Exposure to Volatile Organic Compounds in Drinking Water and Specific Birth Defects and Childhood Cancers at U.S. Marine Corps Base Camp Lejeune, North Carolina

Frank J. Bove, Sc. D
Perri Ruckart, MPH
Agency for Toxic Substances and Disease Registry (ATSDR)
Division of Health Studies
ATSDR DHS Project Team

• Frank Bove
 – Co-Principal Investigator
• Perri Ruckart
 – Co-Principal Investigator
• Carolyn Harris
 – Public Health Analyst
1998 ATSDR Study on Adverse Pregnancy Outcomes

• Evaluated potential maternal exposure to drinking water contaminants on base and
 – Preterm birth
 – Small for gestational age (SGA)
 – Mean birth weight deficit

• Only used available databases
 – Electronic birth certificates beginning in 1968
 – 12,493 singleton live births on base during 1968-1985
 – Base family housing records linked to mother’s address at delivery and father’s name in most cases
 – Could not evaluate birth defects and childhood cancers
1998 ATSDR Study on Adverse Pregnancy Outcomes: Results

• Exposure to TT water (PCE)
 – Elevated risk for SGA among infants born to
 – Mothers aged >35 years
 – Mothers with ≥2 prior fetal losses

• Exposure to HP water (TCE)
 – Elevated risk for SGA only among male infants

• Recently discovered exposure misclassification requires reanalysis of study data
Current ATSDR Case-Control Study

• Exposure to VOCs in Drinking Water and Specific Birth Defects and Childhood Cancers

• Multi-step process
 – Review scientific literature to identify specific birth defects and childhood cancers associated with drinking water contaminated with chlorinated solvents
 – Conduct telephone survey to ascertain potential cases
 – Obtain medical records to verify diagnoses of reported cases
 – Conduct a case-control study
Current ATSDR Case-Control Study

• The following outcomes were selected for further study based on the scientific literature

 – Neural tube defects (NTD)
 – Oral cleft defects (cleft lip and cleft palate)
 – Conotruncal heart defects
 – tetralogy of Fallot
 – D-transposition of the great arteries
 – truncus arteriosus
 – pulmonary valve atresia with ventricular septal defect
 – double outlet right ventricle
 – Choanal atresia (a nasal defect)
 – Childhood leukemia
 – Childhood non-Hodgkin’s lymphoma
Current ATSDR Case-Control Study

• Telephone survey conducted to identify potential cases of the selected adverse childhood outcomes among births occurring during 1968-1985 to mothers residing on base any time during their pregnancy
 – 16,000-17,000 estimated births

• Parents of 12,598 eligible children were surveyed
 – Overall participation rate of 74%-80%
Current ATSDR Case-Control Study

- Sufficient numbers of NTDs, oral clefts, and childhood cancers reported
 - 106 reported cases
 - 35 NTDs
 - 42 oral cleft defects
 - 29 childhood hematopoietic cancers

- Verification of diagnoses of cases ascertained by survey has been completed
Current ATSDR Case-Control Study

• 52 confirmed cases (51 parents interviewed)
 – 15 NTDs
 – 24 clefts
 – 13 hematopoietic cancers
• 32 confirmed not to have the reported diseases
• 8 refused to participate
• 7 could not be verified (no medical records)
• 7 were ineligible
Current ATSDR Case-Control Study

- Parents of 548 controls were interviewed

- Parental interviews conducted in 2005 to obtain information on
 - Maternal water consumption habits
 - Maternal residential history
 - Maternal exposures during pregnancy
 - Parental risk factors

- Review of base family housing records to verify dates and location of mother’s reported residence on base
Data Analysis

• Separate analyses will be conducted
 – NTDs
 – Oral clefts
 – cleft lip (with or without cleft palate
 – cleft palate
 – Childhood leukemia/NHL
Data Analysis

- Analyses will evaluate both continuous and categorical drinking water contaminant variables
 - Smoothing methods will be used to suggest categorical variable cutpoints
 - Each contaminant will be analyzed separately
 - Joint effects of contaminants will also be evaluated
Confirmed cases of NTDs

- Average and maximum contaminant level over the first trimester
- Average and maximum contaminant level during the period 3 months prior to date of conception (DOC)
- Average level in the first month of pregnancy
Data Analysis

Confirmed cases of oral cleft/oral palate defects

• Average and maximum contaminant level over the first trimester
• Average and maximum contaminant level during the period 3 months prior to DOC
• Average level in the second month of pregnancy
Data Analysis

Confirmed cases of childhood cancers (leukemia and non-Hodgkin’s lymphoma)

- Average and maximum contaminant level over each trimester
- Average and maximum contaminant level over the first year of child’s life
- Average and maximum contaminant level during the period 3 months prior to DOC
- Cumulative exposure over the pregnancy and first year of child’s life
PCE Contamination Levels (ppb) from Tarawa Terrace by Gestational Month: Example

<table>
<thead>
<tr>
<th></th>
<th>Child #1</th>
<th>Child #2</th>
<th>Child #3</th>
<th>Child #4</th>
<th>Child #5</th>
<th>Child #6</th>
<th>Child #7</th>
<th>Child #8</th>
<th>Child #9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3DOC</td>
<td>118</td>
<td>174</td>
<td>108</td>
<td>0</td>
<td>121</td>
<td>0</td>
<td>55</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2DOC</td>
<td>120</td>
<td>173</td>
<td>109</td>
<td>0</td>
<td>121</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>-1DOC</td>
<td>132</td>
<td>176</td>
<td>110</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>month1</td>
<td>180</td>
<td>4</td>
<td>111</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>Month2</td>
<td>183</td>
<td>9</td>
<td>111</td>
<td>105</td>
<td>0</td>
<td>182</td>
<td>0</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>month3</td>
<td>151</td>
<td>8</td>
<td>0</td>
<td>107</td>
<td>0</td>
<td>156</td>
<td>0</td>
<td>82</td>
<td>97</td>
</tr>
</tbody>
</table>
Data Analysis

• Compute unadjusted and adjusted results using logistic regression and calculate 90% confidence intervals
 – If data too sparse, conditional or exact logistical regression may be used

• Include in final model potential confounders that contribute to a ≥10% change in the parameter estimate for the exposure variable

• Evaluate categorical variables for water usage obtained from interviews, alone and in combination with the contaminant levels
Data Analysis

• Sensitivity analysis to assess the impact of exposure misclassification

• Consider secondary analyses including cases and controls with incomplete residential history or cases that could not be confirmed by medical records

• Interpretation of results based on
 – Magnitude of association
 – Exposure-response relationship
 – Biological plausibility
 – Consistency with other studies