m^3$) and Soil Vapor Intrusion-Soil Gas CVs (ppb)

Comparison values (CVs) are ATSDR-derived contaminant- and media-specific concentrations used by health assessors during the initial screening phase of ATSDR’s public health assessment process to identify environmental contaminants that require further evaluation. When several CVs are available for a contaminant, the lowest of the available CVs (the most health-protective) is ATSDR’s recommended CV, which should be used for screening to identify contaminants of potential concern. ATSDR derives soil vapor intrusion-soil gas CVs for contaminants that have an air CV and a Henry’s Law constant. Contaminants detected in concentrations less than CVs are unlikely to pose a health threat. Soil vapor intrusion-soil gas CVs are based on air CVs, which incorporate standard default exposure assumptions and are not site-specific. ATSDR has developed CVs based on cancer health effects, called cancer risk evaluation guides (CREGs), and on noncancer health effects, which are environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs). The Soil Vapor Intrusion-Soil Gas CVs ($\mu g/m^3$) and the Soil Vapor Intrusion-Soil Gas CVs (ppb) tables in PHAST present ATSDR’s CREGs, EMEGs, and RMEGs. Provided below are the conversion formulas for the soil vapor intrusion-soil gas CVs and definitions for the tables.

NOTE: Contaminant concentrations that meet or exceed their respective CVs do not necessarily pose a health threat. Contaminants detected at or above CVs require additional evaluation as part of ATSDR’s public health assessment process to determine their potential health impact.

Conversion Formulas for SVI-Soil Gas CVs:

\[\text{Concentration in } \mu g/m^3 = \text{Concentration in parts per billion (ppb)} \times \text{contaminant molecular weight (grams/mole)} / 24.45 \]

\[\text{Concentration in ppb = Concentration in micrograms per cubic meter (} \mu g/m^3 \text{) } \times 24.45 / \text{contaminant molecular weight (grams/mole)} \]

Acronym and Unit Definitions

- CASRN Chemical Abstracts Services Registry Number
- CREG cancer risk evaluation guide (ATSDR)
- EMEG environmental media evaluation guide (ATSDR)
- $\mu g/m^3$ micrograms per cubic meter
- ppb parts per billion
- RMEG reference dose media evaluation guide (ATSDR)
Comparison values (CVs) are ATSDR-derived contaminant- and media-specific concentrations used by health assessors during the initial screening phase of ATSDR’s public health assessment process to identify environmental contaminants that require further evaluation. When several CVs are available for a contaminant, the lowest of the available CVs (the most health-protective) is ATSDR’s recommended CV, which should be used for screening to identify contaminants of potential concern. ATSDR derives soil vapor intrusion-groundwater CVs for contaminants that have an air CV and a Henry’s Law constant. Contaminants detected in concentrations less than CVs are unlikely to pose a health threat. Soil vapor intrusion-groundwater CVs are based on air CVs, which incorporate standard default exposure assumptions and are not site-specific. ATSDR has developed CVs based on cancer health effects, called cancer risk evaluation guides (CREGs), and noncancer health effects, which are environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs). The Soil Vapor Intrusion-Groundwater CVs (ppb) table in PHAST presents ATSDR’s CREGs, EMEGs, and RMEGs. Provided below are the definitions for the table.

NOTE: Contaminant concentrations that meet or exceed their respective CVs do not necessarily pose a health threat. Contaminants detected at or above CVs require additional evaluation as part of ATSDR’s public health assessment process to determine their potential health impact.

Acronym and Unit Definitions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASRN</td>
<td>Chemical Abstracts Services Registry Number</td>
</tr>
<tr>
<td>CREG</td>
<td>cancer risk evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>EMEG</td>
<td>environmental media evaluation guide (ATSDR)</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>RMEG</td>
<td>reference dose media evaluation guide (ATSDR)</td>
</tr>
</tbody>
</table>
Formulas for ATSDR’s Soil Vapor Intrusion CVs

ATSDR has derived noncancer comparison values (CVs) for soil vapor intrusion (SVI), called environmental media evaluation guides (EMEGs) and reference dose media evaluation guides (RMEGs), and cancer CVs, referred to as cancer risk evaluation guides (CREGs). The formulas for these CVs are presented below.

EMEG, RMEG, and CREG Soil Vapor Intrusion Formulas

\[
\text{SVI-Groundwater CV in ppb} = \frac{C_{Vair}}{H' \cdot \alpha_{gw} \cdot CF}
\]

Where,
- \(C_{Vair}\) = ATSDR’s air CV (EMEG, RMEG, or CREG) (μg/m³)
- \(H'\) = Henry’s Law constant (unitless)
- \(\alpha_{gw} = 0.001\) (generic value for groundwater) (unitless)
- \(CF = 1,000\) (conversion factor of 1,000 (L/m³) to convert µg/L (water) to µg/m³ (air))

\[
\text{SVI-Soil Gas CV in µg/m}^3 = \frac{C_{Vair}}{\alpha_{sg}}
\]

Where,
- \(C_{Vair}\) = ATSDR’s air CV (EMEG, RMEG, or CREG) (μg/m³)
- \(\alpha_{sg} = 0.03\) (generic value for subslab soil gas) (unitless)

\[
\text{SVI-Soil Gas CV in ppb} = \frac{[C_{Vair} \times (24.45 / \text{Molecular weight})]}{\alpha_{sg}}
\]

Where,
- \(C_{Vair}\) = ATSDR’s air CV (EMEG, RMEG, or CREG) (μg/m³)
- \(\alpha_{sg} = 0.03\) (generic value for subslab soil gas) (unitless)
Soil CREG Formula for Non-Mutagens
The non-ADAF soil CREG in ppm or mg per kg equals (0.000001×78) divided by oral CSF times $(\text{birth to 1 year RME intake rate times } 0.000001 \times 1 \text{ divided by birth to less than 1 year body weight})$ plus $(1\text{ to less than 2 years RME intake rate times } 0.000001 \times 1 \text{ divided by 1 to less than 2 years body weight})$ plus $(2\text{ to less than 6 years RME intake rate times } 0.000001 \times 4 \text{ divided by 2 to less than 6 years body weight})$ plus $(6\text{ to less than 11 years RME intake rate times } 0.000001 \times 5 \text{ divided by 6 to less than 11 years body weight})$ plus $(11\text{ to less than 16 years RME intake rate times } 0.000001 \times 5 \text{ divided by 11 to less than 16 years body weight})$ plus $(16\text{ to less than 21 years RME intake rate times } 0.000001 \times 5 \text{ divided by 16 to less than 21 years body weight})$ plus $(21\text{ to less than 26 years RME intake rate times } 0.000001 \times 5 \text{ divided by 21 to less than 26 years body weight})$ plus $(26\text{ to less than 31 years RME intake rate times } 0.000001 \times 5 \text{ divided by 26 to less than 31 years body weight})$ plus $(31\text{ years and older RME intake rate times } 0.000001 \times 5 \text{ divided by 31 years and older body weight})$ minus 1.

Soil CREG Formula for Mutagens
The ADAF soil CREG in ppm or mg per kg equals (0.000001×78) divided by oral CSF times $(\text{birth to 1 year RME intake rate times } 0.000001 \times 1 \text{ divided by birth to less than 1 year body weight})$ plus $(1\text{ to less than 2 years RME intake rate times } 0.000001 \times 1 \text{ divided by 1 to less than 2 years body weight})$ plus $(2\text{ to less than 6 years RME intake rate times } 0.000001 \times 4 \text{ divided by 2 to less than 6 years body weight})$ plus $(6\text{ to less than 11 years RME intake rate times } 0.000001 \times 5 \text{ divided by 6 to less than 11 years body weight})$ plus $(11\text{ to less than 16 years RME intake rate times } 0.000001 \times 5 \text{ divided by 11 to less than 16 years body weight})$ plus $(16\text{ to less than 21 years RME intake rate times } 0.000001 \times 5 \text{ divided by 16 to less than 21 years body weight})$ plus $(21\text{ to less than 26 years RME intake rate times } 0.000001 \times 5 \text{ divided by 21 to less than 26 years body weight})$ plus $(26\text{ to less than 31 years RME intake rate times } 0.000001 \times 5 \text{ divided by 26 to less than 31 years body weight})$ plus $(31\text{ years and older RME intake rate times } 0.000001 \times 5 \text{ divided by 31 years and older body weight})$ minus 1.

Drinking Water CREG Formula for Non-Mutagens
The non-ADAF drinking water CREG in ppb or micrograms per liter equals (0.000001×78) divided by oral CSF times $(\text{birth to less than 1 year RME water intake rate times } 1 \text{ divided by birth to less than 1 year body weight})$ plus $(1\text{ to less than 2 years RME water intake rate times } 1 \text{ divided by 1 to less than 2 years body weight})$ plus $(2\text{ to less than 6 years RME water intake rate times } 4 \text{ divided by 2 to less than 6 years body weight})$ plus $(6\text{ to less than 11 years RME water intake rate times } 5 \text{ divided by 6 to less than 11 years body weight})$ plus $(11\text{ to less than 16 years RME water intake rate times } 5 \text{ divided by 11 to less than 16 years body weight})$ plus $(16\text{ to less than 21 years RME water intake rate times } 5 \text{ divided by 16 to less than 21 years body weight})$ plus $(21\text{ to less than 26 years RME water intake rate times } 5 \text{ divided by 21 to less than 26 years body weight})$ plus $(26\text{ to less than 31 years RME water intake rate times } 5 \text{ divided by 26 to less than 31 years body weight})$ plus $(31\text{ years and older RME water intake rate times } 5 \text{ divided by 31 years and older body weight})$ times 1,000.

Drinking Water CREG Formula for Mutagens
The ADAF drinking water CREG in ppb or micrograms per liter equals (0.000001×78) divided by oral CSF times $(\text{birth to less than 1 year RME water intake rate times } 1 \text{ divided by birth to less than 1 year body weight})$ plus $(1\text{ to less than 2 years RME water intake rate times } 1 \text{ divided by 1 to less than 2 years body weight})$ plus $(2\text{ to less than 6 years RME water intake rate times } 4 \text{ divided by 2 to less than 6 years body weight})$ plus $(6\text{ to less than 11 years RME water intake rate times } 5 \text{ divided by 6 to less than 11 years body weight})$ plus $(11\text{ to less than 16 years RME water intake rate times } 5 \text{ divided by 11 to less than 16 years body weight})$ plus $(16\text{ to less than 21 years RME water intake rate times } 5 \text{ divided by 16 to less than 21 years body weight})$ plus $(21\text{ to less than 26 years RME water intake rate times } 5 \text{ divided by 21 to less than 26 years body weight})$ plus $(26\text{ to less than 31 years RME water intake rate times } 5 \text{ divided by 26 to less than 31 years body weight})$ plus $(31\text{ years and older RME water intake rate times } 5 \text{ divided by 31 years and older body weight})$ times 1,000.
The ADAF air CREG is \((0.000001 \times 78 \div \text{EPA IUR (micrograms per cubic meter) to negative 1)}) \times [(1 \times \text{birth to less than 1 year ADAF}) + (1 \times \text{1 to less than 2 years ADAF}) + (4 \times \text{2 to less than 6 years ADAF}) + (5 \times \text{6 to less than 11 years ADAF}) + (5 \times \text{11 to less than 16 years ADAF}) + (5 \times \text{16 to less than 21 years ADAF}) + (57 \times \text{adult ADAF})] \)