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iv  METHYL MERCAPTAN 

ADDENDUM for Methyl Mercaptan  
Supplement to the 1992 Toxicological Profile for Methyl Mercaptan   

Background Statement 

This addendum to the Toxicological Profile for Methyl Mercaptan supplements the profile 
released in 1992. 
 
Toxicological profiles are developed in response to the Superfund Amendments and 
Reauthorization Act (SARA) of 1986, which amended the Comprehensive Environmental 
Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund.) CERCLA further 
states that the Administrator will “establish and maintain inventory of literature, research, and 
studies on the health effects of toxic substances” (Title 42, Chapter 103, Subchapter I, § 9604 [i] 
[1] [B]). 
 
This addendum is a non-peer–reviewed supplement containing scientific data that were 
published in the open peer-reviewed literature since the release of the toxicological profile in 
1992. 
 
Chapter numbers in this addendum coincide with the Toxicological Profile for Methyl Mercaptan 
(1992). This document should be used with the profile; it does not replace it.  
 
 



 

	

 
 
 
 

 

1 METHYL MERCAPTAN 

2. HEALTH EFFECTS  

2.1 INTRODUCTION 

Methyl mercaptan (CH3SH) is a substance used in manufacturing and other industries. It has a 

strong odor and is added to natural gas, for example, to help detect leaks. It is also a waste 

product in certain industries, such as papermaking. As such, its toxicity, combined with 

production in large amounts, represents a threat to human health. Methyl mercaptan and related 

substances, such as dimethyl sulfide (CH3)2S, dimethyl disulfide (CH3SSCH3), and hydrogen 

sulfide (H2S), are also produced in large concentrations by bacteria in anaerobic sediments and 

by intestinal microflora. These substances are also present in nontoxic concentrations in wine, 

cheese, and other foods. 

 

The odor of methyl mercaptan is noticeable at concentrations much lower than those that are 

hazardous. People can smell methyl mercaptan at about 2 ppb in air, whereas studies in rats and 

mice show that the concentrations detrimental to health are greater than 100 ppm ([EPA] 2008). 

Thus, most people can become aware of the presence of hydrogen sulfide and methyl mercaptan 

at levels significantly below those considered harmful to human health. However, after 

prolonged exposure, the smell can become less noticeable (Brenneman et al. 2000). When such 

olfactory fatigue occurs, a person’s sense of smell might not provide adequate warning of 

hazardous air levels. 

 

A question that needs further research is whether methyl mercaptan is genotoxic at 

concentrations to which humans are often exposed. (See the Genotoxicity section for a 

discussion on the subject.) 

 

Methyl mercaptan is also known as methanethiol and often abbreviated as MeSH.  
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2 METHYL MERCAPTAN 

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE  
 

2.2.1 Inhalation Exposure 
 

2.2.1.1 Death 

The 1992 Toxicological Profile for Methyl Mercaptan ([ATSDR] 1992) lists a single death after 

exposure to methyl mercaptan, that of a worker who emptied tanks containing methyl mercaptan 

(Shults et al. 1970). In a later document, EPA noted the reported death of a 19-year-old exposed 

to greater than 10,000 ppm of methyl mercaptan for a few minutes ([EPA] 2008). “Death ensued 

in 45 minutes as a result of respiratory arrest and ‘heart failure.’ The blood concentration of 

methyl mercaptan was greater than 2.5 nmol/mL (Syntex Corporation 1979).” 

 

The EPA report also cites a report from Shertzer (2001) of a third death: “A 24-year-old male 

working in a sodium methyl sulfhydrate factory was found dead. Large quantities of methyl 

mercaptan were detected in his liver, kidneys, lungs, blood, urine, and in the washout solution of 

his trachea.” 

 

Table 1 lists, for comparison, data included in the Toxicological Profile for Methyl Mercaptan 

([ATSDR] 1992). 

Table 1. LC50 for Sprague‐Dawley rats of both sexes acutely exposed for 4‐hour periods (Tansy 
et al. 1981) 

LC50 (ppm) 
Hydrogen sulfide 444 
Methyl mercaptan 675 
Dimethyl disulfide 805 
Dimethyl sulfide 40,250 
Equimolar mixture of methyl mercaptan, dimethyl sulfide, and dimethyl disulfide 550 

Respiratory. Researchers who collected air samples from 10 kraft pulp mills found 

concentrations of 0–20  ppm hydrogen sulfide and 0–15 ppm methyl mercaptan (Kangas et al. 

(1984). Comparable amounts of dimethyl sulfide with dimethyl disulfide were as high as 1.5 

ppm. In a clinical survey of the pulp mill workers, subjective symptoms included increased 

chronic or recurrent headaches compared to unexposed controls (p<0.025). Other effects (not 
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3 METHYL MERCAPTAN 

statistically significant) included decreased mental concentration capacity and nervous system  

symptoms such as restlessness and lack of vigor. 

 

In its “2008 Interim Acute Exposure Guideline Levels (AEGLs) for Methyl Mercaptan,” EPA 

cites two non-peer–reviewed reports, one on rats ([DuPont] 1992) and one on mice ([SRI] 1996) 

([EPA] 2008). Tables 2, 3, and 4, and Figure 1 show data extracted from these documents and 

summarized by EPA ([EPA] 2008). 

TABLE 2. Acute inhalation toxicity in rats exposed to methyl mercaptan 
Concentration 

(ppm) 
Duration 
(hours) Mortality Clinical signs Necropsy findings 

250 4 0/2 Ocular and nasal irritation Pneumonitis in 2 rats; 
considered coincidental 

500 4 0/2 Ocular and nasal irritation, 
shallow respiration 

Focal atelectasis (9 days 
after treatment in 2 rats) 

750 3–3.5 2/2 Comatose a few minutes 
before death none 

1000 3.17 2/2 
Shallow respiration, 
cyanosis, comatose in 3 
hours 

none 

2000 0.33 2/2 Comatose in 15 minutes none 
Source: ([DuPont] 1992) as cited in ([EPA] 2008) 

TABLE 3. Subchronic Inhalation Toxicity in Rats Exposed to Methyl Mercaptan 

Concentration Duration 
(ppm) Mortality Clinical Signs Necropsy Findings 

100 
6 

hours/day x 
10 days 

0/2 
Occasional restlessness Bronchopneumonia (both 

rats) 

200 
6 

hours/day x 
6 days 

1/4 
Occasional restlessness, ears 
red 

No effects (2 rats) 
pneumonia (2 rats, 
including decedent) 

200 
6 

hours/day x 
10 days 

1/4 

Slight dyspnea and 
chromodacryorrhea after sixth 
exposure, slight cyanosis, moist 
rales (decedent) 

Decedent: 
bronchopneumonia 
Rat #2: coincidental 
atelectasis 
Rat # 3: slight pulmonary 
congestion and 
emphysema 
Rat #4: slight bronchitis 
and emphysema, 
coincidental atelectasis 

Source: ([DuPont] 1992) as cited in ([EPA] 2008) 

3  



 

 
 
 

 

                         
             

 
 

     

           

           

 

 

       

 

   
               

 

 

 

 
 

4  

4 METHYL MERCAPTAN  

TABLE 4. Clinical signs and mortality in Swiss‐Webster mice following acute nose‐only inhalation 
exposure to methyl mercaptan for 6 hours. 
Concentration 

(ppm) Clinical Signs Mortality 

0 None None of 15 mice 
114 None None of 15 mice 

258 

Shallow breathing and hypoactivity in 
all mice during the fourth and fifth 
hours of exposure; appeared normal by 
day 2 

None of 15 mice 

512 

Shallow breathing in all mice at the 
third and fourth hours of exposure and 
hypoactivity during the fifth hour of 
exposure 

Out of 15 mice, 3 female and 2 male 
mice were found dead on day 2; all 
surviving mice group appeared 
normal by day 2. 

Source: [SRI] (1996) as cited in ([EPA] 2008) 

Figure 1. Category plot for chemical toxicity animal data for methyl mercaptan (extracted from  
([EPA] 2008)); triangles represent interim acute exposure guideline levels [AEGL])  



 

 

 

 

 
 
 
 

5 METHYL MERCAPTAN 

2.2.1.7 Genotoxic Effects 

[SRI] (1996) performed bone marrow micronucleus assays of male and female Swiss-Webster 

mice following acute nose-only inhalation of methyl mercaptan ([EPA] 2008). A statistically 

significant increase in micronucleated polychromatic erythrocytes was observed in male mice 

after exposure to 512 ppm methyl mercaptan for 6 hours. However, exposure to 500 ppm in air 

can lead to death, rendering the genotoxic effects moot. EPA questioned the biological 

significance of the findings because of unexpected values in the control group ([EPA] 2008). 

 

Notwithstanding the lack of genotoxicity data for methyl mercaptan, data from hydrogen sulfide 

studies suggest that methyl mercaptan might be genotoxic in vivo, given the similarity of its 

toxicity mechanisms with those of hydrogen sulfide. Attene-Ramos et al. (2010) determined that 

hydrogen sulfide is genotoxic to nontransformed human intestinal epithelial cells at 

concentrations (found in the intestines) as low as 250 µM. The authors suggest that hydrogen 

sulfide could be linked to chronic disorders such as ulcerative colitis and colorectal cancer.  

 

Methyl mercaptan, together with hydrogen sulfide and dimethyl sulfide, are the three most 

common volatile sulfur substances found in the human colon (Suarez et al. 1998). Quite often, 

the concentration of methyl mercaptan is higher than that of hydrogen sulfide. One study found 

that the methyl mercaptan concentration exceeded that of hydrogen sulfide in 22% of samples 

(Suarez et al. 1998). 

 

As discussed below, the colon can quickly detoxify hydrogen sulfide and methyl mercaptan to 

thiosulfate (Levitt et al. 1999). 

2.3 TOXICOKINETICS 

The primary source of human exposure to methyl mercaptan is the gas generated in the large 

intestine. Intestinal microflora can generate concentrations of methyl mercaptan, hydrogen 

sulfide, and dimethyl sulfide in excess of 1,000 ppm. However, the lining of the colon rapidly 

detoxifies methyl mercaptan via mechanisms that oxidize methyl mercaptan and hydrogen 

sulfide to thiosulfate, resulting in no or minimal absorption of methyl mercaptan (Levitt et al. 
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6 METHYL MERCAPTAN 

1999). For example, the oxidation rate of hydrogen sulfide by colonic mucosa is 10,000 times 

greater than the reported methylation rate (Levitt et al. 1999). Thus, the actual concentrations of 

these gases expelled in the flatus range from 0.2 ppm to 30 ppm (Furne et al. 2001; Levitt et al. 

1999; Suarez et al. 1997). 

 

Human bodies also generate methyl mercaptan in other ways. In the mouth, for example, methyl 

mercaptan generated around the teeth and gums can contribute to adult periodontitis and inhibit 

healing surgical wound healing by adversely affecting cell function (Johnson et al. 1992; 

Lancero et al. 1996; Nakano et al. 2002). 

 

In the large intestine, a detoxification mechanism quickly oxidizes methyl mercaptan (Levitt et 

al. 1999). This presumably does not happen in the lungs, and inhalation of methyl mercaptan 

continues to be the primary hazard to human health. Suarez et al. (1998) observed concentrations 

of 2,000 ppm hydrogen sulfide and 500 ppm methyl mercaptan in gas aspirated from the ceca of 

rats (Jiang et al. 2001). These are concentrations that would be lethal in less than 1 hour had the 

exposure occurred in the lungs. 

4. PRODUCTION, IMPORT, USE, AND DISPOSAL 

4.4 DISPOSAL 

Oxidizing agents can be used to control methyl mercaptan and other sulfur gas emissions from 

sewage sludge. Potassium permanganate and hydrogen peroxide are most effective in reducing 

methyl mercaptan and dimethyl sulfide emissions, followed by sodium hypochlorite and ferric 

chloride. Potassium nitrate had no effect on the removal of the sulfur gases (Devai and Delaune 

2002). 

 

Methyl mercaptan also can be trapped and oxidized in activated carbon filters by inorganic 

mechanisms. Activated carbon can remove methyl mercaptan by absorption. By this process, the 

compound is oxidized to disulfides. Depending on the chemistry of the carbon surface, the 

disulfides might then be converted to sulfonic acid in the presence of water and active radicals 

(Bashkova et al. 2002). 

6  



 
 
 
 
 

7 METHYL MERCAPTAN 

Removal of Methyl Mercaptan by Aerobic and Anaerobic Biological Treatment 

Thiobacillus thioparus can oxidize hydrogen sulfide, methyl mercaptan, dimethyl sulfide 

[(CH3)2S], and dimethyl disulfide (CH3SSCH3). The effectiveness of this aerobic bacterium in 

removing the gases was demonstrated in tests of a pilot-scale peat biofilter treating the exhaust 

gas from a night soil treatment plant. Average removal ratios with T. thioparus inoculated into 

the biofilter were of 99.8% for hydrogen sulfide, 99.0% for methyl mercaptan, 89.5% for 

dimethyl sulfide, and 98.1% for dimethyl disulfide. No acclimation period was needed. The pH 

needs to be controlled to maintain removal efficiency (Cho et al. 1992; Park et al. 1993). 

 

Biological deodorization of dimethyl sulfide was best achieved using an activated carbon fabric 

in a biofilter. IM1, the probable dominant bacterial strain isolated from the biofilter, degraded 

dimethyl sulfide, hydrogen sulfide, methyl mercaptan, and dimethyl disulfide (Tiwaree et al. 

1992). 

 

A packed bed filter filled with immobilized microorganism beads was studied for removing 

hydrogen sulfide and methyl mercaptan from wastewater treatment facilities. Optimum pH for 

the removal of hydrogen sulfide and methyl mercaptan differed markedly. The values were 2-3 

and 6-8, respectively. A two-stage biofilter operated in series under different pH values might 

remove the hydrogen sulfide and methyl mercaptan more effectively (Pinjing et al. 2001). 

 

Ruokojärvi et al. (2001) used similar strategies. The authors connected in series two biotrickling 

filters with different microbes and operating pH levels to create a two-stage system. The first 

filter operated at a pH of 2. It removed most of the hydrogen sulfide and some of the methyl 

mercaptan and dimethyl sulfide. The second filter, at a pH of approximately 6.5, removed the 

rest of the methyl mercaptan and most of the dimethyl sulfide. The total maximum loads of the 

whole two-stage biotrickling filter, counted in sulfur amounts, were 1,150 g/m3/day for hydrogen 

sulfide, 879 g/m3/day for dimethyl sulfide, and 66 g/m3/day for methyl mercaptan treated in a gas 

mixture. The average removal efficiencies for all gases tested were 99% or higher.  

 

An aerobic enrichment culture grown on a mixture of hydrogen sulfide and methyl mercaptan as 

sole energy sources was used to remove hydrogen sulfide and methyl mercaptan from a sulfide
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8 METHYL MERCAPTAN 

laden spent-sulfidic caustic waste stream. The culture was immobilized in support matrix in a 

continuous flow, fluidized-bed column bioreactor. Complete oxidation was achieved at sulfate 

levels below 12 g/L (Conner et al. 2000). Clostridium methoxybenzovorans sp. nov., an isolate 

from an anaerobic methanogenic pilot-scale digester fed with olive oil mill wastewater, was 

capable of O-demethylating a wide range of methoxylated aromatic compounds. Methyl 

mercaptan and dimethyl sulfide were fermented to acetate (Mechichi et al. 1999b). 

 

Volatile sulfurs such as methyl mercaptan, dimethyl sulfide, and dimethyl disulfide can be 

removed from wastewater by anaerobic treatment. In one study, biomass originating from an 

anaerobic wastewater treatment facility treating brewery wastewater converted the three gases to 

methane and hydrogen sulfide (Sipma et al. (2002). Conversion to methane occurred mainly 

through respiration by anaerobic bacteria (methanogenesis), as indicated by inhibition of the 

conversion process with 2-bromoethanesulfonic acid, an inhibitor of bacterial methanogenesis. 

This process does not address the removal of hydrogen sulfide. 

 

Bioaugmentation is another method for methyl mercaptan odor control and to reduce gaseous 

emissions from biosolids. This process consists of adding cultured bacteria and nutrients to 

improve the digestion process. For example, anaerobic biosolids bioaugmented with a 

commercial product containing selected strains of bacteria from the genera Bacillus, 

Pseudomonas, and Actinomycetes, organic compounds, and micronutrients, generated 29% more  

net methane during 8 weeks of operation. As expected, increased methane production removed 

most of the methyl mercaptan in the bioaugmented digester. The resulting methyl mercaptan 

concentration was only 37% of the control concentration of nearly 300 ppm(v) (Duran et al. 

2006). 

 

Some of the bacteria capable of converting methyl mercaptan to methane gas show sustained 

growth only on methyl mercaptan and not on related substrates such as methanol, methylamine, 

or dimethyl sulfide. This was demonstrated using a laboratory-scale anaerobic sludge blanket 

reactor to which granular sludge from a pulp mill wastewater treatment plant was added. The 

wastewater methyl mercaptan was degraded at 30°C to hydrogen sulfide, carbon dioxide, and 

methane. At a volumetric loading rate of 16.5 mmol/liter/day, a bacterial succession was 
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9 METHYL MERCAPTAN 

observed. Methanogenic bacteria related to the genus Methanolobus grew initially, but 

eventually were outcompeted by Methanomethylovorans hollandica. Some of the species related 

to the latter could only show sustained growth on methyl mercaptan (de Bok et al. 2006). 

 

Land application of wastewater biosolids is economical and beneficial to resource recycling. 

However, this environmentally friendly practice is sometimes restricted because of odor 

complaints. Methyl mercaptan, dimethyl sulfide, and dimethyl disulfide are among the volatile 

organic sulfur compounds that contribute to biosolids odor. These odors can be controlled if 

precautions are taken to store biosolids under anaerobic conditions and proper temperature. 

Proper temperature can promote the growth of methanogenic bacteria that convert the volatile 

compounds to methane and carbon dioxide (Chen et al. 2005). 

 

5. POTENTIAL FOR HUMAN EXPOSURE 

5.2 RELEASES TO THE ENVIRONMENT 
 

On a global scale, the two primary sources of methyl mercaptan are demethoxylation of lignin 

byproducts and the amino acid methionine. Lignin, together with cellulose and hemicellulose, is 

a component of wood, and thus among the most abundant polymers in living ecosystems. 

Methionine is essential to life, and thus present in all living organisms. The formation of methyl 

mercaptan from lignin requires the presence of hydrogen sulfide, the formation from methionine 

does not. The requirement for hydrogen sulfide in the formation of methyl mercaptan from lignin 

implies the presence of anaerobic conditions. 

 

In anaerobic freshwater sediments, methyl mercaptan formation is a function of the 

concentrations of sulfide and methyl group-donating compounds. Demethoxylation of syringate 

(an intermediate microbial metabolite of lignin) is one of the primary sources of methyl 

mercaptan. The degradation of methyl mercaptan to methane is mediated by a group of 

obligately methylotrophic methanogens that are phylogenetically related to M. hollandica  

(Lomans et al. 2001b).  
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10 METHYL MERCAPTAN 

Holophaga foetida gen. nov., sp. nov., a gram-negative, obligately anaerobic, rod-shaped 

bacterium isolated from a black anoxic freshwater mud sample produced dimethyl sulfide and 

methyl mercaptan during growth on trimethoxybenzoate or syringate. The products originate 

from the transmethylation of lignin-derived methyl groups and inorganic sulfide (Liesack et al. 

1994). 

 

Sporobacterium olearium gen. nov., sp. nov., strain SR1T grew on coronate, methanol, and a 

number of aromatic compounds as carbon and energy sources. Those compounds included 3,4,5

trimethoxybenzoate (TMB), 3,4,5-trimethoxycinnamate (TMC), syringate, 3,4,5

trimethoxyphenylacetate (TMPA), 3,4,5-trimethoxyphenylpropionate (TMPP), ferulate, sinapate, 

vanillate, 3,4-dimethoxybenzoate, 2,3-dimethoxybenzoate, gallate, 2,4,6-trihydroxybenzoate 

(THB), pyrogallol, phloroglucinol, and quercetin. Methyl mercaptan was produced from  

methoxylated aromatic compounds and methanol (Mechichi et al. 1999a). 

Parasporobacterium paucivorans produced methyl mercaptan and dimethyl sulfide from the 

methoxy groups of syringate only in the presence of sulfide (Lomans et al. 2001a). 

5.3 Environmental Fate 
 
5.3.2 Transformation and Degradation 
 

Microbial aerobic oxidation of methyl mercaptan has been shown to occur by Thiobacillus  

(Subramaniyan et al. 1998; Visscher and Taylor 1993); Kim et al. 1999), Hyphomicrobium (Pol 

et al. 1994), Pseudomonas (Honma and Akino 1998), Methylophaga (Schäfer 2007), 

Marinobacterium (Fuse et al. 2000), and Klebsiella (Seiflein and Lawrence 2001).   

 

The two most common mechanisms of anaerobic oxidation of methyl mercaptan by microbes are 

sulfate reduction (Eq. 1) and methanogenesis (Eq. 2)  (Lomans et al. 2001b). 

4CH 2-
3SH + 3SO  -

4 → 4HCO3 + 7HS- + 5H+   (Eq. 1) 

4CH3SH + 3H2O → 3CH4 + HCO –
3 + 4HS– + 5H+   (Eq. 2) 

Three thermophilic strains of Desulfotomaculum MTS5, TDS2, and SDN4 isolated from a sludge 

fermentor completely oxidized methyl mercaptan or dimethyl sulfide with sulfate or nitrate as  
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11 METHYL MERCAPTAN 

electron acceptors. The byproducts were carbon dioxide and sulfide or ammonia (Tanimoto and 

Bak 1994). 

5.3.2.2 Water 

The Roseobacter group of marine bacteria is numerically important in coastal seawater and 

sediments. Several isolates have been shown to degrade dimethyl sulfide and methyl mercaptan. 

This group of bacteria can play an important role in the cycling of sulfur compounds in the 

marine environment. (González et al. 1999). 

 

Aerobic degradation rates for dimethyl sulfide and methyl mercaptan measured under controlled 

conditions in the lab were 10-fold higher than the maximal anaerobic degrading capabilities. 

However, under simulated conditions in freshwater sediments the aerobic degradation of 

dimethyl sulfide and methyl mercaptan was low due to oxygen limitation. Thus, the evidence 

suggests that in freshwater sediments, conversion to methane is the major mechanism of 

dimethyl sulfide and methyl mercaptan degradation (Lomans et al. 1999c). These two sulfur 

compounds can also be oxidized to carbon dioxide by sulfate reducing bacteria when sulfate is 

present in the sediments. The possibility also exists that the compounds are degraded by a 

syntrophic association of sulfate or nitrate reducers, and methanogenic bacteria (Lomans et al. 

1999b). M. hollandica gen. nov., sp. nov., is an example of a methanogen found in freshwater 

sediments that is able to grow on dimethyl sulfide and methyl mercaptan (Lomans et al. 1999a). 

 

Lomans et al. (2002) studied the general mechanisms for the production and degradation of 

methyl mercaptan and dimethyl sulfide in anoxic environments. They found that methylation of 

sulfide was a major mechanism in the generation of methyl mercaptan and dimethyl sulfide. The 

methyl groups originated from the byproducts of lignin degradation, e.g., syringate. They 

isolated an anaerobic bacterium that formed methyl mercaptan and dimethyl sulfide with 

syringate as a methyl group donating compound and sole carbon source. They also isolated a 

methanogenic bacterium that grew on dimethyl sulfide as the sole carbon source. Methyl 

mercaptan and dimethyl sulfide produced in freshwater sediments are consumed quickly by 

methanogenic bacteria, which convert the two gases to methane. When sulfate is present, the two 

gases are oxidized to carbon dioxide by sulfate-reducing bacteria. A large survey of sediments 
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12 METHYL MERCAPTAN 

slurries of various origin demonstrated that both isolates commonly occur in anaerobic 

freshwater sediments (Lomans et al. 2002). 

5.3.2.3 Soil 

Organobromine compounds, including methyl bromide, are produced by a large array of marine 

organisms (Gribble 2000). Methyl bromide is degraded sequentially to methyl mercaptan and 

dimethyl sulfide in anaerobic saltmarsh sediments. The two sulfur molecules are in turn 

converted to methane by methanogenic bacteria (Oremland et al. 1994).  

 

Methyl mercaptan is also a byproduct of the degradation of two oxime carbamate pesticides: 

oxamyl and methomyl. Iron (Fe[II]) and copper (Cu[I]) can catalyze the inorganic reaction 

(Strathmann and Stone 2001). The pesticide ethoprop (Mocap) exhibits a similar phenomenon 

when applied on potato fields, with the subsequent release of n-propyl mercaptan, an odorous 

compound. These odors were correlated in a survey with a series of symptoms such as 

headaches, asthma attacks and burning/itching eyes (Ames and Stratton 1991). The significance 

of these symptoms has been questioned (Greenberg and Campbell 1992). 

 

Studies have shown that rice paddies in China emit hydrogen sulfide, carbonyl sulfide (COS), 

methyl mercaptan, carbon disulfide (CS2), dimethyl sulfide, and dimethyl disulfide. Dimethyl 

sulfide was the predominant sulfur gas emitted. Emissions vary in time and space. Emissions 

increased with application of organic manure. Diurnal and seasonal variations were influenced 

by air temperature and the activity of the rice plant. The annual emission of total volatile sulfur 

gases from a rice paddy in Nanjing ranged from 4.0 mg to 9.5 mg sulfur/m2/year. Emissions of 

dimethyl sulfide ranged from 3.1 mg to 6.5 mg sulfur/m2/year (Yang et al. 1998). 

 

Serratia odorifera, a root-colonizing bacterium that forms symbiotic relationships with many 

plants, can generate significant amounts of methyl mercaptan and other volatile sulfur 

compounds (e.g., dimethyl disulfide and dimethyl trisulfide). In laboratory experiments, S. 

odorifera produced 25 μg·h−1 of methyl mercaptan. These volatile sulfur compound emissions 

can inhibit the growth of the test plant Arabidopsis thaliana (Kai et al. 2010). 
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13 METHYL MERCAPTAN 

Bending andLincoln (1999) measured concentrations of sulfur compounds during decomposition 

of leaf tissues of Brassica juncea (a species of mustard plant) in sandy-loam and clay-loam soils. 

In both soils, the volatile sulfur-containing compounds carbon disulfide, dimethyl disulfide, 

dimethyl sulfide, and methyl mercaptan were the dominant headspace components, with 

maximum concentrations reaching 88, 39, 406, and 992 nmol g-1 dry weight leaf incorporated, 

respectively, in sandy loam and 152, 22, 119, and 473 nmol g-1 dry weight leaf added in clay 

loam. 

 

Methyl mercaptan and carbon disulfide competitively inhibited methane oxidation in two landfill 

cover soils at concentrations occurring in landfills (Börjesson 2001). 

5.4 Levels Monitored in the Environment 
 
5.4.4 Other Environmental Media 

Formation of Methyl Mercaptan in Food 

Cheddar cheese gets its flavor, in part, from volatile sulfur compounds such as methyl 

mercaptan, dimethyl disulfide, dimethyl trisulfide, and hydrogen sulfide. To varying degrees, 

these compounds are produced from sulfur-containing amino acids (i.e., methionine and 

cysteine) by bacteria such as lactobacilli and lactococci during fermentation (Seefeldt and 

Weimer 2000); (Bonnarme et al. 2001); (De Angelis et al. 2002); (Arfi et al. 2003); (Cholet et al. 

2007); (Psoni et al. 2007). 

 

Probiotic bacteria are added to foods such as yogurt as live cultures. These bacteria generate 

several volatile sulfur compounds, including hydrogen sulfide, methyl mercaptan, dimethyl 

disulfide, and dimethyl trisulfide. Probiotic bacteria include Lactobacillus acidophilus, L. 

plantarum, L. rhamnosus, L. reuteri, L. delbrueckii, and L. lactis (Sreekumar et al. 2009). 

 

Methyl mercaptan, together with dimethyl disulfide, 3-(methylsulphanyl) propanol, and 3

(methylsulphanyl) propionic acid, is also the product of malolactic fermentation of wine (a 

process that follows alcoholic fermentation). These compounds add to the aroma produced by the 

wine. These sulfur compounds are probably produced via catabolism of methionine by lactic acid 
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bacteria (e.g., Oenococcus oeni) present or added to the wine (Pripis-Nicolau et al. 2004). O. 

oeni isolated from wine produced methyl mercaptan, dimethyl disulfide, methionol, and 3

(methylthio) propionic acid when grown on methionine (Vallet et al. 2008). 

 

Cultivation of edible mushrooms (e.g., Agaricus bisporus) can also be a source of methyl 

mercaptan (above the odor threshold) and other sulfur volatile compounds such as hydrogen 

sulfide and dimethyl sulfide (Noble et al. 2001). These same mushrooms can also remove methyl 

mercaptan. The odor typical of those who eat garlic, produced by methyl mercaptan and allyl 

thiols, could be controlled by adding to the diet foods rich in polyphenols. For example, extracts 

of the mushroom  A. bisporus have a deodorizing effect on the methyl mercaptan and allyl thiols 

generated when garlic is eaten. This appears to be accomplished by a reaction of the sulfur 

compounds with the polyphenols in the fungal extracts (Tamaki et al. 2007). 

A representative isolate from  Pseudomonas fluorescens and three isolates from non-fluorescent 

Pseudomonas recovered from spoiled commercial ground beef produced volatile sulfur 

compounds, including methyl mercaptan, dimethyl sulfide, dimethyl disulfide, dimethyl 

trisulfide, and methyl thioacetate, but not hydrogen sulfide (Intarapichet and Bailey 1993).  

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

When eaten, certain foods release amounts of methyl mercaptan that people can smell. Persons 

who eat a raw garlic clove, for example, can release concentrations of a few parts per million in 

their mouth (Suarez et al. 1999). Eating asparagus produces a mixture of volatile sulfur 

compounds, including methyl mercaptan, in urine at concentrations up to several thousand times 

greater than in persons who did not eat asparagus (Waring et al. 1987). People also are regularly 

exposed to transient amounts of methyl mercaptan in releases of intestinal gas.  

 

Inhalation in occupational settings is probably a significant human exposure scenario for methyl 

mercaptan.  

 

Pulp mills that use kraft or sulfite processes to bleach paper, for example, can emit hydrogen 

sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, and other volatile sulfur 
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compounds in varying concentrations. Methyl mercaptan and dimethyl sulfide represent more 

than 80% of total reduced sulfur (TRS) emissions in mill digester blow and relief gases. 

Hydrogen sulfide and methyl mercaptan comprise more than 75% of TRS emissions in 

evaporator gases, combined low volume high concentration (LVHC) non-condensable gases 

(NCGs), recovery furnaces, and tall oil reactor vents. Hydrogen sulfide, methyl mercaptan, and 

dimethyl sulfide are each present in significant amounts in stripper off-gases (SOGs) and heavy 

black liquor tank vents ([NCASI] 2002). 

 

In a clinical survey of pulp mill workers, subjective symptoms of those exposed to sulfur 

compounds included increased chronic or recurrent headaches compared to unexposed controls 

(p<0.025) (Kangas et al. (1984). Other effects (not statistically significant) included decreased 

mental concentration capacity and nervous system symptoms such as restlessness and lack of 

vigor. 

 

Conversely, peak ambient concentrations near a community adjacent to a kraft pulp mill site 

were not detectable (DL = 200 ppb), although sulfur dioxide (as high as 400 ppb), hydrogen 

sulfide (as high as 1,800 ppb), and carbonyl sulfide (as high as 1,300 ppb) were measured 

(ATSDR 2007). 

 

Indoor air methyl mercaptan levels in a construction and demolition debris recycling plant were as

high as 750 ppb. Butyl mercaptan was as high as 83 ppb, but little or no methyl mercaptan or 

butyl mercaptan were detected in the adjacent ambient environment (ATSDR 2006). One house 

had an indoor measurement of 12 ppb methyl mercaptan, but none outdoors. Methyl mercaptan 

was also found at 1,204 ppb on a school property adjacent to a landfill (ATSDR and PDOH 

2010). Some of these ambient concentrations exceeded the 15-minute recommended exposure 

limit of 500 ppb (0.5 ppm) set by the National Institute for Occupational Safety and Health 

([NIOSH] 2010). 
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7. REGULATIONS AND ADVISORIES 

Table 5 lists EPA exposure guidelines for methyl mercaptan [EPA] (2008). National Research 

Council AEGL-2 acute exposure guideline levels based on one-third reduction of AEGL-3 

values also have been added ([NRC] 2013) 

Table 5. Extant Standards and Guidelines for Methyl Mercaptan ([EPA] 2008) 

Guideline Exposure duration 
10 minute 30 minute 1 hour 4 hour 8 hour 

AEGL‐1 NR NR NR NR NR 
AEGL‐2 59 ppm 59 ppm 47 ppm 30 ppm 19 ppm 
AEGL‐2 ([NRC] 2013) 40 ppm 29 ppm 23 ppm 14 ppm 7.3 ppm 
AEGL‐3 120 ppm 86 ppm 68 ppm 43 ppm 22 ppm 
ERPG‐1  ‐ ‐ 0.005 ppm ‐ ‐

ERPG‐2  ‐ ‐ 25 ppm ‐ ‐

ERPG‐3  ‐ ‐ 100 ppm ‐ ‐

NIOSH IDLH 150 ppm 
NIOSH REL 0.5 ppm 
OSHA PEL* 10 ppm 
ACGIH TLV‐TWA 0.5 ppm 
OEL (Swedish) 1 ppm 
MAK (German) 0.5 ppm 
MAC (Dutch) 0.5 ppm 
Abbreviations: ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute 
exposure guideline level; ERPG = Emergency Response Planning Guideline; IDLH = immediately 
dangerous to life or health; MAC = maximum accepted concentration; MAK = maximum workplace 
concentration; NIOSH = National Institute for Occupational Safety and Health; NR = no recommendation; 
OEL = occupational exposure limit; PEL = permissible exposure limit; ppm = parts per million; OSHA = 
Occupational Safety and Health Administration; REL = recommended exposure limit; TLV‐TWA = 
threshold limit value–time‐weighted average. 

*Note: “The OSHA Permissible Exposure Limit (PEL) for General Industry” used to be 0.5 ppm,  
matching the NIOSH recommended exposure limit (REL). The OSHA PEL value for General Industry  
went back to the old value of 10 ppm as a result of court action ([NIOSH] 2010).  

AEGL-1: The airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm  
or mg/m3]) of a substance above which it is predicted that the general population, including susceptible 
individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. 
However, the effects are not disabling and are transient and reversible upon cessation of exposure.  

AEGL-2: The airborne concentration (expressed as ppm or mg/m3of a substance above which it is 
predicted that the general population, including susceptible individuals, could experience irreversible or 
other serious, long-lasting adverse health effects or an impaired ability to escape.  
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AEGL-3: The airborne concentration (expressed as ppm or mg/m3) of a substance above which it is 
predicted that the general population, including susceptible individuals, could experience life-threatening 
health effects or death. 

Emergency Response Planning Guidelines (ERPGs) ([AIHA]  2014):   

ERPG-1: The maximum airborne concentration below which it is believed that nearly all individuals 
could be exposed for up to one hour without experiencing other than mild, transient adverse health effects 
or without perceiving a clearly defined objectionable odor, based on the threshold limit value (TLV).  

ERPG-2: The maximum airborne concentration below which it is believed that nearly all individuals 
could be exposed for up to one hour without experiencing or developing irreversible or other serious 
health effects or symptoms which could impair an individual’s ability to take protective action (based on 
repeated-dose animal experiments).  

ERPG-3: The maximum airborne concentration below which it is believed that nearly all individuals 
could be exposed for up to one hour without experiencing or developing life-threatening health effects. 
Based on 4-hour acute inhalation exposure of 400 ppm in rats (Tansy et al. 1981). 

For NIOSH RELs, “TWA” indicates a time-weighted average concentration for up to a 10-hour workday  
during a 40-hour workweek. A short-term  exposure limit (STEL) is designated by "ST" preceding the 
value; unless noted otherwise, the STEL is a 15-minute TWA exposure that should not be exceeded at any  
time during a workday. A ceiling REL is designated by "C" preceding the value; unless noted otherwise, 
the ceiling value should not be exceeded at any time. (See: NIOSH Pocket Guide to Chemical Hazards: 
Exposure Limits.) 
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