Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

# Chapter A–Supplement 4 Simulation of Three-Dimensional Groundwater Flow



*Front cover:* Historical reconstruction process using data, information sources, and water-modeling techniques to estimate historical contaminant concentrations.

*Maps:* U.S. Marine Corps Base Camp Lejeune, North Carolina; Holcomb Boulevard and Hadnot Point areas showing extent of sampling at Installation Restoration Program sites (white numbered areas), above-ground and underground storage tank sites (orange squares), and water-supply wells (blue circles).

Photograph (upper): Hadnot Point water treatment plant (Building 20).

Photograph (lower): Well house building for water-supply well HP-652.

*Graph:* Measured fluoride data and simulation results for Paradise Point elevated storage tank (S-2323) for tracer test of the Holcomb Boulevard water-distribution system, September 22–October 12, 2004; simulation results obtained using EPANET 2 water-distribution system model assuming last-in first-out plug flow (LIFO) storage tank mixing model. [WTP lab, water treatment plant water-quality laboratory; FOH lab, Federal Occupational Health Laboratory]

Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

# Chapter A–Supplement 4 Simulation of Three-Dimensional Groundwater Flow

By René J. Suárez-Soto, L. Elliott Jones, and Morris L. Maslia

Agency for Toxic Substances and Disease Registry U.S. Department of Health and Human Services Atlanta, Georgia

March 2013



## **Authors**

#### René J. Suárez-Soto, MSEnvE, EIT

*Environmental Health Scientist* Agency for Toxic Substances and Disease Registry Division of Community Health Investigations Atlanta, Georgia

#### L. Elliott Jones, MS, PE

*Hydrologist* U.S. Geological Survey Georgia Water Science Center Atlanta, Georgia

#### Morris L. Maslia, MSCE, PE, D.WRE, DEE

Research Environmental Engineer and Project Officer Agency for Toxic Substances and Disease Registry Division of Community Health Investigations Exposure-Dose Reconstruction Project Atlanta, Georgia

For additional information write to:

Project Officer Exposure-Dose Reconstruction Project Division of Community Health Investigations Agency for Toxic Substances and Disease Registry 4770 Buford Highway, Mail Stop F-59 Atlanta, Georgia 30341-3717

#### **Suggested citation**

Suárez-Soto RJ, Jones LE, and Maslia, ML. Simulation of Three-Dimensional Groundwater Flow—Supplement 4. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.

# **Contents**

| Authors                                           | ii    |
|---------------------------------------------------|-------|
| Introduction                                      | S4.1  |
| Background                                        | S4.1  |
| Hydrogeologic Framework                           | S4.3  |
| Horizontal Hydraulic Conductivity                 | S4.5  |
| Potentiometric Surface                            | S4.9  |
| Conceptual Model of Groundwater Flow              | S4.9  |
| Mathematics of Three-Dimensional Groundwater Flow |       |
| Three-Dimensional Groundwater-Flow Model          |       |
| Domain and Discretization                         |       |
| Boundary and Initial Conditions                   |       |
| Specified Head                                    |       |
| No-Flow                                           | S4.14 |
| Drains                                            | S4.14 |
| Recharge                                          |       |
| Wells                                             | S4.18 |
| Hydraulic Properties                              | S4.19 |
| Model Results                                     | S4.21 |
| Approach to Model Calibration                     | S4.21 |
| Steady-State (Predevelopment) Conditions          | S4.21 |
| Transient-State (Pumping) Conditions              |       |
| Sensitivity Analysis                              | S4.29 |
| Input Parameter Sensitivity Analysis              | S4.29 |
| Variably Spaced Grid Sensitivity Analysis         | S4.30 |
| Cell-Size Sensitivity Analysis                    |       |
| Discussion                                        | S4.34 |
| Measured Water-Level Data                         | S4.34 |
| Model Limitations                                 | S4.34 |
| Acknowledgment                                    | S4.35 |
| References                                        | S4.35 |

# Figures

| S4.1–S4.8.                                                                                                                                                                                                                         | Maps                                                                                                                                                                                                                                                                                                                                         | showing—                                                                                                                                                                                                                                                                                                     |         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
|                                                                                                                                                                                                                                    | S4.1.                                                                                                                                                                                                                                                                                                                                        | Hadnot Point–Holcomb Boulevard study area showing active<br>groundwater-flow model boundary, contaminant fate and transport<br>model subdomain boundaries, and selected monitor and water-supply<br>wells, Hadnot Point–Holcomb Boulevard study area, U.S. Marine<br>Corps Base Camp Lejeune, North Carolina | S4.2    |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.2.                                                                                                                                                                                                                                                                                                                                        | Horizontal hydraulic conductivity of the Brewster Boulevard aquifer<br>system—model layer 1, Hadnot Point–Holcomb Boulevard study area,<br>U.S. Marine Corps Base Camp Lejeune, North Carolina                                                                                                               | S4.7    |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.3.                                                                                                                                                                                                                                                                                                                                        | Horizontal hydraulic conductivity of the Upper Castle Hayne aquifer—<br>model layer 5, Hadnot Point–Holcomb Boulevard study area, U.S.<br>Marine Corps Base Camp Lejeune, North Carolina                                                                                                                     | S4.8    |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.4.                                                                                                                                                                                                                                                                                                                                        | Estimated predevelopment (steady-state) potentiometric surface and<br>generalized directions of groundwater flow, Brewster Boulevard<br>aquifer system, Hadnot Point–Holcomb Boulevard study area,<br>U.S. Marine Corps Base Camp Leieune, North Carolina                                                    | . S4.10 |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.5.                                                                                                                                                                                                                                                                                                                                        | Model layer altitude and thickness of groundwater-flow model,<br>Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps<br>Base Camp Lejeune, North Carolina                                                                                                                                           | . S4.13 |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.6.                                                                                                                                                                                                                                                                                                                                        | Groundwater-flow model grid and boundaries, Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina                                                                                                                                                            | . S4.15 |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.7.                                                                                                                                                                                                                                                                                                                                        | Soil drainage classes used for parameter estimation, Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base Camp<br>Lejeune, North Carolina                                                                                                                                                   | . S4.16 |  |  |  |  |  |
|                                                                                                                                                                                                                                    | S4.8.                                                                                                                                                                                                                                                                                                                                        | Recharge values assigned to the groundwater-flow model, Hadnot<br>Point–Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina                                                                                                                                                 | . S4.17 |  |  |  |  |  |
| S4.9.                                                                                                                                                                                                                              | Graph<br>Boule                                                                                                                                                                                                                                                                                                                               | showing recharge adjustment factors, Hadnot Point–Holcomb<br>vard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina                                                                                                                                                                            | . S4.18 |  |  |  |  |  |
| S4.10. Map showing calibrated horizontal hydraulic conductivity and vertical anisotro<br>assigned to the groundwater-flow model, Hadnot Point–Holcomb Boulevard<br>study area, U.S. Marine Corps Base Camp Leieune, North Carolina |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |         |  |  |  |  |  |
| S4.11.                                                                                                                                                                                                                             | Graph showing steady-state groundwater-flow model results shown as<br>observed and simulated potentiometric levels, and observed potentiometric<br>levels and corresponding residuals, steady-state groundwater-flow model<br>calibration, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps<br>Base Camp Lejeune, North Carolina |                                                                                                                                                                                                                                                                                                              |         |  |  |  |  |  |

#### S4.12–S4.15. Maps showing—

|              | S4.12.                                  | Simulated predevelopment (steady-state) potentiometric surface,<br>directions of groundwater flow, and water-level residuals derived from<br>the calibrated three-dimensional groundwater-flow model, Brewster<br>Boulevard aquifer system, Hadnot Point–Holcomb Boulevard study area,<br>U.S. Marine Corps Base Camp Lejeune, North Carolina                                    | . S4.23      |
|--------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|              | S4.13.                                  | Simulated potentiometric levels and drawdowns, combined Brewster<br>Boulevard aquifer, Brewster Boulevard upper confining unit, and Brewster<br>Boulevard lower aquifer—model layer 1, stress period 7 (July 1942), Hadnot<br>Point Industrial Area, Hadnot Point–Holcomb Boulevard study area,<br>U.S. Marine Corps Base Camp Lejeune, North Carolina                           | t<br>. S4.25 |
|              | S4.14.                                  | Simulated potentiometric levels and drawdowns, combined Brewster<br>Boulevard aquifer, Brewster Boulevard upper confining unit, and Brewster<br>Boulevard lower aquifer—model layer 1, stress period 7 (July 1942),<br>Hadnot Point landfill area, Hadnot Point–Holcomb Boulevard study<br>area, U.S. Marine Corps Base Camp Leieune. North Carolina                             | . S4.26      |
|              | S4.15.                                  | Simulated potentiometric levels for January 1951, January 1968,<br>November 1984, and June 2008, combined Upper Castle Hayne aquifer–<br>River Bend unit, Local confining unit, and Upper Castle Hayne aquifer–<br>Lower unit—model layer 5, Hadnot Point–Holcomb Boulevard study<br>area, U.S. Marine Corps Base Camp Lejeune, North Carolina                                   | . S4.27      |
| S4.16-S4.17. | Graphs                                  | showing—                                                                                                                                                                                                                                                                                                                                                                         |              |
|              | S4.16.                                  | Comparison of observed water-level altitude and simulated water-level<br>altitude for well X24S6 for two cases of the transient groundwater-flow<br>model: <i>case a</i> with temporal variability of recharge, and <i>case b</i> without<br>temporal variability of recharge, Hadnot Point–Holcomb Boulevard<br>study area, U.S. Marine Corps Base Camp Lejeune, North Carolina | . S4.28      |
|              | S4.17.                                  | Sensitivity-analysis results for groundwater-flow model parameters<br>in terms of root-mean-square of water-level residual, and mean of<br>water-level residual, Hadnot Point–Holcomb Boulevard study area,<br>U.S. Marine Corps Base Camp Lejeune, North Carolina                                                                                                               | . S4.29      |
| S4.18-S4.19. | Maps s                                  | howing—                                                                                                                                                                                                                                                                                                                                                                          |              |
|              | S4.18.                                  | Simulated potentiometric levels for layer 1 for the uniform grid model and<br>the Hadnot Point Industrial Area variably spaced grid model, Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune,<br>North Carolina                                                                                                                                 | . S4.31      |
|              | S4.19.                                  | Simulated potentiometric levels for layer 1 for the uniform grid model and<br>the Hadnot Point landfill area variably spaced grid model, Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune,<br>North Carolina                                                                                                                                   | . S4.32      |
| S4.20.       | Graphs<br>water-s<br>50 feet<br>area II | showing simulated water levels along designated model row containing<br>supply wells HP-602 and HP-651 using finite-difference cell dimensions of<br>per side and 25 feet per side, Hadnot Point–Holcomb Boulevard study<br>.S. Marine Corps Base Camp Leieune, North Carolina                                                                                                   | . S4 33      |
|              |                                         |                                                                                                                                                                                                                                                                                                                                                                                  |              |

## Tables (Tables S4.6 and S4.8 are in back of report)

| S4.1. | Hydrogeologic units, unit thicknesses, and corresponding model layers,<br>Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina                                                                                              | S4.4  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| S4.2. | Horizontal hydraulic conductivity data used during parameter estimation of<br>cell-by-cell array for the Brewster Boulevard aquifer system (model layer 1),<br>Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina         | S4.5  |
| S4.3. | Horizontal hydraulic conductivity data used during parameter estimation of<br>cell-by-cell array for the Tarawa Terrace aquifer (model layer 3), Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune,<br>North Carolina                   | S4.6  |
| S4.4. | Horizontal hydraulic conductivity data used during parameter estimation of<br>cell-by-cell array for the Upper Castle Hayne aquifer system (model layer 5),<br>Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina         | S4.6  |
| S4.5. | Location coordinates of the groundwater-flow model grid (total model domain),<br>Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base<br>Camp Lejeune, North Carolina                                                                                       | S4.12 |
| S4.6. | Simulation stress period and corresponding month and year, Hadnot Point–<br>Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune,<br>North Carolina                                                                                                         | S4.40 |
| S4.7. | Water-supply well names, model coordinate locations, and ratios of model<br>layer flow to total flow for selected water-supply wells within the HPIA and<br>HPLF area, Hadnot Point–Holcomb Boulevard study area, U.S. Marine<br>Corps Base Camp Lejeune, North Carolina | S4.19 |
| S4.8. | Simulated and observed predevelopment water levels in wells within the Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina                                                                                                    | S4.45 |

See the Chapter A report for conversion factors and definitions of terms and abbreviations used throughout this supplement.

Use of trade names and commercial sources is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the U.S. Department of Health and Human Services, or the U.S. Geological Survey.

# Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina Chapter A–Supplement 4

# Simulation of Three-Dimensional Groundwater Flow

By René J. Suárez-Soto,<sup>1</sup> L. Elliott Jones,<sup>2</sup> and Morris L. Maslia<sup>1</sup>

## Introduction

The purpose of the study described in this supplement of Chapter A (Supplement 4) is to construct, simulate, and calibrate a groundwater-flow model that represents the hydrogeologic framework and related groundwater-flow conditions described by Faye (2012) and Faye et al. (2013) within the vicinity of the Hadnot Point-Holcomb Boulevard (HPHB) study area, U.S. Marine Corp Base (USMCB) Camp Lejeune (Figure S4.1). Multiple variants of the groundwater-flow model were constructed and are described herein. The models simulate groundwater-flow conditions in the Brewster Boulevard, Tarawa Terrace, and Upper and Middle Castle Hayne aquifer systems from January 1942 to June 2008. Much of the discussion and analyses described herein parallel and partially duplicate methods and approaches described in similar reports of groundwater-flow investigations at Tarawa Terrace (TT) and vicinity by Faye and Valenzuela (2007). Model results were eventually used within several contaminant fate and transport models described by Jones et al. (2013) and Jang et al. (2013) for the historical reconstruction of finished-water<sup>3</sup> concentrations within the service areas of the Hadnot Point and Holcomb Boulevard water treatment plants (HPWTP and HBWTP, respectively). This supplement focuses on the description of groundwater-flow model geometry, boundaries, hydraulic properties, calibration, and sensitivity analyses.

## Background

A study and reconstruction of historical contamination events in finished water at USMCB Camp Lejeune, North Carolina, is being conducted by the Agency for Toxic Substances and Disease Registry (ATSDR). USMCB Camp Lejeune has been used as a military training facility since 1942 and is located in Onslow County in the central part of the North Carolina Coastal Plain. The Base is located south of the City of Jacksonville and about 70 miles northeast of the City of Wilmington (Figure S4.1).

The historical reconstruction of contaminant fate and transport in groundwater of the TT base housing area of USMCB Camp Lejeune and historical finished-water concentrations supplied by the TT water treatment plant have been extensively studied by ATSDR. Those studies, analyses, and results are described in previous reports (Maslia et al. 2007, 2009a; Faye and Green 2007; Jang and Aral 2008). Current studies (2010 and thereafter) focus on historical reconstruction of contaminant concentrations in groundwater and finished water in the HPWTP and HBWTP service areas (also referred to herein as the HPHB study area). This reconstruction process requires gathering information about the groundwater system, characterization of contaminant sources and simulation of contaminant fate and transport in groundwater and in finished water. The water treatment plants serving these areas of the Base obtained groundwater from 96 water-supply wells (hereafter referred to as wells or supply wells) distributed in these areas and the east side of USMCB Camp Lejeune (Figure S4.1). Therefore, information on the historical operational schedules of these wells is a prerequisite for the simulation of groundwater flow, contaminant fate

<sup>&</sup>lt;sup>1</sup>Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.

<sup>&</sup>lt;sup>2</sup>U.S. Geological Survey, Georgia Water Science Center, Atlanta, Georgia.

<sup>&</sup>lt;sup>3</sup>For this study, finished water is defined as groundwater (or raw water) that has undergone treatment at a WTP and is delivered to a person's home or other facility.



**Figure S4.1.** Hadnot Point–Holcomb Boulevard study area showing active groundwater-flow model boundary, contaminant fate and transport model subdomain boundaries, and selected monitor and water-supply wells, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

and transport, and the distribution of finished water in the HPHB study area. Refer to Sautner et al. (2013) and Telci et al. (2013) for a detailed discussion of historical operation of water-supply wells.

Several groundwater-flow models have been constructed in or around the study area and have been summarized in reports published by Giese et al. (1997), Faye and Valenzuela (2007), and Baker Environmental, Inc. (1998a,b). The analyses and three-dimensional numerical groundwater-flow models described in these references range from regional to local.

Giese et al. (1997) developed and calibrated a groundwaterflow model of the entire North Carolina Coastal Plain as part of the U.S. Geological Survey (USGS) Regional Aquifer-System Analysis (RASA) program. The purpose of this study was to develop an understanding of regional groundwater-flow systems and support better management of groundwater resources; therefore, the simulated information relevant to the USMCB Camp Lejeune area is highly generalized (Faye and Valenzuela 2007).

The groundwater-flow models described by Baker Environmental, Inc. (1998a,b) generally coincide with the area of interest described in Maslia et al. (2013). Under the Basewide Remediation Assessment Groundwater Study (BRAGS), the BRAGS model—described by Baker (1998a) was constructed to evaluate the effects of various groundwater remediation projects. As part of the BRAGS model, several local models were developed for multiple sites—including Sites 73 and 82—using a variably spaced grid and particletracking analysis<sup>4</sup> to assess remediation efforts (Baker Environmental, Inc. 1998a,b).

Model simulations of groundwater flow at and in the vicinity of TT (Figure S4.1) were described by Faye and Valenzuela (2007). The model domain for the TT study is slightly north of the HPHB study area, and many of the hydrogeologic features apply to the current study. Much of the analyses described by Faye and Valenzuela (2007) parallel the analyses applied at the HPHB study area or served as guidelines for the development and calibration of the groundwaterflow model described in this supplement. Ultimately, the goal of the current study was to estimate historical monthly contaminant concentrations at multiple sites within the HPHB study area and specifically within the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area<sup>5</sup> (Figure S4.1); therefore, models discussed previously were not appropriate for this purpose. However, the information presented in these reports was used as guidelines to develop the numerical models presented herein.

# Hydrogeologic Framework

Fourteen aguifers and confining units were identified within the HPHB study area and were named after local cultural features where the units were first identified or as subdivisions of the Castle Hayne Formation (Harned et al. 1989; Geophex, Ltd. 1994, 2001, 2002; Faye 2012). Named hydrogeologic units are correlated with geologic units, and respective groundwater-flow model layers are in Table S4.1. Sediments correlated with the Brewster Boulevard aquifer and confining unit by Faye (2012) between Northeast and Wallace Creeks (Figure S4.1) thicken considerably south of Wallace Creek and were subdivided, for purposes of this study, into two aguifers and two confining units, all assigned to the Brewster Boulevard aquifer system and model layer 1. With the exception of the Brewster Boulevard aquifer system, hydrogeologic units listed in Table S4.1 correspond, with minor changes, one-to-one to units previously identified and described by Fave (2012) between Northeast and Wallace Creeks. The name of the TT confining unit described by Faye (2007) was changed in Faye (2012) to the "Upper Castle Hayne confining unit," which is the name also used in this report.

The base of the Lower Castle Hayne aquifer is at the top of the Beaufort confining unit and corresponds, within most of the study area, to the base of freshwater flow. Freshwater is defined herein as water containing a concentration of total dissolved solids less than 5,000 milligrams per liter. The top of freshwater flow occurs everywhere at the water table, which fluctuates seasonally over a range of about 10 feet (ft) or less. Depending on location, whether north or south within the study area or highland or lowland, the water table generally occurs in the lower or upper part of the Brewster Boulevard aquifer system, respectively, or within the TT aquifer.

Aquifers of the Castle Hayne aquifer system comprise the major water-bearing units of the study area and are composed largely of fine silty and clayey sand and sandy limestone. Confining units are clay, sandy clay, or silty clay. For detailed descriptions of framework geometry and well, borehole, and geophysical data used to define the hydrogeologic framework of the study area, refer to Faye (2012).

 $<sup>^4</sup> See$  Maslia et al. (2013) for sites 73 and 82 locations; see Faye et al. (2010) for details on site histories.

<sup>&</sup>lt;sup>5</sup>The Hadnot Point Industrial Area (HPIA) is a formally designated name and acronym used in many Camp Lejeune references [e.g., Baker Environmental, Inc. (1994), CH2M HILL (2006)], and the ATSDR Hadnot Point– Holcomb Boulevard Chapter reports and Chapter A supplements follow this naming convention. The acronym HPLF is used in the ATSDR Hadnot Point– Holcomb Boulevard report series for brevity and convenience to identify the Hadnot Point landfill.

**Table S4.1.**Hydrogeologic units, unit thicknesses, and corresponding model layers, Hadnot Point–Holcomb Boulevard study area,U.S. Marine Corps Base Camp Lejeune, North Carolina (modified from Faye 2012 and Maslia et al. 2013).

| [DEM, digital | l elevation n | nodel; —, n | ot applicable] |
|---------------|---------------|-------------|----------------|
|---------------|---------------|-------------|----------------|

|            | Geologic un             | iits                                         |                                                                                                                    |                | Thickness         |         | Number of data                        |
|------------|-------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|-------------------|---------|---------------------------------------|
| System     | Series                  | Formation                                    | Hydrogeologic units                                                                                                | Abbreviation   | range,<br>in feet | layer   | points used to<br>define top of layer |
| Quaternary | Holocene<br>Pleistocene | Undifferentiated                             | Brewster Boulevard<br>upper aquifer                                                                                | BBUAQ          | 4 to 42           |         |                                       |
|            | Pliocene                | Absent                                       | At                                                                                                                 | osent          |                   |         | DFM and                               |
|            |                         | Pungo River                                  | Brewster Boulevard<br>upper confining unit                                                                         | BBUCU          | 1 to 22           | 1       | bathymetry data <sup>1</sup>          |
|            | Miocene                 | undifferentiated                             | Brewster Boulevard<br>lower aquifer                                                                                | BBLAQ          | 4 to 48           |         |                                       |
|            | Whotene                 | Belgrade                                     | Brewster Boulevard lower confining unit                                                                            | BBLCU          | 2 to 30           | 2       | 132                                   |
|            |                         | undifferentiated                             | Tarawa Terrace aquifer<br>(upper part)                                                                             | TTAO           | 8 to 86           | 3       | (1                                    |
|            |                         |                                              | Tarawa Terrace aquifer (middle and lower parts)                                                                    | TIAQ           | 8 10 80           |         | 01                                    |
|            | Oligocene               | River Bend<br>Formation,<br>undifferentiated | Upper Castle Hayne<br>confining unit<br>[previously designated<br>Tarawa Terrace confining<br>unit in Faye (2007)] | UCHCU          | 4 to 40           | 4       | 76                                    |
| Tertiary   | Late<br>Eocene          | Unnamed                                      | Upper Castle Hayne<br>aquifer–River Bend unit                                                                      | UCHRBU         | 16 to 70          |         |                                       |
|            |                         |                                              | Local confining unit                                                                                               | Local CU       | 8 to 23           | 5       | 35                                    |
|            |                         |                                              | Upper Castle Hayne<br>aquifer–Lower unit                                                                           | UCHLU          | 10 to 48          |         |                                       |
|            | Middle                  | Castle Harma                                 | Middle Castle Hayne<br>confining unit                                                                              | MCHCU          | 12 to 27          | 6       | 42                                    |
|            | Eocene                  | Formation                                    | Middle Castle Hayne<br>aquifer                                                                                     | MCHAQ          | 62 to 122         | 7       | 21                                    |
|            |                         |                                              | Lower Castle Hayne<br>confining unit                                                                               | LCHCU          | 18 to 38          |         |                                       |
|            |                         |                                              | Lower Castle Hayne<br>aquifer                                                                                      | LCHAQ          | 64 to 86          | Base of | 6                                     |
|            | Paleocene               | Beaufort<br>Formation,<br>undifferentiated   | Beaufort confining unit                                                                                            | Beaufort<br>CU |                   | model   |                                       |

<sup>1</sup>1/9-arc resolution digital elevation model from the National Elevation Dataset (USGS 2010) and bathymetry data (NOAA 2008) were used to define the top of layer 1

# **Horizontal Hydraulic Conductivity**

Results of more than 200 aquifer and slug tests accomplished at multiple locations throughout the study area were analyzed and reported by Faye (2012) and are used herein to describe the hydraulic characteristics of several hydrogeologic units included in the groundwater-flow model. Hydrogeologic unit names, abbreviated names and corresponding model layers are listed in Table S4.1. Reported horizontal hydraulic conductivities for the Brewster Boulevard upper confining unit, Brewster Boulevard lower aquifer, and Brewster Boulevard lower confining unit—model layer 1—ranged from 0.1 foot per day (ft/d) to 87 ft/d (Table S4.2) and averaged 12 ft/d. Similarly, horizontal hydraulic conductivities for the TT aquifer—model layer 3—ranged from 1.0 ft/d to 62 ft/d (Table S4.3) and averaged 17 ft/d. Corresponding horizontal hydraulic conductivities for the Upper Castle Hayne aquifer—River Bend unit, Local confining unit, and Upper Castle Hayne aquifer—Lower unit—model layer 5—ranged from 1.6 ft/d to 79 ft/d (Table S4.4) and averaged 28 ft/d. Only three aquifer tests were available for model layer 7 (Middle Castle Hayne aquifer), and the horizontal hydraulic conductivity ranged from 10 ft/d to 33 ft/d. The geometric means for horizontal hydraulic conductivities of model layers 1, 3, and 5 are 4.0 ft/d, 10 ft/d, and 24 ft/d, respectively.

**Table S4.2.** Horizontal hydraulic conductivity data used during parameter estimation of cell-by-cell array for the Brewster Boulevard aquifer system (model layer 1), Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (from Faye 2012).

| Site name       | Horizontal<br>hydraulic<br>conductivity,<br>in feet per day | Contributing aquifer<br>or confining unit | Site name        | Horizontal<br>hydraulic<br>conductivity,<br>in feet per day | Contributing aquifer<br>or confining unit |
|-----------------|-------------------------------------------------------------|-------------------------------------------|------------------|-------------------------------------------------------------|-------------------------------------------|
| 03-MW05         | 6.1                                                         | BBUCU, BBLAQ                              | Bldg1613_MW01    | 1.6                                                         | BBUAQ                                     |
| 03-MW06         | 0.6                                                         | BBUAQ, BBUCU, BBLAQ                       | Bldg1613_MW02    | 13                                                          | BBUAQ                                     |
| 03-MW07         | 6.1                                                         | BBUAQ                                     | Bldg1613_MW08    | 22                                                          | BBUAQ                                     |
| 03-MW08         | 3                                                           | BBUAQ, BBUCU                              | Bldg1856_MW02    | 6.3                                                         | BBUAQ                                     |
| 06-GW2S         | 0.7                                                         | BBUAQ, BBUCU, BBLAQ                       | Bldg1856_MW07    | 3.1                                                         | BBUAQ                                     |
| 22-RW01         | 3.4                                                         | BBUAQ, BBUCU, BBLAQ                       | Bldg1856_MW12    | 7.9                                                         | BBUAQ                                     |
| 22-RW02         | 3.1                                                         | BBUAQ, BBUCU, BBLAQ                       | BldgFC201E_PW01  | 18                                                          | BBUAQ                                     |
| 74-GW06         | 6.3                                                         | BBUAQ, BBUCU                              | BldgFC251_MW08   | 21                                                          | BBUAQ, BBUCU, BBLAQ                       |
| 75-GW08         | 3.5                                                         | BBUAQ, BBUCU                              | BldgFC263_MW16   | 8.1                                                         | BBUAQ, BBUCU, BBLAQ                       |
| 78-Bldg902RW1   | 2.3                                                         | BBUAQ, BBUCU                              | BldgH28_MW03     | 3.1                                                         | BBLAQ                                     |
| 84-MW18 (Baker) | 0.8                                                         | BBLAQ                                     | BldgH28_MW05 2.7 |                                                             | BBLAQ                                     |
| 88-MW03IW       | 6.8                                                         | BBLAQ                                     | BldgLCH4022_MW01 | 4.9                                                         | BBLAQ                                     |
| 88-MW04         | 16                                                          | BBUAQ, BBUCU, BBLAQ                       | BldgLCH4022_MW06 | 3.2                                                         | BBLAQ                                     |
| 88-MW04IW       | 65                                                          | BBLAQ                                     | BldgLCH4022_MW07 | 3.9                                                         | BBLAQ                                     |
| 88-MW05         | 0.8                                                         | BBUAQ, BBUCU, BBLAQ                       | BldgLCH4022_MW19 | 5.2                                                         | BBLAQ                                     |
| 88-MW07         | 30                                                          | BBUAQ, BBUCU, BBLAQ                       | BldgPT5_MW16     | 40                                                          | BBUAQ, BBUCU, BBLAQ                       |
| 88-MW07IW       | 61                                                          | BBLAQ                                     | BldgS2633_MW04   | 0.5                                                         | BBLCU                                     |
| 88-MW09         | 0.4                                                         | BBUAQ, BBUCU, BBLAQ                       | BldgS2633_MW05   | 1.4                                                         | BBLCU                                     |
| 88-MW09IW       | 87                                                          | BBLAQ                                     | G-BP07           | 0.9                                                         | BBLAQ(?)                                  |
| Bldg21_DW03     | 57                                                          | BBLAQ                                     | G-BP10(?)        | 1                                                           | BBLAQ(?)                                  |
| Bldg21_MW07     | 0.1                                                         | BBUAQ                                     | G-MW03S          | 0.5                                                         | BBUCU, BBLAQ(?)                           |
| BldG-MW09       | 0.2                                                         | BBUAQ, BBUCU                              | G-MW04           | 0.7                                                         | BBUCU, BBLAQ(?)                           |
| Bldg33_MW11     | 2.8                                                         | BBLAQ                                     | G-MW06           | 1.5                                                         | BBUAQ, BBUCU                              |
| Bldg331_PW16    | 20                                                          | BBLAQ                                     | G-MW07           | 1.1                                                         | BBUAQ, BBUCU                              |
| Bldg645_MW05    | 5.7                                                         | BBLAQ                                     | G-MW08           | 0.6                                                         | BBUAQ, BBUCU                              |
| Bldg645_MW06    | 10.4                                                        | BBLAQ                                     | G-MW09           | 3                                                           | BBUAQ                                     |
| Bldg1115_MW16   | 9.3                                                         | BBLAQ                                     | HP-585           | 64                                                          | BBUCU, BBLAQ                              |

[BBUAQ, Brewster Boulevard upper aquifer; BBUCU, Brewster Boulevard upper confining unit; BBLAQ, Brewster Boulevard lower aquifer]

#### Horizontal Hydraulic Conductivity

The reported horizontal hydraulic conductivities are not normally distributed, as indicated by the differences between the respective geometric means and average values. Both the average and geometric mean of hydraulic conductivity values increase with depth.

Aquifer-test results were also used to determine the spatial variability of horizontal hydraulic conductivity. Faye (2012) used the results of aquifer- and slug-test data (Tables S4.2 and S4.4) to present highly generalized maps of horizontal hydraulic conductivity for the Brewster Boulevard aquifer system (model layer 1) and the Upper Castle Hayne aquifer (model layer 5; Figures S4.2–S4.3). Areas of higher than average horizontal hydraulic conductivity occur west of the HPIA and in the HPLF area in the Brewster Boulevard aquifer system (Figure S4.2). In the same way, aquifer-test results for the Upper Castle Hayne aquifer indicate areas of higher than average horizontal hydraulic conductivity values in the HPLF (Figure S4.3).

The average and geometric mean of horizontal hydraulic conductivity presented in this section were used as guidelines during calibration of the hydraulic conductivity arrays of the groundwater-flow model. Additional aquifer and slug-test data were available for multi-aquifer wells (Faye 2012); however, data representing single aquifers were the focus of this section. **Table S4.3.** Horizontal hydraulic conductivity data used during parameter estimation of cell-by-cell array for the Tarawa Terrace aquifer (model layer 3), Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (from Faye 2012).

| Site name       | Horizontal<br>hydraulic<br>conductivity,<br>in feet per day | Contributing<br>aquifer |
|-----------------|-------------------------------------------------------------|-------------------------|
| 03-MW02IW       | 4.1                                                         | TTAQ                    |
| 78-GW32-2       | 22                                                          | TTAQ                    |
| 82-DP01         | 23                                                          | TTAQ                    |
| 84-MW16 (Baker) | 1.0                                                         | TTAQ                    |
| 88-MW03DW       | 6.2                                                         | TTAQ                    |
| Bldg645_MW09    | 3.3                                                         | TTAQ                    |
| HP-595          | 15                                                          | TTAQ                    |
| HP-621 (old)    | 62                                                          | TTAQ                    |
| HPFF_MW75       | 27                                                          | TTAQ                    |
| Tank_S781_MW10  | 9.3                                                         | TTAQ                    |

[TTAQ, Tarawa Terrace aquifer]

**Table S4.4.** Horizontal hydraulic conductivity data used during parameter estimation of cell-by-cell array for the Upper Castle Hayne aquifer system (model layer 5), Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (from Faye 2012).

[UCHRBU, Upper Castle Hayne aquifer–River Bend unit; UCHRBU&LU, Upper Castle Hayne aquifer–River Bend and Lower units; Local CU, Local confining unit; TTCU, Tarawa Terrace confining unit]

| Site name    | Horizontal<br>hydraulic<br>conductivity,<br>in feet per day | Contributing<br>aquifer or<br>confining unit | Site name                        | Horizontal<br>hydraulic<br>conductivity,<br>in feet per day | Contributing<br>aquifer or<br>confining unit |
|--------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------------------------------|----------------------------------------------|
| 78-642-1     | 14                                                          | UCHRBU&LU, Local CU,                         | HP-700                           | 23                                                          | UCHRBU&LU                                    |
|              |                                                             | MCHCU                                        | HP-701                           | 61                                                          | UCHRBU&LU                                    |
| 78-642-2     | 18                                                          | UCHRBU&LU, Local CU,                         | HP-703                           | 79                                                          | UCHRBU&LU                                    |
| 00 1000000   | 1.6                                                         | менео                                        | HP-704                           | 36                                                          | UCHRBU&LU, Local CU                          |
| 80-MW031W    | 1.6                                                         | UCHRBU                                       | HP-705                           | 36                                                          | UCHRBU&LU, Local CU                          |
| 82-DRW01     | 18                                                          | UCHCU(?), UCHRBU                             | HP-706                           | 12                                                          | UCHRBU&LU, Local CU                          |
| HP-611 (new) | HP-611 (new) 12 UCHRBU&LU, Local CU,<br>MCHCU               |                                              | HP-707                           | 11                                                          | UCHRBU&LU, Local CU                          |
| HP-612 (new) | 24                                                          | UCHRBU&LU, Local CU                          | HP-708                           | 39                                                          | UCHRBU&LU, Local CU                          |
| HP-614 (new) | 28                                                          | UGHRBU&LU, Local CU                          | HP-708 observa-<br>tion well #1A | 37                                                          | UCHRBU (?)                                   |
| HP-621 (new) | 26                                                          | UCHRBU&LU                                    | HP-708 observa-                  | 40                                                          | UCHRBU (2)                                   |
| HP-638       | 19                                                          | TTAQ, UCHRBU                                 | tion well #2                     | -10                                                         |                                              |
| HP-650       | 39                                                          | UCHRBU&LU                                    | HP-709                           | 28                                                          | UCHRBU&LU, Local CU                          |
| HP-652       | 62                                                          | UCHRBU&LU                                    | HP-710                           | 16                                                          | UCHRBU&LU                                    |
| HP-662       | 15                                                          | TTAQ, UCHRBU&LU                              | HP-711                           | 25                                                          | TTCU, UCHRBU                                 |
| HP-663       | 30                                                          | UCHRBU&LU, Local CU                          | HP-5186                          | 42                                                          | UCHRBU&LU                                    |
| HP-698       | 18                                                          | UCHRBU&LU, Local CU                          | LCH-4009                         | 19                                                          | UCHRBU, Local CU                             |
| HP-699       | 24                                                          | UCHRBU&LU, Local CU                          | S190A                            | 30                                                          | UCHRBU, Local CU                             |



**Figure S4.2.** Horizontal hydraulic conductivity of the Brewster Boulevard aquifer system—model layer 1, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (modified from Faye 2012).

#### **Horizontal Hydraulic Conductivity**



**Figure S4.3.** Horizontal hydraulic conductivity of the Upper Castle Hayne aquifer—model layer 5, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (modified from Faye 2012).

## **Potentiometric Surface**

More than 13,000 water-level measurements were obtained from well-data files and reports published to document and summarize the results of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) groundwater contaminant investigations and were assembled and organized into spreadsheets and a database. From all measurements, water-level data at 551 locations in the study area collected in monitor wells open to the Brewster Boulevard aquifer system are considered representative of predevelopment water-table conditions. These data along with stream surface altitudes estimated from a digital elevation model (DEM; U.S. Geological Survey 2010) of the study area were used to construct an estimated predevelopment potentiometric surface of the Brewster Boulevard aquifer system (model layer 1; Figure S4.4). Contours of equal potentiometric levels generally conform to surface topography, and groundwater flows from highland to lowland areas toward major rivers and streams.

## **Conceptual Model of Groundwater Flow**

Specific details pertinent to the development of the conceptual model of groundwater flow are described in Faye et al. (2013). For completeness, the conceptual model is also described below. To better integrate the numerous and disparate water-level data available within the study area into a general understanding of hydrologic processes, a conceptual model that addresses groundwater flow, occurrences of recharge, and stream-aquifer relations was developed and based on similar descriptions and analyses by Freeze and Witherspoon (1966, 1967), Hubbard (1940), and Toth (1962, 1963).

The spatial configuration of the water table prior to development of groundwater supply (predevelopment) in the study area probably closely resembled a subdued replica of surface topography (Faye et al. 2013). Except in areas of supply-well or remediation pumping, a similar configuration probably occurs to the present day (2013). Recharge to the Brewster Boulevard aquifer system occurs originally as infiltration of precipitation to the water table. Where topography is substantially high, such as in the northern and western parts of the study area, groundwater-flow gradients at the highest altitude are substantially downward, possibly through most or all of

the Middle Castle Hayne aquifer. Generally, maximum rates of recharge occur within highland areas and progressively decline toward lowlands and stream valleys. Consequently, groundwater within the unconfined and poorly confined parts of the Brewster Boulevard aquifer system flows laterally from highland to lowland areas and eventually discharges to the New River, Northeast, Wallace, and Frenchs Creeks, and smaller streams and tributaries. Downstream reaches of major streams such as Wallace, Northeast, and Frenchs Creeks and the New River are probably incised within the Tarawa Terrace aquifer and possibly within the Castle Hayne aquifer as well. Where incision is incomplete, substantial vertical continuity of permeable sediments is likely maintained across relatively thick sections of paleochannel sands (Faye 2012). Accordingly, groundwater flow within the Tarawa Terrace and Castle Havne aquifers probably mimics, to a large degree, flow within the Brewster Boulevard aquifer system, with an exception occurring in the immediate vicinity of the large streams mentioned previously where flow directions are upward and discharge occurs as diffuse upward leakage. Discharge from the Middle and Lower Castle Hayne aquifers also occurs as diffuse upward leakage, probably largely within the western and southwestern parts of the study area.

Faye and Valenzuela (2007) described groundwater-flow conditions in the TT area following the onset of pumping at water-supply wells which are applicable to the HPHB study area. This is because most of the hydrogeologic characteristics of both sites are similar. With minor changes, similar descriptions probably apply to the HPHB study area. With the routine operation of supply wells, groundwater flow that was entirely directed toward streams and rivers under predevelopment conditions was partially diverted to pumping wells. As a consequence, (1) predevelopment potentiometric levels in the vicinity of pumping wells declined in all waterbearing units contributing to the wells, (2) predevelopment flow directions changed preferentially toward pumping wells and away from natural points of discharge such as Wallace Creek, and (3) potentiometric levels near the predevelopment flow boundaries possibly declined, causing the boundaries to migrate further away from the study area. Declines in potentiometric levels in the vicinity of New River and tidally affected reaches of Northeast and Wallace Creeks possibly caused a reversal from upward to downward vertical flow, creating the possibility of inducing salt or brackish water landward into actively pumped aquifers.



**Figure S4.4.** Estimated predevelopment (steady-state) potentiometric surface and generalized direction of groundwater flow, Brewster Boulevard aquifer system, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

# Mathematics of Three-Dimensional Groundwater Flow

A partial differential equation based on the principles of mass balance can be used to describe the groundwaterflow system previously described in the conceptual model. The derivation of the generalized governing equation of groundwater flow in saturated media has been described in many references including those by Bear (1978), Anderson and Woessner (1992), Kresic (1997), and Schwartz and Zhang (2003). The partial differential equation can be written as:

$$\frac{\partial}{\partial x} \left( K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left( K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left( K_{zz} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}$$
(S4.1)

where

- $K_{xx}, K_{yy}$ , and  $K_{zz}$  equal horizontal hydraulic conductivity along the x, y, and z axes [LT<sup>-1</sup>];
  - *h* equals the potentiometric head [L];
  - W equals sources or sinks of water (volumetric rate per unit volume) [L<sup>3</sup> T<sup>-1</sup> L<sup>-3</sup>];
  - $S_s$  equals the specific storage of the porous media [L<sup>-1</sup>]; and
  - t equals time  $[T]^6$ .

Predevelopment (or steady-state) conditions are represented by setting the right-hand side of Equation S4.1 to zero. Equation S4.1 is subjected to the following boundary and initial conditions.

#### **Boundary Conditions**

Type 1. Specified head boundary (Dirichlet condition) in which the hydraulic head or potentiometric level is specified. When the hydraulic head is a constant value, such as a boundary representing sea level, this boundary is also referred to as *constant-head* boundary condition.

Type 2. Specified flow boundary (Neumann condition) in which the gradient of the head (or flux) across a boundary is given. When the flux is specified as zero, this represents a *no-flow* boundary condition.

Type 3. Head-dependent flow boundary (Cauchy or mixed boundary) in which the flux over a boundary is calculated given a head-value at the boundary. This boundary condition type is also known as a generalized-head boundary in model applications.

#### **Initial Conditions**

Under steady-state conditions (right-hand side of Equation S4.1 is zero), initial conditions do not need to be specified. For transient or unsteady-state conditions, initial conditions supply the hydraulic head or potentiometric level everywhere within the domain of interest at some initial time such as steady-state (e.g., time=0). In the case where water-supply wells are pumping, initial conditions are represented by predevelopment or steady-state conditions existing prior to the onset of pumping.

The system represented by Equation S4.1 and the respective boundary conditions can be solved using analytical and numerical methods. Analytical solutions are only available for simple systems, while complex systems require numerical methods (e.g., finite-difference or finite-element methods). The numerical code used in this study (e.g., MODFLOW-2005) uses a finite-difference method to solve Equation S4.1 along with associated boundary and initial conditions. Details of the solution methodology are described in Harbaugh (2005)<sup>7</sup>.

<sup>&</sup>lt;sup>6</sup>L represents length units; T represents time units.

<sup>&</sup>lt;sup>7</sup>MODFLOW is a family of three-dimensional groundwater-flow models developed by the U.S. Geological Survey. Specific MODFLOW model codes (e.g. MODFLOW-2005) applied to the HPHB study area are described herein. When used generically herein, MODFLOW refers to all variants of the family of MODFLOW groundwater-flow model codes.

## Three-Dimensional Groundwater-Flow Model

The codes used for groundwater-flow simulation and model calibration included MODFLOW-2000, MODFLOW-2005, MODFLOW-ASP, and PEST 12. MODFLOW-2000, -ASP, and -2005 (Harbaugh et al. 2000; Harbaugh 2005; Doherty 2010) are based on the original modular finite-difference groundwater-flow model developed by McDonald and Harbaugh (1984). These codes all simulate groundwater flow in a three-dimensional, heterogeneous, anisotropic porous media. MODFLOW-ASP and PEST 12 are computer codes used for parameter estimation and model calibration were developed or modified by Doherty (2010, 2011). The model grid and arrays were constructed and manipulated using the graphical user interface software Groundwater Modeling System (GMS) version 8 (U.S. Army Engineer and Research Development Center 2008) and ModelMuse version 2 (Winston 2009).

Documented herein are (1) development and steady-state (predevelopment) calibration results of a uniform grid model; (2) development and transient-state calibration results using historical and predicted pumpage data (Telci et al. 2013); (3) development and simulation results of two variably spaced grid models for the HPIA and HPLF areas; and (4) sensitivity analyses. The calibrated steady-state (predevelopment) model represents long-term average groundwater-flow conditions prior to the onset of pumping for water supply within the HPHB study area; the transient model represents the onset of pumping and resulting conditions from 1942 to 2008.

Table S4.5.Location coordinates of the groundwater-flowmodel grid (total model domain), Hadnot Point–HolcombBoulevard study area, U.S. Marine Corps Base Camp Lejeune,North Carolina.

| Desition                         | Location coordinates <sup>1</sup> |        |  |  |  |  |
|----------------------------------|-----------------------------------|--------|--|--|--|--|
| Position -                       | East                              | North  |  |  |  |  |
| Northwestern corner <sup>2</sup> | 2478760                           | 365640 |  |  |  |  |
| Northeastern corner              | 2524360                           | 365640 |  |  |  |  |
| Southeastern corner              | 2524360                           | 314040 |  |  |  |  |
| Southwestern corner              | 2478760                           | 314040 |  |  |  |  |

<sup>1</sup>Location coordinates are North Carolina State Plane coordinates, North American Datum of 1983

<sup>2</sup>Origin of the model grid (domain)

### **Domain and Discretization**

The active domain of the HPHB study area flow model is bounded in the north by the mid-channel of Northeast Creek, in the east by State Route (SR) 172, in the south by the intersection of Sneads Ferry Road and SR 172, and in the west by the mid-channel of New River (Figure S4.1). The total model domain and active model domain areas are 84 square miles (mi<sup>2</sup>) and 50 mi<sup>2</sup>, respectively. Location coordinates of the total model domain are listed in Table S4.5. The total model domain was subdivided into 152 columns and 172 rows, corresponding to a finite difference grid consisting of 300-ft (per side) square cells.

Vertical discretization consists of 7 layers representing 11 hydrogeologic units (Table S4.1). Odd-numbered model layers (1, 3, 5, and 7) are considered water-bearing units representing aquifers, and even-numbered model layers (2, 4, and 6) represent confining units. Several hydrogeologic units were combined in layers 1 and 5. Model-layer and hydrogeologic-unit correspondence is listed in Table S4.1. Layer thicknesses were derived from stratigraphic datageophysical and electric logs-obtained from about 900 locations across the model domain and described by Faye (2012). The altitude at the top of layer 1 was obtained using 1/9-arc resolution DEM and bathymetry data obtained from the National Elevation Dataset (U.S. Geological Survey 2010) and the National Geophysical Data Center (National Oceanic and Atmospheric Administration 2008), respectively. The altitude data for each hydrogeologic unit were interpolated in GMS and used to build the model grid. The number of data points available to interpolate the top of each unit ranged from 6 to 132 and decreased with depth (Table S4.1). Contours showing the top altitude along with thickness ranges for each model layer are shown in Figure S4.5. Layer 1 contains the water table, and the bottom of layer 7 corresponds to the top of the Lower Castle Havne confining unit.

Temporal discretization of the transient groundwaterflow model consists of 798 monthly stress periods starting in January 1942 and ending in June 2008 (Table S4.6, back of report). For groundwater-flow simulations, one time step per stress period was used; therefore, each stress period had a length of 28, 29, 30, or 31 days.



**Figure S4.5.** Model layer altitude and thickness of groundwater-flow model, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

#### **Boundary and Initial Conditions**

The boundary conditions of the groundwater-flow model, shown in Figure S4.6, include no-flow and specified-head boundaries. Boundary conditions are explained in further detail in subsequent sections of this report. Initial conditions for the transient model—initial or starting heads—were obtained from the steady-state model and represent predevelopment conditions. For transient simulations, the first stress period is defined as steady-state.

#### **Specified Head**

The surfaces of New River and adjoining tidally influenced inlets to Northeast, Wallace, and Frenchs Creeks correspond to sea level; therefore, a specified head of 0 ft in layer 1 was assigned (Figure S4.1), as was similarly done for the TT study area by Faye and Valenzuela (2007). An assumption was made that the long-term sea-level change for the duration of the model simulation was insignificant. Specified head can be simulated in MODFLOW using the time-variant specified head (CHD) package and is represented by a Type 1 or Dirichlet boundary condition. The CHD package allows the use of temporal changes in the specified-head boundary; however, sea level was considered to be constant.

#### **No-Flow**

No-flow conditions represent a zero flux across the active model domain boundary (Type 2 or Neumann boundary condition). These conditions represent impermeable bedrock or a fault zone, a groundwater divide, and in some cases, the freshwater/saltwater interface in coastal aquifers (Anderson and Woessner 1992). The base and the perimeter of the groundwater-flow model correspond to a no-flow boundary. The perimeter of the model—excluding New River and Northeast Creek areas—generally follows a topographic divide and is considered to be a groundwater divide for the aquifers of interest to this study; therefore, a no-flow boundary was assigned for all model layers. The base of the groundwater-flow model corresponds to the top of the Lower Castle Hayne confining unit and is considered the base of freshwater flow.

#### **Drains**

MODFLOW uses the drain (DRN) package to represent head-dependent conditions for hydrologic features where water is removed from the model (Harbaugh et al. 2000). Drains can only remove water from the aquifer and are commonly used to represent gaining perennial and ephemeral (intermittent) streams. Several drains were assigned in layer 1 using geographic information system (GIS) layers for creeks and tributaries. Creeks simulated as drains in the groundwater-flow model are Mott Creek, Beaverdam Creek, Bearhead Creek, Wallace Creek, Cogdels Creek, Cowhead Creek, Frenchs Creek, Jumping Run, and other unnamed creeks or streams (Figure S4.6).

The inputs required to describe drain features in MODFLOW are drain altitude and conductance. To obtain the altitude of the drains, 5-ft-interval altitude contours were traced from USGS topographic maps using GMS 8. Then, a triangulated irregular network was created and used to interpolate the altitude at each drain cell.

Conductance values for the drains cells can be approximated using the following equation.

 $C = (K_L L W) / t$ 

(S4.2)

where

*C* equals conductance  $[L^2T^{-1}]$ ,

 $K_h$  equals the hydraulic conductivity of the streambed material [LT<sup>-1</sup>],

L equals the length of the stream [L],

*W* equals the width of the stream [L], and

t equals the thickness of the streambed [L].

Assuming a hydraulic conductivity of 1 ft/d, a length of 300 ft (length of the cell), and a width of 10 ft results in an initial estimate for drain conductance of 3,000 square feet per day (ft<sup>2</sup>/d). The calibrated value of 1,000 ft<sup>2</sup>/d was determined during initial trial-and-error calibration.

#### Recharge

Recharge was assigned to the uppermost active cell and varied cell-by-cell. Recharge is modeled in MODFLOW with a flux condition using the RCH package. The recharge array was obtained during the steady-state model calibration. Using a dataset of more than 13,000 water-level measurements, a set of 849 measurements was selected to represent predevelopment conditions. These water-level measurements were used in a regression analysis by using similar methods to those described by Faye (2012). The resulting equation was used to generate 540 water-level observations-spaced every 1,500 ft-which were used for calibration within PEST. Parameterization for recharge was performed using a set of 970 pilot points (Doherty et al. 2010). Pilot points were uniformly distributed within the active model domain. To stabilize the numerical problem, regularization and singular value decomposition were implemented. Each pilot point was assigned a preferred value for recharge based on the U.S. Department of Agriculture (USDA) soil survey map shown in Figure S4.7. Pilot points lying within the poorly and very poorly drained areas were assigned a preferred value of 0.001 ft/d [4 inches per year (in/yr)] while the rest of the points were assigned a value of 0.0023 ft/d (10 in/yr). Optimization of the recharge array against the water-level measurement dataset representing predevelopment conditions resulted in the spatial distribution of recharge shown in Figure S4.8.





#### Three-Dimensional Groundwater-Flow Model



**Figure S4.7.** Soil drainage classes used for parameter estimation, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina (source: USDA Soil Survey 2009 data for Onslow County; data processed using USDA Soil Data Viewer; aggregation method across map units is by dominant soil condition).



**Figure S4.8.** Recharge values assigned to the groundwater-flow model, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

Groundwater infiltration or recharge probably changed continuously due to fluctuations in precipitation and evapotranspiration. During the transient-flow simulation, the steadystate recharge model array was multiplied each month by an adjustment factor to account for variations in groundwater infiltration. To calculate the adjustment factor, the following procedure was used:

- 1. Precipitation information from January 1942 through June 2008 was obtained for the Hoffmann/Maysville weather station from the National Climatic Data Center.
- 2. Long-term average and average daily precipitation for each month—using all available daily data—were calculated. The long-term precipitation was 57.2 in/yr.
- 3. Average daily precipitation for each month was divided by the long-term average to calculate an adjustment factor for each month in the simulation period.

The recharge adjustment factors are shown in Figure S4.9.

#### Wells

Historically, 96 water-supply wells operated in the study area. Pumpage from supply wells was simulated using the Revised Multi-Node Well (MNW2) package (Konikow et al. 2009). The input data required to simulate pumping wells includes location, pumping rate, well-screen information, and skin effects information (i.e., thickness of the skin and hydraulic conductivity of the skin).

Pumping wells were placed in the groundwater-flow model using georeferenced maps or reported coordinates from the driller's report. Well-construction information was used to determine the numbers of screens and screen length for each well (Faye et al. 2010, 2013). Data obtained from pumping records varied substantially. Available data included well capacities and daily operation schedules for some wells, while in other cases only a design capacity was available (Sautner et al. 2013). A historical reconstruction of the pumping (operational) schedules of wells supplying water to the HPWTP and HBWTP is described by Telci et al. (2013).

The first supply wells at USMCB Camp Lejeune were constructed during 1941 and early 1942 and were probably in operation by the summer of 1942 (Sautner et al. 2013). Accordingly, supply wells assigned to the groundwater-flow model began operation during June 1942. The MNW2 package automatically proportions the flow between layers using the transmissivity assigned to each layer contributing to well flow (Konikow et al. 2009). After initial simulation and calibration of the transient model, the supply wells were simulated using the WEL package in MODFLOW to overcome compatibility issues with the model code being used to simulate contaminant fate and transport (Jones et al. 2013). The MNW2 package was used to obtain the required input files for the WEL package.



**Figure S4.9.** Recharge adjustment factors, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

During the grid refinement process used to create the variably spaced grid models,<sup>8</sup> ModelMuse (Winston 2009) automatically assigns cells for pumping wells by using the original pumping-cell location. However, specific model cells assigned to pumping wells within the HPIA and HPLF contaminant fate and transport subdomains (Figure S4.1) were adjusted using location coordinates of the wells. The cells—row and column—assigned for pumping wells in the HPIA and HPLF are listed in Table S4.7. In addition, Table S4.7 shows the percentage of layer flow to total flow for each respective well. The majority of water-supply wells pump mostly from model layer 5 (Upper Castle Hayne aquifer system).

#### **Hydraulic Properties**

Hydraulic properties in the groundwater-flow model were defined using the MODFLOW layer property flow (LPF) package (Harbaugh, 2005). All layers are specified as convertible; therefore, the layer can switch between confined and unconfined flow depending on the flow conditions. Specific yield and storativity were assigned similar values to those used by Faye and Valenzuela (2007). A specific yield of 0.05 was assigned uniformly to layer 1. Cell-by-cell specific storage was assigned based on an assumed storage coefficient (storativity) of 0.0004.

Horizontal hydraulic conductivity values previously described in the Horizontal Hydraulic Conductivity section of this supplement were used to assign initial values to each layer representing an aquifer—layers 1, 3, 5, and 7. Horizontal hydraulic conductivity values for layers 1, 3, and 5 were adjusted during the steady-state model calibration using parameter estimation with 970 pilot points per layer. Additional details about the calibration process are provided in the Approach to Model Calibration section of this supplement. The horizontal hydraulic conductivity for confining units—layers 2, 4, and 6—was uniformly assigned a value of 1 ft/d, derived from values used in Faye and Valenzuela (2007) for the TT study area. Cardinell et al. (1993) reported the existence of paleochannels underlying New River to depths of approximately 200 ft. Consequently, the horizontal hydraulic conductivity assigned to layers 2, 4, and 6 was increased during model calibration in selected areas described by Cardinell et al. (1993) to account for the occurrence of paleochannels. The calibrated horizontal hydraulic conductivity arrays for all layers are shown in Figure S4.10. Vertical hydraulic conductivity was defined using a ratio of horizontal to vertical hydraulic conductivity. The ratio is 10.0 for layers representing aquifers-layers 1, 3, 5, and 7-and 15.0 for layers representing confining units—layers 2, 4, and 6.

Table S4.7.Water-supply well names, model coordinate locations, and ratios of model layer flow to total flow for selected water-<br/>supply wells within the HPIA and HPLF area, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune,<br/>North Carolina.

| Water-supply | Location | coordinates <sup>1</sup> | Ratio of model layer flow to total flow, <sup>2</sup> in percent |         |         |         |         |         |         |  |  |
|--------------|----------|--------------------------|------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|--|--|
| well name    | Row      | Column                   | Layer 1                                                          | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Layer 7 |  |  |
| HP-601       | 132      | 115                      | 3.0                                                              | 1.7     | 2.3     | 0.8     | 92.3    | _       | _       |  |  |
| HP-602       | 114      | 136                      | _                                                                | _       | 27.2    | 1.6     | 71.3    | _       | _       |  |  |
| HP-603       | 151      | 94                       | —                                                                | —       | 25.8    | 1.2     | 73.0    | —       | —       |  |  |
| HP-605       | 146      | 207                      | _                                                                | 0.1     | 18.5    | _       | 78.7    | 2.7     | _       |  |  |
| HP-606       | 189      | 231                      | —                                                                | —       | 50.0    | —       | 50.0    | —       | —       |  |  |
| HP-607 (old) | 168      | 165                      | 0.1                                                              | 2.9     | 36.2    | 1.2     | 59.6    | _       | _       |  |  |
| HP-608       | 184      | 115                      | 0.8                                                              | 1.3     | 67.9    | 0.7     | 29.2    | —       | —       |  |  |
| HP-630       | 166      | 169                      | 2.8                                                              | 2.6     | 19.3    | 4.3     | 70.9    | —       | _       |  |  |
| HP-634       | 107      | 187                      | _                                                                | 0.1     | 26.0    | 0.9     | 73.0    | _       | _       |  |  |
| HP-642       | 146      | 206                      | —                                                                | —       | _       | 0.2     | 96.9    | 2.8     | _       |  |  |
| HP-660       | 133      | 113                      | _                                                                | _       | _       | 3.6     | 96.4    | _       | _       |  |  |
| HP-651       | 160      | 165                      |                                                                  |         |         | _       | 100.0   |         |         |  |  |

[--, well does not pump from this model layer; HPIA, Hadnot Point Industrial area; HPLF, Hadnot Point landfill]

<sup>1</sup>Location coordinates are specific to each variably spaced grid model

<sup>2</sup>The ratios shown are temporal averages calculated for the model simulation period January 1942–June 2008

<sup>&</sup>lt;sup>8</sup>The location and orientation of the HPIA and HPLF model subdomain areas (Figure S4.1) required two variably spaced grid models owing to computational requirements rather than using just one variably spaced grid.



**Figure S4.10.** Calibrated horizontal hydraulic conductivity and vertical anisotropy assigned to the groundwater-flow model, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

(S4.3)

## **Model Results**

Predevelopment and transient conditions were simulated by using the models described in the previous sections. Results for these models include residual analyses, simulated potentiometric levels for steady-state and transient conditions, and flow-budget analyses.

#### Approach to Model Calibration

Model calibration was accomplished by using a variety of approaches and tools that included trial-and-error and advanced parameter estimation. Calibration was performed in two stages or phases that included (1) steady-state flow model calibration and (2) transient-state flow model calibration.<sup>9</sup> Most of the field observations available for groundwater-flow model calibration included water-level measurements representing predevelopment conditions.

In phase 1, more than 700 water-level measurements were used to calibrate the steady-state model by using an automated parameter-estimation approach. A highly parameterized model—with more than 3,800 parameters—was calibrated using regularization and singular value decomposition. PEST 12 was used to conduct simulations and optimization. The parameters included 970 pilot points for each of four parameter groups—horizontal hydraulic conductivity for layers 1, 3, and 5 and recharge. A residual analysis was used to evaluate the goodness of the fit of the solution. Residual analysis includes a plot of observed potentiometric levels (heads or water-level measurements) versus residuals and a spatial analysis of the residuals.

Phase 2 included a trial-and-error approach in which hydrographs for multiple wells were compared against simulated water levels. The wells used for this comparison include the cluster in X24S (Figure S4.1). In this calibration phase, vertical anisotropy and temporal variation in recharge were adjusted to improve the match between observed and simulated water levels.

#### Steady-State (Predevelopment) Conditions

Observed water-level data presented in Table S4.8 (back of report) and described by Faye et al. (2013, Table S3.4) were used to evaluate the steady-state calibration results. Well-screen information was used to determine the most appropriate layer for comparing simulated water levels to measured water levels. The midpoint of the screen was used to determine the corresponding layer for each monitor well. Water-level measurements from supply wells with long or multiple screens were compared to flow-weighted (composite) simulated water levels. Flow-weighted water levels were obtained by adding the appropriate proportion of the simulated water levels from each model layer (Table S4.7). For example, the simulated water level for well HP-602 is obtained by adding about 27, 2, and 71 percent of the simulated level from layers 3, 4 and 5, respectively. Furthermore, simulated water levels for each well were spatially interpolated by using bilinear interpolation to facilitate direct comparisons to the location coordinates of the observation point. Simulated water levels were compared to observed values by calculating a residual to assess the goodness of fit of the calibration (Table S4.8). Residuals in this report are defined by using the equation:

where

equals the residual for pair *i* [L],

 $r_{i} = o_{i} - S_{i}$ ,

- $r_i$  equals the residual for pair *i* [L],  $o_i$  equals the observed or measured
- water level *i* [L],and
- *s<sub>i</sub>* equals the simulated water level paired to observation *i* [L].

Using the residual definition expressed in Equation S4.3, the average residual is 0.5 ft and the root-mean-square residual is 3.4 ft. Figure S4.11 shows simulated and observed results in a set of scatter plots. The results in these plots are shown for supply wells (blue circles) and other wells (orange circles). The minimum residual is -17.5 ft at well BldgSLCH4019\_MW10, and the maximum residual is 11.5 ft at Bldg45\_MW04 (Law).<sup>10</sup> Residuals for all layers were spatially plotted to determine the existence of any biases or trends (Figure S4.12). The majority (70 percent) of the residuals are between -2.5 ft and 2.5 ft. Some areas where the magnitude of the residuals tends to be higher include the Midway Park (LCH) area, Site 88, and Site 3 (See Maslia et al. 2013, Figure A1, for location).

Total simulated flow into the model domain was  $3.1 \times 10^6$  cubic feet (ft<sup>3</sup>). All of the flow coming into the model originates from recharge. Because the active domain is about 50 mi<sup>2</sup>, the recharge rate will average about 9.7 in/yr. About 37 percent of the flow discharges to the specified-head boundaries, and about 63 percent discharges to the drains. The simulated flow to drains is about 0.45 ft<sup>3</sup> per second per square mile and represents long-term average annual baseflow. The flow-budget error between simulated inflow and outflow is -0.5 percent. By comparison, the long-term average recharge rate estimated for the TT study area was 13.3 in/yr over an active model domain area of about 2.1 mi<sup>2</sup> (Faye and Valen-zuela 2007).

As indicated by the simulated potentiometric level, groundwater flows laterally from the highlands to the lowlands, discharging to the drains and specified-head boundaries (Figure S4.12). Simulated water levels range from 43.5 ft in the highland areas to less than 10 ft in the lowland areas to 0 ft along New River, Northeast Creek, and other tributaries; simulated water levels are similar for all layers. The simulated flow patterns and directions of groundwater flow shown in Figure S4.12 conform to the conceptual model and are in general agreement with those shown in Figure S4.4.

<sup>&</sup>lt;sup>9</sup>A third stage for fate and transport model calibration is discussed in Jones et al. (2013).

<sup>&</sup>lt;sup>10</sup>Refer to Faye et al. (2010, Plate 1) for building location.



**Figure S4.11.** Steady-state groundwater-flow model results shown as observed and simulated potentiometric levels, and observed potentiometric levels and corresponding residuals, steady-state groundwater-flow model calibration, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.



**Figure S4.12.** Simulated predevelopment (steady-state) potentiometric surface, directions of groundwater flow, and water-level residuals derived from the calibrated three-dimensional groundwater-flow model, Brewster Boulevard aquifer system, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

### **Transient-State (Pumping) Conditions**

The transient-state model simulates monthly conditions starting in January 1942 and ending in June 2008. Transient conditions include the effects of pumping from 96 supply wells that operated in the study area during different periods from 1942 to 2008 and the stress induced by variation in effective recharge. During July 1942, the first supply wells in the HPHB study area started pumping-wells HP-601, HP-602, HP-603, and HP-608 (Sautner et al. 2013). The groundwaterflow model readily simulates the effects of pumping wells in the HPIA where the simulated drawdown of the water table (Brewster Boulevard Aquifer system—model layer 1) is about 3-4 ft by July 1942 (Figure S4.13). In the HPLF, the wells operating at this time included HP-610 and HP-613, which produce a simulated water-table drawdown of about 6 ft (Figure S4.14). Most of the wells were pumping from the Upper Castle Hayne aquifer-model layer 5. Simulated potentiometric surface maps for model layer 5 during January 1951, January 1968, November 1984, and June 2008 are shown in Figure S4.15. Pumping for most of the supply wells in the HPIA began during 1942, causing the predevelopment potentiometric surface to change substantially. Pumping did not start until 1963 for some of the wells of interest in the HPIA (e.g., HP-634). By January 1968, some wells in the HPIA are pumping at lower rates due to the availability of additional supply wells; however, these wells still affected potentiometric levels (Figure S4.15). By November 1984, the influence of pumping at well HP-651 is prominent, and most of the wells in the HPIA area are pumping at a lower rate. By the end of the simulation period (June 2008), most supply wells in the HPIA and HPLF have been shut down, and the potentiometric surface returns to conditions similar to predevelopment conditions (Figure S4.12).

Only a few monitor wells in the study area contained continuous water-level data useful for assessment and calibration of the transient model. Continuous water levels for well cluster X24S, located southwest of Watkins Village, are particularly useful for this study (Figure S4.1). Three wells from this cluster (X24S7, X24S1, and X24S6) are open to aquifers represented in the groundwater-flow model, which are BBLAQ, UCHRBU, and UCHLU, respectively.11 Groundwater-level response-potentiometric levels and trends-for wells X24S1, X24S7, and X24S6 is similar and was previously described by Faye et al. (2013). X24S6 was selected for comparison of simulated results to observed results. Preliminary transient model simulations did not include temporal variation of recharge. However, analyses for well cluster X24S indicated that groundwater levels at this well—and for the corresponding aquifer (Upper Castle Hayne aquifer-Lower unit [UCHLU])-were probably influenced by precipitation (Faye 2012). As previously described in the Three-Dimensional Groundwater-Flow Model section, the calibrated recharge array was multiplied by a monthly factor that mimics the effect of precipitation variability. Initial simulations of the transient groundwater-flow model were conducted without temporal variability of recharge.

Figure S4.16 shows monthly measured water-level altitudes for well X24S6 in feet above National Geodetic Vertical Datum of 1929 (NGVD 29). Measured monthly water-level altitude ranges from 3.6 ft to 9.1 ft NGVD 29. The average and standard deviation measured water-level altitudes are 5.8 ft and 1.2 ft, respectively. In conjunction with the measured water levels, the simulated water-level results at X24S6 from two transient groundwater-flow simulations—cases a and b—are shown in Figure S4.16. The simulated water levels for well X24S6 range from 4.5 ft to 5.6 ft for case a and from 2.6 ft to 9.1 ft for case b. The average simulated water levels for cases a and b are 5.0 ft and 5.1 ft, respectively. When comparing *case b* results and measured water levels qualitatively, there are periods during which simulated and observed water levels trend in the same direction, but in other periods, water levels trend in opposite directions. As shown in Figure S4.16, temporal variability of recharge could explain the variability in observed water levels at well X24S6. In this figure, *case a* shows the simulated water levels when recharge is constant over time. Case b represents temporal variability of recharge.

<sup>&</sup>lt;sup>11</sup>See Table S4.1 for hydrogeologic unit abbreviations.



**Figure S4.13.** Simulated (*A*) potentiometric levels and (*B*) drawdowns, combined Brewster Boulevard aquifer, Brewster Boulevard upper confining unit, and Brewster Boulevard lower aquifer—model layer 1, stress period 7 (July 1942), Hadnot Point Industrial Area, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

- 0 — Simulated drawdown—Interval 1 feet

• HP-605 Water-supply well and identifier



# **Figure S4.14.** Simulated (*A*) potentiometric levels and (*B*) drawdowns, combined Brewster Boulevard aquifer, Brewster Boulevard upper confining unit, and Brewster Boulevard lower aquifer—model layer 1, stress period 7 (July 1942), Hadnot Point landfill area, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.



**Figure S4.15.** Simulated potentiometric levels for January 1951, January 1968, November 1984, and June 2008, combined Upper Castle Hayne aquifer–River Bend unit, Local confining unit, and Upper Castle Hayne aquifer–Lower unit—model layer 5, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.



**Figure S4.16.** Comparison of observed water-level altitude and simulated water-level altitude for well X24S6 for two cases of the transient groundwater-flow model: *case a* with temporal variability of recharge, and *case b* without temporal variability of recharge, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina. [Note: Date range for measured and simulated water-level altitude for *cases a* and *b* is March 1988 to June 2008.]

## **Sensitivity Analysis**

Sensitivity analysis has been described as a method used to ascertain the dependency of a given model output (e.g., water level, hydraulic head, or concentration) on model input parameters (e.g., hydraulic conductivity, pumping rate, or specified concentration)(Maslia et al. 2009b). Numerous methods are described in the literature for conducting sensitivity analyses. One such method, referred to as one-at-a-time design or experiment, is conducted by changing calibrated model input parameter values, one at a time, and then assessing the resulting variation on model output (Saltelli et al. 2000). Thus, the purpose of this Supplement 4 report section is to present and discuss the characterization of the groundwater model output sensitivity (e.g., simulated water levels) due to model input parameter variability.

### **Input Parameter Sensitivity Analysis**

For this study, the model input parameters included in the sensitivity analysis are horizontal hydraulic conductivity for layers 1-7, recharge, and pumping rate. Results of sensitivity analyses are commonly reported as a metric, such as the root-mean-square. The sensitivity analysis was conducted by multiplying the calibrated parameter arrays—one parameter at a time—by a parameter multiplier that ranged from 0.1 to 10. The root-mean-square and mean water-level residual are the specific sensitivity analysis metrics and were calculated for each model simulation using observed water levels from Table S4.8 and are shown graphically in Figure S4.17. The figure contains the results for sensitivity analyses for recharge and horizontal hydraulic conductivity for all layers combined and for each layer individually. The multiplier value of 1 on the abscissa indicates a calibrated model parameter value. Results indicate that horizontal hydraulic conductivity for all layers (combined) and recharge are the most sensitive parameters. The sensitivity analyses for changes to horizontal hydraulic conductivity for individual layers (1-7) indicate that layer 5 is the most sensitive of all individual layers for parameter multipliers greater than 1.0. For parameter multipliers less than 1.0, horizontal hydraulic conductivities in layers 1 and 5 are the most sensitive parameters. However, at the lower limit of the sensitivity analysis (multiplier of 0.1), horizontal hydraulic conductivities of layers 2 and 4 are as sensitive as layer 5.



**Figure S4.17.** Sensitivity-analysis results for groundwaterflow model parameters in terms of (*A*) root-mean-square of water-level residual, and (*B*) mean of water-level residual, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

#### Variably Spaced Grid Sensitivity Analysis

Simulations for the TT study area indicated a finite difference grid consisting of cells of 50 ft (per side) or less was required for fate and transport simulations to minimize numerical dispersion and oscillations (Faye 2008). Therefore, variably spaced grid models consisting of cells 50 ft (per side) for the HPIA and HPLF model subdomains (Figure S4.6) were developed; sensitivity analyses were conducted using the variably spaced grid models (50-ft per side cells). Results using the calibrated model grid size (300-ft per side cells) and the variably spaced grid models (50-ft per side cells in the HPIA and HPLF area) are described below.

The HPIA variably spaced model grid is subdivided into 288 rows, 298 columns, and 7 layers. This refinement represents an increase of 328 percent in the number of cells from the 300-ft uniform grid model. Similarly, the HPLF variably spaced model grid is subdivided into 348 rows, 268 columns, and 7 layers, representing an increase of 357 percent in the number of cells.<sup>12</sup> As with the calibrated model grid, the layers corresponded to the hydrogeologic units listed in Table S4.1. Variably spaced grid model properties (e.g., horizontal hydraulic conductivity, horizontal anisotropy, recharge) are identical to the 300-ft uniform grid model. Within the HPIA and HPLF subdomain areas (Figure S4.6), 36 cells ( $6 \times 6$ ) of 50 ft  $\times$  50 ft occupy one 300-ft  $\times$  300-ft cell of the calibrated model.

Individual variably spaced grid models for the HPIA and HPLF were created based on the 300-ft uniform grid model (Figure S4.6). Refinement for both models was performed to obtain a finite difference grid consisting of 50-ft (per side) square cells in the HPIA and HPLF areas. These areas are referred to as contaminant fate and transport subdomains in Maslia et al. (2013). Grid refinement was conducted to minimize the contrast in cell size between adjacent cells. The ratio of cell sizes for adjacent cells is 1.5 or less, except for a limited number of columns and rows where the ratio is 2. Grid refinement was accomplished using ModelMuse (Winston 2009).

Simulated potentiometric levels (heads) for the uniform and variably spaced grid models were compared to determine the equivalency of the model results. For the HPIA variably spaced grid model, the difference in simulated heads for most of the subdomain area is within 0.5 ft of the results obtained from the uniform grid model (Figure S4.18). The largest difference occurs near Cogdels Creek where the simulated heads for the HPIA variably spaced grid model are about 1-2 ft lower than the heads simulated by the uniform grid model for model layer 1. Similar differences occur for model layers 2–7. For the HPLF variably spaced grid model, the largest difference occurs in the upland areas along the southeastern boundary of the model at the headwaters of Frenchs Creek and its tributaries and in the extreme northeast boundary north of the headwaters of Wallace Creek (Figure S4.19). In those areas, simulated heads for the HPLF variably spaced grid model are nearly 4 ft lower than heads simulated by the uniform grid model. Elsewhere, the HPLF model simulated heads about 2 ft lower than the uniform grid model. Despite the aforementioned discrepancy, groundwater gradients are similar in magnitude and direction throughout the HPLF variably spaced grid model area (50-ft  $\times$  50-ft cells) when compared with the uniform grid model (300-ft×300-ft cells) for the same area.

#### **Cell-Size Sensitivity Analysis**

A sensitivity analysis was conducted in the HPIA and HPLF subdomain areas to determine the effects of reducing cell sizes from 50 ft per side to 25 ft per side. For this analysis, refined model grids-within the HPIA and HPLF subdomain areas—consisting of 25 ft per side were used in the areas surrounding water-supply wells (Figure S4.1). The cell dimensions of the refined grid were 25 ft along each cell side (see Figures S4.13 and S4.14 for locations). Water levels simulated using the refined model grid (25-ft cells) were compared to water levels simulated using the variably spaced grid model (50-ft cells) at well HP-602 for the HPIA model subdomain and at well HP-651 for the HPLF model subdomain. Results are presented for January 1968 and November 1984 for watersupply well HP-602 and for July 1972 and November 1984 for well HP-651. Figure S4.20 shows that water levels simulated using the refined and variably spaced grid models (50-ft and 25-ft cells, respectively) are nearly identical. For example, during January 1968, the simulated water level at well HP-602 using the 50-ft model grid was 5.3 ft; for the 25-ft model grid, the simulated water level was 4.6 ft. Thus, sensitivity to a 50-percent reduction in cell dimension (75-percent reduction in cell area) within the model subdomain areas is apparent only in the immediate vicinity of a model cell with a pumping well, and the difference in simulated water levels at these cells is small compared to total simulated drawdown.

 $<sup>^{12}</sup>$  See Maslia et al. (2013, Table A10) for a comprehensive listing of all model grid dimensions.



**Figure S4.18.** Simulated potentiometric levels for layer 1 for the uniform grid model and the Hadnot Point Industrial Area (HPIA) variably spaced grid model, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.



**Figure S4.19.** Simulated potentiometric levels for layer 1 for the uniform grid model and the Hadnot Point landfill (HPLF) area variably spaced grid model, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.



**Figure S4.20.** Simulated water levels along designated model row containing water-supply wells HP-602 and HP-651 using finite-difference cell dimensions of 50 feet per side and 25 feet per side, Hadnot Point–Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.

# Discussion

Analyses and interpretations of the groundwater-flow model results should be considered in the context of model limitations and accuracy of water-level data. Results from the calibrated groundwater-flow model are used to estimate contaminant concentrations in groundwater; therefore, it is also important to consider the accuracy of the flow model results in the context of contaminant fate and transport results. Analyses of the variability of contaminant concentration due to changes in groundwater-flow model (i.e., horizontal hydraulic conductivity and recharge) are presented by Jones et al. (2013).

## **Measured Water-Level Data**

More than 13,000 static water-level measurements were obtained from various documents published to summarize results of CERCLA and RCRA groundwater contaminant investigations (Faye et al. 2010, 2012). Water-level data used for calibration and analyses in this report are further described by Faye et al. (2013). Water-level measurements analyzed and used for model calibration include (1) static water-level measurements, which were used for steady-state model assessment and calibration, and (2) continuous water-level measurements, which were used for transient-state model calibration. In general, measured water-level data used in this study are subjected to errors due to, among others, the following: (1) uncertainty of measurement datum (vertical), (2) uncertainty of well location, and (3) measurement and reporting errors. Some of these errors can be minimized or recognized by comparing data from multiple sources when available. For example, land-surface altitude-which is commonly used to determine water-level altitude-was obtained on some occasions from multiple sources, including drillers' reports, topographic maps, and DEMs. The discrepancies observed among land-surface altitudes from these multiple sources were generally less than 1 ft; the most reliable source was selected. Measurement errors also were minimized by using a filtering process described in Faye et al. (2013). Reporting errors were noted in some instances and were corrected during the data-entry process. For example, on some occasions, the water depth was reported as water altitude. Many supply wells were equipped with tubing to obtain airline measurements, which are known to be less accurate than sounders or tape measurements (Driscoll 1986). To minimize measurement errors, airline measurements were not used. The period of available data in some instances was limited. Measured waterlevel data used for steady-state model calibration were only available for partial periods of time; for example, more than 75 percent of static water-level measurements were obtained after January 1985. Predevelopment conditions occurred in the 1940s when most supply wells were not available; therefore, some static water-level measurements could have been affected by nearby pumping wells (Faye et al. 2013).

Transient model calibration should be considered within the context of the available data. Most of the reliable (e.g., tape measurements) water-level measurements for supply wells were obtained during maintenance operations when wells were out of service or turned off. Water-level measurements during pumping were airline measurements and are considered to be poor data. Therefore, water-level data at most supply wells do not represent—or poorly represent—pumping conditions. In addition, continuous water-level data were spatially limited to only a few locations (Faye 2012); however, daily data from 1988 to 2008 were available for well X24S6. Continuous water-level data obtained during aquifer tests were available for many supply wells; however, the periods of these tests are minutes, and the model results are interpreted to represent monthly mean values.

When comparing simulated water levels to measured water levels, several aspects should be considered. For example, the time scale of the measurement should be taken into account because some field measurements represent conditions of short duration (e.g., minutes to days) whereas simulated values represent monthly mean values. Therefore, the model formulation and results are not applicable to events of short duration—this would include short periods of high recharge due to high intensity rainfall. Also, certain hydrogeologic features (e.g., perched water table) are not represented in the model, and these features may be the cause of discrepancies between simulated and measured values.

### **Model Limitations**

The groundwater-flow model described in this supplement was constructed using the MODFLOW family of finitedifference codes. Because no natural boundary conditions exist near the sites of interest—HPIA and HPLF—a uniform grid model extending to the natural hydrologic boundaries was constructed. In cases like this, finite-difference analysis has the disadvantage of using large grids that are not easily refined for additional analysis—such as contaminant fate and transport. Another disadvantage of a coarse grid is that stressed simulated water levels may not be comparable with measured water levels. In other words, the simulated drawdown obtained using a coarse model grid usually underestimates the measured drawdown value. Because the calibration process did not include comparing simulated and observed drawdown levels, the effect of the calibration performance due to the coarse grid is limited.

Vertical discretization of the model was based on limited geophysical data. From 931 data points available to describe the hydrogeologic framework, only 6 data points contained information for the top of the Lower Castle Hayne confining unit (layer 7). Therefore, the thickness of hydrogeologic units should be considered an approximation. In addition, multiple hydrogeologic units were combined into multiple layers. For example, layers 1 and 5 contain multiple hydrogeologic units (Table S4.1). However, contaminant transport model results typically are more sensitive than groundwater-flow model results to the combination of multiple hydrogeologic units in a model layer. Drains (simulated using the DRN package in MODFLOW) were used to simulate groundwater discharge to various creeks and streams, including sections of Wallace Creek. Drains can only be used to remove water from the aquifer. Historical aerial images show the prevalence of surface water over time in upstream areas of Wallace Creek. Although there is no information to correctly determine if Wallace Creek behaved as a losing stream at times, the assumption that Wallace Creek always behaves as a gaining stream is probably appropriate.

A specified-head boundary was used in MODFLOW to simulate New River. The sections of New River included in the model are a tidal estuary of the Atlantic Ocean, and the long-term average water level resembles sea level. Data from a stream station (U.S. Geological Survey site 0209303205) located at New River near Highway 17 indicate that the water level varies about 1–2 ft (U.S. Geological Survey 2011). However, this station is located in a section of New River that is probably more affected by river conditions than the estuary conditions; therefore, variability of head in the estuary is probably lower. The assumption that sea level (specified-head boundary) was constant is probably appropriate.

No-flow (zero flux) boundaries were used to represent groundwater divides that coincide with topographic divides. These no-flow boundaries probably shifted over time due to pumping and seasonal effects (e.g., slight changes in recharge). Although the boundary locations change over time, probably the long-term average location is relatively fixed.

Model calibration in this study was accomplished by using trial-and-error and parameter estimation methods in a complementary manner. Parameter estimation was used to extract maximum information from the data. For example, more than 700 water-level measurements were available to calibrate the steady-state model. Most of the water-level measurements correspond to layers 1, 3, and 5. In addition, soil data were available for estimation of areas of low and high infiltration. Therefore, parameter estimation was appropriate for the steady-state model calibration phase to determine recharge and hydraulic conductivity for layers 1, 3, and 5. Because water-level measurements representing layer 7 were scarce, hydraulic conductivity for layer 7 was not modified from initial estimates that were based on available data from aquifer tests. Other parameters, including specific yield and specific storage, were not varied from initial estimates, which were based on values provided by Faye and Valenzuela (2007). Additional analyses, in which these parameters were varied, indicate no effect on specific discharge or velocity values, which in turn are necessary for fate and transport simulations. More rigourous sensitivity analyses could be conducted by computing the covariance matrix. However, initial simulations indicated that computing the covariance matrix using parameter estimation was time prohibited in terms of computational times using equipment available to authors at the time model calibration and sensitivity analyses were conducted.

## Acknowledgment

Authors acknowledge the assistance of Robert E. Faye, consultant to Eastern Research Group, Inc., for review and analyses of water-level data, review of the groundwater-flow model calibration, and review of this supplement in its entirety.

## References

- Anderson MP and Woessner WW. Applied Groundwater Modeling: Simulation of Flow and Advective Transport: Academic Press, Inc.; 1992.
- Baker Environmental, Inc. Final Feasibility Study for Operable Unit No. 1 (Sites 21, 24, and 78), Marine Corps Base Camp Lejeune, North Carolina; 1994. Contract Task Order 0177, Contract No.: N62470-89-D-4814 (CERCLA Administrative Record File #1256).
- Baker Environmental, Inc. Basewide Remediation Assessment Groundwater Study (BRAGS), Marine Corps Base Camp Lejeune, North Carolina; 1998a. Contract Task Order 0140, Contract No.: N62470-89-D-4814 (CERCLA Administrative Record File #02013).
- Baker Environmental, Inc. Groundwater Modeling Report, Operable Unit No. 9, Site 73—Amphibious Vehicle Maintenance Facility, Marine Corps Base Camp Lejeune, North Carolina; 1998b. Contract Task Order 0312, Contract No.: N62470-89-D-4814 (CERCLA Administrative Record File #02583).

Bear J. Hydraulics of Groundwater. McGraw-Hill, Inc.; 1979.

- Cardinell AP, Berg SA, and Lloyd OB Jr. Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina. U.S. Geological Survey Water-Resources Investigations Report 93–4049; 1993.
- CH2M HILL. Final Site Management Plan, Fiscal Year 2006, Marine Corps Base (MCB) Camp Lejeune, North Carolina. Norfolk, VA: Naval Facilities Engineering Command, Atlantic Division; 2006. Contract No.: N62470-03-D-4186.
- Doherty J. PEST: Model Independent Parameter Estimation: User Manual; 2010. [cited 2012 July 24]; Available from *http://www.pesthomepage.org/Downloads.php*.
- Doherty J. MODFLOW-ASP: Using MODFLOW-2000 with PEST-ASP; 2011. [cited 2011 December 2]; Available from *http://www.pesthomepage.org/getfiles.php?file=mf2pest.pdf*.
- Doherty JE, Fienen MN, and Hunt RJ. Approaches to Highly Parameterized Inversion: Pilot-Point Theory, Guidelines, and Research Directions: U.S. Geological Survey Scientific Investigations Report 2010–5168; 2010, 36 p.

#### References

- Driscoll FG. Groundwater and Wells. 2nd ed. Johnson Division; 1986.
- Faye RE. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter B: Geohydrologic Framework of the Castle Hayne Aquifer System. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007.
- Faye RE. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter F: Simulation of the Fate and Transport of Tetrachloroethylene (PCE). Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2008.
- Faye RE. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina— Chapter B: Geohydrologic Framework of the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer and Confining Unit. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2012.
- Faye RE, Anderson BA, Suárez-Soto RJ, and Sautner JB. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter C: Occurrence of Selected Contaminants in Groundwater at Installation Restoration Program Sites. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2010.
- Faye RE, and Green JW Jr. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter E: Occurrence of Contaminants in Groundwater. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007.

- Faye RE, Jones LE, and Suárez-Soto RJ. Descriptions and Characterizations of Water-Level Data and Groundwater Flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer—Supplement 3. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore, SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.
- Faye RE, Suárez-Soto RJ, and Maslia ML. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter D: Occurrence of Selected Contaminants in Groundwater at Above-Ground and Underground Storage Tank (AST/UST) Sites. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2012.
- Faye RE and Valenzuela C. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter C: Simulation of Groundwater Flow. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007.
- Freeze RA and Witherspoon PA. Theoretical Analysis of Regional Groundwater Flow—1. Analytical and Numerical Solutions to the Mathematical Model: Water Resources Research. 1966;2(4).
- Freeze RA and Witherspoon PA. Theoretical Analysis of Regional Groundwater Flow—2. Effect of Water-Table Configuration and Subsurface Permeability Variation: Water Resources Research. 1967;3(2).
- Geophex, Ltd. Final Report on Groundwater Resource Evaluation at Marine Corps Air Station, New River, Engineering Study 93–09; 1994.
- Geophex, Ltd. Geophysical Investigation at Building 645 Site, MCB Camp Lejeune, NC, Final Report, 2001 (UST Management Web Portal File #720).

- Geophex, Ltd. Geophysical Investigation at the Former Fuel Facility and Surrounding Areas, Hadnot Point, MCB Camp Lejeune, NC, Volume I: Interim report; 2002 (Leaking Underground Storage Tank Program File #450).
- Giese GL, Eimers JL, and Coble RW. Simulation of Ground-Water Flow in the Coastal Plain Aquifer System of North Carolina. U.S. Geological Survey Professional Paper 1404-M; 1997.
- Harbaugh AW. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process. U.S. Geological Survey Techniques and Methods 6-A16; 2005.
- Harbaugh AW, Banta ER, Hill MC, and McDonald MG. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process. U.S. Geological Survey Open-File Report 00–92; 2000, 121 p.
- Harned DA, Lloyd OB Jr, and Treece MW Jr. Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina. Raleigh, NC: U.S. Geological Survey Water-Resources Investigations Report 89–4006; 1989.
- Hubbard MK. The Theory of Groundwater Motion, Part 1, Part 2. The Journal of Geology. 1940; XLVIII.
- Jang W, Anderson BA, Suárez-Soto RJ, Aral MM, and Maslia ML. Source Characterization and Simulation of the Migration of Light Nonaqueous Phase Liquids (LNAPLs) in the Vicinity of the Hadnot Point Industrial Area— Supplement 7. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.

- Jang W and Aral MM. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter G: Simulation of Three-Dimensional Multispecies, Multiphase Mass Transport of Tetrachloroethylene (PCE) and Associated Degradation By-Products. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2008.
- Jones LE, Suárez-Soto RJ, Anderson BA, and Maslia ML. Source Characterization and Simulation of Fate and Transport of Selected Volatile Organic Compounds in the Vicinities of the Hadnot Point Industrial Area and Landfill—Supplement 6. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.
- Konikow LF, Hornberger GZ, Halford KJ, and Hanson RT. Revised Multi-Node Well (MNW2) Package for MOD-FLOW Ground-Water Flow Model. U.S. Geological Survey Techniques and Methods 6-A30; 2009, 67 p.
- Kresic N. Hydrogeology and Groundwater Modeling. CRC Press LLC; 1997.
- Maslia ML, Sautner JB, Faye RE, Suárez-Soto RJ, Aral MM, Grayman WM, Jang W, Wang J, Bove FJ, Ruckart PZ, Valenzuela C, Green JW Jr, and Krueger, AL. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter A: Summary of Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007.
- Maslia ML, Aral MM, Faye RE, Suárez-Soto RJ, Sautner JB, Wang J, Jang W, Bove FJ, and Ruckart PZ. Reconstructing Historical Exposures to Volatile Organic Compound-Contaminated Drinking Water at a U.S. Military Base. Water Quality, Exposure and Health. 2009a; 1(1):49–68.

#### References

- Maslia ML, Suárez-Soto RJ, Wang J, Aral MM, Sautner JB, and Valenzuela C. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Chapter I: Parameter Sensitivity, Uncertainty, and Variability Associated with Model Simulations of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2009b.
- Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.
- McDonald MG, and Harbaugh AW. A Modular Three-Dimensional Finite-Difference Groundwater-Flow Model. U.S. Geological Survey Open-File Report 83–875; 1984.
- National Oceanic and Atmospheric Administration. Marine Geophysical Trackline Data; 2008. [cited 2008 December]; Available from *http://www.ngdc.noaa.gov/mgg/geodas/ trackline.html*.
- Saltelli A, Chan K, and Scott EM, eds. Sensitivity Analysis. Chichester, England: John Wiley & Sons, Ltd; 2000.
- Sautner JB, Suárez-Soto RJ, Anderson BA, and Maslia ML. Descriptions and Characterizations of Data Pertinent to Water-Supply Well Capacities, Histories, and Operations— Supplement 1. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.
- Schwartz FW and Zhang H. Fundamentals of Ground Water. New York, NY: John Wiley and Sons, Inc.; 2003.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Onslow County, North Carolina; 2009. [cited 2010 November 4]; Available from *http://soildatamart.nrcs.usda.gov*.

Telci IT, Sautner JB, Suárez-Soto RJ, Anderson BA, Maslia ML, and Aral MM. Development and Application of a Methodology to Characterize Present-Day and Historical Water-Supply Well Operations—Supplement 2. In: Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, and Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and Findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013.

- Toth JA. Theoretical Analysis of Groundwater Motion in Small Drainage Basins in Central Alberta, Canada. Journal of Geophysical Research. 1962;67(11).
- Toth JA. Theoretical Analysis of Groundwater Motion in Small Drainage Basins. Journal of Geophysical Research. 1963;68(16).
- U.S. Army Engineer Research and Development Center. Department of Defense Groundwater Modeling System (GMS), version 8. Vicksburg, MS: U.S. Army Corps of Engineers, Engineer Research and Development Center; 2008. [cited 2012 March 2]; Available from *http://chl.erdc. usace.army.mil/gms*.
- U.S. Geological Survey. National Elevation Dataset, Seamless Server; 2010. [cited 2010 August 18]; Available from *http://ned.usgs.gov/*.
- U.S. Geological Survey. National Water Information System, Web Interface for USGS 0209303205 New River Below HWY17 Bridge at Jacksonville, NC; 2011. [cited 2011 June 5]; Available from *http://waterdata.usgs.gov/nwis/ inventory/?site\_no=0209303205&agency\_cd=USGS&amp.*
- Winston RB. ModelMuse—A Graphical User Interface for MODFLOW–2005 and PHAST. U.S. Geological Survey Techniques and Methods 6–A29; 2009.

Tables S4.6 and S4.8

[Jan., January; Feb., February; Mar., March; Apr., April; Aug., August; Sept., September; Oct., October; Nov., November; Dec., December]

| Stress | Month<br>and year      | Stress   | Month<br>and year | Stress | Month<br>and year | Stress | Month<br>and year      |
|--------|------------------------|----------|-------------------|--------|-------------------|--------|------------------------|
| 1      | Ion 1042               | 40       | Jan 1046          | 07     | Jan 1050          | 145    | Inp. 1054              |
| 1      | Jan. 1942<br>Feb. 1942 | 49<br>50 | Feb 1946          | 97     | Feb 1950          | 145    | Jan. 1954<br>Feb. 1954 |
| 2      | Mar 1942               | 51       | Mar 1946          | 99     | Mar 1950          | 140    | Mar 1954               |
| 1      | Apr. $1942$            | 52       | Apr. $1946$       | 100    | Apr. 1950         | 147    | Apr. 1954              |
| 5      | May 1942               | 53       | May 1946          | 100    | May 1950          | 140    | May 1954               |
| 6      | June 1942              | 54       | June 1946         | 101    | June 1950         | 150    | June 1954              |
| 7      | July 1942              | 55       | July 1946         | 102    | July 1950         | 150    | July 1954              |
| 8      | Aug 1942               | 56       | Aug 1946          | 103    | Aug 1950          | 151    | Aug 1954               |
| 9      | Sent 1942              | 57       | Sent 1946         | 101    | Sept 1950         | 152    | Sent 1954              |
| 10     | Oct 1942               | 58       | Oct 1946          | 105    | Oct 1950          | 155    | Oct 1954               |
| 11     | Nov 1942               | 59       | Nov 1946          | 107    | Nov 1950          | 155    | Nov 1954               |
| 12     | Dec. 1942              | 60       | Dec 1946          | 107    | Dec 1950          | 155    | Dec. 1954              |
| 13     | Ian 1943               | 61       | Ian 1947          | 109    | Ian 1951          | 157    | Ian 1955               |
| 14     | Feb 1943               | 62       | Feb 1947          | 110    | Feb 1951          | 158    | Feb 1955               |
| 15     | Mar 1943               | 63       | Mar 1947          | 111    | Mar 1951          | 150    | Mar 1955               |
| 16     | Apr 1943               | 64       | Apr 1947          | 112    | Apr 1951          | 160    | Apr 1955               |
| 17     | May 1943               | 65       | May 1947          | 113    | May 1951          | 161    | May 1955               |
| 18     | June 1943              | 66       | June 1947         | 114    | June 1951         | 162    | June 1955              |
| 19     | July 1943              | 67       | July 1947         | 115    | July 1951         | 163    | July 1955              |
| 20     | Aug 1943               | 68       | Aug 1947          | 116    | Aug 1951          | 164    | Aug 1955               |
| 21     | Sept 1943              | 69       | Sept 1947         | 117    | Sept 1951         | 165    | Sept 1955              |
| 22     | Oct 1943               | 70       | Oct 1947          | 118    | Oct 1951          | 166    | Oct 1955               |
| 23     | Nov. 1943              | 71       | Nov. 1947         | 119    | Nov. 1951         | 167    | Nov. 1955              |
| 24     | Dec. 1943              | 72       | Dec. 1947         | 120    | Dec. 1951         | 168    | Dec. 1955              |
| 25     | Jan. 1944              | 73       | Jan. 1948         | 121    | Jan. 1952         | 169    | Jan. 1956              |
| 26     | Feb. 1944              | 74       | Feb. 1948         | 122    | Feb. 1952         | 170    | Feb. 1956              |
| 27     | Mar. 1944              | 75       | Mar. 1948         | 123    | Mar. 1952         | 171    | Mar. 1956              |
| 28     | Apr. 1944              | 76       | Apr. 1948         | 124    | Apr. 1952         | 172    | Apr. 1956              |
| 29     | May 1944               | 77       | May 1948          | 125    | May 1952          | 173    | May 1956               |
| 30     | June 1944              | 78       | June 1948         | 126    | June 1952         | 174    | June 1956              |
| 31     | July 1944              | 79       | July 1948         | 127    | July 1952         | 175    | July 1956              |
| 32     | Aug. 1944              | 80       | Aug. 1948         | 128    | Aug. 1952         | 176    | Aug. 1956              |
| 33     | Sept. 1944             | 81       | Sept. 1948        | 129    | Sept. 1952        | 177    | Sept. 1956             |
| 34     | Oct. 1944              | 82       | Oct. 1948         | 130    | Oct. 1952         | 178    | Oct. 1956              |
| 35     | Nov. 1944              | 83       | Nov. 1948         | 131    | Nov. 1952         | 179    | Nov. 1956              |
| 36     | Dec. 1944              | 84       | Dec. 1948         | 132    | Dec. 1952         | 180    | Dec. 1956              |
| 37     | Jan. 1945              | 85       | Jan. 1949         | 133    | Jan. 1953         | 181    | Jan. 1957              |
| 38     | Feb. 1945              | 86       | Feb. 1949         | 134    | Feb. 1953         | 182    | Feb. 1957              |
| 39     | Mar. 1945              | 87       | Mar. 1949         | 135    | Mar. 1953         | 183    | Mar. 1957              |
| 40     | Apr. 1945              | 88       | Apr. 1949         | 136    | Apr. 1953         | 184    | Apr. 1957              |
| 41     | May 1945               | 89       | May 1949          | 137    | May 1953          | 185    | May 1957               |
| 42     | June 1945              | 90       | June 1949         | 138    | June 1953         | 186    | June 1957              |
| 43     | July 1945              | 91       | July 1949         | 139    | July 1953         | 187    | July 1957              |
| 44     | Aug. 1945              | 92       | Aug. 1949         | 140    | Aug. 1953         | 188    | Aug. 1957              |
| 45     | Sept. 1945             | 93       | Sept. 1949        | 141    | Sept. 1953        | 189    | Sept. 1957             |
| 46     | Oct. 1945              | 94       | Oct. 1949         | 142    | Oct. 1953         | 190    | Oct. 1957              |
| 47     | Nov. 1945              | 95       | Nov. 1949         | 143    | Nov. 1953         | 191    | Nov. 1957              |
| 48     | Dec. 1945              | 96       | Dec. 1949         | 144    | Dec. 1953         | 192    | Dec. 1957              |

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

[Jan., January; Feb., February; Mar., March; Apr., April; Aug., August; Sept., September; Oct., October; Nov., November; Dec., December]

| Stress | Month      | Stress | Month      | Stress | Month      | Stress | Month      |
|--------|------------|--------|------------|--------|------------|--------|------------|
| period | and year   |
| 193    | Jan. 1958  | 241    | Jan. 1962  | 289    | Jan. 1966  | 337    | Jan. 1970  |
| 194    | Feb. 1958  | 242    | Feb. 1962  | 290    | Feb. 1966  | 338    | Feb. 1970  |
| 195    | Mar. 1958  | 243    | Mar. 1962  | 291    | Mar. 1966  | 339    | Mar. 1970  |
| 196    | Apr. 1958  | 244    | Apr. 1962  | 292    | Apr. 1966  | 340    | Apr. 1970  |
| 197    | May 1958   | 245    | May 1962   | 293    | May 1966   | 341    | May 1970   |
| 198    | June 1958  | 246    | June 1962  | 294    | June 1966  | 342    | June 1970  |
| 199    | July 1958  | 247    | July 1962  | 295    | July 1966  | 343    | July 1970  |
| 200    | Aug. 1958  | 248    | Aug. 1962  | 296    | Aug. 1966  | 344    | Aug. 1970  |
| 201    | Sept. 1958 | 249    | Sept. 1962 | 297    | Sept. 1966 | 345    | Sept. 1970 |
| 202    | Oct. 1958  | 250    | Oct. 1962  | 298    | Oct. 1966  | 346    | Oct. 1970  |
| 203    | Nov. 1958  | 251    | Nov. 1962  | 299    | Nov. 1966  | 347    | Nov. 1970  |
| 204    | Dec. 1958  | 252    | Dec. 1962  | 300    | Dec. 1966  | 348    | Dec. 1970  |
| 205    | Jan. 1959  | 253    | Jan. 1963  | 301    | Jan. 1967  | 349    | Jan. 1971  |
| 206    | Feb. 1959  | 254    | Feb. 1963  | 302    | Feb. 1967  | 350    | Feb. 1971  |
| 207    | Mar. 1959  | 255    | Mar. 1963  | 303    | Mar. 1967  | 351    | Mar. 1971  |
| 208    | Apr. 1959  | 256    | Apr. 1963  | 304    | Apr. 1967  | 352    | Apr. 1971  |
| 209    | May 1959   | 257    | May 1963   | 305    | May 1967   | 353    | May 1971   |
| 210    | June 1959  | 258    | June 1963  | 306    | June 1967  | 354    | June 1971  |
| 211    | July 1959  | 259    | July 1963  | 307    | July 1967  | 355    | July 1971  |
| 212    | Aug. 1959  | 260    | Aug. 1963  | 308    | Aug. 1967  | 356    | Aug. 1971  |
| 213    | Sept. 1959 | 261    | Sept. 1963 | 309    | Sept. 1967 | 357    | Sept. 1971 |
| 214    | Oct. 1959  | 262    | Oct. 1963  | 310    | Oct. 1967  | 358    | Oct. 1971  |
| 215    | Nov. 1959  | 263    | Nov. 1963  | 311    | Nov. 1967  | 359    | Nov. 1971  |
| 216    | Dec. 1959  | 264    | Dec. 1963  | 312    | Dec. 1967  | 360    | Dec. 1971  |
| 217    | Jan. 1960  | 265    | Jan. 1964  | 313    | Jan. 1968  | 361    | Jan. 1972  |
| 218    | Feb. 1960  | 266    | Feb. 1964  | 314    | Feb. 1968  | 362    | Feb. 1972  |
| 219    | Mar. 1960  | 267    | Mar. 1964  | 315    | Mar. 1968  | 363    | Mar. 1972  |
| 220    | Apr. 1960  | 268    | Apr. 1964  | 316    | Apr. 1968  | 364    | Apr. 1972  |
| 221    | May 1960   | 269    | May 1964   | 317    | May 1968   | 365    | May 1972   |
| 222    | June 1960  | 270    | June 1964  | 318    | June 1968  | 366    | June 1972  |
| 223    | July 1960  | 271    | July 1964  | 319    | July 1968  | 367    | July 1972  |
| 224    | Aug. 1960  | 272    | Aug. 1964  | 320    | Aug. 1968  | 368    | Aug. 1972  |
| 225    | Sept. 1960 | 273    | Sept. 1964 | 321    | Sept. 1968 | 369    | Sept. 1972 |
| 226    | Oct. 1960  | 274    | Oct. 1964  | 322    | Oct. 1968  | 370    | Oct. 1972  |
| 227    | Nov. 1960  | 275    | Nov. 1964  | 323    | Nov. 1968  | 371    | Nov. 1972  |
| 228    | Dec. 1960  | 276    | Dec. 1964  | 324    | Dec. 1968  | 372    | Dec. 1972  |
| 229    | Jan. 1961  | 277    | Jan. 1965  | 325    | Jan. 1969  | 373    | Jan. 1973  |
| 230    | Feb. 1961  | 278    | Feb. 1965  | 326    | Feb. 1969  | 374    | Feb. 1973  |
| 231    | Mar. 1961  | 279    | Mar. 1965  | 327    | Mar. 1969  | 375    | Mar. 1973  |
| 232    | Apr. 1961  | 280    | Apr. 1965  | 328    | Apr. 1969  | 376    | Apr. 1973  |
| 233    | May 1961   | 281    | May 1965   | 329    | May 1969   | 377    | May 1973   |
| 234    | June 1961  | 282    | June 1965  | 330    | June 1969  | 378    | June 1973  |
| 235    | July 1961  | 283    | July 1965  | 331    | July 1969  | 379    | July 1973  |
| 236    | Aug. 1961  | 284    | Aug. 1965  | 332    | Aug. 1969  | 380    | Aug. 1973  |
| 237    | Sept. 1961 | 285    | Sept. 1965 | 333    | Sept. 1969 | 381    | Sept. 1973 |
| 238    | Oct. 1961  | 286    | Oct. 1965  | 334    | Oct. 1969  | 382    | Oct. 1973  |
| 239    | Nov. 1961  | 287    | Nov. 1965  | 335    | Nov. 1969  | 383    | Nov. 1973  |
| 240    | Dec. 1961  | 288    | Dec. 1965  | 336    | Dec. 1969  | 384    | Dec. 1973  |

[Jan., January; Feb., February; Mar., March; Apr., April; Aug., August; Sept., September; Oct., October; Nov., November; Dec., December]

| Stress<br>period | Month<br>and year |
|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|
| 385              | Ian 1974          | 433              | Ian 1978          | 481              | Ian 1982          | 529              | Ian 1986          |
| 386              | Feb 1974          | 434              | Feb 1978          | 482              | Feb 1982          | 530              | Feb 1986          |
| 387              | Mar 1974          | 435              | Mar 1978          | 483              | Mar 1982          | 531              | Mar 1986          |
| 388              | Apr 1974          | 436              | Apr 1978          | 484              | Apr 1982          | 532              | Apr 1986          |
| 389              | May 1974          | 437              | May 1978          | 485              | May 1982          | 533              | May 1986          |
| 390              | June 1974         | 438              | June 1978         | 486              | June 1982         | 534              | June 1986         |
| 391              | July 1974         | 439              | July 1978         | 487              | July 1982         | 535              | July 1986         |
| 392              | Aug. 1974         | 440              | Aug. 1978         | 488              | Aug. 1982         | 536              | Aug. 1986         |
| 393              | Sept. 1974        | 441              | Sept. 1978        | 489              | Sept. 1982        | 537              | Sept. 1986        |
| 394              | Oct. 1974         | 442              | Oct. 1978         | 490              | Oct. 1982         | 538              | Oct. 1986         |
| 395              | Nov. 1974         | 443              | Nov. 1978         | 491              | Nov. 1982         | 539              | Nov. 1986         |
| 396              | Dec. 1974         | 444              | Dec. 1978         | 492              | Dec. 1982         | 540              | Dec. 1986         |
| 397              | Jan. 1975         | 445              | Jan. 1979         | 493              | Jan. 1983         | 541              | Jan. 1987         |
| 398              | Feb. 1975         | 446              | Feb. 1979         | 494              | Feb. 1983         | 542              | Feb. 1987         |
| 399              | Mar. 1975         | 447              | Mar. 1979         | 495              | Mar. 1983         | 543              | Mar. 1987         |
| 400              | Apr. 1975         | 448              | Apr. 1979         | 496              | Apr. 1983         | 544              | Apr. 1987         |
| 401              | May 1975          | 449              | May 1979          | 497              | May 1983          | 545              | May 1987          |
| 402              | June 1975         | 450              | June 1979         | 498              | June 1983         | 546              | June 1987         |
| 403              | July 1975         | 451              | July 1979         | 499              | July 1983         | 547              | July 1987         |
| 404              | Aug. 1975         | 452              | Aug. 1979         | 500              | Aug. 1983         | 548              | Aug. 1987         |
| 405              | Sept. 1975        | 453              | Sept. 1979        | 501              | Sept. 1983        | 549              | Sept. 1987        |
| 406              | Oct. 1975         | 454              | Oct. 1979         | 502              | Oct. 1983         | 550              | Oct. 1987         |
| 407              | Nov. 1975         | 455              | Nov. 1979         | 503              | Nov. 1983         | 551              | Nov. 1987         |
| 408              | Dec. 1975         | 456              | Dec. 1979         | 504              | Dec. 1983         | 552              | Dec. 1987         |
| 409              | Jan. 1976         | 457              | Jan. 1980         | 505              | Jan. 1984         | 553              | Jan. 1988         |
| 410              | Feb. 1976         | 458              | Feb. 1980         | 506              | Feb. 1984         | 554              | Feb. 1988         |
| 411              | Mar. 1976         | 459              | Mar. 1980         | 507              | Mar. 1984         | 555              | Mar. 1988         |
| 412              | Apr. 1976         | 460              | Apr. 1980         | 508              | Apr. 1984         | 556              | Apr. 1988         |
| 413              | May 1976          | 461              | May 1980          | 509              | May 1984          | 557              | May 1988          |
| 414              | June 1976         | 462              | June 1980         | 510              | June 1984         | 558              | June 1988         |
| 415              | July 1976         | 463              | July 1980         | 511              | July 1984         | 559              | July 1988         |
| 416              | Aug. 1976         | 464              | Aug. 1980         | 512              | Aug. 1984         | 560              | Aug. 1988         |
| 417              | Sept. 1976        | 465              | Sept. 1980        | 513              | Sept. 1984        | 561              | Sept. 1988        |
| 418              | Oct. 1976         | 466              | Oct. 1980         | 514              | Oct. 1984         | 562              | Oct. 1988         |
| 419              | Nov. 1976         | 467              | Nov. 1980         | 515              | Nov. 1984         | 563              | Nov. 1988         |
| 420              | Dec. 1976         | 468              | Dec. 1980         | 516              | Dec. 1984         | 564              | Dec. 1988         |
| 421              | Jan. 1977         | 469              | Jan. 1981         | 517              | Jan. 1985         | 565              | Jan. 1989         |
| 422              | Feb. 1977         | 470              | Feb. 1981         | 518              | Feb. 1985         | 566              | Feb. 1989         |
| 423              | Mar. 1977         | 471              | Mar. 1981         | 519              | Mar. 1985         | 567              | Mar. 1989         |
| 424              | Apr. 1977         | 472              | Apr. 1981         | 520              | Apr. 1985         | 568              | Apr. 1989         |
| 425              | May 1977          | 473              | May 1981          | 521              | May 1985          | 569              | May 1989          |
| 426              | June 1977         | 474              | June 1981         | 522              | June 1985         | 570              | June 1989         |
| 427              | July 1977         | 475              | July 1981         | 523              | July 1985         | 571              | July 1989         |
| 428              | Aug. 1977         | 476              | Aug. 1981         | 524              | Aug. 1985         | 572              | Aug. 1989         |
| 429              | Sept. 1977        | 477              | Sept. 1981        | 525              | Sept. 1985        | 573              | Sept. 1989        |
| 430              | Oct. 1977         | 478              | Oct. 1981         | 526              | Oct. 1985         | 574              | Oct. 1989         |
| 431              | Nov. 1977         | 479              | Nov. 1981         | 527              | Nov. 1985         | 575              | Nov. 1989         |
| 432              | Dec. 1977         | 480              | Dec. 1981         | 528              | Dec. 1985         | 576              | Dec. 1989         |

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

[Jan., January; Feb., February; Mar., March; Apr., April; Aug., August; Sept., September; Oct., October; Nov., November; Dec., December]

| Stress     | Month                  | Stress | Month      | Stress     | Month      | Stress | Month      |
|------------|------------------------|--------|------------|------------|------------|--------|------------|
| periou     |                        | periou |            |            |            | 701    |            |
| 570        | Jan. 1990<br>Eab. 1000 | 625    | Jan. 1994  | 673        | Jan. 1998  | 721    | Jan. 2002  |
| 570        | Feb. 1990              | 620    | Feb. 1994  | 0/4<br>675 | Feb. 1998  | 722    | Feb. 2002  |
| 5/9        | Mar. 1990              | 627    | Mar. 1994  | 0/5        | Mar. 1998  | 725    | Mar. 2002  |
| 580        | Apr. 1990              | 628    | Apr. 1994  | 0/0<br>677 | Apr. 1998  | 724    | Apr. 2002  |
| 501        | May 1990               | (20    | May 1994   | 077        | May 1998   | 725    | May 2002   |
| 582<br>592 | June 1990              | 030    | June 1994  | 0/8        | June 1998  | 720    | June 2002  |
| 585        | July 1990              | (22)   | July 1994  | 0/9        | July 1998  | 720    | July 2002  |
| 584        | Aug. 1990              | 632    | Aug. 1994  | 680        | Aug. 1998  | 728    | Aug. 2002  |
| 585<br>597 | Sept. 1990             | 633    | Sept. 1994 | 681        | Sept. 1998 | 729    | Sept. 2002 |
| 586        | Oct. 1990              | 634    | Oct. 1994  | 682        | Oct. 1998  | /30    | Oct. 2002  |
| 587        | Nov. 1990              | 635    | Nov. 1994  | 683        | Nov. 1998  | 731    | Nov. 2002  |
| 588        | Dec. 1990              | 636    | Dec. 1994  | 684        | Dec. 1998  | 732    | Dec. 2002  |
| 589        | Jan. 1991              | 637    | Jan. 1995  | 685        | Jan. 1999  | 733    | Jan. 2003  |
| 590        | Feb. 1991              | 638    | Feb. 1995  | 686        | Feb. 1999  | 734    | Feb. 2003  |
| 591        | Mar. 1991              | 639    | Mar. 1995  | 687        | Mar. 1999  | 735    | Mar. 2003  |
| 592        | Apr. 1991              | 640    | Apr. 1995  | 688        | Apr. 1999  | 736    | Apr. 2003  |
| 593        | May 1991               | 641    | May 1995   | 689        | May 1999   | 737    | May 2003   |
| 594        | June 1991              | 642    | June 1995  | 690        | June 1999  | 738    | June 2003  |
| 595        | July 1991              | 643    | July 1995  | 691        | July 1999  | 739    | July 2003  |
| 596        | Aug. 1991              | 644    | Aug. 1995  | 692        | Aug. 1999  | 740    | Aug. 2003  |
| 597        | Sept. 1991             | 645    | Sept. 1995 | 693        | Sept. 1999 | 741    | Sept. 2003 |
| 598        | Oct. 1991              | 646    | Oct. 1995  | 694        | Oct. 1999  | 742    | Oct. 2003  |
| 599        | Nov. 1991              | 647    | Nov. 1995  | 695        | Nov. 1999  | 743    | Nov. 2003  |
| 600        | Dec. 1991              | 648    | Dec. 1995  | 696        | Dec. 1999  | 744    | Dec. 2003  |
| 601        | Jan. 1992              | 649    | Jan. 1996  | 697        | Jan. 2000  | 745    | Jan. 2004  |
| 602        | Feb. 1992              | 650    | Feb. 1996  | 698        | Feb. 2000  | 746    | Feb. 2004  |
| 603        | Mar. 1992              | 651    | Mar. 1996  | 699        | Mar. 2000  | 747    | Mar. 2004  |
| 604        | Apr. 1992              | 652    | Apr. 1996  | 700        | Apr. 2000  | 748    | Apr. 2004  |
| 605        | May 1992               | 653    | May 1996   | 701        | May 2000   | 749    | May 2004   |
| 606        | June 1992              | 654    | June 1996  | 702        | June 2000  | 750    | June 2004  |
| 607        | July 1992              | 655    | July 1996  | 703        | July 2000  | 751    | July 2004  |
| 608        | Aug. 1992              | 656    | Aug. 1996  | 704        | Aug. 2000  | 752    | Aug. 2004  |
| 609        | Sept. 1992             | 657    | Sept. 1996 | 705        | Sept. 2000 | 753    | Sept. 2004 |
| 610        | Oct. 1992              | 658    | Oct. 1996  | 706        | Oct. 2000  | 754    | Oct. 2004  |
| 611        | Nov. 1992              | 659    | Nov. 1996  | 707        | Nov. 2000  | 755    | Nov. 2004  |
| 612        | Dec. 1992              | 660    | Dec. 1996  | 708        | Dec. 2000  | 756    | Dec. 2004  |
| 613        | Jan. 1993              | 661    | Jan. 1997  | 709        | Jan. 2001  | 757    | Jan. 2005  |
| 614        | Feb. 1993              | 662    | Feb. 1997  | 710        | Feb. 2001  | 758    | Feb. 2005  |
| 615        | Mar. 1993              | 663    | Mar. 1997  | 711        | Mar. 2001  | 759    | Mar. 2005  |
| 616        | Apr. 1993              | 664    | Apr. 1997  | 712        | Apr. 2001  | 760    | Apr. 2005  |
| 617        | May 1993               | 665    | May 1997   | 713        | May 2001   | 761    | May 2005   |
| 618        | June 1993              | 666    | June 1997  | 714        | June 2001  | 762    | June 2005  |
| 619        | July 1993              | 667    | July 1997  | 715        | July 2001  | 763    | July 2005  |
| 620        | Aug. 1993              | 668    | Aug. 1997  | 716        | Aug. 2001  | 764    | Aug. 2005  |
| 621        | Sept. 1993             | 669    | Sept. 1997 | 717        | Sept. 2001 | 765    | Sept. 2005 |
| 622        | Oct. 1993              | 670    | Oct. 1997  | 718        | Oct. 2001  | 766    | Oct. 2005  |
| 623        | Nov. 1993              | 671    | Nov. 1997  | 719        | Nov. 2001  | 767    | Nov. 2005  |
| 624        | Dec. 1993              | 672    | Dec. 1997  | 720        | Dec. 2001  | 768    | Dec. 2005  |

[Jan., January; Feb., February; Mar., March; Apr., April; Aug., August; Sept., September; Oct., October; Nov., November; Dec., December]

| Stress<br>period | Month<br>and year | Stress<br>period | Month<br>and year | Stress<br>period | Month<br>and year |
|------------------|-------------------|------------------|-------------------|------------------|-------------------|
| 769              | Jan. 2006         | 781              | Jan. 2007         | 793              | Jan. 2008         |
| 770              | Feb. 2006         | 782              | Feb. 2007         | 794              | Feb. 2008         |
| 771              | Mar. 2006         | 783              | Mar. 2007         | 795              | Mar. 2008         |
| 772              | Apr. 2006         | 784              | Apr. 2007         | 796              | Apr. 2008         |
| 773              | May 2006          | 785              | May 2007          | 797              | May 2008          |
| 774              | June 2006         | 786              | June 2007         | 798              | June 2008         |
| 775              | July 2006         | 787              | July 2007         |                  |                   |
| 776              | Aug. 2006         | 788              | Aug. 2007         |                  |                   |
| 777              | Sept. 2006        | 789              | Sept. 2007        |                  |                   |
| 778              | Oct. 2006         | 790              | Oct. 2007         |                  |                   |
| 779              | Nov. 2006         | 791              | Nov. 2007         |                  |                   |
| 780              | Dec. 2006         | 792              | Dec. 2007         |                  |                   |

| Site name | Water I<br>feet above | evel, in<br>e NGVD 29 | Residual, Site name |               | Water<br>feet abov | level, in<br>e NGVD 29 | Residual, |
|-----------|-----------------------|-----------------------|---------------------|---------------|--------------------|------------------------|-----------|
|           | Simulated             | Observed <sup>1</sup> | in feet             |               | Simulated          | Observed <sup>1</sup>  | in feet   |
|           | Layer                 | r 1                   |                     |               | Layer 1—C          | ontinued               |           |
| 01-GW02   | 8                     | 7.8                   | -0.2                | 06-GW25       | 19.8               | 22.9                   | 3.1       |
| 01-GW03   | 8.2                   | 7.7                   | -0.5                | 06-GW26       | 10.7               | 12                     | 1.3       |
| 01-GW05   | 8.2                   | 7.5                   | -0.7                | 06-GW31       | 14                 | 16.5                   | 2.5       |
| 01-GW08   | 7.5                   | 5.4                   | -2.1                | 09-GW01       | 17.5               | 21.7                   | 4.2       |
| 01-GW09   | 7.4                   | 5.4                   | -2                  | 09-GW02       | 16.6               | 19.3                   | 2.7       |
| 01-GW10   | 7.6                   | 6                     | -1.6                | 09-GW03       | 14.9               | 16.7                   | 1.8       |
| 01-GW15   | 8.1                   | 7.8                   | -0.3                | 09-GW04       | 19.7               | 22.8                   | 3.1       |
| 01-GW17   | 8.7                   | 8.2                   | -0.5                | 09-GW05       | 16.8               | 21.1                   | 4.3       |
| 02-GW01   | 21.3                  | 25.6                  | 4.3                 | 09-GW06       | 17.1               | 21.4                   | 4.3       |
| 02-GW02   | 21.1                  | 21.9                  | 0.8                 | 09-GW07S      | 15.7               | 18.2                   | 2.5       |
| 02-GW03   | 21.6                  | 26.4                  | 4.8                 | 09-GW08       | 17.1               | 21                     | 3.9       |
| 02-GW04   | 21.5                  | 23.3                  | 1.8                 | 10-MW02       | 15.2               | 17.4                   | 2.2       |
| 02-GW05   | 21.1                  | 24                    | 2.9                 | 10-MW03       | 15.5               | 16.1                   | 0.6       |
| 02-GW10   | 21.4                  | 26.6                  | 5.2                 | 10-MW04       | 13.7               | 13.1                   | -0.6      |
| 02-GW12   | 21.6                  | 25.9                  | 4.3                 | 10-MW08       | 12.6               | 12.6                   | 0         |
| 03-MW02   | 19                    | 26.2                  | 7.2                 | 10-TW02 (new) | 15.2               | 20.8                   | 5.6       |
| 03-MW03   | 20.3                  | 21.8                  | 1.5                 | 10-TW07       | 12.8               | 16.5                   | 3.7       |
| 03-MW06   | 16.9                  | 20                    | 3.1                 | 21-GW01       | 20                 | 21.1                   | 1.1       |
| 03-MW08   | 20.7                  | 24.8                  | 4.1                 | 21-GW02       | 20                 | 21                     | 1         |
| 03-MW09   | 21.2                  | 26.2                  | 5                   | 21-GW03       | 19.5               | 21.9                   | 2.4       |
| 03-MW10   | 20.4                  | 27.6                  | 7.2                 | 21-GW04       | 18.4               | 20.9                   | 2.5       |
| 03-MW11   | 17.3                  | 12                    | -5.3                | 22-MW01       | 19.6               | 20.3                   | 0.7       |
| 03-MW12   | 18.4                  | 11.7                  | -6.7                | 22-MW02       | 20.1               | 19.5                   | -0.6      |
| 03-MW13   | 17.3                  | 10.8                  | -6.5                | 22-MW03       | 19.7               | 20.7                   | 1         |
| 06-GW01S  | 14                    | 19.8                  | 5.8                 | 22-MW04       | 20.2               | 21.5                   | 1.3       |
| 06-GW02S  | 19.3                  | 25.7                  | 6.4                 | 22-MW05       | 19.2               | 21.9                   | 2.7       |
| 06-GW03   | 13.8                  | 15.5                  | 1.7                 | 22-MW06       | 19.8               | 20.7                   | 0.9       |
| 06-GW06   | 18.2                  | 19.2                  | 1                   | 22-MW07       | 19.3               | 20.9                   | 1.6       |
| 06-GW07S  | 14                    | 12.3                  | -1.7                | 22-MW08       | 19.1               | 20.6                   | 1.5       |
| 06-GW08   | 15.9                  | 16                    | 0.1                 | 22-MW09       | 19.1               | 19.4                   | 0.3       |
| 06-GW09   | 11.4                  | 12.1                  | 0.7                 | 22-MW10       | 20                 | 20.5                   | 0.5       |
| 06-GW11   | 13.7                  | 16.3                  | 2.6                 | 22-MW11       | 18.8               | 20.6                   | 1.8       |
| 06-GW12   | 14.3                  | 12.7                  | -1.6                | 22-MW12       | 19                 | 20.6                   | 1.6       |
| 06-GW15S  | 15.7                  | 19.4                  | 3.7                 | 22-MW13       | 19.7               | 21.3                   | 1.6       |
| 06-GW18   | 19                    | 21.8                  | 2.8                 | 22-MW14       | 18.7               | 19.6                   | 0.9       |
| 06-GW20   | 16.9                  | 19.9                  | 3                   | 22-MW15       | 19.1               | 20.7                   | 1.6       |
| 06-GW21   | 14.5                  | 17                    | 2.5                 | 22-MW16       | 19.4               | 18.7                   | -0.7      |
| 06-GW22   | 17.9                  | 19.1                  | 1.2                 | 22-MW17       | 19.5               | 19.9                   | 0.4       |
| 06-GW23   | 17.4                  | 19                    | 1.6                 | 22-MW18       | 19.9               | 19.9                   | 0         |

| Site name       | Water<br>feet abov | Water level, in<br>feet above NGVD 29 |         | Site name | Water I<br>feet above | level, in<br>e NGVD 29 | Residual, |
|-----------------|--------------------|---------------------------------------|---------|-----------|-----------------------|------------------------|-----------|
|                 | Simulated          | Observed <sup>1</sup>                 | in feet |           | Simulated             | Observed <sup>1</sup>  | in feet   |
|                 | Layer 1—C          | ontinued                              |         |           | Layer 1—C             | ontinued               |           |
| 22-MW19         | 20.3               | 20.1                                  | -0.2    | 78-GW19   | 17.3                  | 20.3                   | 3         |
| 22-MW22         | 18.9               | 20.4                                  | 1.5     | 78-GW20   | 17.3                  | 16.1                   | -1.2      |
| 22-MW23         | 19.5               | 20.9                                  | 1.4     | 78-GW21   | 20.6                  | 22.9                   | 2.3       |
| 22-RW01         | 19.2               | 19                                    | -0.2    | 78-GW23   | 20.7                  | 22.9                   | 2.2       |
| 22-RW02         | 19.6               | 17.7                                  | -1.9    | 78-GW24-1 | 20.9                  | 25.5                   | 4.6       |
| 24-GW02         | 11.2               | 9.5                                   | -1.7    | 78-GW25   | 21.2                  | 24                     | 2.8       |
| 24-GW03         | 11                 | 10.4                                  | -0.6    | 78-GW26   | 16.4                  | 22.8                   | 6.4       |
| 24-GW04         | 11.6               | 10.2                                  | -1.4    | 78-GW29   | 8.7                   | 9.8                    | 1.1       |
| 24-GW05         | 13.7               | 14.1                                  | 0.4     | 78-GW33   | 21.5                  | 22.5                   | 1         |
| 24-GW07 (new)   | 16.1               | 14.6                                  | -1.5    | 78-GW35   | 18.2                  | 18.2                   | 0         |
| 24-GW09         | 10                 | 9.9                                   | -0.1    | 78-GW36   | 16.3                  | 16.5                   | 0.2       |
| 24-GW10         | 9                  | 7.8                                   | -1.2    | 78-GW37   | 12.4                  | 10.4                   | -2        |
| 28-GW04         | 3.7                | 2.7                                   | -1      | 78-GW39   | 6.5                   | 4                      | -2.5      |
| 28-GW05         | 4.1                | 4                                     | -0.1    | 78-GW40   | 20.6                  | 20.5                   | -0.1      |
| 28-GW06         | 0                  | 2.3                                   | 2.3     | 78-GW41   | 20.9                  | 22.8                   | 1.9       |
| 28-GW08 (new)   | 2.8                | 1                                     | -1.8    | 78-GW42   | 12.8                  | 10.5                   | -2.3      |
| 28-GW08 (old)   | 2.8                | 1                                     | -1.8    | 78-GW43   | 20.7                  | 19.7                   | -1        |
| 74-GW02         | 22.4               | 26.1                                  | 3.7     | 78-GW44   | 20.8                  | 20.2                   | -0.6      |
| 74-GW04         | 22.8               | 22.2                                  | -0.6    | 78-GW45   | 20.1                  | 20.2                   | 0.1       |
| 74-GW05         | 22.2               | 27                                    | 4.8     | 78-GW46   | 20.9                  | 20.2                   | -0.7      |
| 78-Bldg902_P01  | 20.8               | 23.9                                  | 3.1     | 78-GW47   | 20.7                  | 19.8                   | -0.9      |
| 78-GW01         | 12.1               | 12.2                                  | 0.1     | 78-GW48   | 20.7                  | 20.6                   | -0.1      |
| 78-GW02         | 12                 | 23.2                                  | 11.2    | 78-GW49   | 13.8                  | 12.8                   | -1        |
| 78-GW03         | 11.3               | 8.2                                   | -3.1    | 78-GW50   | 12.6                  | 10.9                   | -1.7      |
| 78-GW04-1       | 13                 | 11.4                                  | -1.6    | 78-GW51   | 13.6                  | 11                     | -2.6      |
| 78-GW05         | 13.7               | 17.1                                  | 3.4     | 78-GW52   | 13.4                  | 10.8                   | -2.6      |
| 78-GW06         | 13.8               | 13.7                                  | -0.1    | 78-GW53   | 13.2                  | 10.9                   | -2.3      |
| 78-GW07         | 14.6               | 13.2                                  | -1.4    | 78-GW54   | 11.9                  | 10.4                   | -1.5      |
| 78-GW08         | 15.5               | 15.2                                  | -0.3    | 78-GW55   | 11.7                  | 10.3                   | -1.4      |
| 78-GW09-1 (old) | 14.3               | 12.2                                  | -2.1    | 78-GW56   | 11.5                  | 10.4                   | -1.1      |
| 78-GW10         | 15.5               | 15.5                                  | 0       | 78-GW57   | 12.6                  | 10.7                   | -1.9      |
| 78-GW11         | 14.7               | 14.5                                  | -0.2    | 78-GW59   | 11.6                  | 10.2                   | -1.4      |
| 78-GW12         | 16.8               | 17.8                                  | 1       | 78-GW60   | 14.3                  | 12.5                   | -1.8      |
| 78-GW13         | 15.1               | 13.4                                  | -1.7    | 78-GW61   | 10                    | 9.2                    | -0.8      |
| 78-GW14         | 16.2               | 16.9                                  | 0.7     | 78-GW63   | 10                    | 8.6                    | -1.4      |
| 78-GW15         | 17.3               | 18.3                                  | 1       | 78-GW64   | 10.3                  | 7.4                    | -2.9      |
| 78-GW16         | 18.8               | 19.7                                  | 0.9     | 78-GW65   | 10.2                  | 8.8                    | -1.4      |
| 78-GW17-1       | 18.3               | 18.5                                  | 0.2     | 78-GW66   | 10.7                  | 9.3                    | -1.4      |
| 78-GW18         | 17.3               | 16.6                                  | -0.7    | 78-GW67   | 10.8                  | 9.2                    | -1.6      |

S4.46

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

| Site name       | Water I<br>feet above | level, in<br>e NGVD 29       | Residual, | Site name           | Water  <br>feet above | level, in<br>e NGVD 29       | Residual, |
|-----------------|-----------------------|------------------------------|-----------|---------------------|-----------------------|------------------------------|-----------|
| -               | Simulated             | <b>Observed</b> <sup>1</sup> | in feet   |                     | Simulated             | <b>Observed</b> <sup>1</sup> | in feet   |
|                 | Layer 1—C             | ontinued                     |           |                     | Layer 1—C             | ontinued                     |           |
| 78-GW68         | 11.2                  | 9.4                          | -1.8      | 94Bldg1613_         | 13.6                  | 19.5                         | 5 9       |
| 78-RW-10N       | 20.9                  | 21.7                         | 0.8       | GW04                | 15.0                  | 17.0                         | 5.9       |
| 82-MW03         | 10                    | 8.6                          | -1.4      | 94Bldg1613_<br>GW05 | 13.5                  | 18                           | 4.5       |
| 82-MW30         | 14.3                  | 22.4                         | 8.1       | 94Bldg1613          |                       |                              |           |
| 84-MW17 (Baker) | 5.2                   | 5.9                          | 0.7       | GW06                | 13.7                  | 14.6                         | 0.9       |
| 84-MW18 (Baker) | 6.9                   | 15.1                         | 8.2       | 94Bldg1613_         | 14.8                  | 173                          | 2.5       |
| 84-MW19 (Baker) | 5.1                   | 4.4                          | -0.7      | GW07                | 11.0                  | 17.5                         | 2.5       |
| 84-MW20 (Baker) | 4.1                   | 3.2                          | -0.9      | 94Bldg1613_<br>GW09 | 13.6                  | 20.2                         | 6.6       |
| 84-MW21 (Baker) | 5.9                   | 12.1                         | 6.2       | 94Bldg1613          |                       |                              |           |
| 84-MW22 (Baker) | 5.6                   | 4.7                          | -0.9      | GW10                | 14.1                  | 14                           | -0.1      |
| 84-MW23 (Baker) | 1.5                   | 2                            | 0.5       | 94Bldg1613_         | 13.7                  | 13.6                         | _0.1      |
| 88-MW01         | 11.1                  | 19.4                         | 8.3       | GW11                | 15.7                  | 15.0                         | -0.1      |
| 88-MW02         | 10.8                  | 16.4                         | 5.6       | 94Bldg1613_         | 13.9                  | 14.3                         | 0.4       |
| 88-MW02IW       | 10.8                  | 8.7                          | -2.1      | 04Bldg1613          |                       |                              |           |
| 88-MW03         | 10.8                  | 17.9                         | 7.1       | GW13                | 14.7                  | 14.6                         | -0.1      |
| 88-MW03IW       | 10.8                  | 9.6                          | -1.2      | 94Bldg1613_         | 141                   | 147                          | 0.6       |
| 88-MW04         | 10.8                  | 10.1                         | -0.7      | GW14                | 14.1                  | 14./                         | 0.0       |
| 88-MW04IW       | 10.8                  | 10                           | -0.8      | 94Bldg1613_         | 14.1                  | 13.4                         | -0.7      |
| 88-MW05         | 10.6                  | 17.2                         | 6.6       | GW16                |                       |                              |           |
| 88-MW05IW       | 10.6                  | 9.6                          | -1        | GW17                | 13.8                  | 13.9                         | 0.1       |
| 88-MW06         | 10.6                  | 10.7                         | 0.1       | 94Bldg1613          | 12.0                  | 12.0                         | 0.0       |
| 88-MW06IW       | 10.6                  | 9.5                          | -1.1      | GW18                | 13.8                  | 12.9                         | -0.9      |
| 88-MW07         | 10.1                  | 14.3                         | 4.2       | 94Bldg1613_         | 13.8                  | 13.4                         | -0.4      |
| 88-MW07IW       | 10.1                  | 9.4                          | -0.7      | GW19                |                       |                              |           |
| 88-MW08         | 10                    | 14.7                         | 4.7       | 94Bldg1613_<br>GW20 | 14.1                  | 13.4                         | -0.7      |
| 88-MW08IW       | 10                    | 9.6                          | -0.4      | 94Bldg1613          |                       |                              |           |
| 88-MW09         | 10.4                  | 12.9                         | 2.5       | GW21                | 13.8                  | 13.9                         | 0.1       |
| 88-MW09IW       | 10.4                  | 9.8                          | -0.6      | 94Bldg1613_         | 13.9                  | 13.5                         | -0.4      |
| 88-MW10IW       | 10.8                  | 8.5                          | -2.3      | GW22                | 15.7                  | 15.5                         | 0.1       |
| 88-TW20         | 10.5                  | 12.3                         | 1.8       | Bldg20_MW01         | 9.6                   | 16.1                         | 6.5       |
| 88-TW21         | 10.4                  | 10.6                         | 0.2       | Bldg21_DW01         | 3                     | 2                            | -1        |
| 88-TW23         | 10.5                  | 9.7                          | -0.8      | Bldg21_DW02         | 3                     | 2                            | -1        |
| 88-TW25         | 10.3                  | 10                           | -0.3      | Bldg21_DW04         | 2.7                   | 1.9                          | -0.8      |
| 88-TW26         | 10.7                  | 9.8                          | -0.9      | Bldg21_MW01         | 2.9                   | 2.4                          | -0.5      |
| 94Bldg1613_     | 14                    | 15.4                         | 1.4       | Bldg21_MW02         | 2.9                   | 3.1                          | 0.2       |
| 94Bldg1613      |                       |                              |           | Bldg21_MW03         | 3.1                   | 2.3                          | -0.8      |
| GW02            | 14.4                  | 17.6                         | 3.2       | Bldg21_MW04         | 2.9                   | 2.4                          | -0.5      |
| 94Bldg1613      | 14.2                  | 14                           | 0.2       | Bldg21_MW05         | 2.8                   | 1.5                          | -1.3      |
| GW03            | 14.5                  | 14                           | -0.3      | Bldg21_MW06         | 2.8                   | 2.2                          | -0.6      |

| Site name             | Water I<br>feet above | evel, in<br>e NGVD 29 | Residual, Site name |                                  | Water I<br>feet above | level, in<br>e NGVD 29 | Residual, |
|-----------------------|-----------------------|-----------------------|---------------------|----------------------------------|-----------------------|------------------------|-----------|
|                       | Simulated             | Observed <sup>1</sup> | in feet             |                                  | Simulated             | Observed <sup>1</sup>  | in feet   |
|                       | Layer 1—C             | ontinued              |                     |                                  | Layer 1—C             | ontinued               |           |
| Bldg21_MW08           | 3                     | 1.6                   | -1.4                | Bldg45_MW16                      | 59                    | 12.8                   | 6.9       |
| Bldg21_MW09           | 3                     | 2.5                   | -0.5                | (Law)                            | 5.7                   | 12.0                   | 0.7       |
| Bldg21_RW01           | 2.9                   | 2                     | -0.9                | Bldg45_MW17                      | 6.5                   | 14.3                   | 7.8       |
| Bldg24_MW01           | 5                     | 10.6                  | 5.6                 | Bldg45 MW18                      |                       | 15.0                   | 0.6       |
| Bldg33_MW01           | 19                    | 23.2                  | 4.2                 | (Law)                            | 6.6                   | 15.2                   | 8.6       |
| Bldg33_MW02           | 19                    | 23.3                  | 4.3                 | Bldg45_MW23                      | 69                    | 174                    | 10.5      |
| Bldg33_MW03           | 18.9                  | 23.1                  | 4.2                 | (E&E)                            | 0.7                   | 1,                     | 10.0      |
| Bldg33_MW04           | 19.4                  | 26.4                  | 7                   | Bldg45_PW01<br>(Law)             | 6.7                   | 14.3                   | 7.6       |
| Bldg33_MW05           | 18.8                  | 25.4                  | 6.6                 | Bldg61 MW01                      | 11.7                  | 21                     | 9.3       |
| Bldg33_MW06           | 19.7                  | 26.8                  | 7.1                 | Bldg61_MW02                      | 11.7                  | 22                     | 10.3      |
| Bldg33_MW07           | 18.7                  | 25.4                  | 6.7                 | Bldg61_MW03                      | 11.7                  | 21.6                   | 9.9       |
| Bldg33_MW08           | 18.7                  | 25.5                  | 6.8                 | Bldg311 MW06                     | 8                     | 8                      | 0         |
| Bldg33_MW11           | 19                    | 25.6                  | 6.6                 | Bldg331_MW01                     | 7.7                   | 6.7                    | -1        |
| Bldg45_MW01<br>(ATEC) | 6.8                   | 16.3                  | 9.5                 | Bldg331_MW02                     | 7.8                   | 6.8                    | -1        |
| Bldg45 MW01           | 5.0                   | 10.0                  | <i>с</i> <b>н</b>   | Bldg331_MW03                     | 7.9                   | 6.9                    | -1        |
| (Wright)              | 5.8                   | 12.2                  | 6.4                 | Bldg331_MW04                     | 8                     | 6.9                    | -1.1      |
| Bldg45_MW02           | 6.7                   | 15.6                  | 8.9                 | Bldg331_MW06                     | 8                     | 6.7                    | -1.3      |
| (AIEC)                |                       |                       |                     | Bldg331_MW07                     | 8.1                   | 6.7                    | -1.4      |
| (Wright)              | 5.8                   | 7.8                   | 2                   | Bldg331_MW08                     | 7.7                   | 6.4                    | -1.3      |
| Bldg45 MW03           | 6.0                   |                       | 0.6                 | Bldg331_MW09                     | 7.9                   | 6.2                    | -1.7      |
| (ATEC)                | 6.9                   | 15.5                  | 8.6                 | Bldg331_MW10                     | 8                     | 6.4                    | -1.6      |
| Bldg45_MW03           | 6.3                   | 10.8                  | 4.5                 | Bldg331_MW11                     | 7.7                   | 6.4                    | -1.3      |
| (Wright)              | 0.0                   | 10.0                  |                     | Bldg331_MW12                     | 7.9                   | 6.9                    | -1        |
| Bldg45_MW04           | 6.7                   | 18.2                  | 11.5                | Bldg331_MW14                     | 7.9                   | 7.2                    | -0.7      |
| Bldg45 MW04           |                       |                       |                     | Bldg331_MW15                     | 7.7                   | 7                      | -0.7      |
| (Wright)              | 4.8                   | 4.7                   | -0.1                | Bldg331_PW16                     | 8                     | 6.6                    | -1.4      |
| Bldg45_MW05           | 6.5                   | 13                    | 6.5                 | Bldg575_MW01                     | 6                     | 3.3                    | -2.7      |
| (Law)                 | 0.5                   | 15                    | 0.5                 | Bldg645_MW04                     | 18                    | 14.4                   | -3.6      |
| Bldg45_MW07           | 6.8                   | 16.4                  | 9.6                 | Bldg645_MW06                     | 19                    | 17.5                   | -1.5      |
| Bldg45 MW10           |                       |                       |                     | Bldg645_MW07                     | 18.1                  | 16.1                   | -2        |
| (Law)                 | 6.6                   | 15.2                  | 8.6                 | Bldg645_MW08                     | 18.3                  | 16.6                   | -1.7      |
| Bldg45_MW12           | 6.6                   | 16.0                  | 10.3                | Bldg645_MW12                     | 18.3                  | 20.3                   | 2         |
| (Law)                 | 0.0                   | 10.7                  | 10.5                | Bldg645_MW19                     | 17.8                  | 16.4                   | -1.4      |
| Bldg45_MW13<br>(Law)  | 6                     | 13.8                  | 7.8                 | Bldg645_MW24                     | 18                    | 19.7                   | 1.7       |
| Bldg45 MW14           | <i></i>               | 0.4                   | 1.0                 | Blug045_MW25                     | 18.2                  | 10.4                   | -1.8      |
| (Law)                 | 5.4                   | 9.6                   | 4.2                 | $Bld_{\alpha}$ $Q20$ $MW02$      | 13                    | 18                     | 2         |
| Bldg45_MW15           | 5.6                   | 11.2                  | 5.6                 | $Dlugo20_WW03$<br>$Rldg820_WW04$ | 13                    | 17.2                   | 4.2       |
| (Law)                 | 5.0                   | 11.2                  | 5.0                 | Bldg820_MW04                     | 13                    | 18.5                   | 5.5       |

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

| Site name     | Water I<br>feet above | evel, in<br>e NGVD 29        | Residual, | Site name     | Water I<br>feet above | evel, in<br>e NGVD 29 | Residual, |
|---------------|-----------------------|------------------------------|-----------|---------------|-----------------------|-----------------------|-----------|
|               | Simulated             | <b>Observed</b> <sup>1</sup> | in feet   |               | Simulated             | Observed <sup>1</sup> | in feet   |
|               | Layer 1—C             | ontinued                     |           |               | Layer 1—C             | ontinued              |           |
| Bldg820_MW05  | 13.1                  | 19.7                         | 6.6       | Bldg1115_GT08 | 18.1                  | 20.5                  | 2.4       |
| Bldg820_MW06  | 12.9                  | 16.6                         | 3.7       | Bldg1115_GT09 | 18.2                  | 20.6                  | 2.4       |
| Bldg820_MW08  | 12.6                  | 12.3                         | -0.3      | Bldg1115_MW01 | 17.3                  | 17.8                  | 0.5       |
| Bldg820_MW10  | 12.8                  | 18                           | 5.2       | Bldg1115_MW02 | 16.9                  | 17.6                  | 0.7       |
| Bldg820_MW11  | 13.2                  | 18.3                         | 5.1       | Bldg1115_MW03 | 17.9                  | 18.1                  | 0.2       |
| Bldg820_MW12  | 12.9                  | 17.4                         | 4.5       | Bldg1115_MW05 | 17.5                  | 20.8                  | 3.3       |
| Bldg820_MW13  | 12.9                  | 16                           | 3.1       | Bldg1115_MW06 | 17.1                  | 17.9                  | 0.8       |
| Bldg820_MW14  | 13.1                  | 16.6                         | 3.5       | Bldg1115_MW07 | 18.3                  | 18.9                  | 0.6       |
| Bldg820_MW15  | 13.4                  | 18                           | 4.6       | Bldg1115_MW08 | 16.9                  | 17.5                  | 0.6       |
| Bldg820_MW16  | 13.1                  | 19.1                         | 6         | Bldg1115_MW09 | 17.7                  | 18.2                  | 0.5       |
| Bldg820_MW18  | 12.8                  | 18.3                         | 5.5       | Bldg1115_MW10 | 17.5                  | 19.8                  | 2.3       |
| Bldg820_MW26  | 12.9                  | 14.7                         | 1.8       | Bldg1115_MW11 | 17.4                  | 18.9                  | 1.5       |
| Bldg820_MW27  | 13.2                  | 19.7                         | 6.5       | Bldg1115_MW12 | 17.8                  | 20.7                  | 2.9       |
| Bldg900_MW01  | 21                    | 22.1                         | 1.1       | Bldg1115_MW13 | 17.5                  | 16.9                  | -0.6      |
| Bldg900_MW02  | 21.1                  | 25.7                         | 4.6       | Bldg1115_MW14 | 17.4                  | 17.1                  | -0.3      |
| Bldg900_MW03  | 21                    | 22.2                         | 1.2       | Bldg1115_MW15 | 17.8                  | 17.5                  | -0.3      |
| Bldg900_MW04  | 21                    | 25.1                         | 4.1       | Bldg1115_MW16 | 17.5                  | 18.1                  | 0.6       |
| Bldg900_MW05  | 21.1                  | 25.4                         | 4.3       | Bldg1115_MW17 | 16.9                  | 16                    | -0.9      |
| Bldg900_MW07  | 21.1                  | 26                           | 4.9       | Bldg1115_MW18 | 18.3                  | 17.1                  | -1.2      |
| Bldg900_MW08  | 20.8                  | 23.9                         | 3.1       | Bldg1115_MW19 | 18.3                  | 18.1                  | -0.2      |
| Bldg900_MW09  | 21                    | 24.2                         | 3.2       | Bldg1115_MW20 | 17.9                  | 16.9                  | -1        |
| Bldg900_MW10  | 20.9                  | 25                           | 4.1       | Bldg1115_MW21 | 16.9                  | 17                    | 0.1       |
| Bldg903_MW01  | 21.2                  | 23.5                         | 2.3       | Bldg1310_MW02 | 17                    | 16.7                  | -0.3      |
| Bldg903_MW02  | 21.2                  | 23.8                         | 2.6       | Bldg1310_MW03 | 17.1                  | 16.9                  | -0.2      |
| Bldg903_MW03  | 21.2                  | 24                           | 2.8       | Bldg1323_MW01 | 14.2                  | 15.3                  | 1.1       |
| Bldg903_MW04  | 21.2                  | 24.6                         | 3.4       | Bldg1323_MW02 | 14.4                  | 15.2                  | 0.8       |
| Bldg1101_MW01 | 18.4                  | 19                           | 0.6       | Bldg1323_     | 14 4                  | 14 1                  | -0.3      |
| Bldg1101_MW02 | 18.2                  | 18.6                         | 0.4       | TMW01         | 11.1                  | 11.1                  | 0.5       |
| Bldg1101_MW03 | 18                    | 18.5                         | 0.5       | Bldg1450_MW01 | 13.1                  | 12.4                  | -0.7      |
| Bldg1106_PZ01 | 19.2                  | 22.9                         | 3.7       | Bldg1450_MW02 | 13.3                  | 12.6                  | -0.7      |
| Bldg1106_PZ02 | 19.2                  | 22                           | 2.8       | Bldg1450_MW03 | 13.3                  | 12.8                  | -0.5      |
| Bldg1106_PZ03 | 19.2                  | 23                           | 3.8       | Bldg1450_MW04 | 13.1                  | 12.4                  | -0.7      |
| Bldg1106_PZ04 | 19.3                  | 21.2                         | 1.9       | Bldg1450_MW05 | 12.9                  | 12.3                  | -0.6      |
| Bldg1115_GT02 | 17.7                  | 20                           | 2.3       | Bldg1450_MW06 | 13.1                  | 12.5                  | -0.6      |
| Bldg1115_GT03 | 17.5                  | 20.2                         | 2.7       | Bldg1502_MW01 | 14.7                  | 15.2                  | 0.5       |
| Bidg1115_GT04 | 17.5                  | 20.2                         | 2.7       | Bldg1502_MW01 |                       |                       |           |
| Bldg1115_GT05 | 17.5                  | 19.6                         | 2.1       | (old)         | 15.5                  | 14.9                  | -0.6      |
| Bldg1115_GT06 | 17.7                  | 20.6                         | 2.9       | Bldg1502_MW02 | 14.2                  | 15.1                  | 0.0       |
| Bldg1115_GT07 | 17.9                  | 19.7                         | 1.8       | (new)         | 14.2                  | 13.1                  | 0.9       |

| Site name                | Water<br>feet above | level, in<br>e NGVD 29 | Residual, | ĺ                   | Site name                | Water<br>Site name feet above  | Water level, in<br>Site name feet above NGVD 29     |
|--------------------------|---------------------|------------------------|-----------|---------------------|--------------------------|--------------------------------|-----------------------------------------------------|
| -                        | Simulated           | Observed <sup>1</sup>  | in feet   |                     | -                        | Simulated                      | Simulated Observed <sup>1</sup>                     |
|                          | Layer 1—C           | ontinued               |           |                     |                          | Layer 1—C                      | Layer 1—Continued                                   |
| Bldg1502_MW02<br>(old)   | 15.5                | 15                     | -0.5      |                     | BldgFC102_<br>MW02 (new) | BldgFC10210                    | BldgFC102_ 10 9.6                                   |
| Bldg1502_MW03            | 15.5                | 15                     | -0.5      |                     | BldgFC102_<br>MW02 (old) | BldgFC1029.9<br>MW02 (old) 9.9 | BldgFC102_ 9.9 14.3<br>MW02 (old)                   |
| Bldg1601_DP01            | 14.4                | 16.6                   | 2.2       |                     | BldgFC102_<br>MW03 (new) | BldgFC10210                    | BldgFC10210 9.8                                     |
| Bldg1601_DP02            | 14.4                | 16.8                   | 2.4       |                     | BldgFC102_               | BldgFC10210                    | BldgFC10210 16                                      |
| Pldg1601_DP03            | 14.4                | 16.0                   | 2.0       |                     | MW03 (old)               | MW03 (old)                     | MW03 (old)                                          |
| Pldg1601_DP05            | 14.5                | 10.9                   | 2.0       |                     | BldgFC201E_E01           | BidgFC201E_E01 11.9            | BidgFC201E_E01 11.9 13.8   Did=EC201E_E02 11.0 14.1 |
| Bldg1601_DP05            | 14.4                | 17                     | 2.0       |                     | BldgFC201E_E02           | BldgFC201E_E02 11.9            | BidgFC201E_E02 11.9 14.1                            |
| Bldg1601_DP06            | 14.4                | 16.5                   | 2.1       |                     | BldgFC201E_E03           | BldgFC201E_E03 11.9            | BldgFC201E_E03 11.9 13.6                            |
| Bldg1601_DP07            | 14.4                | 16.7                   | 2.3       |                     | BldgFC201E_              | BldgFC201E11.8                 | BldgFC201E11.8 13                                   |
| Bldg1601_DP08            | 14.4                | 16.9                   | 2.5       |                     | MW04                     | RIdgEC201E                     | MW04                                                |
| Bldg1601_DP09            | 14.3                | 16.7                   | 2.4       | MV                  | W05                      | W05 12.1                       | V05 12.1 13.2                                       |
| Bldg1601_DP10            | 14.4                | 17.3                   | 2.9       | BldgFC201F          | Ξ                        | 3 11.0                         | E 11.0 12.0                                         |
| Bldg1601_DP11            | 14.5                | 17.3                   | 2.8       | MW07                |                          | 11.9                           | 11.9 13.2                                           |
| Bldg1601_DP12            | 14.5                | 16.8                   | 2.3       | BldgFC201E_         |                          | 11.8                           | 11.8 12.8                                           |
| Bldg1601_DP13            | 14.5                | 16.9                   | 2.4       | MW10                |                          |                                |                                                     |
| Bldg1601_DP14            | 14.4                | 15.5                   | 1.1       | BldgFC201E_<br>MW13 |                          | 12.3                           | 12.3 13.4                                           |
| Bldg1601_DP15            | 14.4                | 17.5                   | 3.1       | BldgEC201E          |                          |                                |                                                     |
| Bldg1601_DP16            | 14.4                | 17.8                   | 3.4       | MW14                |                          | 12.1                           | 12.1 13.1                                           |
| Bldg1607_MW01            | 13.6                | 19.2                   | 5.6       | BldgFC201E          |                          | 11.7                           | 11.7 12.0                                           |
| Bldg1607_MW02            | 13.6                | 19.9                   | 6.3       | MW15                |                          | 11./                           | 11./ 12.9                                           |
| Bldg1607_MW03            | 13.6                | 19.7                   | 6.1       | BldgFC201E_         |                          | 11.4                           | 11.4 13.2                                           |
| Bldg1854_MW01            | 6.9                 | 4.8                    | -2.1      | MW16                |                          |                                |                                                     |
| Bldg1854_MW02            | 6.9                 | 4.6                    | -2.3      | MW01                |                          | 11.6                           | 11.6 13.2                                           |
| Bldg1854_MW06            | 6.9                 | 4.6                    | -2.3      | BldgFC201W          |                          | 11.6                           |                                                     |
| Bldg1854_MW08            | 6.7                 | 4.5                    | -2.2      | MW02                |                          | 11.6                           | 11.6 14.2                                           |
| Bldg1919-1_<br>MW01      | 2.4                 | 2                      | -0.4      | BldgFC201W_<br>MW03 |                          | 11.6                           | 11.6 13                                             |
| Bldg1919-1_<br>MW02      | 2.4                 | 2.1                    | -0.3      | BldgFC263_<br>MW01  |                          | 11.9                           | 11.9 9.2                                            |
| Bldg1919-1_<br>MW03      | 2.4                 | 2.1                    | -0.3      | BldgFC263_<br>MW02  |                          | 12.2                           | 12.2 10.1                                           |
| Bldg1932_MW01            | 4.3                 | 4.3                    | 0         | BldgFC263_          |                          | 11.7                           | 11 7 9 4                                            |
| Bldg1932 MW02            | 4.3                 | 3.1                    | -1.2      | MW03                |                          | 11.7                           | 11.7 2.1                                            |
| Bldg1932_MW03            | 4.3                 | 3                      | -1.3      | BldgFC263_<br>MW04  |                          | 12.3                           | 12.3 9.9                                            |
| BldgFC102_<br>MW01 (new) | 10                  | 9.8                    | -0.2      | BldgFC263_<br>MW05  |                          | 11.7                           | 11.7 9.7                                            |
| BldgFC102_<br>MW01 (old) | 10                  | 13                     | 3         | BldgFC263_<br>MW06  |                          | 11.4                           | 11.4 9.4                                            |

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

| Site name          | Water I<br>feet above | evel, in<br>e NGVD 29        | Residual, Site name _ |                       | Water<br>feet abov | level, in<br>e NGVD 29 | Residual, |
|--------------------|-----------------------|------------------------------|-----------------------|-----------------------|--------------------|------------------------|-----------|
|                    | Simulated             | <b>Observed</b> <sup>1</sup> | in feet               | -                     | Simulated          | Observed <sup>1</sup>  | in feet   |
|                    | Layer 1—C             | ontinued                     |                       |                       | Layer 1—C          | Continued              |           |
| BldgFC263_         | 11.5                  | 9.1                          | _24                   | BldgH28_MW10          | 0.9                | 2.6                    | 1.7       |
| MW07               | 11.5                  | 9.1                          | 2.7                   | BldgH28_MW11          | 1                  | 2.6                    | 1.6       |
| BldgFC263_<br>MW08 | 11.8                  | 9.1                          | -2.7                  | BldgH30_MW01          | 0.6                | 2.4                    | 1.8       |
| BldgFC263          |                       |                              |                       | BldgH30_MW02          | 0.6                | 2.5                    | 1.9       |
| MW09               | 11.7                  | 9                            | -2.7                  | BldgH30_MW05          | 0.6                | 2.4                    | 1.8       |
| BldgFC263_         | 12.2                  | 10.2                         | -2                    | BldgH30_MW12          | 0.5                | 2.4                    | 1.9       |
| MW10               | 12.2                  | 10.2                         | 2                     | BldgHP100_PZ01        | 7.7                | 6.3                    | -1.4      |
| BldgFC263_<br>MW11 | 12.1                  | 10                           | -2.1                  | BldgHP100_PZ03        | 7.7                | 6.4                    | -1.3      |
| BldgFC263          |                       |                              |                       | BldgHP100_PZ04        | 7.7                | 7.2                    | -0.5      |
| MW12               | 11.9                  | 9.7                          | -2.2                  | BldgHP100_PZ06        | 7.6                | 7                      | -0.6      |
| BldgFC263_         | 11.4                  | 8.6                          | -2.8                  | BldgHP100_PZ07        | 7.7                | 6.5                    | -1.2      |
| MW13               | 11.1                  | 0.0                          | 2.0                   | BldgHP100_PZ08        | 7.7                | 7.4                    | -0.3      |
| BldgFC263_<br>MW14 | 12.3                  | 9.4                          | -2.9                  | BldgHP250_<br>MW01    | 4.8                | 10.7                   | 5.9       |
| BldgFC263_<br>MW16 | 11.9                  | 9.7                          | -2.2                  | BldgLCH4015_<br>MW03  | 22.9               | 27.3                   | 4.4       |
| BldgFC280_<br>MW01 | 14.7                  | 14.4                         | -0.3                  | BldgLCH4015_<br>MW04  | 23.2               | 27.4                   | 4.2       |
| BldgFC281_<br>MW01 | 15.8                  | 17                           | 1.2                   | BldgLCH4015_<br>MW05  | 22.7               | 27.2                   | 4.5       |
| BldgH19_MW01       | 1.3                   | 2.4                          | 1.1                   | BldgLCH4015_          | 22.6               | 26.7                   | 4.1       |
| BldgH19_MW02       | 1.3                   | 4.1                          | 2.8                   | MW06                  |                    |                        |           |
| BldgH19_MW03       | 1.3                   | 4                            | 2.7                   | MW07                  | 23.1               | 27.6                   | 4.5       |
| BldgH19_MW04       | 1.3                   | 4                            | 2.7                   | BldgLCH4015           | 22.1               | 26.0                   | 2.0       |
| BldgH19_MW05       | 1.3                   | 3.9                          | 2.6                   | MW08                  | 23.1               | 26.9                   | 3.8       |
| BldgH19_MW06       | 1.3                   | 3.9                          | 2.6                   | BldgLCH4015_          | 22.6               | 25.1                   | 2.5       |
| BldgH19_MW07       | 1.3                   | 2.5                          | 1.2                   | MWII<br>Didal CII4015 |                    |                        |           |
| BldgH19_MW08       | 1.3                   | 2.6                          | 1.3                   | MW12                  | 22.7               | 25.4                   | 2.7       |
| BldgH19_MW09       | 1.4                   | 2.4                          | 1                     | BldgLCH4015_          | 22.0               | 25.5                   | 2.7       |
| BldgH19_MW10       | 1.4                   | 2.4                          | 1                     | MW14                  | 22.8               | 23.3                   | 2.1       |
| BldgH19_MW14       | 1.3                   | 2.4                          | 1.1                   | BldgLCH4015_          | 23                 | 25.7                   | 2.7       |
| BldgH28_MW01       | 0.7                   | 2.6                          | 1.9                   | BldgI CH4015          |                    |                        |           |
| BldgH28_MW02       | 1                     | 2.7                          | 1.7                   | MW16                  | 23.2               | 28                     | 4.8       |
| BldgH28_MW03       | 1.1                   | 2.7                          | 1.6                   | BldgLCH4015_          | 22.0               | 28.3                   | 5 /       |
| BldgH28_MW04       | 1.1                   | 2.1                          | 1                     | MW18                  | 22.9               | 20.3                   | 5.4       |
| BldgH28_MW05       | 1.1                   | 2.6                          | 1.5                   | BldgLCH4022_          | 22.1               | 27.2                   | 5.1       |
| BldgH28_MW06       | 1                     | 2.7                          | 1.7                   | BldgI CH4022          |                    |                        |           |
| BldgH28_MW07       | 0.9                   | 2.5                          | 1.6                   | MW03                  | 22.2               | 27.1                   | 4.9       |
| BldgH28_MW08       | 1                     | 2.6                          | 1.6                   | BldgLCH4022_          | 22.1               | 26.0                   | 1 0       |
| BldgH28_MW09       | 1                     | 2.7                          | 1.7                   | MW19                  | 22.1               | 20.9                   | 4.0       |

| Site name             | Water I<br>feet above | level, in<br>e NGVD 29 | Residual, Site name |                        | Water<br>feet abov | level, in<br>e NGVD 29 | Residual, |
|-----------------------|-----------------------|------------------------|---------------------|------------------------|--------------------|------------------------|-----------|
|                       | Simulated             | Observed <sup>1</sup>  | in feet             |                        | Simulated          | Observed <sup>1</sup>  | in feet   |
|                       | Layer 1—C             | ontinued               |                     |                        | Layer 1—C          | ontinued               |           |
| BldgPT5_MW02          | 11.1                  | 11.8                   | 0.7                 | HPFF_MW24              | 18.5               | 20.1                   | 1.6       |
| BldgPT5_MW03          | 10.8                  | 11                     | 0.2                 | HPFF_MW25              | 18.6               | 19.7                   | 1.1       |
| BldgPT5_MW04          | 10.8                  | 11.5                   | 0.7                 | HPFF_MW26              | 18.3               | 19.1                   | 0.8       |
| BldgPT5_MW09          | 10.6                  | 11.2                   | 0.6                 | HPFF_MW27              | 18.1               | 19.3                   | 1.2       |
| BldgPT37_MW01         | 5.4                   | 4.9                    | -0.5                | HPFF_MW28              | 18.9               | 20.8                   | 1.9       |
| BldgS688_MW01         | 3                     | 3.3                    | 0.3                 | HPFF_MW29              | 19.2               | 21.1                   | 1.9       |
| BldgS2633_MW02        | 5.2                   | 1.7                    | -3.5                | HPFF_MW30              | 19.2               | 22.2                   | 3         |
| BldgSLCH4019_         | 22.2                  | 26.8                   | 4.6                 | HPFF_MW31              | 18.6               | 19.9                   | 1.3       |
| MW05                  | 22.2                  | 20.0                   | 1.0                 | HPFF_MW32              | 18.4               | 19.8                   | 1.4       |
| BldgSLCH4019_<br>MW06 | 22.4                  | 27                     | 4.6                 | HPFF_MW33              | 18                 | 19.1                   | 1.1       |
| G-BP06                | 21.8                  | 22.8                   | 1                   | HPFF_MW34              | 17.7               | 18                     | 0.3       |
| G-MW03S               | 15.5                  | 22.0                   | 5 7                 | HPFF_MW35              | 18.1               | 18.8                   | 0.7       |
| G-MW04                | 14.4                  | 16.3                   | 1.9                 | HPFF_MW36              | 17.8               | 18.8                   | 1         |
| G-MW05                | 18.4                  | 22.1                   | 3.7                 | HPFF_MW37              | 17.3               | 18.5                   | 1.2       |
| G-MW08                | 20.7                  | 22.1                   | 1.5                 | HPFF_MW38              | 20.1               | 22.8                   | 2.7       |
| G10-MW10              | 30.5                  | 30.8                   | 0.3                 | HPFF_MW40              | 19.3               | 22.1                   | 2.8       |
| G10-MW7               | 35.1                  | 38                     | 2.9                 | HPFF_MW41              | 19.1               | 21.2                   | 2.1       |
| G10-MW8               | 17.7                  | 18.6                   | 0.9                 | HPFF_MW42              | 19                 | 21.4                   | 2.4       |
| G10-MW9               | 19.4                  | 18.9                   | -0.5                | HPFF_MW44              | 15                 | 14.1                   | -0.9      |
| HP-585                | 35.7                  | 31                     | -4.7                | HPFF_MW47              | 16.2               | 15.1                   | -1.1      |
| HP-708-4              | 28.2                  | 31.9                   | 3.7                 | HPFF_MW48              | 16.9               | 17                     | 0.1       |
| HPFF MW01             | 19.5                  | 23.3                   | 3.8                 | HPFF_MW50              | 16.9               | 16.3                   | -0.6      |
| HPFF MW02             | 19.8                  | 22.7                   | 2.9                 | HPFF_MW51              | 17.6               | 17.7                   | 0.1       |
| HPFF_MW03             | 20.4                  | 21.4                   | 1                   | HPFF_MW53              | 18.4               | 17.7                   | -0.7      |
| HPFF_MW04             | 20                    | 21.5                   | 1.5                 | HPFF_MW57              | 17.3               | 16.8                   | -0.5      |
| HPFF_MW05             | 18.6                  | 20.2                   | 1.6                 | HPFF_MW61              | 19                 | 17.6                   | -1.4      |
| HPFF_MW06             | 20.1                  | 20.1                   | 0                   | HPFF_MW63              | 18                 | 15.9                   | -2.1      |
| HPFF_MW07             | 19.4                  | 19                     | -0.4                | HPFF_MW64              | 19.4               | 18.3                   | -1.1      |
| HPFF_MW09             | 18.6                  | 18.4                   | -0.2                | HPFF_MW66              | 19.1               | 18.3                   | -0.8      |
| HPFF_MW14             | 19                    | 21.5                   | 2.5                 | HPFF_MW68              | 19.2               | 20.8                   | 1.6       |
| HPFF_MW15             | 19.4                  | 21.1                   | 1.7                 | HPFF_MW69              | 19.9               | 18.3                   | -1.6      |
| HPFF_MW16             | 18.2                  | 20.6                   | 2.4                 | HPFF_MW70              | 20                 | 19.4                   | -0.6      |
| HPFF_MW17             | 18.7                  | 19.4                   | 0.7                 | HPGW22-1               | 19.4               | 20.6                   | 1.2       |
| HPFF_MW18             | 18                    | 18.9                   | 0.9                 | HPGW22-2               | 18.3               | 20.4                   | 2.1       |
| HPFF_MW19             | 19                    | 20.9                   | 1.9                 | TankS781_MW01          | 5.4                | 4.3                    | -1.1      |
| HPFF_MW20             | 20.3                  | 21                     | 0.7                 | (O&G)                  | 5.1                | 1.5                    | 1.1       |
| HPFF_MW21             | 18.9                  | 22.8                   | 3.9                 | TankS781_MW03 $(O\&G)$ | 4.9                | 3.7                    | -1.2      |
| HPFF_MW22             | 19.3                  | 22.4                   | 3.1                 | Tank\$781_MW05         |                    |                        |           |
| HPFF_MW23             | 18.5                  | 18.4                   | -0.1                | (O&G)                  | 5.4                | 3.7                    | -1.7      |

S4.52

Historical Reconstruction of Drinking-Water Contamination Within the Service Areas of Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

| Site name              | Water level, in<br>feet above NGVD 29 |                       | Residual, | Site name            | Water level, in<br>feet above NGVD 29 |                       | Residual, |
|------------------------|---------------------------------------|-----------------------|-----------|----------------------|---------------------------------------|-----------------------|-----------|
|                        | Simulated                             | Observed <sup>1</sup> | - in feet |                      | Simulated                             | Observed <sup>1</sup> | in feet   |
|                        | Layer 1— Continued                    |                       |           |                      | Layer 3—Co                            |                       |           |
| TankS781_MW09<br>(O&G) | 3                                     | 2.8                   | -0.2      | Bldg45_MW06<br>(Law) | 6.4                                   | 5.3                   | -1.1      |
| TankS781_MW11<br>(O&G) | 5.1                                   | 8.2                   | 3.1       | Bldg45_MW09<br>(Law) | 6.3                                   | 5.2                   | -1.1      |
| TankS781_MWA<br>(D&D)  | 4.8                                   | 4.5                   | -0.3      | Bldg45_MW21<br>(Law) | 5                                     | 5                     | 0         |
| TankS781_MWB<br>(D&D)  | 4.9                                   | 4.6                   | -0.3      | Bldg45_MW22<br>(Law) | 6.4                                   | 4                     | -2.4      |
| SOW3                   | 17.3                                  | 9                     | -8.3      | Bldg645_MW01         | 17.6                                  | 16                    | -1.6      |
| SOW2                   | 7.2                                   | 9                     | 1.8       | Bldg645_MW02         | 17.6                                  | 16.1                  | -1.5      |
| M-1                    | 24                                    | 22.8                  | -1.2      | Bldg645_MW03         | 17.6                                  | 16.1                  | -1.5      |
| M-2                    | 25.1                                  | 17.4                  | -7.7      | Bldg645_MW05         | 17.8                                  | 17                    | -0.8      |
|                        | Layer                                 | 2                     |           | Bldg645_MW09         | 17.7                                  | 16.1                  | -1.6      |
| LCH-4007               | 24.9                                  | 13.4                  | -11.5     | Bldg645_MW10         | 17.5                                  | 16.1                  | -1.4      |
|                        | Layer                                 | · 3                   |           | Bldg645_MW11         | 17.7                                  | 16.3                  | -1.4      |
| 01-GW16DW              | 7.7                                   | 6.5                   | -1.2      | Bldg645_MW13         | 17.7                                  | 16.5                  | -1.2      |
| 01-GW17DW              | 8.3                                   | 8.3                   | 0         | Bldg645_MW14         | 17.5                                  | 16.1                  | -1.4      |
| 78-GW04-2              | 12.5                                  | 10.2                  | -2.3      | Bldg645_MW20         | 17.2                                  | 16.3                  | -0.9      |
| 78-GW09-2              | 13.6                                  | 12.8                  | -0.8      | Bldg645_MW23         | 17.7                                  | 18                    | 0.3       |
| 78-GW17-2              | 17.8                                  | 17.3                  | -0.5      | Bldg820_MW07         | 12.3                                  | 12.7                  | 0.4       |
| 78-GW24-2              | 19.6                                  | 20.3                  | 0.7       | Bldg820_MW09         | 12.6                                  | 11.2                  | -1.4      |
| 78-GW30-2              | 19.2                                  | 18.1                  | -1.1      | Bldg820_MW17         | 12.6                                  | 11.8                  | -0.8      |
| 78-GW31-2              | 16.2                                  | 15.1                  | -1.1      | Bldg820_MW19         | 12.4                                  | 11.9                  | -0.5      |
| 78-GW32-2              | 18                                    | 17.1                  | -0.9      | Bldg820_MW21         | 12.1                                  | 11.7                  | -0.4      |
| 80-MW01                | 3.3                                   | 3.3                   | 0         | Bldg820_MW23         | 11.9                                  | 13                    | 1.1       |
| 80-MW02                | 3.2                                   | 2.7                   | -0.5      | Bldg820_MW25         | 11.9                                  | 13                    | 1.1       |
| 80-MW03                | 4                                     | 5.1                   | 1.1       | Bldg1115_MW22        | 16.3                                  | 15.7                  | -0.6      |
| 80-MW04                | 4                                     | 3.2                   | -0.8      | Bldg1115_MW23        | 17.6                                  | 17.1                  | -0.5      |
| 80-MW05                | 3.5                                   | 3.4                   | -0.1      | Bldg1115_MW24        | 16.3                                  | 15.8                  | -0.5      |
| 80-MW06                | 3.1                                   | 3.2                   | 0.1       | Bldg1115_MW25        | 16.9                                  | 16.4                  | -0.5      |
| 80-MW07                | 4.2                                   | 3.9                   | -0.3      | BldgH19_MW11         | 0.9                                   | 2.6                   | 1.7       |
| 80-MW08                | 3.7                                   | 2.6                   | -1.1      | BldgH19_MW13         | 0.9                                   | 2.6                   | 1.7       |
| 84-MW16 (Baker)        | 5.5                                   | 5                     | -0.5      | BldgLCH4015_         | 20.5                                  | 10.5                  | -10       |
| 88-MW02DW              | 9.8                                   | 8.6                   | -1.2      | MW13                 |                                       |                       | - •       |
| 88-MW03DW              | 9.8                                   | 9.4                   | -0.4      | BldgLCH4015_<br>MW19 | 20.8                                  | 6.6                   | -14.2     |
| 88-MW04DW              | 9.9                                   | 9.8                   | -0.1      | BldgLCH4015          |                                       |                       |           |
| 88-MW05DW              | 9.6                                   | 9.4                   | -0.2      | MW20                 | 20.7                                  | 6.4                   | -14.3     |

| Site name              | Water level, in<br>feet above NGVD 29 |                       | Residual, | Site name    | Water level, in<br>feet above NGVD 29 |                       | Residual, |  |  |
|------------------------|---------------------------------------|-----------------------|-----------|--------------|---------------------------------------|-----------------------|-----------|--|--|
|                        | Simulated                             | Observed <sup>1</sup> | in teet   |              | Simulated                             | Observed <sup>1</sup> | in feet   |  |  |
|                        | Layer 3—Continued                     |                       |           |              | Layer 4                               |                       |           |  |  |
| BldgLCH4015_           | 20.8                                  | 7.8                   | -13       | 06-GW01D     | 12.5                                  | 12                    | -0.5      |  |  |
| MW21                   |                                       |                       |           | 06-GW02DW    | 16                                    | 15.7                  | -0.3      |  |  |
| BldgLCH4015_<br>MW22   | 20.7                                  | 7.7                   | -13       | 06-GW36D     | 12.9                                  | 12.4                  | -0.5      |  |  |
| BldgLCH4015            | 20.0                                  | 7.0                   | 12.1      | G-MW03D      | 14.1                                  | 15.3                  | 1.2       |  |  |
| MW23                   | 20.9                                  | /.8                   | -13.1     | HP-37        | 0.7                                   | 0.9                   | 0.2       |  |  |
| BldgS2633_             | 4.6                                   | 3.4                   | -1.2      | HPFF_MW11    | 18                                    | 18.3                  | 0.3       |  |  |
| DidaSi CU4010          |                                       |                       |           | HPFF_MW12    | 17.5                                  | 17.6                  | 0.1       |  |  |
| MW04                   | 20.3                                  | 3.2                   | -17.1     |              | Layer                                 | 5                     |           |  |  |
| BldgSLCH4019_          | 20.1                                  | 26                    | 17.5      | 06-GW07DW    | 13.4                                  | 13.1                  | -0.3      |  |  |
| MW10                   | 20.1                                  | 2.0                   | -17.5     | 06-GW15D     | 13.1                                  | 7                     | -6.1      |  |  |
| HP-609                 | 16                                    | 18.7                  | 2.7       | 06-GW27DW    | 9.7                                   | 9.3                   | -0.4      |  |  |
| HP-620                 | 19.9                                  | 14                    | -5.9      | 06-GW28DW    | 10                                    | 9.6                   | -0.4      |  |  |
| HPFF_MW10              | 18.7                                  | 18.2                  | -0.5      | 06-GW30DW    | 11.3                                  | 10.1                  | -1.2      |  |  |
| HPFF_MW43              | 14.2                                  | 13.2                  | -1        | 06-GW35D     | 9.1                                   | 9.1                   | 0         |  |  |
| HPFF_MW45              | 15.6                                  | 15.2                  | -0.4      | 06-GW37DW    | 7.9                                   | 9.1                   | 1.2       |  |  |
| HPFF_MW49              | 16.3                                  | 15.8                  | -0.5      | 06-GW40DW    | 11                                    | 6.2                   | -4.8      |  |  |
| HPFF_MW55              | 17.6                                  | 18.4                  | 0.8       | 06-GW43DW    | 7.6                                   | 7                     | -0.6      |  |  |
| HPFF_MW58              | 17.6                                  | 17.4                  | -0.2      | 09-GW07D     | 15.6                                  | 13.4                  | -2.2      |  |  |
| HPFF_MW59              | 18.4                                  | 18.4                  | 0         | 28-GW01DW    | 3                                     | 1.4                   | -1.6      |  |  |
| HPFF_MW65              | 18.5                                  | 18.1                  | -0.4      | 28-GW07DW    | 3.7                                   | 2.3                   | -1.4      |  |  |
| HPFF_MW67              | 18.2                                  | 17.3                  | -0.9      | 28-GW09DW    | 3.9                                   | 2.5                   | -1.4      |  |  |
| HPFF_MW71              | 18.9                                  | 17.9                  | -1        | 78-642-1     | 19.8                                  | 21                    | 1.2       |  |  |
| TankS781_MW02          | 5.1                                   | 3.8                   | -1.3      | 78-642-2     | 19.3                                  | 20                    | 0.7       |  |  |
| (O&G)                  |                                       |                       |           | 78-GW04-3    | 11.3                                  | 10.5                  | -0.8      |  |  |
| TankS781_MW04<br>(O&G) | 4.6                                   | 3.6                   | -1        | 78-GW09-3    | 12.5                                  | 14.4                  | 1.9       |  |  |
| TankS781 MW06          | 5.0                                   | 2.5                   | 1.5       | 78-GW17-3    | 16.4                                  | 18                    | 1.6       |  |  |
| (O&G)                  | 5.2                                   | 3.5                   | -1.7      | 78-GW24-3    | 18.7                                  | 20                    | 1.3       |  |  |
| TankS781_MW08          | 35                                    | 2.9                   | -0.6      | 78-GW30-3    | 18.3                                  | 17.9                  | -0.4      |  |  |
| (O&G)                  | 0.0                                   |                       | 0.0       | 78-GW31-3    | 14.6                                  | 15.4                  | 0.8       |  |  |
| TankS781_MW10<br>(O&G) | 3                                     | 2.7                   | -0.3      | 78-GW32-3    | 16.5                                  | 17.4                  | 0.9       |  |  |
| TankS781_MW12          |                                       |                       |           | 80-MW03IW    | 3.7                                   | 2.8                   | -0.9      |  |  |
| (O&G)                  | 4.8                                   | 4.3                   | -0.5      | Bldg645_MW15 | 17.1                                  | 15.1                  | -2        |  |  |
| TankS781_MW14          | 3                                     | 2.7                   | -0.3      | Bldg645_MW16 | 16.9                                  | 15.7                  | -1.2      |  |  |
| (U&G)                  |                                       | 6                     |           | Bldg645_MW17 | 16.8                                  | 15.5                  | -1.3      |  |  |
| SOW5                   | 7.4                                   | 9                     | 1.6       | Bldg645 MW18 | 17.6                                  | 18.5                  | 0.9       |  |  |

| Site name         | Water level, in<br>feet above NGVD 29 |                       | Residual, | Site name    | Water level, in<br>feet above NGVD 29 |                       | Residual, |  |
|-------------------|---------------------------------------|-----------------------|-----------|--------------|---------------------------------------|-----------------------|-----------|--|
|                   | Simulated                             | Observed <sup>1</sup> | – In feet |              | Simulated                             | Observed <sup>1</sup> | in feet   |  |
| Layer 5—Continued |                                       |                       |           |              |                                       |                       |           |  |
| Bldg645_MW21      | 16.9                                  | 16                    | -0.9      | 06-GW01DA    | 12.1                                  | 10.3                  | -1.8      |  |
| Bldg645_MW22      | 17.2                                  | 15.6                  | -1.6      | 06-GW01DB    | 12.4                                  | 7.5                   | -4.9      |  |
| Bldg645_MW26      | 17.3                                  | 15.6                  | -1.7      | 06-GW27DA    | 10.6                                  | 7.1                   | -3.5      |  |
| Bldg645_MW27      | 17.8                                  | 14.8                  | -3        | 06-GW38D     | 11.7                                  | 8.7                   | -3        |  |
| Bldg645_MW28      | 17.2                                  | 15                    | -2.2      | 06-GW39D     | 8.7                                   | 5.9                   | -2.8      |  |
| Bldg645_MW29      | 17.6                                  | 14.7                  | -2.9      | 06-GW40DA    | 11.9                                  | 11.5                  | -0.4      |  |
| Bldg645_MW30      | 17.9                                  | 23.2                  | 5.3       |              | Multilayer                            |                       |           |  |
| Bldg645_MW31      | 17.6                                  | 13.1                  | -4.5      | HP-557       | 28                                    | 26                    | -2        |  |
| Bldg645_MW32      | 17.6                                  | 15                    | -2.6      | HP-558       | 29.2                                  | 28                    | -1.2      |  |
| Bldg820_MW09D     | 11.7                                  | 12.4                  | 0.7       | HP-595       | 32.5                                  | 33                    | 0.5       |  |
| HP-650            | 24.4                                  | 26.9                  | 2.5       | HP-596       | 33.7                                  | 34                    | 0.3       |  |
| HP-651            | 12.6                                  | 13.7                  | 1.1       | HP-601       | 13.2                                  | 15.4                  | 2.2       |  |
| HP-652            | 24.3                                  | 26.5                  | 2.2       | HP-602       | 15.5                                  | 14.1                  | -1.4      |  |
| HP-699            | 8.2                                   | 8                     | -0.2      | HP-603       | 11.5                                  | 11.6                  | 0.1       |  |
| HP-700            | 6.6                                   | 4.5                   | -2.1      | HP-604       | 14.8                                  | 16                    | 1.2       |  |
| HP-705            | 23.5                                  | 16                    | -7.5      | HP-605       | 19.8                                  | 19                    | -0.8      |  |
| HP-708            | 27.4                                  | 31.1                  | 3.7       | HP-606       | 17.6                                  | 17.3                  | -0.3      |  |
| HP-709            | 16.6                                  | 13                    | -3.6      | HP-607 (new) | 15                                    | 8                     | -7        |  |
| HPFF_MW13         | 15.1                                  | 15.9                  | 0.8       | HP-607 (old) | 15.5                                  | 15                    | -0.5      |  |
| HPFF_MW46         | 14.2                                  | 15                    | 0.8       | HP-608       | 11.4                                  | 10.2                  | -1.2      |  |
| HPFF_MW52         | 16.4                                  | 18.2                  | 1.8       | HP-610       | 13.8                                  | 12.4                  | -1.4      |  |
| HPFF_MW56         | 15.1                                  | 17.1                  | 2         | HP-611 (new) | 29.3                                  | 33.6                  | 4.3       |  |
| HPFF_MW60         | 16.7                                  | 18.1                  | 1.4       | HP-611 (old) | 13.2                                  | 15.5                  | 2.3       |  |
| HPFF_MW62         | 16.5                                  | 15.1                  | -1.4      | HP-612 (new) | 30.7                                  | 32.9                  | 2.2       |  |
| LCH-4009          | 22.1                                  | 16.8                  | -5.3      | HP-612 (old) | 15.3                                  | 15                    | -0.3      |  |
| R(1950)           | 4                                     | 8                     | 4         | HP-613       | 17.1                                  | 9.3                   | -7.8      |  |
| S190A             | 6.7                                   | 2                     | -4.7      | HP-614 (new) | 26.3                                  | 28                    | 1.7       |  |
| SOW4              | 15.9                                  | 15                    | -0.9      | HP-614 (old) | 13.8                                  | 13.4                  | -0.4      |  |
| X24S1             | 4.6                                   | 3.6                   | -1        | HP-615       | 16                                    | 14.7                  | -1.3      |  |
| X24S6             | 6.3                                   | 5.8                   | -0.5      | HP-616       | 19.1                                  | 13.3                  | -5.8      |  |

| Site name    | Water level, in<br>feet above NGVD 29 |                       | Residual, | Site name                                                                                                                                                                                              | Water level, in<br>feet above NGVD 29 |                       | Residual, |  |
|--------------|---------------------------------------|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------|--|
|              | Simulated                             | Observed <sup>1</sup> | in teet   |                                                                                                                                                                                                        | Simulated                             | Observed <sup>1</sup> | In teet   |  |
|              | Multilayer—Continued                  |                       |           | Multilayer—Continued                                                                                                                                                                                   |                                       |                       |           |  |
| HP-618 (new) | 25.2                                  | 20                    | -5.2      | HP-647                                                                                                                                                                                                 | 21.6                                  | 10.3                  | -11.3     |  |
| HP-619 (new) | 26.1                                  | 30                    | 3.9       | HP-648                                                                                                                                                                                                 | 23.5                                  | 23.1                  | -0.4      |  |
| HP-621 (new) | 21.5                                  | 8                     | -13.5     | HP-649                                                                                                                                                                                                 | 23.3                                  | 20.9                  | -2.4      |  |
| HP-622       | 13.7                                  | 16.1                  | 2.4       | HP-653                                                                                                                                                                                                 | 16.7                                  | 14.9                  | -1.8      |  |
| HP-623       | 13.1                                  | 14.6                  | 1.5       | HP-654                                                                                                                                                                                                 | 20.6                                  | 19.2                  | -1.4      |  |
| HP-625       | 12                                    | 9                     | -3        | HP-660                                                                                                                                                                                                 | 12.9                                  | 11.5                  | -1.4      |  |
| HP-627 (new) | 20.9                                  | 19                    | -1.9      | HP-661                                                                                                                                                                                                 | 13.8                                  | 16                    | 2.2       |  |
| HP-628 (new) | 12.8                                  | 10                    | -2.8      | HP-662                                                                                                                                                                                                 | 14.7                                  | 14                    | -0.7      |  |
| HP-628 (old) | 15                                    | 4.5                   | -10.5     | HP-663                                                                                                                                                                                                 | 21.3                                  | 19                    | -2.3      |  |
| HP-629 (old) | 25.1                                  | 23.7                  | -1.4      | HP-698                                                                                                                                                                                                 | 9.8                                   | 10                    | 0.2       |  |
| HP-630       | 15.9                                  | 16                    | 0.1       | HP-701                                                                                                                                                                                                 | 6.7                                   | 5                     | -1.7      |  |
| HP-631       | 24.4                                  | 25.8                  | 1.4       | HP-703                                                                                                                                                                                                 | 13.4                                  | 9                     | -4.4      |  |
| HP-633       | 9.4                                   | 7.6                   | -1.8      | HP-704                                                                                                                                                                                                 | 8.8                                   | 6                     | -2.8      |  |
| HP-634       | 19.4                                  | 20.3                  | 0.9       | HP-706                                                                                                                                                                                                 | 24.2                                  | 19                    | -5.2      |  |
| HP-635       | 16.2                                  | 17                    | 0.8       | HP-707                                                                                                                                                                                                 | 11.5                                  | 10                    | -1.5      |  |
| HP-636       | 17                                    | 15.8                  | -1.2      | HP-710                                                                                                                                                                                                 | 15.6                                  | 13.5                  | -2.1      |  |
| HP-637       | 15.1                                  | 14.2                  | -0.9      | HP-711                                                                                                                                                                                                 | 17.4                                  | 17.5                  | 0.1       |  |
| HP-638       | 8.2                                   | 5.8                   | -2.4      | HP-5186                                                                                                                                                                                                | 16.5                                  | 12                    | -4.5      |  |
| HP-641       | 20.5                                  | 15.2                  | -5.3      | <sup>1</sup> See Faye et al. (2013, Table S3.4) for data sources and additional deta<br>Table S3.4 (Faye et al. 2013) uses the term "estimated potentiometric lev<br>instead of "abserved" water level |                                       |                       |           |  |
| HP-642       | 19.7                                  | 22.7                  | 3         |                                                                                                                                                                                                        |                                       |                       |           |  |
| HP-643       | 12                                    | 13.2                  | 1.2       | Statistics:                                                                                                                                                                                            |                                       |                       |           |  |

-3.8

-7

-10

Table S4.8. Simulated and observed predevelopment water levels in wells within the Hadnot Point-Holcomb Boulevard study area, U.S. Marine Corps Base Camp Lejeune, North Carolina.—Continued

Minimum residual=-17.5 feet Maximum residual=11.5 feet Average residual=0.5 feet Standard deviation=3.3 feet Root-mean-square residual=3.39 feet

HP-644

HP-645

HP-646

14.2

17.1

18

10.4

10.1

8



Areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and Vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina — Chapter A–Supplement 4: Simulation of Three-Dimensional Groundwater Flow Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water Within the Service