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DISCLAIMER 

Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic 
Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human 
Services. 
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UPDATE STATEMENT
 

A Toxicological Profile for Nitrate and Nitrite, Draft for Public Comment was released in September 
2015.  This edition supersedes any previously released draft or final profile.  

Toxicological profiles are revised and republished as necessary.  For information regarding the update 
status of previously released profiles, contact ATSDR at: 

Agency for Toxic Substances and Disease Registry
 
Division of Toxicology and Human Health Sciences
 

Environmental Toxicology Branch
 
1600 Clifton Road NE
 

Mailstop F-57
 
Atlanta, Georgia 30329-4027
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v NITRATE AND NITRITE 

FOREWORD 


This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic 
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA).  The 
original guidelines were published in the Federal Register on April 17, 1987.  Each profile will be revised 
and republished as necessary. 

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects 
information for these toxic substances described therein.  Each peer-reviewed profile identifies and 
reviews the key literature that describes a substance's toxicologic properties.  Other pertinent literature is 
also presented, but is described in less detail than the key studies. The profile is not intended to be an 
exhaustive document; however, more comprehensive sources of specialty information are referenced. 

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile 
begins with a public health statement that describes, in nontechnical language, a substance's relevant 
toxicological properties.  Following the public health statement is information concerning levels of 
significant human exposure and, where known, significant health effects.  The adequacy of information to 
determine a substance's health effects is described in a health effects summary.  Data needs that are of 
significance to the protection of public health are identified by ATSDR. 

Each profile includes the following: 

(A) The examination, summary, and interpretation of available toxicologic information and 
epidemiologic evaluations on a toxic substance to ascertain the levels of significant human 
exposure for the substance and the associated acute, subacute, and chronic health effects; 

(B) A determination of whether adequate information on the health effects of each substance 
is available or in the process of development to determine levels of exposure that present a 
significant risk to human health of acute, subacute, and chronic health effects; and 

(C) Where appropriate, identification of toxicologic testing needed to identify the types or 
levels of exposure that may present significant risk of adverse health effects in humans. 

The principal audiences for the toxicological profiles are health professionals at the Federal, State, and 
local levels; interested private sector organizations and groups; and members of the public.  

This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that has been 
peer-reviewed.  Staffs of the Centers for Disease Control and Prevention and other Federal scientists have 
also reviewed the profile.  In addition, this profile has been peer-reviewed by a nongovernmental panel 
and was made available for public review.  Final responsibility for the contents and views expressed in 
this toxicological profile resides with ATSDR. 

Patrick N. Breysse, Ph.D., CIH
 
Director, National Center for Environmental Health and
 

Agency for Toxic Substances and Disease Registry
 
Centers for Disease Control and Prevention
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*Legislative Background 

The toxicological profiles are developed under the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980, as amended (CERCLA or Superfund).  CERCLA section 
104(i)(1) directs the Administrator of ATSDR to “…effectuate and implement the health related 
authorities” of the statute.  This includes the preparation of toxicological profiles for hazardous 
substances most commonly found at facilities on the CERCLA National Priorities List and that pose the 
most significant potential threat to human health, as determined by ATSDR and the EPA. Section 
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a toxicological profile 
for each substance on the list.  In addition, ATSDR has the authority to prepare toxicological profiles for 
substances not found at sites on the National Priorities List, in an effort to “…establish and maintain 
inventory of literature, research, and studies on the health effects of toxic substances” under CERCLA 
Section 104(i)(1)(B), to respond to requests for consultation under section 104(i)(4), and as otherwise 
necessary to support the site-specific response actions conducted by ATSDR. 
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances may find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (e.g.,death, systemic, immunologic, reproductive), by route of exposure, and by 
length of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies 
are reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Chapter 1 How Can (Chemical X) Affect Children?
 
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)?
 
Section 3.7 Children’s Susceptibility
 
Section 6.6 Exposures of Children
 

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center 
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY) 
Internet:  http://www.atsdr.cdc.gov 

The following additional materials are available online: 

Case Studies in Environmental Medicine are self-instructional publications designed to increase primary 
health care providers’ knowledge of a hazardous substance in the environment and to aid in the 
evaluation of potentially exposed patients (see https://www.atsdr.cdc.gov/csem/csem.html). 

https://www.atsdr.cdc.gov/csem/csem.html
http:http://www.atsdr.cdc.gov


  
 
 
 
 

 
 
 
 
 

  
  

 
   

  
   

 
 

  
 

 
 

 
 

 
   

 
   

 
 

   
   

  
   

  

 
 

    
 

 
 

 
 

 
 

  
    

  
  

 
    

    
 

   
 

 
    

   

viii NITRATE AND NITRITE 

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
incident (see https://www.atsdr.cdc.gov/MHMI/index.asp).  Volumes I and II are planning guides 
to assist first responders and hospital emergency department personnel in planning for incidents 
that involve hazardous materials.  Volume III—Medical Management Guidelines for Acute 
Chemical Exposures—is a guide for health care professionals treating patients exposed to 
hazardous materials. 

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances (see 
https://www.atsdr.cdc.gov/toxfaqs/Index.asp). 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact:  NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA 
30341-3724 • Phone:  770-488-7000 • FAX:  770-488-7015 • Web Page: 
https://www.cdc.gov/nceh/. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 395 E Street, S.W., Suite 9200, 
Patriots Plaza Building, Washington, DC 20201 • Phone:  202-245-0625 or 1-800-CDC-INFO 
(800-232-4636) • Web Page: https://www.cdc.gov/niosh/. 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone:  919-541-3212 • Web Page: 
https://www.niehs.nih.gov/. 

Clinical Resources (Publicly Available Information) 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone: 202-347-4976 
• FAX:  202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk 
Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266 • Web Page: 
http://www.acoem.org/. 

The American College of Medical Toxicology (ACMT) is a nonprofit association of physicians with 
recognized expertise in medical toxicology.  Contact: ACMT, 10645 North Tatum Boulevard, 

http:http://www.acoem.org
http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
http:https://www.niehs.nih.gov
https://www.cdc.gov/niosh
https://www.cdc.gov/nceh
https://www.atsdr.cdc.gov/toxfaqs/Index.asp
https://www.atsdr.cdc.gov/MHMI/index.asp
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Suite 200-111, Phoenix AZ 85028 • Phone: 844-226-8333 • FAX:  844-226-8333 • Web Page: 
http://www.acmt.net. 

The Pediatric Environmental Health Specialty Units (PEHSUs) is an interconnected system of specialists 
who respond to questions from public health professionals, clinicians, policy makers, and the 
public about the impact of environmental factors on the health of children and reproductive-aged 
adults.  Contact information for regional centers can be found at http://pehsu.net/findhelp.html. 

The American Association of Poison Control Centers (AAPCC) provide support on the prevention and 
treatment of poison exposures.  Contact:  AAPCC, 515 King Street, Suite 510, Alexandria VA 
22314 • Phone: 701-894-1858 • Poison Help Line: 1-800-222-1222 • Web Page: 
http://www.aapcc.org/. 

http:http://www.aapcc.org
http://pehsu.net/findhelp.html
http:http://www.acmt.net
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1.	 Health Effects Review. The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2.	 Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3.	 Data Needs Review. The Environmental Toxicology Branch reviews data needs sections to 
assure consistency across profiles and adherence to instructions in the Guidance. 

4.	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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PEER REVIEW
 

A peer review panel was assembled for nitrate and nitrite.  The panel consisted of the following members: 

1.	 Dr. John Fawell, Visiting Professor, School of Applied Sciences, Cranfield University, Cranfield, 
Bedfordshire MK43 OAL, United Kingdom; 

2.	 Dr. Richard B. Ferguson, Professor of Soil Science, Associate Head of the Department of 
Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska; and 

3.	 Dr. Stephen M. Roberts, Director, Center for Environmental & Human Toxicology; Professor, 
College of Veterinary Medicine, College of Medicine, College of Public Health and Health 
Professions, University of Florida, Gainesville, Florida. 

These experts collectively have knowledge of nitrate’s and nitrite’s physical and chemical properties, 
toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and 
quantification of risk to humans.  All reviewers were selected in conformity with the conditions for peer 
review specified in Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, 
and Liability Act, as amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.  

The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content.  The responsibility for the content of this profile lies with the ATSDR. 
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1 NITRATE AND NITRITE 

1. PUBLIC HEALTH STATEMENT FOR NITRATE AND NITRITE 

This Public Health Statement summarizes the Agency for Toxic Substances and Disease Registry’s 

(ATSDR) findings on inorganic nitrate and nitrite, including chemical characteristics, exposure risks, 

possible health effects from exposure, and ways to limit exposure. Nitrate and nitrite can be present in 

organic or inorganic compounds, depending on their chemical structures. This profile pertains to 

inorganic nitrate and nitrite, specifically the ionic forms of both nitrate and nitrite. 

The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the 

nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal 

clean-up activities. Nitrate and nitrite are ubiquitous in the environment.  Specific forms of nitrate and 

nitrite have occasionally been identified in hazardous waste sites.  Ammonium nitrate, sodium nitrate, and 

sodium nitrite were identified in 7, 3, and 2 of the 1,832 hazardous waste sites, respectively, that have 

been proposed for inclusion on the NPL.  The total number of NPL sites evaluated for nitrate and nitrite is 

not known.  But the possibility remains that as more sites are evaluated, the number of sites at which 

nitrate and/or nitrite are found may increase. This information is important because these future sites may 

be sources of exposure, and overexposure to nitrate and/or nitrite may be harmful. 

If you are exposed to nitrate and/or nitrite, many factors determine whether you’ll be harmed.  These 

include how much you are exposed to (dose), how long you are exposed (duration), how often you are 

exposed (frequency), and how you are exposed (route of exposure).  You must also consider the other 

chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 

WHAT ARE NITRATE AND NITRITE? 

Nitrate and nitrite are naturally occurring ionic species that are part of the earth’s nitrogen cycle.  They 

typically exist in the environment in highly water-soluble forms, in association with other ionic species 

such as sodium and potassium.  Nitrate and nitrite salts completely dissociate in aqueous environments. 

Nitrite is readily oxidized (combines with oxygen) to form nitrate. Nitrate is generally stable in the 

environment; however, it may be reduced to nitrite through biological processes involving plants, 

microbes, etc. 

In nature, plants utilize nitrate as an essential (key) nutrient.  In commerce, the majority of nitrate is used 

in inorganic fertilizers.  Additional uses of commercial nitrate and nitrite include food preservation and 



   
 

   
 
 

 
 
 
 
 

     

    

 

 

       
 

         

    

      

   

       

     

     

   

  

 

      

      

 

 

  

   

      

      

       

  

 

 

   

 

  

   

     

 

2 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

the production of munitions and explosives. Sodium nitrite is also being used in medicines and 

therapeutics; for example, as an antidote for cyanide poisoning and as a treatment for pulmonary arterial 

hypertension. 

WHAT HAPPENS TO NITRATE AND NITRITE WHEN THEY ENTER THE ENVIRONMENT? 

Nitrate and nitrite ions naturally occur in the terrestrial (soil) and aquatic (water) environment as part of 

the earth’s nitrogen cycle (see Figure 5-1) and can therefore be found in both soil and water.  In nature, 

nitrate and nitrite can also be found in igneous and volcanic rocks.  Nitrate is formed naturally as an end 

product of vegetable and animal decomposition, making this a principal source for nitrate ion in both 

terrestrial (soil) and aquatic (water) environments.  Nitrate and nitrite can also be released into the 

atmospheric (air), terrestrial (soil), and aquatic (water) environments at places where human-made 

materials such as fertilizers are produced or used. Human and animal wastes are important sources of 

ammonia, a compound containing nitrogen, which undergoes chemical reaction to produce nitrite and 

subsequently nitrate.  In aerobic (containing oxygen) environments, ammonia is readily oxidized to nitrite 

by ammonia-oxidizing bacteria; nitrite is oxidized to nitrate by nitrite-oxidizing bacteria.  This two-stage 

process is known as nitrification. Both human-made and natural sources of nitrogen may contribute to 

nitrate aerosols in the atmosphere, as well as nitrate and nitrite ions in terrestrial (soil) and aquatic (water) 

environments. 

Nitrate and nitrite have been detected in surface waters, drinking water (including public and private 

wells), and groundwater.  Nitrate accounts for the majority of the total available nitrogen in surface 

waters.  Contamination of waters is a result of agricultural runoff (use of chemical fertilizer or animal 

manure) and discharges from septic systems and municipal waste water treatment facilities.  Nitrogen 

exists naturally in soils, typically bound to organic matter or mineral soil material such as rocks.  

Available forms of nitrogen, including nitrate and nitrite, are present in soils at a few kilograms 

(kg)/hectare. 

Nitrate and nitrite are a normal part of the human diet and can be found in vegetables, fruits, cured meats, 

fish, dairy products, beers, cereals, and cereal products.  Some salts, such as sodium nitrite, are 

intentionally added to foods and beverages to preserve or cure them; inhibiting the formation of 

microorganisms that may cause disease such as botulism.  Additionally, nitrites and nitrates may be 

present in some medicines as they can be employed in medicinal and therapeutic uses. 



   
 

   
 
 

 
 
 
 
 

     
 

     

  

  

       

   

 

    

     

   

        

    

    

 

  
 

    

    

 

    

  

      

      

  

        

    

 

 

  

  

 

3 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

HOW MIGHT I BE EXPOSED TO NITRATE AND NITRITE? 

The major source of overexposure of the general population to nitrate and nitrite is via ingestion of water, 

foods, beverages, and/or medicines that contain nitrate and/or nitrite naturally or as an added preservative.  

Nitrate and nitrite can be taken up by plants, especially leafy vegetables such as lettuce and spinach and 

beet roots; vegetables account for about 80% of the nitrate in a typical human diet.  Cured meats, meat 

products, cheeses, and beverages may contain sodium nitrate and/or sodium nitrite as preservatives.  

Relatively high nitrate concentrations are found in some privately owned wells with shallow depths and 

permeable soils.  Drinking of water from such sources, combined with nitrate intake from the diet, may 

result in overexposure to nitrate in some individuals.  Release of nitrate and/or nitrite to soil and water at 

waste disposal sites could result in contamination of drinking water sources and increased uptake by 

plants used for the human diet. Inhalation of nitrate or nitrite is not a likely exposure route of concern for 

the general population, although inhalation of dust from fertilizer products containing nitrate salts is 

possible.  Dusts may also dissolve in sweat on skin, increasing the potential for dermal exposure. 

HOW CAN NITRATE AND NITRITE ENTER AND LEAVE MY BODY? 

Nitrate and nitrite could enter your body from the air you breathe; however, you are not likely to be 

exposed to amounts of nitrate or nitrite in the air that might cause adverse health effects.  Nitrate and 

nitrite enter your body when you drink water or eat foods that contain these substances.  Nitrate and 

nitrite are also present in smokeless tobacco products. Certain bacteria and fungi in these products can 

convert nitrate to nitrite, which can lead to the formation of carcinogenic nitrosamines.  Neither nitrate 

nor nitrite is likely to enter your body from soil.  However, nitrate or nitrite in soil could enter the body of 

young children if they put soil containing nitrate or nitrite in the mouth.  Intake of some nitrate is a 

normal part of the nitrogen cycle in humans.  Both nitrate and nitrite can be produced inside the body as 

well. Some of the nitrate in your body moves from blood to the salivary glands where some of it is 

changed to nitrite.  Nitrate and nitrite are widely distributed in the body.  Nitrate and nitrite that enter your 

body are no different chemically than nitrate and nitrite produced inside your body.  Most nitrate in your 

body leaves in the urine the same day it enters your body.  Some nitrite in the stomach forms other 

substances, some of which may be harmful.  Nitrite in your blood can react with hemoglobin (which 

carries oxygen to body tissues) and reduce the ability of hemoglobin to carry oxygen.  Nitrite can also 

form nitric oxide, which may be beneficial in some instances. 



   
 

   
 
 

 
 
 
 
 

   
 

      

   

     

  

  

 

   

  

 

 

  

  

   

  

  

   

  

    

  

    

   

 

  

 

   

 

 

  

 

4 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

HOW CAN NITRATE AND NITRITE AFFECT MY HEALTH? 

Most people are not exposed to levels of nitrate and/or nitrite that would cause adverse health effects. 

Young infants (<6 months of age) appeared to be particularly sensitive to the effects of nitrite on 

hemoglobin after consuming formula prepared with drinking water that contained nitrate at levels higher 

than recommended limits; some of these infants died.  The cause of methemoglobinemia (a change to 

hemoglobin that decreases the ability to transport oxygen to tissues) in many of these infants may have 

been gastroenteritis from bacteria or viruses in the drinking water or from other sources not related to 

nitrate.  Some children and adults who ate food or drank fluids that contained unusually high levels of 

nitrite experienced decreases in blood pressure, increased heart rate, reduced ability of the blood to carry 

oxygen to tissues, headaches, abdominal cramps, vomiting, and even death.  

There is limited evidence that nitrite may cause some cancers of the gastrointestinal tract in humans and 

mice.  Cancer could result from reactions between nitrite and certain other chemicals that may produce 

cancer-causing substances.  The International Agency for Research on Cancer (IARC) determined that 

there is inadequate evidence for the carcinogenicity of nitrate in food or drinking water and limited 

evidence for the carcinogenicity of nitrite in food (based on association with increased incidence of 

stomach cancer).  IARC determined that there is inadequate evidence for the carcinogenicity of nitrate, 

limited evidence for the carcinogenicity of nitrite per se, and sufficient evidence for the carcinogenicity of 

nitrite in combination with amines or amides.  The overall conclusions of IARC were that “ingested 

nitrate and nitrite under conditions that result in endogenous nitrosation is probably carcinogenic to 

humans (Group 2A).”  IARC noted that: (1) the endogenous nitrogen cycle in humans includes 

interconversion of nitrate and nitrite; (2) nitrite-derived nitrosating agents produced in the acid stomach 

environment can react with nitrosating compounds such as secondary amines and amides to generate 

N-nitroso compounds; (3) nitrosating conditions are enhanced upon ingestion of additional nitrate, nitrite, 

or nitrosatable compounds; and (4) some N-nitroso compounds are known carcinogens. 

The U.S. EPA Integrated Risk Information System does not include a carcinogenicity evaluation for 

nitrate or nitrite. 

See Chapters 2 and 3 for more information on health effects of nitrate and nitrite. 



   
 

   
 
 

 
 
 
 
 

   
 

     

  

 

  

      

  

   

     

  

   

 

 

   
 

 

   

 

  

 

  

   

    

   

   

 

  
    

 

    

   

 

   

   

5 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

HOW CAN NITRATE AND NITRITE AFFECT CHILDREN? 

This section discusses potential health effects of nitrate and nitrite exposure in humans from when they’re 

first conceived to 18 years of age. 

Children can experience the same effects as adults from overexposure to nitrate and/or nitrite.  Young 

infants (<6 months of age) who were fed formula prepared using nitrate-contaminated drinking water 

sources appear to be particularly sensitive to the effects of nitrate on hemoglobin (i.e., 

methemoglobinemia), although bacterial infections may have been at least partially responsible for 

increased sensitivity in these infants. It is not known whether nitrate or nitrite can cause birth defects.  

Results of some studies suggest that ingestion of relatively high levels of nitrate or nitrite could cause 

developmental effects, but other studies found no evidence for nitrate- or nitrite-related developmental 

effects. 

HOW CAN FAMILIES REDUCE THE RISK OF OVEREXPOSURE TO NITRATE AND 
NITRITE? 

If your doctor finds that you have been exposed to significant amounts of nitrate and/or nitrite, ask 

whether your children might also be exposed.  Your doctor might need to ask your state health department 

to investigate.  You may also contact the state or local health department with health concerns. 

Much of the diet contains food with nitrate and possibly small amounts of nitrite.  Some processed food 

contains nitrate and/or nitrite as preservative.  If you think that you are getting too much nitrate or nitrite 

in your diet, consider eating less of those foods that contain high levels of nitrate or nitrite.  This 

consideration is particularly relevant to infants and small children.  Don’t drink water containing levels of 

nitrate or nitrite higher than guideline levels for drinking water. 

ARE THERE MEDICAL TESTS TO DETERMINE WHETHER I HAVE BEEN OVEREXPOSED 
TO NITRATE AND/OR NITRITE? 

Methods are available to detect nitrate and nitrite in plasma and urine; however, these are usually not 

available at a doctor’s office and are not clinically useful. 

Routine blood tests are available to detect a condition known as methemoglobinemia, which is caused by 

the presence of higher-than-normal levels of a form of hemoglobin.  However, these tests cannot tell 



   
 

   
 
 

 
 
 
 
 

 

  

 

 

  

 

  
  

 

    

     

  

  

  

  

   

 

 

     

   

  

 

 

   

   

 

 

  

      

  

   

    

   

 

6 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

whether the high methemoglobin levels were caused by nitrate and nitrite or by some other substance or 

disease. 

For more information on the different substances formed by nitrate and nitrite breakdown and tests to 

detect these substances in the body, see Chapters 3 and 7. 

WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT 
HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  Regulations 

can be enforced by law.  Federal agencies that develop regulations for toxic substances include the 

Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), 

and the Food and Drug Administration (FDA).  Recommendations provide valuable guidelines to protect 

public health but are not enforceable by law.  Federal organizations that develop recommendations for 

toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

National Institute for Occupational Safety and Health (NIOSH). 

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic 

substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect 

animals; levels are then adjusted to help protect humans.  Sometimes these not-to-exceed levels differ 

among federal organizations.  Different organizations use different exposure times (e.g., an 8-hour 

workday or a 24-hour day), different animal studies, or emphasize some factors over others, depending on 

their mission. 

Recommendations and regulations are also updated periodically as more information becomes available. 

For the most current information, check with the federal agency or organization that issued the regulation 

or recommendation. 

The EPA lists maximum contaminant levels (MCL) and maximum contaminant level goals (MCLG) of 

10 mg/L (or ppm) for nitrate (as nitrate-nitrogen; ~44 mg nitrate/L) and 1 mg/L (or ppm) for nitrite (as 

nitrite-nitrogen; ~3.3 mg nitrite/L) in the 2012 Edition of the Drinking Water Standards and Health 

Advisories.  The FDA lists 10 mg/L nitrate (as nitrogen; ~44 mg nitrate/L), 1 mg/L nitrite (as nitrogen; 

~3.3 mg nitrite/L), and 10 mg/L total nitrate and nitrite (as nitrogen) as allowable levels in bottled water.  

OSHA has not set a legal limit for nitrate or nitrite in air.  NIOSH has not set a recommended limit for 

nitrate or nitrite in air. 



   
 

   
 
 

 
 
 
 
 

 

 
 

  

  

    

 

 

 
    

 
 

  
  

  
 

 
 

 

  

 

 

7 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 

WHERE CAN I GET MORE INFORMATION? 

If you have any questions or concerns, please contact your community or state health or environmental 

quality department, or contact ATSDR at the address and phone number below.  You may also contact 

your doctor if experiencing adverse health effects or for medical concerns or questions.  ATSDR can also 

provide publicly available information regarding medical specialists with expertise and experience 

recognizing, evaluating, treating, and managing patients exposed to hazardous substances. 

•	 Call the toll-free information and technical assistance number at
 
1-800-CDCINFO (1-800-232-4636) or
 

•	 Write to:
 
Agency for Toxic Substances and Disease Registry
 
Division of Toxicology and Human Health Sciences
 
1600 Clifton Road NE
 
Mailstop F-57
 
Atlanta, GA 30329-4027
 

Toxicological profiles and other information are available on ATSDR’s web site: 

http://www.atsdr.cdc.gov. 

http:http://www.atsdr.cdc.gov


   
 

   
 
 

 
 
 
 
 

 
 

8 NITRATE AND NITRITE 

1.  PUBLIC HEALTH STATEMENT 
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9 NITRATE AND NITRITE 

2. RELEVANCE TO PUBLIC HEALTH
 

2.1  	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO NITRATE AND NITRITE IN 
THE UNITED STATES 

Nitrate and nitrite can be organic or inorganic chemicals depending on their chemical structures. This 

profile pertains to inorganic nitrate and nitrite, specifically the nitrate anion and the nitrite anion.  Nitrate 

and nitrite occur naturally in the environment as part of the nitrogen cycle, and are produced both 

endogenously and exogenously.  Ammonia-oxidizing bacteria convert ammonia into nitrite; nitrite-

oxidizing bacteria convert nitrite into nitrate in aerobic environments.  This two-stage process is known as 

nitrification.  Main sources of ammonia in the environment are decaying organic matter and human and 

animal wastes. Nitrification, atmospheric fixation, and nitrogen fertilizers contribute to nitrite and nitrate 

concentrations in the environment.  In nature, salts of nitrate and nitrite completely dissociate and these 

anions typically exist as ionic species.  In the environment, nitrite is readily oxidized to nitrate.  Nitrate is 

generally stable in the environment; however, it may be reduced through biotic (living systems; plants, 

microbes, etc.) processes to nitrite under anerobic conditions.  

Nitrate and nitrite are ubiquitous in the environment and people are exposed to them primarily through the 

ingestion of food and drinking water. Significant uptake of nitrate and nitrite occurs in all varieties of 

plants; internal storage of nitrate (rather than metabolic conversion to ammonium and amino acids) can 

occur in some plants, especially leafy vegetables such as lettuce and spinach.  Vegetables account for 

about 80% of the nitrate in a typical human diet. Nitrate and nitrite are also produced in the body as part 

of the natural nitrate-nitrite-nitric oxide cycle. 

2.2  	 SUMMARY OF HEALTH EFFECTS 

Hematological Effects. In humans, ingested nitrate is nearly completely absorbed into the blood 

from the small intestine and approximately 25% of the plasma nitrate enters the salivary glands where it is 

secreted in saliva.  As much as 20% of salivary nitrate (5% of ingested nitrate) is reduced to nitrite by 

bacterial reductases in the mouth.  This in vivo reduction of nitrate accounts for 80–85% of the body’s 

nitrite and most of the rest comes from nitrite-containing food sources.  Nitrite in the blood can react with 

ferrous (Fe2+) hemoglobin (which transports oxygen) to form ferric (Fe3+) hemoglobin (methemoglobin, a 

poor transporter of oxygen), and nitric oxide (which can also bind to deoxyhemoglobin) and nitrate. 



   
 

   
 
 

 
 
 
 
 

   

    

    

    

 

 

  

     

   

    

    

    

 

  

  

    

  

      

   

  

 

   

       

   

     

    

     

    

 

    

    

10 NITRATE AND NITRITE 

2. RELEVANCE TO PUBLIC HEALTH 

Methemoglobinemia is a condition in which increased methemoglobin as a percentage of total 

hemoglobin results in the expression of clinical signs that increase in severity with increasing percent 

methemoglobin.  In normal healthy individuals, methemoglobin levels are <1% of total hemoglobin.  

Discoloration of the skin (cyanosis) is often observed at methemoglobin levels in the range of 3–15%; 

most patients tolerate methemoglobin levels <10%. Tachycardia, weakness, and other signs of tissue 

hypoxia may be observed at 10–20% methemoglobin levels.  Symptoms involving the central nervous 

system (e.g., headache, dizziness, fatigue) and dyspnea and nausea appear at >20% methemoglobin; the 

severity of symptoms increases with increasing methemoglobin level.  High risk of mortality occurs at 

levels >70% methemoglobin. It should be noted that a patient with comorbidities that decrease oxygen 

transport or delivery may develop moderate to severe symptoms at much lower methemoglobin levels 

than a previously healthy patient.  Furthermore, due to differences in the oxygen carrying capacity 

between fetal hemoglobin and adult hemoglobin (which replaces fetal hemoglobin during the first year of 

postnatal life), cyanosis in young infants with mostly fetal hemoglobin may not be detected at 

methemoglobin levels eliciting clinical cyanosis in older infants with mostly adult hemoglobin. 

As early as the mid-1900s, methemoglobinemia was reported in infants exposed to relatively large 

amounts of nitrate from drinking water sources.  Available data identify young bottle-fed infants (1– 

3 months of age) as a subpopulation that is particularly susceptible to nitrate-induced 

methemoglobinemia, especially those consuming formula prepared from drinking water sources 

containing nitrate in excess of 10 mg nitrate-nitrogen/L (44 mg nitrate/L).  Subsequent reports provide 

additional evidence of associations between ingestion of nitrate from drinking water sources and elevated 

methemoglobin levels in infants.  Cyanosis and even death occurred in some of the reported cases. 

Limited data are available regarding administration of controlled amounts of nitrate and methemoglobin 

levels. A study reported methemoglobin levels as high as 5.3% of total hemoglobin in a group of four 

infants (ages 11 days to 11 months) administered sodium nitrate in the formula for 2–18 days at a 

concentration resulting in a dose of 50 mg nitrate/kg/day and as high as 7.5% in another group of four 

infants (ages 2 days to 6 months) similarly treated at 100 mg nitrate/kg/day for 6–9 days.  A study 

reported methemoglobin levels as high as 6.9–15.9% among three infants (ages not specified) fed formula 

prepared using water containing 108 mg nitrate/L. 

Young children are somewhat less sensitive than infants to nitrate-induced methemoglobinemia.  A study 

evaluated methemoglobin levels in 102 children 1–8 years of age.  Sixty-four of the children lived in 

households where drinking water contained 22–111 mg nitrate-nitrogen/L (97–488 mg nitrate/L); 



   
 

   
 
 

 
 
 
 
 

    

   

   

  

 

    
    

     

  

 

     

     

 

   

     

  

  

 

      

   

    

     

 

 

  

  

     

   

  

   

        

   

11 NITRATE AND NITRITE 

2. RELEVANCE TO PUBLIC HEALTH 

drinking water sources for the other 38 children (controls) contained <10 mg nitrate-nitrogen/L (<44 mg 

nitrate/L).  Methemoglobin measured 1.0–1.36% in those children 1–4 years of age and appeared to 

increase with increasing nitrate intake, although there was no statistically significant change.  

Methemoglobin levels in those children 5–8 years of age averaged 0.9–0.95%, independent of level of 

exposure to nitrate. 

Endocrine Effects. There is some evidence for nitrate-induced effects on thyroid function and 

development.  Nitrate is one of the substances that act as dose-dependent competitive inhibitors of the 

sodium iodide symporter (NIS), which mediates the uptake of iodine by the thyroid.  Sufficiently 

decreased iodine uptake by the thyroid may result in decreased production of thyroid hormones 

triiodothyronine (T3) and thyroxine (T4).  Decreased thyroid hormone production causes increased 

release of thyroid stimulating hormone (TSH) from the anterior pituitary gland leading to increased 

uptake of iodine by the thyroid gland.  Sufficiently inhibited uptake of iodine by the thyroid could result 

in effects associated with thyroid dysfunction (e.g., hypothyroidism).  Concern for nitrate-induced effects 

on thyroid function has prompted scientists to perform studies designed to assess thyroid function relative 

to drinking water and/or dietary nitrate levels. Some human studies provide suggestive evidence that 

elevated levels of nitrate in drinking water and/or nitrate-rich diets may be associated with signs of 

thyroid dysfunction.  However, limitations of these studies include lack of individual dose-response data, 

quantification of iodine intake, and control for other substances that may affect the thyroid; one study 

relied on self-reported thyroid status and self-reported dietary nitrate intake. A study found no evidence 

for nitrate-induced effects on thyroid function in adults ingesting sodium nitrate for 38 days at 

15 mg/kg/day (which is 3 times the maximum acceptable daily intake of 5 mg sodium nitrate/kg/day set 

by the Joint Expert Committee on Food Additives [JECFA] of the Food and Agriculture Organization of 

the United Nations/World Health Organization and the European Commission's Scientific Committee on 

Food). 

Thyroid status has been assessed to some extent in animals consuming drinking water or food to which 

nitrate salts had been added.  There were no clinical signs of hypothyroidism or effects on serum T3 or T4 

levels in adult Beagles or their puppies during exposure of the breeding dogs to sodium nitrate in the 

drinking water for 1 year at concentrations in the range of 300–1,000 ppm (equivalent to 219–730 mg 

nitrate/L).  Decreased thyroidal 131iodine uptake was noted in rats given food containing 0.5–2.5% 

potassium nitrate (approximately 3,000–15,000 mg nitrate/kg food).  Significantly increased uptake of 

thyroidal 131iodine; decreased serum T3, T4, and TSH levels; increased thyroid weight; and follicular 

hyperplasia were noted in female Wistar rats administered sodium nitrate in the drinking water for 

http:0.9�0.95
http:1.0�1.36


   
 

   
 
 

 
 
 
 
 

    

  

 

  

    

   

    

   

      

      

      

 

 

    

      

    

   

 

  

  

  

 

          

  

   

   

     

     

        

    

  

  

  

   

12 NITRATE AND NITRITE 

2. RELEVANCE TO PUBLIC HEALTH 

30 weeks at concentrations ≥250 mg/L (≥182 mg nitrate/L).  In another study, significantly increased 

serum T3 (34–44% lower than controls), increased thyroid weight (45–77% greater than controls), and 

histopathologic thyroid lesions (glandular hypertrophy accompanied by vacuolization, increased colloidal 

volume of the follicles, and flattened follicular epithelium) were observed in male Wistar rats receiving 

drinking water for 5 months to which potassium nitrate had been added at concentrations ≥100 mg/L. 

Significantly decreased serum T3 and T4 levels were observed in all groups of weanling male Wistar rats 

with intakes in the range of 8.7–47.4 mg sodium nitrate/kg/day (equivalent to 6.4–34.6 mg 

nitrate/kg/day).  At doses ≥15.8 mg nitrate/kg/day, significantly increased serum TSH was also noted. 

Groups of similarly-treated young adult male Wistar rats exhibited significantly decreased T3 and T4 

levels and increased serum TSH at doses ≥15.8 mg nitrate/kg/day. Significantly increased thyroid gland 

weight, increased TSH, decreased serum T3 and T4 levels, and decreased thyroid peroxidase activity 

were reported in rats administered 3% potassium nitrate in the diet. 

In a 13-week study of rats receiving drinking water to which potassium nitrite had been added, doses in 

the range of 8.9–241.7 mg/kg/day (4.8–130.5 mg nitrite/kg/day), oral doses ≥13.3 mg nitrite/kg/day 

(males) and ≥61.8 mg nitrite/kg/day (females) resulted in hypertrophy in the zona glomerulosa of the 

adrenal gland.  The effect on the adrenal gland was not observed in untreated controls or potassium 

chloride controls.  Similar results were obtained at estimated doses of 105.1 mg nitrite/kg/day (males) and 

130.1 mg nitrite/kg/day (females) in a subsequent similarly-designed study.  Results of a subsequent 

study indicate that the effect on the adrenal gland of the rat is a physiological adaptation to repeated 

episodes of hypotension caused by nitrite. 

Metabolic Effects. Possible associations between nitrate and/or nitrite in drinking water and/or food 

sources and risk of type 1 diabetes have been investigated in a number of case-control studies.  Some 

studies found no significant risk for childhood type 1 diabetes.  In one case-control study that included 

estimates of nitrate intake based on food frequency questionnaire results for children 0–14 years of age, a 

significantly increased risk of type 1 diabetes was noted for children at the high end (≥75th percentile) of 

estimated nitrate intake compared to those at the low end (<25th percentile).  In an ecological study of 

type 1 diabetes incidence rates by county in Colorado, children (<18 years of age) in counties with water 

nitrate levels in the range of 0.77–8.2 mg/L had a significantly increased risk of type1 diabetes compared 

to those in counties with water nitrate levels in the range of 0.0–0.084 mg/L.  In another ecological study, 

a significantly increased association between nitrate in drinking water (highest tertile versus lowest 

tertile) and incidence of childhood type 1 diabetes was reported for children diagnosed between 1978 and 

1994 in the Yorkshire Regional Health Authority in England. In a subsequent ecological study that 
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included portions of England and Scotland, the Drinking Water Inspectorate found no evidence for an 

association between nitrate in the drinking water and incidence of childhood type 1 diabetes. 

Cardiovascular Effects. Cardiovascular health is an end point of concern for nitrate and nitrite 

because some nitrate is converted to nitrite in the body.  Nitrite is a smooth muscle relaxant that can cause 

hypotension and plasma nitrite is involved in the oxidation of hemoglobin to methemoglobin, which is 

associated with hypotension, rapid pulse, and rapid breathing at high enough concentrations.  Ingestion of 

nitrite (from potassium nitrite or sodium nitrite sources) has been associated with severe 

methemoglobinemia in adults and children; in some of these cases, symptoms included hypotension 

and/or tachycardia.  These cases were the result of consumption of food or drink that contained unusually 

high levels of nitrite via contamination, inadvertent use of sodium nitrite instead of table salt, or ingestion 

of a single sodium nitrite tablet (1 g; equivalent to 667 mg nitrite). 

In a hospital-based study in Colorado that included 226 cases of hypertension among patients living in 

areas where drinking water contained nitrate at concentrations ranging from 19 to 125 ppm (mean 

52 ppm) and 261 cases from patients living in areas without nitrate in the drinking water, the mean annual 

incidence rate for hypertension in the nitrate-exposed patients was only 5.9/1,000 compared to 

7.9/1,000 for the control patients.  However, the nitrate-exposed patients exhibited an earlier mean age at 

hospitalization for hypertension (58.5 versus 65.2 years for controls); the toxicological significance of this 

finding is uncertain because the incidence rate for hypertension was higher among control patients than 

among patients exposed to nitrate in the drinking water. 

In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy volunteers (seven 

females and two males; mean age 22.9 years), ingestion of 0.06 sodium nitrite per mmol hemoglobin 

(~1.5–1.8 mg nitrite/kg) resulted in an average heart rate increase from 55 to 63 beats per minute (bpm) 

and average mean arterial blood pressure decrease from 78 to 70 mmHg.  At a higher intake (~2.9–3.6 mg 

nitrite/kg), the average heart rate increased from 57 to 67 bpm and the average mean arterial blood 

pressure decreased from 80 to 69 mmHg.  The maximum effects on heart rate and blood pressure 

occurred between 15 and 20 minutes following ingestion; heart rate and blood pressure returned to near-

baseline levels approximately 2 hours following ingestion at the low dose, but the effects had not returned 

to baseline at 4 hours following ingestion at the high dose. The blood pressure-lowering effect of short-

term dietary supplementation of inorganic nitrate appears to be beneficial; however, there is some 

uncertainty regarding potential health benefits of long-term nitrate supplementation to treat cardiovascular 

diseases. 
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Gastrointestinal Effects. Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has 

been associated with severe methemoglobinemia in adults and children; in many of these cases, 

symptoms included abdominal cramps and vomiting.  These cases were the result of consumption of food 

or drink that contained unusually high levels of nitrite via contamination, inadvertent use of sodium nitrite 

instead of table salt, or ingestion of a single sodium nitrite tablet (667 mg nitrite).  In a study designed to 

evaluate the oral bioavailability of sodium nitrite in healthy volunteers (seven females and two males; 

mean age 22.9 years), one subject became nauseous and vomited within 20 minutes following ingestion 

of 0.12 mmol sodium nitrite per mmol hemoglobin (~3.2 mg nitrite/kg); another subject reported nausea 

within 30 minutes following ingestion of 0.12 mmol sodium nitrite per mmol hemoglobin (~2.9 mg 

nitrite/kg). 

Epithelial hyperplasia was noted in the forestomach of male and female B6C3F1 mice provided sodium 

nitrite in the drinking water for 14 weeks at a concentrations resulting in estimated doses of 663.3 and 

824.1 mg nitrite/kg/day, respectively); the no-observed-adverse-effect levels (NOAELs) for these lesions 

in the males and females were 435.5 and 562.8 mg nitrite/kg/day, respectively.  Similar results were noted 

for male and female F344/N rats and male B6C3F1 mice treated for 104–105 weeks at estimated doses of 

87.1, 100.5, and 147.4 mg nitrite/kg/day, respectively; the NOAELs for these lesions in the male and 

female rats and male mice were 46.9, 53.6, and 80.4 mg nitrite/kg/day, respectively.  Sodium nitrite 

treatment did not result in increased incidences of forestomach lesions in other groups of male F344 rats 

provided sodium nitrite in the drinking water at 2,000 mg/L (estimated dose of 208.4 mg nitrite/kg/day) 

for 35 weeks or 51 weeks. 

Neurological Effects. Neurological effects have been reported in humans and animals following 

ingestion of nitrite; however, these effects may be secondary to nitrite-induced reductions in oxygen-

carrying capacity. Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has been 

associated with severe methemoglobinemia in adults and children; in many of these cases, clinical signs 

included dizziness, loss of consciousness, and/or convulsions. These cases were the result of 

consumption of food or drink that contained unusually high levels of nitrite via contamination, 

inadvertent use of sodium nitrite instead of table salt, or ingestion of a single sodium nitrite tablet 

(667 mg nitrite). 

Headache was induced in a male subject following consumption of a 10 mg sodium nitrite solution.  

Headaches were induced in 8 out of 13 such tests.  In a study designed to evaluate the oral bioavailability 
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of sodium nitrite in healthy volunteers (seven females and two males; mean age 22.9 years), headache 

was reported by four out of the nine people after ingestion of 0.12 mmol sodium nitrite per mmol 

hemoglobin (~2.9–3.6 mg nitrite/kg) and by four of nine subjects after ingestion of 0.06 mmol sodium 

nitrite per mmol hemoglobin (~1.5–1.8 mg nitrite/kg). 

Abnormalities in electroencephalograms (EEGs) were reported in male albino rats provided sodium nitrite 

in the drinking water for 2 months at concentrations resulting in ≥9.38 mg nitrite/kg/day.  The abnormal 

readings persisted during up to 4.5 months following cessation of exposure to sodium nitrite.  At the 

highest dose (187.6 mg nitrite/kg/day), rats exhibited clinical signs of sedation and became motionless 

during periods of electrical outbursts.  Increased aggressive behavior was observed in male C57B1 mice 

provided sodium nitrite in the drinking water at 1,000 mg/L for up to 13 weeks postweaning. The mice 

had also been exposed via their parents during mating and their mothers during gestation and lactation.  

Significantly reduced motor activity was reported in male mice provided sodium nitrite in the drinking 

water.  Sodium nitrite levels tested ranged from 100 to 2,000 mg/L; however, the study report did not 

include specific information regarding the exposure levels that resulted in reduced motor activity. 

Developmental Effects. A number of studies evaluated possible associations between 

developmental end points and exposure to nitrate.  The results provide some evidence of nitrate-related 

developmental effects. The results are not adequate for quantitative risk assessment because estimations 

of nitrate intakes were typically based on measurements of nitrate levels in drinking water sources at 

selected time points and self-reported estimates of water consumption, possible confounding by other 

potential toxicants was not evaluated, and most studies did not account for dietary nitrate or nitrite intake, 

which is typically the major source of ingested nitrate and nitrite. Some studies reported significant 

associations between selected developmental end points and nitrate in drinking water sources.  One study 

reported increased risk of intercalary limb defect associated with estimated total nitrite intake. Other 

studies found no evidence of associations between nitrate and risk of developmental effects. 

Cancer. Numerous case-control and cohort studies of carcinogenicity of ingested nitrate and nitrite in 

humans have been reported.  Many ecological studies have also been reported; however, interpretation of 

outcomes of these studies is more uncertain because of various factors that contribute to ecologic bias 

(group-based associations between exposure and cancer outcomes may not apply to individuals).  In 

general, outcomes of case-control and cohort studies have found no or weak associations between 

exposure to nitrate and cancer in humans, with stronger associations with exposures to nitrite or intake of 

high nitrite foods such as cured meat. Mechanistically, this outcome is consistent with nitrite being an 
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intermediate in the cancer mode of action of nitrate (see Section 3.5.2).  This is further supported by 

studies that have found interactions between cancer risk attributed to nitrite and exposure to antioxidants.  

Uncertainties in estimates of cancer risk from exposure to nitrate or nitrite include those typical of 

epidemiological studies in general: uncertainties in estimation of exposure (e.g., estimating long-term 

dietary intakes from food frequency questionnaires or levels in public water supplies [PWS]), exposure 

misclassification of individual outcomes (e.g., assigning group-level exposure estimates to individuals), 

and adequacy of controlling for confounders (e.g., other factors contributing to the cancer).  One 

potentially important class of confounders is antioxidants that can influence the degree of nitrosation of 

dietary amines and, thereby, the cancer risk from exposure to nitrate or nitrite. 

The strongest and most consistent evidence of a carcinogenic role for nitrite is from studies of 

gastrointestinal cancers and, in particular, gastric cancer.  In general, these studies found significant 

positive trends for cancer risk (risk increases with increasing intake), and three studies found elevated 

cancer risk. Relative risks (RRs) were 1.71 (95% confidence interval [CI]: 1.24, 2.37) at a nitrite intake 

of 1 mg/day and 2.5 (95% CI: 1.4, 4.3) at nitrite intakes ≥6 mg/day.  Risk was modified by dietary 

vitamin E and folate intake, with increased risk in association with higher nitrate/vitamin E or folate 

ratios. Associations between exposure to nitrate or nitrite and colorectal cancer have been studied in 

cohort and case-control studies and results are less consistent than for gastric cancer. Two studies found 

elevated risk: 1.16 (95% CI: 1.04, 1.30) for colon cancer at nitrate-nitrogen levels >0.6 mg/L (>2.65 mg 

nitrate/L drinking water; 1.5 (95% CI: 1.0, 2.1) for colon cancer at a dietary nitrite intake >1.26 mg/day, 

and 1.7 (95% CI: 1.1, 2.5) at a dietary nitrite intake >1.26 mg/day.  Risks were higher in populations 

exposed to drinking water that had a calcium level >34.6 mg/L (odds ratio [OR] 1.37, 95% CI: 1.11; 1.69) 

for nitrate <2.65 mg/L; or in populations exposed to nitrate in drinking water at levels >5 mg/L in 

combination with a low vitamin C intake (OR 2.0, 95% CI: 1.2, 3.3). 

Results have been mixed for other types of cancer. Some case-control or cohort studies found 

associations between exposure to nitrite (or foods high in nitrite such as cured meat) and brain cancer in 

children and adults, breast cancer, kidney cancer, testicular cancer, and non-Hodgkin’s lymphoma.  Of 

these studies, the highest risks were reported for brain cancers. Two case-control studies found elevated 

relative risk of brain cancer in children in association with maternal exposure: 3.0 (95% CI: 1.2, 7.9) for 

nitrite intakes >3.0 mg/day and 5.7 (95% CI: 1.2, 27.2) for astroglial tumors at drinking water exposures 

≥5 mg/L. In general, case-control and cohort studies of cancers of larynx, liver, lung, mouth, pancreas, 

and pharynx have found no consistent associations with exposures to nitrate or nitrite. 
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The potential carcinogenicity of nitrate has been investigated in several animal studies that employed the 

oral exposure route.  Studies in which negative results were reported include MCR-derived rats 

(15/sex/group) provided 5,000 mg sodium nitrate/L (3,650 mg nitrate/L) in the drinking water for 

84 weeks and sacrificed 20 weeks later, male white rats provided 4,000 mg sodium nitrate in the drinking 

water for 273 days and sacrificed at 10 months, strain A male mice (n=40) provided 12,300 mg sodium 

nitrate/L in the drinking water for 25 weeks and sacrificed 13 weeks later, female NMRI mice provided 

1,000 mg calcium nitrate/L in the drinking water for 18 months, Fischer 344 rats (50/sex/group) fed diet 

containing up to 5% sodium nitrate (1,517–1,730 mg nitrate/kg/day) for 2 years, and ICR mice 

(10/sex/group) fed diets containing up to 5% sodium nitrate for 2 years.  In one study, some groups of 

male white rats were treated with drinking water containing 0.05% N-butyl-N-(4-hydroxybutyl)-

nitrosamine (BBNA, an inducer of urinary bladder cancer in laboratory animals) for 30 days, either alone 

or followed by 4,000 mg sodium nitrate/L drinking water for 273 days.  The group treated with BBNA 

followed by sodium nitrate exhibited significantly increased incidence of urinary bladder carcinoma 

(6/20 rats versus 1/18 rats treated with 0.05% BBNA only.  These results indicate that sodium nitrate may 

have promoted BBNA-induced bladder tumors. 

The potential carcinogenicity of ingested nitrite has been investigated in numerous animal studies.  Nitrite 

treatment alone did not result in increased incidences of tumors in most studies.  There was no evidence 

of sodium nitrite-induced forestomach neoplasms among male and female F344/N rats provided sodium 

nitrite in the drinking water for 2 years at concentrations of 750, 1,500, or 3,000 ppm (average doses in 

the range of 35–150 mg sodium nitrite/kg/day or 23.3–100 mg nitrite/kg/day).  Although the mid-dose 

group of female rats exhibited a significantly increased incidence of mammary gland fibroadenoma, the 

incidence in the high-dose group was not significantly different from that of controls; based on this 

finding and the high historical background incidence of mammary gland fibroadenomas, the incidence in 

the mid-dose group was not considered treatment related.  Significantly decreased incidences of 

mononuclear cell leukemia were observed in mid- and high-dose male and female rats.  It was speculated 

that increased methemoglobin concentrations may have played a role in the decreased incidences of 

mononuclear cell leukemia.  Significantly increased incidence of fibroma of the subcutis was noted in 

mid-dose male rats; however, several factors (the incidence only slightly exceeded the historical range of 

NTP controls, there was a lack of a dose-response characteristic, combined incidences of fibroma or 

fibrosarcoma were within the historical range for NTP controls, and fibromas and fibrosarcomas are 

common neoplasms in the skin of F344/N rats) suggested that the fibroma was not related to sodium 

nitrite exposure. It was concluded that there was "no evidence of carcinogenic activity" of sodium nitrite 

in the male or female F344/N rats under the conditions of the study. 
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In a similarly-designed study of B6C3F1 mice provided sodium nitrite in the drinking water (average 

doses ranging from 45 to 220 mg sodium nitrite/kg/day or 30–146.7 mg nitrite/kg/day), female mice 

exhibited a significantly positive trend for increased incidence of forestomach squamous cell papilloma or 

carcinoma (combined) and the incidence in the high-dose female mice exceeded the historical range for 

NTP controls; however, based on concurrent controls, incidences of squamous cell adenoma (1/50, 0/50, 

1/50, and 3/50 for controls, 750, 1,500, and 3,000 ppm groups, respectively), squamous cell carcinoma 

(0/50, 0/50, 0/50, and 2/50 for controls, 750, 1,500, and 3,000 ppm groups, respectively), and squamous 

cell adenoma or carcinoma (1/50, 0/50, 1/50, and 5/50 for controls, 750, 1,500, and 3,000 ppm groups, 

respectively) were not statistically significantly increased for any sodium nitrite exposure group.  The 

positive trend for incidences of forestomach squamous cell papilloma or carcinoma (combined) in the 

female B6C3F1 mice was considered to provide "equivocal evidence of carcinogenic activity" of sodium 

nitrite; there was "no evidence of carcinogenic activity" in the male B6C3F1 mice under the conditions of 

the study.  Incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in sodium nitrite-

exposed groups of female mice were slightly greater than that of controls (incidences of 1/50, 6/50, 5/50, 

and 6/50 for controls, 750, 1,500, and 3,000 ppm groups, respectively); however, incidences were within 

that of historical NTP controls.  Because the incidences did not exhibit exposure concentration-response 

characteristics and were not accompanied by increased incidences of preneoplastic lesions, the study 

authors did not consider them to be sodium nitrite exposure-related effects.  Significantly increased 

incidence of fibrosarcoma of the subcutis was noted in mid-dose female mice (incidences of 0/50, 5/50, 

1/50, and 2/50 for 0, 750, 1,500, and 3,000 ppm groups, respectively) and exceeded the historical range 

for controls; however, lack of exposure concentration-response characteristics and the fact that combined 

incidence of fibroma or fibrosarcoma (0/50, 5/50, 1/50, and 3/50 for 0, 750, 1,500, and 3,000 ppm groups, 

respectively) were within the historical range for controls suggest that these neoplasms were not related to 

sodium nitrite exposure. 

In two other studies of male and female F344 rats, addition of sodium nitrite to the drinking water at 

concentrations as high as 2,000–3,000 ppm for up to 2 years did not result in significant increases in 

tumor incidences at any site.  Conversely, incidences of mononuclear cell leukemia were significantly 

lower in the nitrite-treated groups relative to controls.  In a 26-month study of male and female Sprague-

Dawley rats provided drinking water to which up to 2,000 ppm sodium nitrite was added, the study author 

reported increased incidence of lymphomas, but not other types of tumors; however, two studies noted 

that a working group sponsored by the U.S. FDA reevaluated the histology and did not confirm the results 

of another study.  A study reported that the working group considered the incidences of lymphomas to be 



   
 

   
 
 

 
 
 
 
 

     

    

     

  

   

  

  

   

 

  

  

    

    

    

   

   

   

   

    

    

    

   

   

  

 

  

   

    

  

 

 

 

19 NITRATE AND NITRITE 

2. RELEVANCE TO PUBLIC HEALTH 

similar to those arising spontaneously in Sprague-Dawley rats. Increased incidences of total tumors and 

lymphoreticular tumors were reported in rats fed diet to which sodium nitrite was added at 1,000 ppm 

(total tumors: 58/96 versus 28/156 controls; lymphoreticular tumors 26/96 versus 9/156 controls); the 

results were reported for F1 and F2 offspring that had been exposed via their mothers during gestation 

and lactation and directly from the diet thereafter.  In a 96-week study, a significantly increased incidence 

of benign liver tumors among male CBA mice administered drinking water to which sodium nitrite was 

added at a concentration resulting in author-estimated total dose of 1,600 mg sodium nitrite/mouse 

compared to a group of untreated controls; however, there was no apparent sodium nitrite treatment-

related effect at a higher estimated dose (2,000 mg sodium nitrite/mouse). 

Significantly increased incidences of forestomach squamous papillomas were reported for male and 

female MRC Wistar rats provided drinking water to which sodium nitrite was added at 3,000 ppm on 

5 days/week for life (5/22 males and 3/23 females versus 2/47 control males and 0/44 control females).  

Dose-related decreases in time of onset and incidence of lymphomas, mononuclear cell leukemia, and 

testicular interstitial-cell tumors were reported for male and female F344 rats administered reduced-

protein diet to which sodium nitrite was added for up to 115 weeks, compared to a group of controls 

receiving reduced-protein only diet. There was no evidence of increased tumor incidences in male or 

female ICR mice provided sodium nitrite in the drinking water for up to 109 weeks at concentrations as 

high as 0.5% (5,000 ppm sodium nitrite), or in male or female Swiss mice or their offspring following a 

single gavage administration of 10 mg/kg nitrite and subsequent exposure to 0.1% sodium nitrite 

(1,000 ppm) in the drinking water during gestation days 15–21; terminal sacrifices occurred 10 months 

following the initiation of treatment.  There was no evidence of treatment-related effects on incidences of 

nervous system tumors among male and female VM mice (susceptible to spontaneous development of 

cerebral gliomas) provided drinking water to which sodium nitrite was added at 0.2% (2,000 ppm) from 

weaning for a lifetime and others exposed via their mothers during gestation and lactation as well. 

The potential carcinogenicity of combined exposure to sodium nitrite and selected nitrosatable substances 

(oral exposures via combinations of drinking water, diet, and/or gavage dosing) has been well-studied in 

laboratory animals.  Many of the studies included sodium nitrite-only treatment groups for which there 

was no evidence of sodium nitrite-induced carcinogenicity.  However, one study reported significantly 

increased incidence of hepatocellular neoplasms in female (but not male) F344 rats administered diet to 

which sodium nitrite was added at 2,000 ppm for 2 years; significantly decreased incidence of 

mononuclear-cell leukemia was observed as well. 
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Significantly increased incidences of selected tumor types were observed in some studies of laboratory 

animals that employed coexposure to various amino compounds and sodium nitrite.  These results were 

typically attributed to in vivo nitrosation of amines by nitrite to produce carcinogenic N-nitrosoamines; 

some of the studies did not include sodium nitrite-only treatment groups.  Addition of sodium nitrite or 

potassium nitrite to the food of rats in three other studies resulted in increased incidences of selected 

tumors; analysis of the food revealed the presence of N-nitroso compounds (likely formed by nitrosation 

in the presence of nitrite and selected amine compounds in the food), which were considered the probable 

principal cause of the tumors.  One study reported 30–70% incidences of malignant lymphomas, lung 

adenomas, and hepatomas among maternal mice and their offspring following gavage treatment of the 

dams with the fungicide, dodecylguanidine acetate, together with 0.05% sodium nitrite; the frequency of 

spontaneous tumors in untreated controls was 6%.  Dodecylguanidine acetate alone had no effect on 

cancer incidence. One study found no significant increase in tumor incidences among male and female 

MCR rats provided drinking water comprised of 0.5% nitrilotriacetic acid or iminodiacetic acid and 0.2 or 

0.5% sodium nitrite on 5 days/week for a lifetime.  There were no signs of treatment-related effects on 

incidences of tumors at any site among groups of pregnant Syrian golden hamsters and their offspring fed 

diets to which up to 1,000 ppm sodium nitrite and/or up to 1,000 ppm morpholine were added throughout 

production of an F2 generation. 

Based on available human data, one study determined that there is inadequate evidence for the 

carcinogenicity of nitrate in food or drinking water and limited evidence for the carcinogenicity of nitrite 

in food (based on association with increased incidence of stomach cancer).  Evaluation of available 

animal data resulted in the determination that there is inadequate evidence for the carcinogenicity of 

nitrate, limited evidence for the carcinogenicity of nitrite per se, and sufficient evidence for the 

carcinogenicity of nitrite in combination with amines or amides. The overall conclusions of a study were 

that “ingested nitrate and nitrite under conditions that result in endogenous nitrosation is probably 

carcinogenic to humans (Group 2A).” One study noted that: (1) the endogenous nitrogen cycle in 

humans includes interconversion of nitrate and nitrite; (2) nitrite-derived nitrosating agents produced in 

the acid stomach environment can react with nitrosating compounds such as secondary amines and 

amides to generate N-nitroso compounds; (3) nitrosating conditions are enhanced upon ingestion of 

additional nitrate, nitrite, or nitrosatable compounds; and (4) some N-nitroso compounds are known 

carcinogens. 

The U.S. EPA does not include a carcinogenicity evaluation for nitrate or nitrite. 
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2.3  MINIMAL RISK LEVELS (MRLs) 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been established for nitrate and 

nitrite. An MRL is defined as an estimate of daily human exposure to a substance that is likely to be 

without an appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure. 

MRLs are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the 

most sensitive health effect(s) for a specific duration within a given route of exposure.  MRLs are based 

on noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis.  As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 

Inhalation MRLs 

Inhalation MRLs were not derived for nitrate or nitrite due to lack of adequate human or animal data.  

Limited human data are available.  Al-Dabbagh et al. (1986) evaluated mortality rates among a cohort of 

1,327 male workers involved in the manufacture of nitrate fertilizer for at least 1 year between 1946 and 

1981 for a chemical company in northeast England and found no evidence of an association between 

exposure to nitrate dusts and death from all respiratory diseases, ischemic heart disease, or other 

circulatory diseases compared to mortality rates for the northern region of England.  There was no 

evidence of an association between exposure to nitrate dust and death from ischemic heart disease, 

cerebrovascular disease, or all circulatory diseases in a census-based (England and Wales) mortality study 

of workers involved in the production of nitrate fertilizers (Fraser et al. 1982, 1989).  The study included 

a cohort of 866 men from the 1961 census and 651 men from the 1971 census.  These cohorts were 

followed through 1985.  Studies of workers in which outcomes are compared to the general population 

(e.g., observed versus expected deaths) may be biased by a healthy worker effect, which may lower 

estimated risks. 
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Available animal data are limited to a study in which dogs and sheep were exposed to aerosols of sodium 

nitrate for short periods (Sackner et al. 1979).  No signs of exposure-related pulmonary effects (e.g., 

respiratory resistance, static lung performance, functional residual capacity) were seen in anesthetized 

dogs exposed at 10 mg sodium nitrate/m3 (2.88 ppm) for 7.5 minutes or anesthetized dogs and conscious 

sheep exposed for 4 hours at 5 mg sodium nitrate/m3 (1.44 ppm).  There was no evidence of exposure-

related cardiac effects (pulmonary and systemic arterial pressure, cardiac output, heart rate, arterial blood 

gases) in anesthetized dogs or conscious sheep exposed at 5 mg sodium nitrate/m3 (1.44 ppm) for 4 hours. 

Oral MRLs 

Nitrate 

•	 An MRL of 4 mg/kg/day has been derived for acute-duration oral exposure (14 days or less) to 
nitrate. 

•	 An MRL of 4 mg/kg/day has been derived for intermediate-duration oral exposure (15–364 days) 
to nitrate. 

•	 An MRL of 4 mg/kg/day has been derived for chronic-duration oral exposure (365 days or more) 
to nitrate. 

Results from studies in laboratory animals are not an appropriate basis for oral MRL derivation due to 

significant interspecies differences in kinetics of the nitrate-nitrite-nitric oxide pathway. 

Most human exposure to nitrate and nitrite is through the diet.  Vegetables are the major source of 

exposure to nitrate; both nitrate and nitrite may be found in some meat, fish, and dairy products as well.  

Estimates of daily dietary intake in the United States range from 103 mg nitrate/day from the normal diet 

to as high as 367 mg nitrate/day for a vegetarian diet and from 1.2 mg nitrite/day for the normal and 

vegetarian diets to 2.6 mg nitrite/day for a diet high in cured meat (Gangolli et al. 1994).  Nitrate-

contaminated drinking water is another source of exposure to nitrate and nitrite; estimated oral intake 

from drinking water sources may be as high as 319 mg nitrate/day and 1.2 mg nitrite/day (Gangolli et al. 

1994). 

Methemoglobinemia is the hallmark effect of overexposure to nitrate or nitrite.  Although available 

human data are limited by lack of information regarding bacterial contamination in drinking water and its 

possible influence on methemoglobin levels, the weight-of-evidence indicates that bottle-fed infants (0– 
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<3 months of age) ingesting formula prepared using drinking water sources containing >44 mg nitrate/L 

are at risk of methemoglobinemia (e.g., Bosch et al. 1950; Walton 1951). Proposed explanations for 

increased susceptibility of infants to methemoglobinemia following ingestion of nitrate include: 

(1) increased reduction of nitrate to nitrite in the newborn, (2) increased tendency for nitrite-induced 

methemoglobin formation by fetal hemoglobin compared to adult hemoglobin, (3) lower levels of 

NADH-dependent methemoglobin reductase (the major enzyme responsible for reduction of 

methemoglobin to normal hemoglobin; also termed NADH-diaphorase, a soluble form of cytochrome-b5 

reductase) in the newborn compared to older infants and adults, and (4) incompletely developed hepatic 

microsomal enzyme system in the infant and consequent lower rate of hepatic reduction of circulating 

nitrite compared to that of older children and adults.  A portion of ingested nitrate is reduced to nitrite by 

commensal bacteria in the mouth; however, the acid environment of the normal stomach does not support 

the growth of such bacteria and most of the nitrate that reaches the stomach passes to the small intestine 

from which it is nearly completely absorbed into the blood.  Although Kanady et al. (2012) reported little 

or no bacterial conversion of nitrate to nitrite in the saliva of a group of 10 infants during the first 

2 postnatal months (considered mainly due to lower numbers of major nitrate-reducing oral bacteria than 

adults), a higher pH in the stomach of the newborn may favor growth of nitrate-reducing bacteria, 

resulting in increased reduction of nitrate to nitrite and increased plasma methemoglobin.  Most 

hemoglobin in the newborn is in the form of fetal hemoglobin, which appears to be more readily oxidized 

to methemoglobin than adult hemoglobin; fetal hemoglobin is replaced by adult hemoglobin during early 

postnatal life.  Levels of NADH-dependent methemoglobin reductase (the major enzyme responsible for 

reduction of methemoglobin to normal hemoglobin) in the newborn increase approximately 2-fold during 

the first 4 months of postnatal life to reach adult levels.  During the period of relatively lower 

methemoglobin reductase levels, methemoglobin would not be expected to be as readily reduced, 

resulting in increased susceptibility to methemoglobinemia.  In apparent contrast, Ibrahim et al. (2012) 

reported that blood nitrite levels in newborns approximately 1–2 days of age were 35–55% lower than 

that of adults. However, one study that evaluated reduction rates of methemoglobin in human adult blood 

and cord blood from term newborns estimated methemoglobin half-lives of 162 and 210 minutes, 

respectively, indicating that methemoglobin reduction occurs more slowly in newborns than adults 

(Power et al. 2007). Although specific mechanisms have not been elucidated, the increased susceptibility 

to nitrite-induced methemoglobinemia in infants is well-documented. 

Available human data provide some evidence of nitrate-induced developmental effects, limited human 

data provide only suggestive evidence that elevated levels of nitrate in drinking water and/or nitrate-rich 

diets may be associated with signs of thyroid dysfunction (Aschebrook-Kilfoy et al. 2012; Gatseva and 
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Argirova 2008; Rádiková et al. 2008; Tajtáková et al. 2006; Ward et al. 2010).  Significant associations 

between nitrate levels in drinking water and risk of childhood type 1 diabetes were reported by some 

investigators (Kostraba et al. 1992; Parslow et al. 1997; Virtanen et al. 1994); others found no evidence 

for such an association (Casu et al. 2000; Dahlquist et al. 1990; Moltchanova et al. 2004; van Maanen et 

al. 2000; Zhao et al. 2001). 

Although available data suggest that reports of methemoglobinemia among infants exposed to nitrate 

from the drinking water may involve factors other than (or in addition to) nitrate exposure, the study of 

Walton (1951) is selected as the principal study and methemoglobinemia is selected as the critical effect 

for deriving acute-, intermediate-, and chronic-duration oral MRLs for nitrate to be protective of 

particularly sensitive subpopulations (e.g., infants from birth to <3 months of age), including those with 

gastrointestinal infections.  Following ingestion of relatively large amounts of nitrate by healthy normal 

individuals, blood methemoglobin levels increase rapidly, followed by a return to normal within several 

hours following intake.  Repeated ingestion for intermediate- or chronic-duration time periods would be 

expected to result in changes in methemoglobin levels similar to those elicited from a single exposure.  

Therefore, the acute-, intermediate- and chronic-duration oral MRL values are equivalent. 

There is some evidence that methemoglobinemia in infants drinking formula prepared using drinking 

water with relatively high levels of nitrate may be related to bacterial contamination of such water sources 

and consequent gastrointestinal disorders, as well as overproduction of nitric oxide due to gastrointestinal 

infection and inflammation (Avery 1999; Gupta et al. 1998; L’hirondel and L’hirondel 2002; Yano et al. 

1982). On behalf of the World Health Organization (WHO), Fewtrell (2004) performed a literature-based 

investigation of methemoglobinemia and drinking water concentrations >50 mg nitrate/L and concluded 

that nitrate may be one of a number of cofactors in causing methemoglobinemia.  Fewtrell (2004) noted a 

paucity of information since the early 1990s linking methemoglobinemia to nitrate in drinking water, 

although numerous reports describe water supplies worldwide that contain nitrate at levels >50 mg/L. 

The acute-, intermediate-, and chronic-duration oral MRLs were calculated using estimated mean values 

for drinking water ingestion rates (Kahn and Stralka 2009) and body weight (EPA 2008) and the 

assumption that a drinking water level of 44 mg nitrate/L is a concentration not expected to cause 

methemoglobinemia.  A NOAEL of 4.33 mg nitrate/kg/day for infants <3 months of age was calculated 

based on a drinking water NOAEL of 44 mg nitrate/L and estimations of water intake (0.525 L/day) and 

body weight (5.33 kg) (i.e., [44 mg nitrate/L x 0.525 L/day] / 5.33 kg = 4.33 mg nitrate/kg/day).  The 

dose of 4.33 mg nitrate/kg/day for infants from birth to <3 months of age is selected as the point of 
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departure for deriving acute-, intermediate-, and chronic-duration oral MRLs for nitrate because infants 

<3 months of age are particularly sensitive to nitrate-induced adverse effects.  Application of a total 

uncertainty factor of 1 is justified because the point of departure is a NOAEL for nitrate-induced effects 

on methemoglobin in a sensitive human subpopulation (i.e., <3 month-old infants, which in many cases 

may have been at increased risk of methemoglobinemia due to microbial contamination and associated 

gastrointestinal infection, or which may have had gastroenteritis-associated methemoglobinemia unrelated 

to nitrate intake). The resulting acute-, intermediate-, and chronic-duration oral MRLs for nitrate are 

4 mg/kg/day and are considered to be highly conservative because they were derived using results from a 

particularly sensitive population exhibiting nitrate-induced methemoglobinemia (infants <3 months of 

age), and because increased risk of methemoglobinemia in the most sensitive population may have been 

due in part to exposure to contaminants other than nitrate in the drinking water (refer to Appendix A for 

additional details regarding derivation of oral MRLs for nitrate). 

A physiologically based pharmacokinetic (PBPK) model approach to derivation of oral MRLs for nitrate 

was initially considered, in which case a methemoglobin level of 10% of total hemoglobin would have 

been considered a threshold for nitrate-induced methemoglobinemia in infants.  However, although the 

model of Zeilmaker et al. (1996, 2010b) simulates the kinetics of methemoglobin formation resulting 

from gastrointestinal absorption of nitrate in adult humans, the model is not considered adequate for the 

purpose of simulating the kinetics in infants. 

Nitrite 

•	 An MRL of 0.1 mg/kg/day has been derived for acute-duration oral exposure (14 days or less) to 
nitrite. 

•	 An MRL of 0.1 mg/kg/day has been derived for intermediate-duration oral exposure (15–
 
364 days) to nitrite.
 

•	 An MRL of 0.1 mg/kg/day has been derived for chronic-duration oral exposure (365 days or 
more) to nitrite. 

Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has been associated with severe 

methemoglobinemia in adults and children (Aquanno et al. 1981; CDC 1997, 2002; Gautami et al. 1995; 

Gowans 1990; Greenberg et al. 1945; Kaplan et al. 1990; Ringling et al. 2003; Sevier and Berbatis 1976; 

Ten Brink et al. 1982; Walley and Flanagan 1987).  In many of these cases, clinical signs included 

dizziness, loss of consciousness, and/or convulsions (CDC 1997, 2002; Gautami et al. 1995; Greenberg et 
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al. 1945; Sevier and Berbatis 1976; Ten Brink et al. 1982).  All cases were the result of consumption of 

food or drink that contained unusually high levels of nitrite via contamination, inadvertent use of sodium 

nitrite instead of table salt, or ingestion of a single sodium nitrite tablet (667 mg nitrite).  Headache was 

induced in a male subject following consumption of a 10 mg sodium nitrite solution (Henderson and 

Raskin 1972).  Headaches were induced in 8 out of 13 such tests.  No information was located regarding 

methemoglobin concentrations in infants following oral exposure to nitrite.  The ingestion of nitrate 

results in the formation of nitrite, which is the moiety responsible for methemoglobinemia.  The study of 

Walton (1951) is selected as the principal study and methemoglobinemia as the critical effect for deriving 

acute-, intermediate-, and chronic-duration oral MRLs for nitrite to be protective of particularly sensitive 

subpopulations (e.g., infants from birth to <3 months of age), including those with gastrointestinal 

infections. On average, approximately 25% of an ingested dose of nitrate enters the saliva of an adult 

where a portion (ca. 20% g/g) is reduced by commensal bacteria to nitrite (i.e., approximately 5% g/g of 

ingested nitrate is reduced to nitrite in the saliva of an adult) (Spiegelhalder et al. 1976); most salivary 

nitrite is absorbed into the blood in the small intestine.  Therefore, the ingestion of nitrate at the oral MRL 

of 4 mg/kg/day would be expected to result in the production of 0.2 mg nitrite/kg/day by an adult (i.e., 

0.2 mg nitrite/kg/day is 5% (g/g) of an oral dose of nitrate at the oral MRL of 4 mg/kg/day).  Although 

quantitative data are lacking regarding the effective blood nitrite level in a young infant from an ingested 

dose of nitrate, young infants exhibit increased susceptibility to methemoglobinemia following nitrate 

ingestion.  Mechanisms responsible for increased susceptibility in infants may include greater reduction 

of nitrate to nitrite (which may be higher in the stomach of an infant due to a higher pH), lower levels of 

NADH-dependent methemoglobin reductase, slower rate of hepatic reduction of circulating nitrite, and/or 

increased tendency for nitrite-induced methemoglobin formation by fetal hemoglobin compared to adult 

hemoglobin. To account for increased susceptibility to methemoglobinemia following ingestion of nitrate 

by infants, a modifying factor of 2 is applied to the point of departure (0.2 mg nitrite/kg/day ÷ 2 = 

0.1 mg/kg/day). The modifying factor assumes that the effective methemoglobin level from a given 

intake of nitrate by an infant is twice that of an adult (e.g., approximately 5% of an oral dose of nitrate is 

converted to nitrite in the adult; the modifying factor of 2 accounts for up to 10% conversion in the 

infant).  The resulting acute-, intermediate-, and chronic-duration oral MRLs of 0.1 mg nitrite/kg/day are 

considered protective of nitrite-induced methemoglobinemia for particularly sensitive subpopulations 

(e.g., infants <3 months of age).  The oral MRLs for nitrite are considered to be highly conservative 

because they were derived using results from a particularly sensitive population exhibiting nitrate-induced 

methemoglobinemia (infants <3 months of age), and because increased risk of methemoglobinemia in the 

infants may have been due in part to exposure to contaminants other than nitrate in the drinking water 

(refer to Appendix A for additional details regarding derivation of oral MRLs for nitrite). 
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Drinking water and dietary sources may contain both nitrate and nitrite; furthermore, as discussed in 

Section 3.4, some nitrate is converted to nitrite in the body and nitrite can be converted to nitrate as well.  

Overexposure to either nitrate or nitrite can result in elevated methemoglobin levels.  At a worldwide 

level, WHO (2011a, 2011b) provides guidance for combined exposure to nitrate and nitrite in drinking 

water, which states that the sum of the ratios of the concentration of each to its guideline value should not 

exceed 1. 
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3. HEALTH EFFECTS 

3.1  INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of nitrate and nitrite.  

It contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

3.2  DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological, 

reproductive, developmental, and carcinogenic effects).  These data are discussed in terms of three 

exposure periods:  acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 
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the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

Nitrate (NO3
-) and nitrite (NO2

-) are naturally-occurring oxidation products of nitrogen.  Nitrate may be 

expressed in terms of ionic concentration (i.e., mg nitrate/L), or elemental concentration (i.e., mg nitrate-

nitrogen/L or mg nitrogen as nitrate/L). A concentration of nitrate expressed in elemental concentration 

can be converted to its ionic concentration according to the following relationship: 1 mg nitrate-nitrogen 

is equivalent to 4.4 mg nitrate.  In aqueous environments, nitrate and nitrite salts such as sodium nitrate, 

potassium nitrate, sodium nitrite, and potassium nitrite rapidly ionize.  Sodium nitrate is approximately 

27% sodium and 73% nitrate.  To determine a nitrate dose from a sodium nitrate source, the quantity of 

sodium nitrate is multiplied by the nitrate proportion (0.73).  Thus a nitrate dose from a 5 mg sodium 

nitrate source is 5x0.73=3.65 mg nitrate.  The conversion factor for nitrate from a potassium nitrate 

source is 0.61.  Conversion factors for nitrite from sodium nitrite and potassium nitrite are 0.67 and 0.54, 

respectively. 

3.2.1 Inhalation Exposure 

3.2.1.1  Death 

No information was located regarding death in humans following inhalation exposure to nitrate or nitrite. 

An inhalation LC50 is an exposure level expected to result in 50% mortality.  RTECS (2014) lists a rat 

4-hour LC50 of 5.5 mg/m3 (1.95 ppm) for sodium nitrite and a rat 2-hour LC50 of 85 mg/m3 (24.42 ppm) 

for potassium nitrite.  No additional information was located regarding death in animals exposed to nitrate 

or nitrite. 

http:5x0.73=3.65
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3.2.1.2  Systemic Effects 

No studies were located regarding gastrointestinal, hematological, musculoskeletal, hepatic, renal, 

endocrine, dermal, ocular, or body weight effects in humans or animals after inhalation exposure to nitrate 

or nitrite. 

Respiratory Effects. Limited human data are available.  Al-Dabbagh et al. (1986) evaluated the 

mortality of a cohort of 1,327 male workers involved in the manufacture of nitrate fertilizer for at least 

1 year between 1946 and 1981 for a chemical company in northeast England.  There was no evidence of 

an association between exposure to nitrate dusts and death from all respiratory diseases compared to 

mortality rates for the northern region of England. 

Available information in animals is limited to a study in which dogs and sheep were exposed to aerosols 

of sodium nitrate for short periods (Sackner et al. 1979).  There was no evidence of exposure-related 

pulmonary effects (e.g., respiratory resistance, static lung performance, functional residual capacity) in 

anesthetized dogs exposed at up to 10 mg sodium nitrate/m3 (2.88 ppm) for 7.5 minutes or anesthetized 

dogs or conscious sheep exposed at 5 mg sodium nitrate/m3 (1.44 ppm) for 4 hours. 

Cardiovascular Effects. Available information in humans is limited to results of mortality studies of 

workers involved in the production of nitrate fertilizers.  In general, studies of workers in which outcomes 

are compared to the general population (e.g., observed versus expected deaths) may be biased by a 

healthy worker effect, which may lower estimated risks. There was no evidence of an association 

between exposure to nitrate dust and death from ischemic heart disease, cerebrovascular disease, or all 

circulatory diseases in a census-based (England and Wales) mortality study of workers involved in the 

production of nitrate fertilizers (Fraser et al. 1982, 1989).  The study included a cohort of 866 men from 

the 1961 census and 651 men from the 1971 census.  These cohorts were followed through 1985.  Al-

Dabbagh et al. (1986) evaluated the mortality of a cohort of 1,327 male workers involved in the 

manufacture of nitrate fertilizer for at least 1 year between 1946 and 1981 for a chemical company in 

northeast England.  There was no evidence of an association between exposure to nitrate dusts and death 

from ischemic heart disease or other circulatory diseases compared to mortality rates for the northern 

region of England. 
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Available information in animals is limited to a study in which dogs and sheep were exposed to aerosols 

of sodium nitrate for short periods (Sackner et al. 1979).  There was no evidence of exposure-related 

cardiac effects (pulmonary and systemic arterial pressure, cardiac output, heart rate, arterial blood gases) 

in anesthetized dogs or conscious sheep exposed at 5 mg sodium nitrate/m3 (1.44 ppm) for 4 hours. 

No information was located regarding the following effects in humans or animals exposed to nitrate or 

nitrite via the inhalation route: 

3.2.1.3  Immunological and Lymphoreticular Effects 
3.2.1.4  Neurological Effects 
3.2.1.5  Reproductive Effects 
3.2.1.6  Developmental Effects 

3.2.1.7  Cancer 

Available information in humans is limited to results of mortality studies of workers involved in the 

production of nitrate fertilizers.  In general, studies of workers in which outcomes are compared to the 

general population (e.g., observed versus expected deaths) may be biased by a healthy worker effect, 

which may lower estimated risks.  A census-based (England and Wales) mortality study of workers 

involved in the production of nitrate fertilizers included 866 men from the 1961 census and 651 men from 

the 1971 census; mortality rates among these workers were compared to mortality rates of men from 

England and Wales (Fraser et al. 1982).  At follow-up until 1978, slight excess of death from intestinal 

cancer was noted among men from the 1961 census (6 observed versus 4.5 expected); excess of death 

from all cancers, (19 versus 14.4 expected), esophageal cancer (1 versus 0.4 expected), gastric cancer 

(2 versus 1.5 expected), intestinal cancer (1 versus 0.9 expected), rectal cancer (2 versus 0.6 expected), 

and lung cancer (9 versus 6.4 expected) were observed in the 1971 census cohort.  However, follow-up 

through 1985 revealed no significant increased risk for cancer at any site (Fraser et al. 1989). 

Al-Dabbagh et al. (1986) evaluated mortality rates within a cohort of 1,327 male workers involved in the 

manufacture of nitrate fertilizer for at least 1 year between 1946 and 1981 for a chemical company in 

northeast England; mortality rates were compared with those of the male population of the region. 

Among 537 workers described as having been heavily exposed to nitrate dust (i.e., working in an 

environment likely to have contained >10 mg nitrate/m3 [>2.88 ppm]), slight excesses were noted for 

deaths from lung cancer (25 observed versus 21.04 expected) and death from all malignant neoplasms 

(59 observed versus 51.36 expected), but not for cancers of the esophagus, stomach, or bladder. After 

categorizing the heavily-exposed workers by duration of exposure and time since first exposure, excess 
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death from lung cancer was noted for those exposed for ≥10 years, with a lag time of ≥20 years since first 

exposure (13 observed versus 8.11 expected). The study authors indicated that they were unable to adjust 

for smoking. 

Hagmar et al. (1991) evaluated mortality rates within a cohort of 2,131 male workers at a nitrate fertilizer 

production facility in Sweden and compared them to mortality rates for men in the same county.  Death 

from prostate cancer (26 observed versus 16.1 expected) was in excess (standardized mortality ratio 

[SMR] 161, 95% CI: 107, 239); however, risk of prostate cancer within this cohort was not enhanced 

following application of a ≥10-year latency period. There was no significant increase in death from 

tumors of the lips, oral cavity, pharynx, salivary glands, gastrointestinal tract, stomach, respiratory tract, 

lung, urinary bladder, blood, or all sites combined. 

Fandrem et al. (1993) evaluated incidences of selected cancers among 2,023 male workers who had been 

employed for >1 year at a Norwegian nitrate fertilizer plant between 1945 and 1979.  The average 

historical concentration of nitrate in the workplace air was estimated to have been 10 mg/m3. The cohort 

was followed from 1953 through 1988 and incidences of cancer among the workers were compared to 

national rates.  The study authors reported 30 incidences of lung cancer (27.5 expected: standardized 

incidence ratio [SIR] 1.09; 95% CI 0.73, 1.53), 9 incidences of kidney cancer (7.6 expected: SIR 1.18; 

95% CI 0.54, 2.25), and 9 incidences of pancreatic cancer (7.3 expected: SIR 1.23; 95% CI 0.56, 2.34).  

There were fewer than expected cancers of the oesophagus, stomach, colon/rectum, pleura, bladder, 

malignant melanoma, and all cancers combined. No association was found between gastric cancer and 

cumulative exposure to nitrate, duration of employment, or time since first exposure. 

Rafnsson and Gunnarsdóttir (1990) evaluated mortality rates among 603 male workers at a nitrate 

fertilizer plant in Iceland who had been employed for >1 year between 1954 and 1985.  Mortality data 

were compared to national rates for men.  The study authors reported nonstatistically significant excesses 

of cancers of the large intestine (2 observed versus 1.25 expected: SMR 160; 95% CI 19, 578), rectum 

(1 observed versus 0.61 expected: SMR 164; 95% CI 4, 913), pancreas (3 observed versus 1.31 expected: 

SMR 229; 95% CI 47, 669), and respiratory tract (4 observed versus 2.88 expected: SMR 139; 95 CI 38, 

356).  There was no excess of death from stomach cancer (4 observed versus 4.32 expected: SMR 93; 

95% CI 25, 237).  This study is limited by low incidences of selected cancers and possible confounding 

by the healthy worker effect. 
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3.2.2 Oral Exposure 

3.2.2.1  Death 

As early as the mid-1900s, methemoglobinemia was reported in infants exposed to relatively large 

amounts of nitrate from drinking water sources (e.g., Bosch et al. 1950; Bucklin and Myint 1960; Chapin 

1947; Comly 1987; Donahoe 1949; Faucett and Miller 1946; Ferrant 1946; McLetchie and Robertson 

1949; Medovy 1948; Robertson and Riddell 1949; Stafford 1947).  Deaths occurred in some of these 

cases.  Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has been associated with 

severe methemoglobinemia in adults and children (Aquanno et al. 1981; CDC 1997, 2002; Gautami et al. 

1995; Gowans 1990; Greenberg et al. 1945; Kaplan et al. 1990; Ringling et al. 2003; Sevier and Berbatis 

1976; Ten Brink et al. 1982; Walley and Flanagan 1987).  Deaths occurred in some of these cases 

following consumption of food or drink that contained unusually high levels of nitrite via contamination, 

inadvertent use of sodium nitrite instead of table salt, or ingestion of a single sodium nitrite tablet 

(667 mg nitrite). 

An oral LD50 is the dose expected to result in 50% mortality.  Single oral doses of sodium nitrite at 

multiple dose levels resulted in LD50 values of 150 mg/kg (100 mg nitrite/kg) in rats (Imaizumi et al. 

1980) and 265 mg/kg (178.2 mg nitrite/kg) in mice (Sheehy and Way 1974).  RTECS (2014) lists oral 

LD50 values for sodium nitrate of 1,267, 3,500, and 2,680 mg/kg for the rat, mouse, and rabbit, 

respectively; LD50 values for sodium nitrite of 157.9, 175, and 186 mg/kg for the rat, mouse, and rabbit, 

respectively; LD50 values for potassium nitrate of 3,540 and 3,750 for the rat and 1,901 mg/kg for the 

rabbit; and an LD50 for potassium nitrite of 200 mg/kg.  Among rats provided sodium nitrate in the 

drinking water for 6 weeks, concentrations of sodium nitrate resulting in an estimated dose of 14,600 mg 

nitrate/kg/day was lethal to 7/10 male rats; an estimated dose of 16,483.9 mg nitrate/kg/day was lethal to 

10/10 female rats. Among male rats similarly treated with sodium nitrite, an estimated dose of 

1,080.6 mg nitrite/kg/day was lethal to 4/10 rats.  Inai et al. (1979) reported 100% mortality in male and 

female mice (10/sex) provided sodium nitrite in the drinking water at concentrations resulting in 

estimated doses of 330.8 and 354.1 mg nitrite/kg/day, respectively; the deaths occurred within the first 

3 weeks of a 6-week study. 

3.2.2.2  Systemic Effects 

No studies were located regarding musculoskeletal or ocular effects in humans or animals after oral 

exposure to nitrate or nitrite. 



   
 

    
 
 

 
 
 
 
 

 

  

      

 

    
     

 

      

    

   

  

  

   

   

   

 

 

 

  

  

 

     

    

 

  

   

  

 

    

     

   

  

   

     

35 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

The highest NOAEL values and all LOAEL values from each reliable study for systemic effects in each 

species and duration category are recorded in Table 3-1 and plotted in Figure 3-1. 

Respiratory Effects. No studies were located regarding respiratory effects in humans or animals 

following oral exposure to nitrate or nitrite. 

Cardiovascular Effects. Malberg et al. (1978) investigated possible associations between 

hypertension and levels of nitrate in the drinking water in a hospital-based study in Colorado that included 

226 cases of hypertension among patients living in areas where drinking water contained nitrate at 

concentrations ranging from 19 to 125 ppm (mean 52 ppm) and 261 cases from patients living in areas 

without nitrate in the drinking water. The mean annual incidence rate for the nitrate-exposed patients was 

5.9/1,000 population versus 7.9/1,000 for the control patients. However, the nitrate-exposed patients 

exhibited an earlier mean age at hospitalization for hypertension (58.5 years versus 65.2 years for 

controls); the toxicological significance of this finding is uncertain because the incidence rate for 

hypertension was higher among control patients than among patients exposed to nitrate in the drinking 

water. 

Cardiovascular health is an end point of concern for nitrate because some nitrate is converted to nitrite in 

the body.  Nitrite is a smooth muscle relaxant that can cause hypotension and plasma nitrite is involved in 

the oxidation of hemoglobin to methemoglobin, which is associated with hypotension, rapid pulse, and 

rapid breathing at high enough concentrations. Ingestion of nitrite (from potassium nitrite or sodium 

nitrite sources) has been associated with severe methemoglobinemia in adults and children; in some of 

these cases, symptoms included hypotension and/or tachycardia (Gowans 1990; Sevier and Berbatis 1976; 

Ten Brink et al. 1982).  These cases were the result of consumption of food or drink that contained 

unusually high levels of nitrite via contamination, inadvertent use of sodium nitrite instead of table salt, or 

ingestion of a single sodium nitrite tablet (667 mg nitrite). 

In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy volunteers (seven 

females and two males; mean age 22.9 years), ingestion of 0.06 sodium nitrite per mmol hemoglobin 

(~2.2–2.7 mg sodium nitrite/kg, or 1.5–1.8 mg nitrite/kg) resulted in an average heart rate increase from 

55 to 63 bpm and average mean arterial blood pressure decrease from 78 to 70 mmHg (Kortboyer et al. 

1997b).  At a higher intake (0.12 mmol sodium nitrite per mmol hemoglobin; ~4.4–5.4 mg sodium 

nitrite/kg, or 2.9–3.6 mg nitrite/kg), the average heart rate increased from 57 to 67 bpm and the average 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Sprague-
Dawley) 

Once 
(GW) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

100.5 (LD50) 

Reference 
Chemical Form 

Imaizumi et al. 1980 
Sodium Nitrite 

Comments 

2 Mouse 
(Swiss-
Webster) 

Once 
(GW) 

178.2 M (LD50) Sheehy and Way 1974 
Sodium Nitrite 

Systemic 
3 Human NS 

(F) 
Hemato 

b 
4.33 Walton 1951 

Nitrate 

Dose based on a 
drinking water level (44 
mg nitrate/L) above 
which nitrate could 
cause 
methemoglobinemia in 
infants <3 months old. 

4 Human NS 
(F) 

Hemato 
c 

0.2 Walton 1951 
Nitrite 

The NOAEL represents 
the estimated nitrite 
dose to an infant <3 
months of age 
consuming nitrate from 
drinking water at up to 
44 mg/L. 

5 Rat 
(Sprague-
Dawley) 

Once 
(GW) 

Hemato 6.7 16.75 (8.6% methemoglobin) Imaizumi et al. 1980 
Sodium Nitrite 

6 Rat 
(Wistar) 

1 or 3 d 
1 x/d 
(GW) 

Hepatic 104.2 M Lijinsky and Greenblatt 1972 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) System 

Exposure/ 
Duration/ 

Frequency 
(Route) 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

7 HepaticMouse 
HaM/ICR 

Once 
(GW) 

Bd Wt 

Developmental 
8 Rat 

(NS) 
Gd 15 
Once 
(GW) 

150 M 

150 M 

53.6 

Asahina et al. 1971 
Sodium Nitrite 

Khera 1982 
Sodium Nitrite 

9 Mouse 
(CD-1) 

Gd 1-14, 16, or 
18 
1 x/d 
(GW) 

13 Globus and Samuel 1978 
Sodium Nitrite 

10 Mouse 
(ICR) 

Gd 7-18 
(W) 

INTERMEDIATE EXPOSURE 
Death 
11 Rat 

(Fischer- 344) 
6 wk 
(W) 

113.2 

1080.6 F (4/10 died) 

Shimada 1989 
Sodium Nitrite 

Maekawa et al. 1982 
Sodium Nitrite 

12 Rat 
(Fischer- 344) 

6 wk 
(F) 

14600 M (7/10 died) 

16483.9 F (10/10 died) 

Maekawa et al. 1982 
Sodium Nitrate 

13 Mouse 
(ICR) 

6 wk 
(W) 

330.8 M (death during first 3 
treatment weeks) 

Inai et al. 1979 
Sodium Nitrite 

354.1 F (death during first 3 
treatment weeks) 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

14 Gn Pig 
(NS) 

143-204 d 
(W) 

Systemic 
15 Human NS 

(F) 
Hemato 

Sleight and Atallah 1968 
potassium nitrate 

4972 F (1/3 died) 

Walton 1951 
Nitrate 

b 
4.33 Dose based on a 

drinking water level (44 
mg nitrate/L) above 
which nitrate could 
cause 
methemoglobinemia in 
infants <3 months old. 

16 Human NS 
(F) 

Hemato Walton 1951 
Nitrite 

c 
0.2 The NOAEL represents 

the estimated nitrite 
dose to an infant <3 
months of age 
consuming nitrate from 
drinking water at up to 
44 mg/L. 

17 Rat 
(Sprague-
Dawley) 

12wk 
1x/d 
(G) 

Metab Al-Gayyar et al. 2015 
Sodium Nitrite 

80 M (hyperglycemia, insulin 
resistance) 

18 Rat 
(albino) 

2 mo 
(W) 

Hemato Behroozi et al. 1972 
Sodium Nitrite 

28.14 M 187.6 M (12.16% methemoglobin) 

19 Rat 
(Sprague-
Dawley) 

16 wk 
(W) 

Hemato Chow et al. 1980 
Sodium Nitrate 

40.5 M 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral	 (continued) 

a 
Key to Species 
Figure (Strain) 

20	 Rat 
(Sprague-
Dawley) 

21	 Rat 
(Wistar) 

22	 Rat 
(Wistar) 

23	 Rat 
(Wistar) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

16 wk 
(W) 

Hemato 18.6 M Chow et al. 1980 
Sodium Nitrite 

4 mo 
(W) 

Renal 6.4 M 15.8 M (increased urinary urea 
and creatinine levels) 

El-Wakf et al. 2008 
Sodium Nitrate 

Endocr 6.4 M (decreased serum T3 
and T4; increased serum 
TSH) 

Bd Wt 6.4 M (11-12% depressed 
mean body weight and 
body weight gain) 

4mo 
Continuous 
(W) 

Bd Wt 34.8 M (9 and 30% depressed 
mean body weight and 
body weight gain, 
respectively, among adult 
rats) 

34.8 M (24 and 39% depressed 
mean body weight and 
body weight gain, 
respectively, among 
young rats) 

El-Wakf et al. 2015 
Sodium Nitrate 

Metab 34.8 M (hyperglycemia) 

30 wk 
(W) 

Endocr 60.16 F 158.77 F (decreased serum T3, 
T4, and TSH levels; 
increased thyroid weight; 
follicular hyperplasia) 

Eskiocak et al. 2005 
Sodium Nitrate 

Rat 6 mo Hemato	 167.5 (peak methemoglobin of Imaizumi et al. 1980 
(Sprague- (W) 33-88%) Sodium NitriteDawley) 

24 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

25 Rat 
(Fischer- 344) 

51 wk 
(W) 

Gastro 208.4 M Kawabe et al. 1994 
Sodium Nitrite 

26 Rat 
(Sprague-
Dawley) 

10 mo 
(F) 

Hepatic 183.1 Lin and Ho 1992 
Sodium Nitrite 

Bd Wt 183.1 

27 Rat 
(Fischer- 344) 

6 wk 
(F) 

Hemato 3650 M 

4121 F 

7300 M (discolored blood and 
spleen indicative of 
methemoglobinemia) 

Maekawa et al. 1982 
Sodium Nitrate 

8241.9 F (discolored blood and 
spleen indicative of 
methemoglobinemia) 

Bd Wt 7300 M 

4121 F 

14600 M (at least 10% depressed 
body weight gain) 

8241.9 F (at least 10% depressed 
body weight gain) 



9
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540.3
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76

208.4

22
2416.6

2416.6

NITRATE AND NITRITE

3.  HEALTH EFFECTS

41

Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

28 Rat 
(Fischer- 344) 

6 wk 
(W) 

Hemato 186.1 M 

270.2 F 

372.2 M (discolored blood and 
spleen indicative of 
methemoglobinemia) 

Maekawa et al. 1982 
Sodium Nitrite 

540.3 F (discoloration of blood 
and spleen indicative of 
methemoglobinemia) 

Bd Wt 372.2 M 

540.3 F 

744.4 M (at least 10% depressed 
body weight gain) 

1080.6 F (at least 10% depressed 
body weight gain) 

29 Rat 
(Fischer- 344) 

35 wk 
(W) 

Gastro 208.4 M Miyauchi et al. 2002 
Sodium Nitrite 

30 Rat 
(Wistar) 

4 wk 
(F) 

Endocr 2416.6 (increased thyroid 
weight, decreased 
thyroid peroxidase 
activity, decreased serum 
T3 and T4, increased 
serum TSH) 

Mukhopadhyay et al. 2005 
potassium nitrate 

Bd Wt 2416.6 



1

77.1

53.6
134

87.1

17

41.9

61.8

107.6

130.5

4.8

16.8

13.3

61.8

NITRATE AND NITRITE

3.  HEALTH EFFECTS

42

Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

31 Rat 
(Fischer- 344) 

14 wk 
(W) 

Hemato 77.1 M 

53.6 F 

134 M (up to 10% 
methemoglobin) 

NTP 2001 
Sodium Nitrite 

87.1 F (up to 13% 
methemoglobin) 

32 Rat 
(Wistar) 

13 wk 
(W) 

Hemato 41.9 M 

61.8 F 

107.6 M (5.7% methemoglobin) 

130.5 F (7.6% methemoglobin) 

Til et al. 1988 
potassium nitrite 

Endocr 4.8 M 

16.8 F 

13.3 M (hypertrophy in zona 
glomerulosa of adrenal 
gland) 

61.8 F (hypertrophy in zona 
glomerulosa of adrenal 
gland) 
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5.94

105.1

130.1

19

5.2

7.1

106.3

124.8

5.2

7.1

106.3

124.8

95

28.1

NITRATE AND NITRITE

3.  HEALTH EFFECTS

43

Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral	 (continued) 

a 
Key to Species 
Figure (Strain) 

33	 Rat 
(Wistar) 

34	 Rat 
(Wistar) 

35	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

13 wk 
(W) 

Endocr 4.59 M 

5.94 F 

105.1 M (hypertrophy in zona 
glomerulosa of adrenal 
gland) 

Til et al. 1997 
potassium nitrite 

130.1 F (hypertrophy in zona 
glomerulosa of adrenal 
gland) 

13 wk 
(W) 

Hemato 5.2 M 

7.1 F 

106.3 M (increased 
methemoglobin, 
magnitude not specified) 

Til et al. 1997 
Sodium Nitrite 

124.8 F (increased 
methemoglobin, 
magnitude not specified) 

Endocr 5.2 M 

7.1 F 

106.3 M (hypertrophy in zona 
glomerulosa of adrenal 
gland) 

124.8 F (hypertrophy in zona 
glomerulosa of adrenal 
gland) 

F0 males: 
15-28 d 
F0 females: 
58-71 d 
F1 pups: 69 d 
(F) 

Bd Wt 28.1 Vorhees et al. 1984 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to Species 
Figure (Strain) 

36 Rat 
(Wistar) 

37 Mouse 
Swiss 

38 Mouse 
Strain A 

39 Mouse 
Strain A 

40 Mouse 
Strain A 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

5 mo 
(W) 

Endocr 9 M 13.5 M (increases in serum T3 
and thyroid weight; 
nonneoplastic lesions in 
thyroid gland) 

Zaki et al. 2004 
potassium nitrate 

Bd Wt 9 M 13.5 M (16% lower mean body 
weight than controls) 

26 wk 
(W) 

Bd Wt 82.5 Greenblatt and Lijinsky 1974 
Sodium Nitrite 

25 wk 
5 d/wk 
(W) 

Bd Wt 118.1 M Greenblatt and Mirvish 1973 
Sodium Nitrite 

25 wk 
5 d/wk 
(W) 

Bd Wt 1583 M Greenblatt and Mirvish 1973 
Sodium Nitrate 

20 wk 
5 d/wk 
(W) 

Bd Wt 236.3 M Greenblatt and Mirvish 1973 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral	 (continued) 

a 
Key to Species 
Figure (Strain) 

41	 Mouse 
(B6C3F1) 

Neurological 
42 Rat 

(albino) 

43	 Rat 
C57B1 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

14 wk 
(W) 

Gastro 435.5 M 

562.8 F 

663.3 M (focal hyperplasia in 
forestomach) 

NTP 2001 
Sodium Nitrite 

824.1 F (focal hyperplasia in 
forestomach) 

Hemato 231.2 M 

160.8 F 

435.5 M (extramedullary 
hematopoiesis in spleen) 

298.1 F (extramedullary 
hematopoiesis in spleen) 

Bd Wt 435.5 M 

824.1 F 

663.3 M (10% depressed final 
mean body weight and 
body weight gain) 

2 mo 
(W) 

9.38 M (altered EEG) Behroozi et al. 1972 
Sodium Nitrite 

F0: Mating, 
gestation, 
lactation 
F1: 14 wk 
postweaning 
(W) 

165.4 M (increased aggressive 
behavior) 

Gruener 1974 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

Exposure/ LOAEL 
Duration/

a FrequencyKey to Species NOAEL Less Serious Serious
(Route)Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

Reproductive 
44 Rat 

(Sprague-
Dawley) 

12wk 
1x/d 
(G) 

80 M 

45 Rat 
(Sprague-
Dawley) 

12wk 
1x/d 
(G) 

80 M 

46 

47 

Rat 
(Wistar) 

2 generations 
(F) 

Rat 
(Fischer- 344) 

14 wk 
(W) 

160 F 

77.1 M 134 M (7% decreased sperm 
motility) 

48 Mouse 
(B6C3F1) 

14 wk 
(W) 

231.2 M 435.5 M 

(Increases in testicular 
weight and serum FSH, 
LH, and prolactin; 
decreases in sperm 
count and serum 
testosterone) 

(decreased serum 
testosterone; increases 
in testicular weight; 
increased testicular 
levels of 
pro-inflammatory 
cytokines, oxidative 
stress markers, and 
enzymes involved in 
programmed cell death) 

(degeneration in testis, 
characterized by 
increased size of residual 
bodies within the lumen 
of the seminiferous 
tubules) 

Reference 
Chemical Form Comments 

Alyoussef and Al-Gayyar 
2016a 
Sodium Nitrite 

Alyoussef and Al-Gayyar 
2016b 
Sodium Nitrite 

Hugot et al. 1980 
Sodium Nitrite 

NTP 2001 
Sodium Nitrite 

NTP 2001 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

49 Gn Pig 
(NS) 

143-204 d 
(W) 

2230.8 F 4972 F Sleight and Atallah 1968 
potassium nitrate 

50 Gn Pig 
(NS) 

100-240 d 
(W) 

59.4 F 148.5 F (decreased number of 
litters and live fetuses) 

Sleight and Atallah 1968 
potassium nitrite 

Developmental 
51 Rat 

(Wistar) 
2 generations 
(F) 

160 Hugot et al. 1980 
Sodium Nitrite 

52 Rat 
(Sprague-
Dawley) 

F0 males: 
15-28 d 
F0 females: 
58-71 d 
F1 pups: 69 d 
(F) 

CHRONIC EXPOSURE 
Systemic 
53 Human NS 

(F) 
Hemato 

7.2 

b 
4.33 

14.4 (increased pup mortality, 
depressed preweaning 
pup body weight, delayed 
swimming development) 

Vorhees et al. 1984 
Sodium Nitrite 

Walton 1951 
Nitrate 

Dose based on a 
drinking water level (44 
mg nitrate/L) above 
which nitrate could 
cause 
methemoglobinemia in 
infants <3 months old. 
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a 
Key to 
Figure 

54 

55 

56 

57 

58 

Exposure/
 
Duration/
 

Frequency
Species (Route)(Strain) 

Human NS 
(F) 

Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral	 (continued) 

LOAEL 

System 

Hemato 

Bd Wt 

Bd Wt 

Bd Wt 

Bd Wt 

NOAEL 
(mg/kg/day) 

c 
0.2 

60.5 M 

14.5 M 

22.6 F 

82.4 M 

60.3 F 

1517 M 

832 F 

Less Serious 
(mg/kg/day) 

178.2 M (approximately 15% 
depressed mean body 
weight) 

101 F	 (more than 10% lower 
mean body weight than 
controls) 

1730 F	 (up to 13% lower mean 
body weight than 
controls) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

Walton 1951 
Nitrite 

Grant and Butler 1989 
Sodium Nitrite 

Greenblatt et al. 1973 
Sodium Nitrite 

Maekawa et al. 1982 
Sodium Nitrite 

Maekawa et al. 1982 
Sodium Nitrate 

Comments 

The NOAEL represents 
the estimated nitrite 
dose to an infant <3 
months of age 
consuming nitrate from 
drinking water at up to 
44 mg/L. 

Study authors did not 
specify whether 
reported nitrite 
consumption was nitrite 
or sodium nitrite 

Rat
 
(Fischer- 344)
 

Rat
 
(Wistar)
 

Rat
 
(Fischer- 344)
 

Rat
 
(Fischer- 344)
 

115 wk 
(F) 

67 wk 
5 d/wk 
(W) 

104 wk 
(W) 

104 wk 
(F) 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

59 Rat 
(Fischer- 344) 

105 wk 
(W) 

60 Rat 
NS 

24 mo 
(W) 

61 Rat 
(Wistar) 

29 mo 
(F) 

System 

Gastro 

Hemato 

Hepatic 

Gastro 

Hemato 

Hepatic 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

46.9 M 

53.6 F 

87.1 M (epithelial hyperplasia in 
the forestomach) 

NTP 2001 
Sodium Nitrite 

100.5 F (epithelial hyperplasia in 
the forestomach) 

86.4 M 

172.8 M (12% methemoglobin) Shuval and Gruener 1972 
Sodium Nitrite 

176.8 M 

204.5 F 

van Logten et al. 1972 
Sodium Nitrite 

176.8 M 

204.5 F 

176.8 M 

204.5 F 

204.5 F 176.8 M (10% lower mean body 
weight) 
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147.4
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

62 Mouse 
(B6C3F1) 

104-105 wk 
(W) 

Gastro 80.4 M 147.4 M (epithelial hyperplasia in 
glandular stomach) 

NTP 2001 
Sodium Nitrite 

Bd Wt 147.4 M 

110.6 F 

63 Dog 
(Beagle) 

1 yr 
(W) 

Endocr 38.5 M 

39 F 

Kelley et al. 1974 
Sodium Nitrate 

Reproductive 
64 Dog 

(Beagle) 
1 yr 
(W) 

38.5 M 

39 F 

Kelley et al. 1974 
Sodium Nitrate 

Cancer 
65 Rat 

(Fischer- 344) 
106 wk 
(F) 

108.4 F (CEL; hepatocellular 
neoplasms) 

Lijinsky 1984a; Lijinsky et al. 
1983 
Sodium Nitrite 

66 Rat 
(Fischer- 344) 

104 wk 
(F) 

110.4 F (CEL: hepatocellular 
neoplasms) 

Lijinsky 1984b; Lijinsky et al. 
1983 
Sodium Nitrite 

67 Rat 
(Wistar) 

Lifetime 
(W) 

298 (CEL; forestomach 
tumors) 

Mirvish et al. 1980 
Sodium Nitrite 
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Table 3-1  Levels of Significant Exposure to Nitrate And Nitrite  - Oral (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form Comments 

68 Mouse Lifetime 207.7 M (CEL: lung carcinoma) Anderson et al. 1985 
(Hybrid) (W) Sodium Nitrite 

a The number corresponds to entries in Figure 3-1. 

b NOAEL of of 4 mg/kg/day for nitrate was used to derive acute-, intermediate, and chronic-duration oral minimal risk levels (MRLs) of 4 mg/kg/day for nitrate, as described in detail in 
Chapter 2 and Appendix A. The NOAEL was divided by an uncertainty factor of 1 for human variability because the NOAEL accounted for exposure of a particularly sensitive 
subpopulation (infants <3 months of age). 

c NOAEL of 0.2 mg/kg/day for nitrite was used to derive acute-, intermediate, and chronic-duration oral minimal risk levels (MRLs) of 0.1 mg/kg/day for nitrite, as described in detail in 
Chapter 2 and Appendix A. The NOAEL represents the dose of nitrite that would be expected to enter the blood following ingestion of nitrate by an adult at the oral MRL value of 4 
mg nitrate/kg/day assuming 5% reduction of an oral dose of nitrate to nitrite in the adult saliva complete absorption of nitrite from the digestive tract.  The NOAEL of 0.2 mg/kg/day for 
nitrite was divided by an uncertainty factor of 1 for human variability because the NOAEL was for exposure of a particularly sensitive subpopulation (infants <3 months of age).  A 
modifying factor of 2 was applied based on the assumption that the effective methemoglobin level from a given intake by an infant may be up to twice that of an adult. 

Bd Wt = body weight; CEL = cancer effect level; d = day(s); EEG = electroencephalogram; Endocr = endocrine; (F) = feed; F = Female; Gastro = gastrointestinal; Gd = gestational 
day; Gn pig = guinea pig; (GW) = gavage in water; Hemato = hematological; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male;  mo = month(s); 
NOAEL = no-observed-adverse-effect level; NS = not specified; T3 = triiodothyronine ; T4 = thyroxine; TSH = thyroid stimulating hormone ; (W) = drinking water;  wk = week(s); x = 
time(s); yr = year(s) 
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Figure 3-1 Levels of Significant Exposure to Nitrate And Nitrite - Oral
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Figure 3-1 Levels of Significant Exposure to Nitrate And Nitrite - Oral (Continued) 
Intermediate (15-364 days) 
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Figure 3-1 Levels of Significant Exposure to Nitrate And Nitrite - Oral (Continued) 
Chronic (≥365 days) 

Systemic 
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mean arterial blood pressure decreased from 80 to 69 mmHg. The maximum effects on heart rate and 

blood pressure occurred between 15 and 20 minutes following ingestion; heart rate and blood pressure 

returned to near-baseline levels approximately 2 hours following ingestion at the low dose, but the effects 

had not returned to baseline at 4 hours following ingestion at the high dose. The blood pressure-lowering 

effect of short-term dietary supplementation of inorganic nitrate appears to be beneficial; however, there 

is some uncertainty regarding potential health benefits of long-term nitrate supplementation to treat 

cardiovascular diseases (Maccha and Schecter 2012; Siervo et al. 2013). 

Gastrointestinal Effects. Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has 

been associated with severe methemoglobinemia in adults and children; in many of these cases, 

symptoms included abdominal cramps and vomiting (CDC 1997, 2002; Gautami et al. 1995; Gowans 

1990; Greenberg et al. 1945; Sevier and Berbatis 1976; Ten Brink et al. 1982). These cases were the 

result of consumption of food or drink that contained unusually high levels of nitrite via contamination, 

inadvertent use of sodium nitrite instead of table salt, or ingestion of a single sodium nitrite tablet 

(667 mg nitrite). In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy 

volunteers (seven females and two males; mean age 22.9 years), one subject became nauseous and 

vomited within 20 minutes following ingestion of 0.12 mmol sodium nitrite per mmol hemoglobin 

(~4.8 mg sodium nitrite/kg, or 3.2 mg nitrite/kg); another subject reported nausea within 30 minutes 

following ingestion of 0.12 mmol sodium nitrite per mmol hemoglobin (~4.4 mg sodium nitrite/kg, or 

2.9 mg nitrite/kg) (Kortboyer et al. 1997b). 

In a population-based study, Nasseri-Moghaddam et al. (2011) evaluated the prevalence of acid 

regurgitation and/or heartburn in regions of Tehran categorized by nitrate levels in drinking water 

sources. The study authors reported a significantly increased prevalence of frequent (at least weekly) acid 

regurgitation among residents living in areas with drinking water nitrate concentrations >100 mg/L 

compared to those living in areas with drinking water nitrate concentrations <100 mg/L (OR 3.65; 95% 

CI 1.32, 10.09). 

NTP (2001) observed epithelial hyperplasia in the forestomach of male and female B6C3F1 mice 

provided sodium nitrite in the drinking water for 14 weeks at a concentration (5,000 ppm) that resulted in 

estimated sodium nitrite doses of 990 and 1,230 mg/kg/day, respectively (663.3 and 824.1 mg 

nitrite/kg/day, respectively); NOAELs for these lesions in the males and females were 435.5 and 

562.8 mg nitrite/kg/day, respectively.  Similar results were noted for male and female F344/N rats and 

male B6C3F1 mice treated for 104–105 weeks at estimated doses of 87.1, 100.5, and 147.4 mg 
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nitrite/kg/day, respectively; NOAELs for these lesions in the male and female rats and male mice were 

46.9, 53.6, and 80.4 mg nitrite/kg/day, respectively. Sodium nitrite treatment did not result in increased 

incidences of forestomach lesions in other groups of male F344 rats provided sodium nitrite in the 

drinking water at 2,000 mg/L (estimated dose of 208.4 mg nitrite/kg/day) for 35 weeks (Miyauchi et al. 

2002) or 51 weeks (Kawabe et al. 1994). 

Hematological Effects. As discussed in detail in Section 3.4 (Toxicokinetics) and Section 3.5 

(Mechanisms of Action), some plasma nitrite, arising from reduction of ingested nitrate and via 

endogenous production, is involved in the oxidation of hemoglobin-Fe2+ (which transports oxygen) to 

hemoglobin-Fe3+ (methemoglobin, incapable of binding oxygen). 

Methemoglobinemia is a condition in which increased methemoglobin as a percentage of total 

hemoglobin results in the expression of clinical signs that increase in severity with increasing percent 

methemoglobin (ATSDR 2013a; Bloom et al. 2013; Denshaw-Burke et al. 2013; Haymond et al. 2005).  

In normal healthy individuals, methemoglobin levels are <1% of total hemoglobin.  Discoloration (e.g., 

pale, gray blue) of the skin is often observed at methemoglobin levels in the range of 3–15%; most 

patients tolerate methemoglobin levels <10%. Tachycardia, weakness, and other signs of tissue hypoxia 

may be observed at 10–20% methemoglobin levels.  Effects on the central nervous system (e.g., 

headache, dizziness, fatigue) and dyspnea and nausea appear at >20% methemoglobin; the severity of 

symptoms increases with increasing methemoglobin level.  High risk of mortality occurs at levels >70% 

methemoglobin). 

As early as the mid-1900s, methemoglobinemia was reported in infants exposed to relatively large 

amounts of nitrate from drinking water sources (e.g., Bailey 1966; Bosch et al. 1950; Bucklin and Myint 

1960; Chapin 1947; Comly 1987; Donahoe 1949; Faucett and Miller 1946; Ferrant 1946; McLetchie and 

Robertson 1949; Medovy 1948; Robertson and Riddell 1949; Stafford 1947; Walton 1951).  Available 

data identify young bottle-fed infants (1–3 months of age) as a subpopulation that is particularly 

susceptible to nitrate-induced methemoglobinemia, especially those consuming formula prepared from 

drinking water sources containing nitrate in excess of 10 mg nitrate-nitrogen/L (44 mg nitrate/L) 

(e.g., Bosch et al. 1950; Walton 1951); EPA established a maximum contaminant level (MCL) of 

10 mg/L for nitrate-nitrogen in drinking water (EPA 2009c).  Subsequent reports provide additional 

evidence of associations between ingestion of nitrate from drinking water sources and elevated 

methemoglobin levels in infants (e.g., Craun et al. 1981; Fan and Steinberg 1996; Fan et al. 1987; 

Gruener and Toeplitz 1975; Gupta et al. 1999; Johnson et al. 1987; Jones et al. 1973; Miller 1971; Shuval 
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and Gruener 1972; Simon et al. 1964; Super et al. 1981; Winton et al. 1971; Zeman et al. 2002). 

Cyanosis and even death occurred in some of the reported cases. However, there is some evidence that 

methemoglobinemia in infants who drank formula prepared using drinking water with relatively high 

levels of nitrate may be related to bacterial contamination of such water sources and consequent 

gastrointestinal disorders, as well as endogenous overproduction of nitric oxide due to gastrointestinal 

infection and inflammation (Avery 1999; Gupta et al. 1998; Hegesh and Shiloah 1982; L’hirondel and 

L’hirondel 2002; Yano et al. 1982). 

Walton (1951) reviewed available literature and found 278 reported cases of infant methemoglobinemia.  

Among those infants for whom data on nitrate levels in water sources used to prepare infant formula were 

available (n=214), levels >50 mg nitrate-nitrogen/L (220 mg nitrate/L) were associated with 173 cases 

(81%), levels of 21–50 mg/L (92–220 mg nitrate/L) were associated with 36 cases (17%), and levels of 

11–20 mg nitrate-nitrogen (48–88 mg nitrate/L) were associated with 5 cases (2%).  There were no cases 

among those infants consuming water containing <10 mg nitrate-nitrogen/L (<44 mg nitrate/L). 

Limitations include lack of information regarding the actual ages of the infants, total nitrate doses, and 

other water source contaminants (e.g., bacterial levels). 

Bosch et al. (1950) evaluated 139 reported cases of cyanosis among infants in Minnesota (90% of which 

were <2 months of age; range 8 days to 5 months).  Samples from 129 wells that served as water sources 

to the cases revealed nitrate-nitrogen concentrations >100 mg/L (>440 mg nitrate/L) in 49 wells, 50– 

100 mg/L (220–440 mg nitrate/L) in 53 wells, 21–50 mg/L (92–220 mg nitrate/L) in 25 wells, and 10– 

20 mg/L (44–88 mg nitrate/L) in the other 2 wells.  A major limitation of this study was the detection of 

coliform organisms in 45 of 51 well water samples tested for bacterial contamination; bacteria in the 

water source might have been a causal factor for gastrointestinal tract disturbances in some of the infants 

and may have been at least partially responsible for increased susceptibility to nitrate-induced cyanosis 

(e.g., gastrointestinal tract disturbances could have influenced conversion of ingested nitrate to nitrite or 

absorption of nitrite). 

Subsequent reports provide additional evidence of associations between ingestion of nitrate from drinking 

water sources and elevated methemoglobin levels in infants (e.g., Craun et al. 1981; Fan and Steinberg 

1996; Fan et al. 1987; Gruener and Toeplitz 1975; Gupta et al. 1999; Johnson et al. 1987; Jones et al. 

1973; Miller 1971; Shuval and Gruener 1972; Simon et al. 1964; Super et al. 1981; Winton et al. 1971; 

Zeman et al. 2002).  Cyanosis and even death occurred in some of the reported cases. 



   
 

    
 
 

 
 
 
 
 

     

    

       

   

   

      

  

 

 

     

   

  

   

   

  

 

 

     

  

     

   

    

  

  

  

  

 

  

 

  

      

59 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Simon et al. (1964) evaluated methemoglobin levels from 89 healthy infants with a nitrate-free water 

source (group 1), 38 infants whose water source contained 50–100 mg nitrate/L (group 2), and 25 infants 

whose water source contained >100 mg nitrate/L (group 3). Nitrite levels in the water sources measured 

less than 0.3 mg/L (with the exception of a single measurement of 1 mg nitrite/L).  For groups 1, 2, and 3, 

methemoglobin levels averaged 1.0, 1.3, and 2.9%, respectively, in the first postnatal trimester (0– 

3 months of age) and 0.8, 0.8, and 0.7 %, respectively, in the second trimester. Significantly increased 

methemoglobin was observed only in the highest exposure group (>100 mg nitrate/L) and only during the 

first trimester. 

Super et al. (1981) evaluated associations between methemoglobin levels among infants 1–12 months of 

age (relatively evenly distributed by month) and estimates of nitrate intake (based on measured drinking 

water nitrate levels and considerations of liquid intake from other sources).  When divided into two 

groups according to estimated nitrate intake (310 infants ingesting ≤2.93 mg nitrate/kg/day and 

102 infants ingesting >2.93 mg nitrate/kg/day), mean methemoglobin levels were 1.54 and 3.03%, 

respectively.  There were no striking age-related differences in frequency of infants with methemoglobin 

levels >3%. 

A nested case-control study included 26 cases of infants diagnosed with methemoglobinemia at 

≤2 months of age and 45 age-matched controls (Zeman et al. 2002).  Nitrate exposure levels were 

categorized as low (<0.5 ppm), medium (1–10 ppm), or high (>10 ppm) according to estimated nitrate 

levels reconstructed from parental responses to dietary questionnaires and environmental sampling 

(1 ppm in the diet is equivalent to 1 mg/kg diet; 1 ppm in drinking water is equivalent to 1 mg/L).  

Numbers of methemoglobinemia cases in the low-, medium-, and high-exposure categories were 0/26, 

4/26, and 22/26, respectively, and estimated dietary nitrate intake ranged from 2.83 to 451.20 mg/kg/day 

(mean 103.6 mg nitrate/kg/day); diarrheal disease was reported for 14/26 methemoglobinemia cases. 

Numbers of controls in the low-, medium-, and high-exposure categories were 21/45, 11/45, and 13/45, 

respectively, and estimated dietary nitrate intake ranged from 0 to 182 mg/kg/day (mean 11.2 mg 

nitrate/kg/day) for the controls; diarrheal disease was reported for 13/45 controls.  Univariate and 

multifactorial analysis of risk factors for methemoglobinemia indicated that methemoglobinemia was 

most strongly associated with dietary exposure to nitrate/nitrite (p=0.0318), but also significantly 

associated with diarrheal disease (p=0.0376).  Controls in the high-exposure category were less likely 

than high-exposure methemoglobinemia cases to have experienced severe diarrhea and were more likely 

to have been breastfed for >2 weeks. Major limitations to the study include the collection of information 
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contributing to the exposure estimates several years following the occurrences of methemoglobinemia and 

reliance on parental recollection of infant nutritional intake. 

Sadeq et al. (2008) measured methemoglobin levels in children ranging in age from birth to 8 years of age 

who either lived in a region where nitrate levels in 78 tested wells ranged from 15.39 to 246.9 mg/L or a 

region supplied by municipal water with a mean nitrate level of 2.99 mg/L.  The mean methemoglobin 

level (0.205 g/dL) among 100 children in the region supplied by well water was slightly higher than that 

of 37 children in the region supplied by municipal water (0.166 g/dL).  The study authors stated that 

0.24 g methemoglobin/dL is the equivalent of 2% methemoglobin, in which case mean methemoglobin 

among the children in the region supplied by well water was approximately 1.7% of total hemoglobin 

compared to a mean of 1.4% for the children in the region supplied by municipal water.  The slight 

increases in mean methemoglobin among the children in the region supplied by well water were 

consistent within various age ranges (0–6, 7–11, 13–35, 36–71, and 72–95 months). The study authors 

stated that methemoglobin ≤0.24 g/dL (2%) was considered to be within normal limits. 

Craun et al. (1981) evaluated methemoglobin levels in 102 children 1–8 years of age.  Sixty-four of the 

children lived in households where drinking water contained 22–111 mg nitrate-nitrogen/L (97–488 mg 

nitrate/L); drinking water sources for the other 38 children (controls) contained <10 mg nitrate-nitrogen/L 

(<44 mg nitrate/L).  Methemoglobin measured 1.0–1.36% in those children 1–4 years of age and 

appeared to increase with increasing nitrate intake, although there was no statistically significant change. 

Methemoglobin levels in those children 5–8 years of age averaged 0.9–0.95% independent of level of 

exposure to nitrate. 

In one longitudinal study of 357 pregnant women in south-central Minnesota, there was no apparent 

association between estimated intake of nitrate from tap water and methemoglobin levels (Manassaram et 

al. 2010).  However, only four of the women used tap water with nitrate-nitrogen content above the EPA 

(2009c) MCL of 10 mg/L. 

Elevated methemoglobin levels and methemoglobinemia have been associated with consumption of foods 

high in nitrate (e.g., borage, carrots, kohlrabi, spinach) by infants and small children (Greer and Shannon 

2005; Keating et al. 1973; Martinez et al. 2013; Sanchez-Echaniz et al. 2001).  In the study of Sanchez-

Echaniz et al. (2001), a homemade purée of mixed vegetables with high nitrate content was considered 

the source of elevated methemoglobin levels (10–58% of total hemoglobin) among seven infants 7– 

13 months of age. 

http:0.9�0.95
http:1.0�1.36
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Limited data are available regarding administration of controlled amounts of nitrate and methemoglobin 

levels.  Cornblath and Hartmann (1948) administered sodium nitrate in the formula fed to four infants 

(ages 11 days to 11 months) for 2–18 days at a concentration resulting in a dose of 50 mg nitrate/kg/day. 

The highest observed level of methemoglobin was 5.3% of total hemoglobin; there was no evidence of 

cyanosis.  Among four other infants (ages 2 days to 6 months) similarly treated at 100 mg nitrate/kg/day 

for 6–9 days, the only reported effect was that of 7.5% methemoglobin in a 10-day-old infant following 

8 days of treatment in the absence of clinical cyanosis. Gruener and Toeplitz (1975) fed 104 infants 

(1 week to 10 months of age) for 1 day with formula prepared using water containing 15 mg nitrate/L 

(~0.8–1.5 mg nitrate/kg, based on age-specific values for water consumption [Kahn and Stralka 2009] and 

body weight [EPA 2008]), increased to 108 mg nitrate/L for the next 3 days (~5.5–10.6 mg nitrate/kg/day, 

based on age-specific values for water consumption [Kahn and Stralka 2009] and body weight [EPA 

2008], and returned to 15 mg nitrate/L for one additional day.  Mean methemoglobin levels were 0.89% 

after the first day of feeding, 1.3, 0.91, and 0.93% after days 2, 3, and 4, and dropped to 0.8% on the fifth 

day.  Among three of these infants (ages not specified), methemoglobin levels reached 6.9, 13.9, and 

15.9% during the high-dose days.  Limitations of this study include the use of a wide range of ages and 

the fact that only 57 of the 104 infants supplied blood samples on all 5 treatment days. 

Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has been associated with severe 

methemoglobinemia in adults and children (Aquanno et al. 1981; CDC 1997, 2002; Finan et al. 1998; 

Gautami et al. 1995; Gowans 1990; Greenberg et al. 1945; Kaplan et al. 1990; Ringling et al. 2003; 

Sevier and Berbatis 1976; Ten Brink et al. 1982; Walley and Flanagan 1987). These cases were the result 

of consumption of food or drink that contained unusually high levels of nitrite via contamination, 

inadvertent use of sodium nitrite instead of table salt, inadvertent use of sodium nitrite-contaminated 

sugar, or ingestion of a single sodium nitrite tablet (667 mg nitrite). 

In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy volunteers (seven 

females and two males; mean age 22.9 years), ingestion of 0.06 sodium nitrite per mmol hemoglobin 

(~2.2–2.7 mg sodium nitrite/kg, or 1.5–1.8 mg nitrite/kg) resulted in a mean maximum methemoglobin 

concentration of 0.309 mmol/L (range of 3.4–4.5% of total hemoglobin) at approximately 0.70 hours 

following ingestion, and a mean half-life of approximately 1.07 hours for methemoglobin reduction 

(Kortboyer et al. 1997b).  At a higher intake (0.12 mmol sodium nitrite per mmol hemoglobin; ~4.4– 

5.4 mg sodium nitrite/kg, or 2.9–3.6 mg nitrite/kg), the mean maximum methemoglobin concentration 
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was 0.727 mmol/L (range of 7.7–10.9% of total hemoglobin) at approximately 1.14 hours following 

ingestion, and a mean half-life of approximately 1.13 hours for methemoglobin reduction. 

Increased methemoglobin levels have been reported in rats administered sodium nitrite orally.  Imaizumi 

et al. (1980) administered aqueous sodium nitrite to fasted Sprague-Dawley rats by gavage at 20, 25, 50, 

100, or 150 mg/kg (6.7, 16.75, 33.5, 67, and 100.5 mg nitrite/kg, respectively) and observed 

methemoglobin levels of 4.3, 8.6, 40.3, 64.7, and 45–80%, respectively, at 1 hour posttreatment. The 

highest dose resulted in 50% mortality.  Among surviving rats, methemoglobin levels returned to normal 

after 24 hours.  Imaizumi et al. (1980) administered sodium nitrite in the drinking water of other rats for 

6 months at 0.5% (5,000 mg sodium nitrite/L or 3,333 mg nitrite/L).  Methemoglobin levels as high as 

88% were observed during evening hours of treatment day 18 when the rats were likely drinking water 

and as low as 4% during morning and afternoon hours of the following day. The study authors did not 

provide information regarding clinical signs or mortality, but stated that there was no effect on growth. 

In a 14-week study of male and female Fischer-344 rats administered sodium nitrite in the drinking water, 

clinical signs of cyanosis and brownish discoloration of mucous membranes and skin were noted at 

concentrations ≥1,500 ppm (≥130 mg/kg or 87.1 mg nitrite/kg) in the females and ≥3,000 ppm 

(≥225 mg/kg or 134 mg nitrite/kg) in the males (NTP 2001).  The clinical signs were consistent with 

increased methemoglobin, which measured as high as 13, 24, and 50% in the 1,500, 3,000, and 5,000 ppm 

groups, respectively.  Til et al. (1988) reported methemoglobin levels of 5.7 and 7.6% in male and female 

Wistar rats, respectively, administered potassium nitrite in the drinking water for 13 weeks at 

concentrations resulting in approximate doses of 107.6 and 130.5 mg nitrite/kg/day, respectively. Til et 

al. (1997) reported similar effects on methemoglobin in rats similarly exposed to either potassium nitrite 

or sodium nitrite; however, quantitative data were not included in the study report. 

Behroozi et al. (1972) provided sodium nitrite in the drinking water of male albino rats for 2 months at 

concentrations resulting in sodium nitrite doses of 0, 14, 42, and 280 mg/kg/day (0, 9.38, 28.14, and 

187.6 mg nitrite/kg/day, respectively).  Methemoglobin in all groups was approximately 0.5% prior to the 

initiation of sodium nitrite treatment and remained at that level in the control group throughout the study.  

Methemoglobin in the low-, mid- and high-dose groups averaged 1.1, 3.0, and 12.16%, respectively, 

during the treatment period; following cessation of sodium nitrite exposure, methemoglobin levels in all 

sodium nitrite-treated groups decreased to 0.3–0.7%. 
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Chow et al. (1980) provided drinking water to male Sprague-Dawley rats for 16 weeks that contained 0 or 

200 mg sodium nitrite/L (calculated dose of 18.6 mg nitrite/kg/day, based on EPA [1988] subchronic 

reference values for body weight and food consumption).  Methemoglobin averaged 0.5–3.0% in the 

sodium nitrite-treated group and 0–1.2% in the controls. 

Shuval and Gruener (1972) provided sodium nitrite in the drinking water to male rats for 24 months at 0, 

100, 1,000, 2,000, or 3,000 mg/L (calculated doses of 0, 8.64, 86.4, 172.8, and 259.2 mg nitrite/kg/day, 

based on EPA [1988] chronic default reference values for body weight and food consumption). 

Methemoglobin levels in the three highest exposure groups averaged 5, 12, and 22% of total hemoglobin; 

there were no treatment-related effects on hemoglobin levels. 

Maekawa et al. (1982) added sodium nitrite to the food of male and female F-344 rats for 6 weeks at 

concentrations ranging from 0.06 to 1% and sodium nitrate to the food of other rats at concentrations 

ranging from 1.25 to 20%. Discoloration in blood and spleen were noted in rats from the two highest 

exposure levels for sodium nitrite and sodium nitrate.  These exposure levels were equivalent to doses 

≥370 mg nitrite/kg/day and ≥7,300 mg nitrate/kg/day (based on EPA [1988] subchronic reference values 

for body weight and food consumption in male and female F-344 rats).  The study report did not include 

information regarding methemoglobin levels. 

Chow et al. (1980) provided drinking water to male Sprague-Dawley rats for 16 weeks that contained 0 or 

400 mg sodium nitrate/L (calculated dose of 40.5 mg nitrate/kg/day, based on EPA [1988] subchronic 

reference values for body weight and food consumption).  There were no treatment-related effects on 

mean methemoglobin levels. 

Other hematological effects were noted in some animal studies that employed exposure to sodium nitrite 

or potassium nitrite in the drinking water for periods of 13–115 weeks. Imaizumi et al. (1980) reported 

decreased hemoglobin and irregularities in erythrocytes (irregular sizes and marked Heinz body 

formation) in rats receiving 167.5 mg nitrite/kg/day.  Til et al. (1988, 1997) noted slightly decreased 

hemoglobin in male rats at ≥42 mg nitrite/kg/day, decreased packed cell volume and erythrocyte count at 

approximately 108 mg nitrite/kg/day, and decreases in erythrocyte count, mean corpuscular volume and 

mean corpuscular hemoglobin in female rats at 130 mg nitrite/kg/day. Initially decreased erythrocyte 

counts were noted in male rats at ≥60 mg nitrite/kg/day (as much as 44% lower than controls at 8 weeks 

of treatment, but returning to control levels by 52 weeks); significant decreases in mean corpuscular 

volume, and hemoglobin in these rats were noted throughout the 115-week treatment period (Grant and 
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Butler 1989).  Significantly increased spleen weights were noted in male mice receiving sodium nitrite for 

14 weeks at ≥ 435 mg nitrite/kg/day (39% greater than that of controls) and in male and female mice at 

663 or 824 mg nitrite/kg/day (approximately 66% greater than their controls).  The study authors 

suggested that the increased spleen weights may have represented increased erythropoietic activity in 

response to increased methemoglobin; however, methemoglobin data were not included in the study 

report. 

Hepatic Effects. No information was located regarding hepatic effects in humans following oral 

exposure to nitrate or nitrite. 

No indications of sodium nitrite-induced liver effects were observed in animal studies that included 

assessment of liver function and/or histopathology (Asahina et al. 1971; Lijinsky and Greenblatt 1972; 

Lin and Ho 1992; Shuval and Gruener 1972; van Logten et al. 1972). 

Renal Effects. No information was located regarding renal effects in humans following oral exposure 

to nitrate or nitrite. 

El-Wakf et al. (2008) reported significantly increased urinary levels of urea and creatinine in male rats 

provided sodium nitrate in the drinking water for 4 months at author-estimated doses of 21.7 and 47.4 mg 

sodium nitrate/kg/day (15.8 and 34.6 mg nitrate/kg/day, respectively). 

Endocrine Effects. Nitrate acts as a dose-dependent competitive inhibitor of the sodium iodide 

symporter (NIS) that mediates the uptake of iodine by the thyroid.  Sufficiently decreased iodine uptake 

by the thyroid may result in decreased production of thyroid hormones T3 and T4.  Decreased thyroid 

hormone production causes increased release of TSH from the anterior pituitary gland and consequent 

increased uptake of iodine by the thyroid gland.  Sufficiently inhibited uptake of iodine by the thyroid 

could result in effects associated with thyroid dysfunction (e.g., hypothyroidism).  Concern for nitrate-

induced effects on thyroid function has prompted scientists to perform studies designed to assess thyroid 

function relative to drinking water and/or dietary nitrate levels. Available human data provide suggestive 

evidence that elevated levels of nitrate in drinking water and/or nitrate-rich diets may be associated with 

signs of thyroid dysfunction. However, limitations of these studies include lack of individual dose-

response data, quantification of iodine intake, and control for other potential substances that may affect 

the thyroid; one study relied on self-reported thyroid status and self-reported dietary nitrate intake. 
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Tajtáková and coworkers evaluated thyroid function among schoolchildren (boys and girls 10 or 13 years 

of age) from three areas in Slovakia; an agricultural area with drinking water sources containing nitrate at 

51–274 mg/L (n=324), an area from a neighboring area where drinking water sources contained <2 mg 

nitrate/L (n=168), and the city of Košice supplied with drinking water reported to be low in nitrate 

(n=596) (Rádiková et al. 2008; Tajtáková et al. 2006).  At the time of the study, measurements of urinary 

iodine indicated that the children in the high- and low-nitrate areas were ingesting sufficient iodine. 

Thyroid volume and density were estimated with the assistance of ultrasound equipment.  Mean thyroid 

volume was significantly higher in the 10- and 13-year-old children from the high-nitrate area 

(5.10±0.14 mL for the 10-year-olds and 5.97±0.11 mL for the 13-year-olds) compared to that of the 

children from the low-nitrate area (4.58±0.17 and 5.23±0.15 mL, respectively) and from the city of 

Košice (4.77±0.10 and 4.87±0.10 mL, respectively).  The frequency of hypoechogenicity (ultrasound 

indicator of decreased thyroid density typically indicating destruction of normal thyroid tissue) was 

significantly greater in children from the high-nitrate area compared to those from the low-nitrate areas 

(13.7 versus 4.7% for the 10-year-olds and 10.6 versus 5.7% for the 13-year-olds).  Blood samples 

revealed TSH in the range of subclinical hypothyroidism in 13/324 children and positive anti-

thyroperoxidase antibodies (an indicator of subclinical thyroid disorder) in 8/324 of the children from the 

high-nitrate area versus no cases in 109 children from the low-nitrate area.  There were no significant 

differences between children from the low- and high-nitrate areas regarding serum T3 or T4 levels. 

Iodine status and goiter prevalence were evaluated in 156 schoolchildren (7–14 years of age) in an area of 

rural Bulgaria where nitrate in the drinking water averaged 75 mg/L and 163 schoolchildren in a nearby 

area drinking water nitrate averaged 8 mg/L at the time of the study (Gatseva and Argirova 2008).  At the 

time of the study, perchlorate was below the detection limit (1 µg/mL).  Urinary iodine measurements 

indicated that iodine intake was satisfactory for most children from each group.  The goiter rate within the 

high-nitrate areas was significantly higher than the goiter rate within the low-nitrate area (13.5 versus 

5.9%). Familial thyroid disorders and chronic diseases were reported by families of 7.7% of the children 

from the high-nitrate area and only 3.06% of the children from the low-nitrate area.  In a similar study 

that included two areas of Bulgaria, one with high nitrate in the drinking water (average of 93 mg/L) and 

one with low nitrate in the drinking water (average 8 mg/L), pregnant women from the high- (n=26) and 

low- (n=22) nitrate areas and children (3–6 years of age) from the high- (n=50) and low- (n=49) areas 

were evaluated for iodine status and goiter frequency.  Mean urinary iodine in the women from the high-

nitrate area was significantly lower than that of the women from the low-nitrate area (147.85±56.38 

versus 230.55±61.56 µg/L).  Iodine deficiency was indicated for 5/26 women and 11/50 of the children 

from the high-nitrate area and 1/22 women and 5/49 children from the low-nitrate area.  Goiter was 

http:230.55�61.56
http:147.85�56.38
http:4.87�0.10
http:4.77�0.10
http:5.23�0.15
http:4.58�0.17
http:5.97�0.11
http:5.10�0.14
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reported for 9/26 women and 14/50 children from the high-nitrate area and 2/22 women and 7/49 children 

from the low-nitrate area. Familial thyroid disorders and chronic diseases were reported for 9/26 women 

and 3/50 children from the high-nitrate area and 2/22 women and 1/49 children from the low-nitrate area. 

The differences in goiter rates may be the result of differences in iodine intake and reported familial 

thyroid disorder and chronic disease prevalence. 

Aschebrook-Kilfoy et al. (2012) reported an association between nitrate in private wells at estimated 

levels >6.5 mg nitrate-nitrogen /L (>28.6 mg nitrate/L) and elevated serum TSH in women (but not men) 

as an indicator of subclinical hypothyroidism (OR 1.60, 95% CI: 1.11, 2.32).  The study included 

2,543 Old Order Amish residing in several counties in Pennsylvania for whom TSH levels were available. 

Nitrate levels in the wells were estimated by modeling data provided by the U.S. Geological Survey 

(USGS) that monitored nitrate levels in 3,613 wells in the study area. 

In one cohort of 21,977 older women in Iowa who had used the same water supply for >10 years, there 

were no significant differences in prevalence of self-reported hypothyroidism or hyperthyroidism between 

those using private wells as drinking water source (n=5,436) and those using public water sources 

(n=16,541) (Ward et al. 2010). Sufficient data for public water sources were available from which to 

evaluate prevalence of thyroid disorders by quartile of nitrate concentration in public water sources 

defined as mean concentrations <0.36, 0.36–1.00, 1.01–2.46, and >2.46 mg nitrate-nitrogen/L (<1.58, 

1.58–4.4, 4.41–10.82, and >10.82 mg nitrate/L, respectively).  There was no apparent association between 

nitrate in the drinking water and prevalence of self-reported hypothyroidism or hyperthyroidism when 

comparing results by quartile.  No nitrate measurement data were available for women using private 

wells.  Data for these women were compared to data for women in the lowest quartile of public water 

sources, although it was estimated at the time of the study that 18% of the rural private wells in Iowa had 

nitrate levels >10 mg nitrate-nitrogen/L (>44 mg nitrate/L).  In the same study (Ward et al. 2010), dietary 

nitrate intake was estimated using a food frequency questionnaire and published nitrate levels for various 

food sources and the study subjects (3,018 cases of hypothyroidism and 937 cases of hyperthyroidism) 

were divided into quartiles according to dietary nitrate intake (≤17.4, 17.5–27.7, 27.8–41.1, and >41.1 mg 

nitrate-nitrogen/day; approximately equivalent to <77, 77–121.9, 122–181, and >181 mg nitrate mg/day, 

respectively). Using the lowest quartile as a referent, associations were found for prevalence of 

hypothyroidism (but not hyperthyroidism) for the second quartile (OR 1.13, 95% CI: 1.01, 1.27), third 

quartile (OR 1.19, 95% CI: 1.06, 1.33), and fourth quartile (OR 1.24, 95% CI: 1.10, 1.40).  A significant 

trend was noted as well for increasing prevalence of hypothyroidism with increasing quartile of dietary 

nitrate (p=0.001). 

http:4.41�10.82
http:1.01�2.46
http:0.36�1.00
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In a randomized controlled study, 10 volunteers consumed sodium nitrate in aqueous solution at a dose of 

15 mg/kg/day for 28 days; 10 other volunteers receiving distilled water served as controls.  There were no 

sodium nitrate treatment-related effects on thyroidal 131iodine uptake or plasma thyroid hormone 

concentrations (Hunault et al. 2007). 

Thyroid status has been assessed to some extent in animals consuming drinking water or food to which 

nitrate salts had been added.  There were no clinical signs of hypothyroidism or effects on serum T3 or T4 

levels in adult Beagles or their puppies during exposure of the breeding dogs to sodium nitrate in the 

drinking water for 1 year at concentrations in the range of 300–1,000 ppm (equivalent to 219–730 mg 

nitrate/L) (Kelley et al. 1974). Decreased thyroidal 131iodine uptake was noted in rats given food 

containing 0.5–2.5% potassium nitrate (equivalent to 3,000–15,000 mg nitrate/kg food) (Bloomfield et al. 

1961). Significantly increased uptake of thyroidal 131iodine; decreased serum T3, T4, and TSH levels; 

increased thyroid weight; and follicular hyperplasia were noted in female Wistar rats administered sodium 

nitrate in the drinking water for 30 weeks at concentrations ≥250 mg/L (≥159 mg nitrate/kg/day, based on 

reported average water intake and EPA [1988] subchronic reference body weight of 0.156 kg for the 

female Wistar rat) (Eskiocak et al. 2005). In another study (Zaki et al. 2004), significantly decreased 

serum T3 (34–44% lower than controls), increased thyroid weight (45–77% greater than controls), and 

histopathologic thyroid lesions (glandular hypertrophy accompanied by vacuolization, increased colloidal 

volume of the follicles, and flattened follicular epithelium) were observed in male Wistar rats receiving 

drinking water for 5 months to which potassium nitrate had been added at concentrations resulting in 

estimated doses ≥13.5 mg nitrate/kg/day (based on EPA [1988] subchronic reference values for body 

weight and water consumption for the male Wistar rat). 

El-Wakf et al. (2008) reported significantly decreased serum T3 and T4 levels (17–41% lower than 

controls) in all groups of weanling male Wistar rats provided sodium nitrate in the drinking water for 

4 months at concentrations resulting in author-estimated intakes in the range of 8.7–47.4 mg sodium 

nitrate/kg/day (equivalent to 6.4–34.6 mg nitrate/kg/day). At estimated doses ≥15.8 mg nitrate/kg/day, 

significantly increased serum TSH was also noted (26–30% higher than that of controls).  Groups of 

similarly-treated young adult male Wistar rats exhibited significantly decreased T3 and T4 levels (24– 

47% lower than controls) and increased serum TSH (30–35% higher than controls) at estimated doses 

≥15.8 mg nitrate/kg/day. 
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In a 28-day study of rats receiving food to which potassium nitrate had been added to constitute 3% of the 

diet, thyroid effects included significantly increased thyroid gland weight (45% greater than controls), 

increased TSH (nearly 7-fold higher than that of controls), decreased serum T3 and T4 levels (61–63% 

lower than controls), and decreased thyroid peroxidase activity (84% lower than controls) 

(Mukhopadhyay et al. 2005).  Based on reported body weight data and the EPA (1988) allometric 

equation for calculating a food consumption rate for laboratory mammals (0.056 x body weight0.6611), an 

estimated dose was 2,416 mg nitrate/kg/day. 

Til et al. (1988) added potassium nitrite to the drinking water of male and female rats for 13 weeks at 

concentrations resulting in estimated doses in the range of 8.9–199.2 mg/kg/day (4.8–108 mg 

nitrite/kg/day) to the males and 10.9–241.7 mg/kg/day (5.9–130.5 mg nitrite/kg/day) to the females. 

Doses ≥13.3 mg nitrite/kg/day (males) and ≥61.8 mg nitrite/kg/day (females) resulted in hypertrophy in 

the zona glomerulosa of the adrenal gland.  In this study, potassium was added to the drinking water of 

each treatment group up to the level of potassium in the drinking water of the highest dose group. 

Controls included groups with untreated drinking water and groups with potassium chloride-treated water. 

The effect on the adrenal gland was not observed in the untreated controls or the potassium chloride 

controls, indicating that the effect was the result of nitrite ion. Similar results were obtained at estimated 

doses of 105.1 mg nitrite/kg/day (males) and 130.1 mg nitrite/kg/day (females) in a subsequent similarly-

designed study (Til et al. 1997) to evaluate effects at lower doses than those employed in the earlier study 

(Til et al. 1988). Results of a subsequent study indicate that the effect on the adrenal gland of the rat is a 

physiological adaptation to repeated episodes of hypotension caused by nitrite (RIVM 1996). 

Dermal Effects. Available information regarding dermal effects following oral exposure to nitrate or 

nitrite is limited to a case report in which ingestion of ammonium nitrate was considered a possible cause 

of erythema dyschromicum perstans (ashy dermatosis) (Jablonska 1975). 

Body Weight Effects. No information was located regarding body weight effects in humans 

following ingestion of nitrate or nitrite. 

No body weight effects were observed in some studies of laboratory animals provided sodium nitrate, 

sodium nitrite, or potassium nitrite in the drinking water for intermediate exposure durations (4 weeks to 

10 months) at concentrations resulting in estimated doses in the range of 1,583–7,300 mg nitrate/kg/day 

(Maekawa et al. 1982; Mukhopadhyay et al. 2005) or 28–435.5 mg nitrite/kg/day (Greenblatt and 

Lijinsky 1974; Greenblatt and Mirvish 1973; Greenblatt et al. 1971; Lin and Ho 1992; Maekawa et al. 
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1982; NTP 2001; Vorhees et al. 1984).  Depressed body weight and/or body weight gain (approximately 

10% less that of controls) were observed in other studies at estimated doses of 8,241.9–14,600 mg 

nitrate/kg/day (Maekawa et al. 1982) and 663.3–1,080.6 mg nitrite/kg/day (Maekawa et al. 1982; NTP 

2001). In chronic-duration studies (≥365 days), doses in the range of 101–178.2 mg nitrite/kg/day and 

1,730 mg nitrate/kg/day resulted in 10–15% depressed body weight in rats and mice (Grant and Butler 

1989; Maekawa et al. 1982; van Logten et al. 1972). 

Body weight data in the study report of Zaki et al. (2004) indicate as much as 16–25% depressed mean 

body weight among male Wistar rats provided drinking water for 5 months that contained 150 or 500 mg 

potassium nitrate/L (estimated doses of 13.5 and 45 mg nitrate/kg/day); however, data regarding food and 

water consumption were not included in the study report.  El-Wakf et al. (2008) provided drinking water 

to weanling male Wistar rats for 4 months that contained 100, 250, or 500 mg sodium nitrate/L (estimated 

doses of 6.4, 15.8, and 34.6 mg nitrate/kg/day) and reported mean final body weights that were 11, 29, 

and 46%, respectively, less than that of control; however, data regarding food and water consumption 

were not included in the study report. El-Wakf et al. (2015) provided young (3-week-old) and adult 

(12-week-old) male Wistar rats with drinking water to which sodium nitrate was added at 550 mg/L 

(estimated daily intake of 47.7 mg sodium nitrate/kg/day or 34.8 mg nitrate/kg/day) for 4 months; 

controls received drinking water without added sodium nitrate.  The sodium nitrate treatment resulted in 

depressed body weight (24 and 9% less among the young and adult rats, respectively, compared to 

controls) and depressed body weight gain (39 and 30% less among the young and adult rats, respectively, 

compared to controls). 

Metabolic Effects. Possible associations between nitrate and/or nitrite in drinking water and/or food 

sources and risk of type 1 diabetes have been investigated in a number of epidemiological studies (Casu et 

al. 2000; Dahlquist et al. 1990; Kostraba et al. 1992; Moltchanova et al. 2004; Parslow et al. 1997; van 

Maanen et al. 2000; Zhao et al. 2001). Statistically significant associations between estimated nitrate 

and/or nitrite intake were reported by some investigators, but were not observed by others. Limitations of 

studies include the lack of quantitative dose-response data and the likelihood of confounding by other 

potential toxicants. Therefore, there is considerable uncertainty regarding nitrate or nitrite intake and risk 

of type 1 childhood diabetes. 

A study in the Netherlands involved 1,064 cases of type 1 diabetes in a total of 2,829,020 children (0– 

14 years of age) included in the analysis (van Maanen et al. 2000).  Nitrate levels in drinking water were 

determined by postal code.  Two exposure categories were used.  One category was based on equal 
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numbers of children exposed to various levels of nitrate in the drinking water (0.25–2.08, 2.10–6.42, and 

6.44–41.19 mg nitrate/L); the other category was based on cutoff values of 10 and 25 mg nitrate/L.  The 

study authors concluded that there was little evidence that nitrate in the drinking water was a risk factor 

for childhood type 1 diabetes under the conditions of the study. 

Zhao et al. (2001) found no significant association between nitrate in the drinking water and risk for 

childhood type 1 diabetes in a study of 517 cases (0–15 years of age). The mean concentration of nitrate 

in the drinking water was 6.62 mg/L (range 0.49–31.9 mg/L). Casu et al. (2000) found no significant 

association between nitrate in tap water or bottled water and risk of type 1 diabetes among 1,975 cases 

(0–29 years of age), 1,142 of which were <15 years of age.  In this study, nitrate concentrations in tap and 

bottled water were below the acceptable maximal concentration of 50 mg/L established by the European 

Community and the recommended level of 25 mg/L. Moltchanova et al. (2004) found no significant 

association between childhood type 1 diabetes and nitrate in the groundwater in Finland.  The study 

included 3,598 cases of childhood type 1 diabetes (ages 0–14 years) and 9,601,164 children at risk; 

drinking water nitrate levels averaged 6.228 mg/L. 

Dahlquist et al. (1990) evaluated a variety of nutrients and food additives (including nitrate) as possible 

risk factors for type 1 diabetes among 339 children under 15 years of age and matched with 528 control 

children in Sweden.  Estimates of intake of the various nutrients and food additives were made based on 

parental responses to food frequency questionnaires.  Upon dividing the subjects into three groups 

according to estimated nitrate intake (low=<25th percentile; medium=25–75th percentile; high=>75th 

percentile), a significant nonlinear trend for increased risk of type 1 diabetes with increasing nitrate intake 

was noted.  The high-nitrate intake group exhibited a significantly increased risk (crude OR 2.14, 95% CI: 

1.64, 3.54) compared to the low-nitrate intake group; adjustment for age, sex, maternal age, maternal 

education, and family history of type 1 diabetes did not significantly alter the results. 

Kostraba et al. (1992) calculated incidence rates by county in Colorado (63 counties) for type 1 diabetes 

in children (<18 years of age at diagnosis during the years 1978 and 1988; n=1,280) and compared the 

rates to nitrate levels in potable water supplies.  Children in counties with water nitrate levels in the range 

of 0.77–8.2 mg/L had a significantly increased risk of type1 diabetes compared to those in counties with 

water nitrate levels in the range of 0.0–0.084 mg/L. 

Parslow et al. (1997) reported a significant increase association (SIR 115, 95% CI: 107,124) between 

nitrate in drinking water (highest tertile versus lowest tertile) and incidence of childhood type 1 diabetes 

http:6.44�41.19
http:2.10�6.42
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diagnosed between 1978 and 1994 in the Yorkshire Regional Health Authority in England.  The study 

subjects were 0–16 years of age, and nitrate levels in the drinking water were divided into tertiles (1.48– 

<3.22, 3.22–<14.85, 14.85–40.01 mg/L). The study included 498 cases in a population of 

225,708 children in the lowest tertile, 591 cases in a population of 232,373 children in the middle tertile, 

and 708 cases in a population of 237,951 children in the highest tertile. 

Virtanen et al. (1994) reported a significant association between estimated dietary nitrite intake by 

children and mothers and risk for type 1 diabetes in all age groups of boys and girls (ages 0–4, 5–9, and 

10–14 years).  The study included 684 children with Type 1 diabetes, 595 control children, 548 case-

control pairs of fathers, and 620 case-control pairs of mothers in a nationwide Finnish study.  Nitrate and 

nitrite levels were estimated based on results from food frequency questionnaires and household water 

data provided by the Finnish waterworks.  Nitrate intake of the mother was associated with decreased risk 

for childhood type 1 diabetes. 

El-Wakf et al. (2015) provided young (3-week-old) and adult (12-week-old) male Wistar rats with 

drinking water to which sodium nitrate was added at 550 mg/L (estimated daily intake of 47.7 mg sodium 

nitrate/kg/day or 34.8 mg nitrate/kg/day) for 4 months; controls received drinking water without added 

sodium nitrate.  The sodium nitrate treatment induced hyperglycemia in both age groups. In a study of 

Sprague-Dawley rats administered sodium nitrite by gavage at 80 mg/kg/day for 12 weeks, nitrite-induced 

effects included inhibition of liver glycogenesis (generation of glycogen from glucose molecules) and 

enhanced liver glycogenolysis (breakdown of glycogen) and gluconeogenesis (generation of glucose from 

non-carbohydrate carbon substrates), accompanied by hyperglycemia and insulin resistance (Al-Gayyar et 

al. 2015). 

3.2.2.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological or lymphoreticular effects in humans or animals 

following oral exposure to nitrate or nitrite. 

3.2.2.4  Neurological Effects 

Ingestion of nitrite (from potassium nitrite or sodium nitrite sources) has been associated with severe 

methemoglobinemia in adults and children; in many of these cases, clinical signs included dizziness, loss 

of consciousness, and/or convulsions (CDC 1997, 2002; Gautami et al. 1995; Greenberg et al. 1945; 

Sevier and Berbatis 1976; Ten Brink et al. 1982). These cases were the result of consumption of food or 

http:14.85�40.01
http:3.22�<14.85
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drink that contained unusually high levels of nitrite via contamination, inadvertent use of sodium nitrite 

instead of table salt, or ingestion of a single sodium nitrite tablet (667 mg nitrite). 

Headache was induced in a male subject following consumption of a 10 mg sodium nitrite solution 

(Henderson and Raskin 1972).  Headaches were induced in 8 out of 13 such tests. The tests were 

performed to evaluate whether nitrite in frankfurters that the subject had previously ingested might be 

cause for the headache he had developed shortly thereafter. In a study designed to evaluate the oral 

bioavailability of sodium nitrite in healthy volunteers (seven females and two males; mean age 

22.9 years), headache was reported by four of the nine people ingesting 0.12 mmol sodium nitrite per 

mmol hemoglobin (~4.4–5.4 mg sodium nitrite/kg, or 2.9–3.6 mg nitrite/kg) and by four of the nine 

subjects ingesting 0.06 mmol sodium nitrite per mmol hemoglobin (~2.2–2.7 mg sodium nitrite/kg, or 

1.5–1.8 mg nitrite/kg) (Kortboyer et al. 1997b). 

Abnormalities in electroencephalograms (EEGs) were reported in male albino rats provided sodium nitrite 

in the drinking water for 2 months at concentrations resulting in author-reported doses ≥14 mg sodium 

nitrite (≥9.38 mg nitrite/kg/day) (Behroozi et al. 1972).  The abnormal readings persisted during up to 

4.5 months following cessation of exposure to sodium nitrite.  At the highest dose (187.6 mg 

nitrite/kg/day), rats exhibited clinical signs of sedation and became motionless during periods of electrical 

outbursts. 

Gruener (1974) reported increased aggressive behavior in male C57B1 mice provided sodium nitrite in 

the drinking water at 1,000 mg/L (estimated dose of 165.4 mg nitrite/kg/day) for up to 13 weeks 

postweaning.  The mice had also been exposed via their parents during mating and their mothers during 

gestation and lactation.  Shuval and Gruener (1972) reported significantly reduced motor activity in male 

mice provided sodium nitrite in the drinking water.  Sodium nitrite levels tested ranged from 100 to 

2,000 mg/L; however, the study report did not include specific information regarding the exposure levels 

that resulted in reduced motor activity. 

3.2.2.5  Reproductive Effects 

See Section 3.2.2.6 for information regarding results of case-control studies that evaluated reproductive/ 

developmental end points. 
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Several animal studies included evaluation of selected reproductive end points.  Among three female 

guinea pigs provided potassium nitrate in the drinking water for up to 204 days of cohabitation at a 

concentration resulting in estimated intake of 4,972 mg nitrate/kg/day, one female died and the other two 

females produced a total of two litters (one live birth per litter) (Sleight and Atallah 1968).  During 

191 days of cohabitation, four control females produced eight litters and a total of 31 live births. There 

was no gross or histopathologic evidence of treatment-related effects on reproductive organs.  Sleight and 

Atallah (1968) provided other guinea pigs with drinking water that contained potassium nitrite at 

concentrations ranging from 300 to 10,000 ppm.  Exposure levels ≥1,000 ppm potassium nitrite 

(estimated doses ≥148.5 mg nitrite/kg/day) resulted in decreases in number of litters and live births; 

histopathologic evaluations of reproductive organs revealed placental, uterine, and cervical lesions. 

No treatment-related effects on implantations or resorptions were seen in female Wistar rats provided 

sodium nitrite in the food throughout the production of two litters at concentrations resulting in estimated 

doses as high as 160 mg nitrite/kg/day (Hugot et al. 1980). No treatment-related effects on fertility were 

seen in breeding dogs provided sodium nitrate in the drinking water for 1 year at concentrations resulting 

in doses as high as 39 mg nitrate/kg/day (Kelley et al. 1974).  

Alavantić et al. (1988a) treated male mice with sodium nitrate or sodium nitrite by gavage for 3 days at 

doses of 0, 600, or 1,200 mg/kg/day (sodium nitrate) or 0, 60, or 120 mg/kg/day (sodium nitrite); sperm-

head abnormalities were evaluated at 11 and 17 days following treatment. Frequencies of sperm-head 

abnormalities in the low- and high-dose sodium nitrate-treated and the low-dose sodium nitrite-treated 

groups were not significantly different from controls.  However, the high-dose group of sodium nitrite-

treated mice exhibited significantly increased frequency of sperm-head abnormalities at 11 and 17 days 

following treatment (approximately 1.5-fold greater than controls). Alavantić et al. (1988b) treated male 

mice with sodium nitrate or sodium nitrite by gavage for 2 weeks at doses of 0, 600, or 1,200 mg/kg/day 

(sodium nitrate) or 0, 60, or 120 mg/kg/day (sodium nitrite) and subsequently mated them to virgin 

females.  Evaluation of primary spermatocytes from parental males revealed significantly increased 

frequency of sperm-head abnormalities in the high-dose sodium nitrate-treated group (1.4-fold greater 

than controls) and the low- and high-dose sodium nitrite-treated groups (1.2- and 1.4-fold greater, 

respectively, than controls).  There was no treatment-related effect on frequency of sperm-head 

abnormalities in F1 males. Fertility in the high-dose sodium nitrite-treated group was significantly 

affected; only 31 of 49 females mated to the high-dose males became pregnant compared to 45 of 

50 females mated to control males. 
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Alyoussef and Al-Gayyar (2016a, 2016b) administered sodium nitrite to male Sprague-Dawley rats by 

gavage at 0 or 80 mg/kg/day for 12 weeks.  Sodium nitrite treatment resulted in increased testicular 

weight (1.6–1.7-fold greater than controls); decreased serum testosterone levels (36–44% less than 

controls); decreased epididymal sperm count (48% less than controls); decreased testicular anti-

inflammatory cytokine levels; increased serum luteinizing hormone (LH), follicle stimulating hormone 

(FSH), and prolactin levels; and increased testicular levels of pro-inflammatory cytokines, oxidative stress 

markers, and enzymes involved in programmed cell death. 

NTP (2001) reported degeneration of the testis (characterized by increased size of residual bodies within 

the lumen of the seminiferous tubules) in male mice provided sodium nitrite in the drinking water for 

14 weeks at concentrations resulting in estimated doses ≥435.5 mg nitrite/kg/day; the biological 

significance of this lesion was uncertain. In similarly-treated female mice, estrous cycles were 

significantly increased (11 and 15%, respectively, longer than controls) at estimated doses of 298.1 and 

824.1 mg nitrite/kg/day, but not at 562.8 mg nitrite/kg/day. Among similarly-treated male and female 

rats, the males exhibited 7–18% decreased sperm motility at doses ≥134 mg nitrite/kg/day; there were no 

treatment-related effects on vaginal cytology end points in the females at doses as high as 231 mg 

nitrite/kg/day. 

3.2.2.6  Developmental Effects 

Several population-based, case-control studies evaluated possible associations between developmental 

end points and exposure to nitrate from drinking water sources. The results are not adequate for 

quantitative risk assessment because estimations of nitrate intakes were typically based on measurements 

of nitrate levels in drinking water sources at selected time points and self-reported estimates of water 

consumption, possible confounding by other potential toxicants was not evaluated, and most studies did 

not account for dietary nitrate or nitrite intake which is typically the major source of ingested nitrate and 

nitrite. Statistically significant associations between nitrate in the drinking water and selected 

developmental end points (e.g., birth defects, spontaneous abortions) were reported by some investigators, 

but were not observed by others. 

Brender et al. (2013) evaluated possible relationships between prenatal exposure to nitrate in drinking 

water and selected birth defects in a large population-based, case-control study that included 3,300 case 

mothers and 1,121 control mothers who were participants in the National Birth Defects Prevention Study.  

Nitrate levels were measured in public water supplies and in representative samples of bottled water sold 
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in local stores; daily nitrate consumption was estimated from self-reported water consumption at home 

and work.  The lowest tertile of nitrate intake from water (<0.91 mg/day at conception or <1.0 mg/day 

during preconception and the first trimester of pregnancy) represented the referent group.  Within the 

highest tertile (≥5.0 mg/day at conception; ≥5.42 mg/day during preconception and the first trimester of 

pregnancy), significant associations were noted for risk of spina bifida (OR 2.02, 95% CI: 1.01, 2.04), any 

limb deficiency (OR 1.79, 95% CI: 1.05, 3.08), any oral cleft defect (OR 1.45, 95% CI: 1.10, 1.92), cleft 

lip without cleft palate (OR 1.82, 95% CI: 1.08, 3.07), cleft palate (OR 1.90, 95% CI: 1.17, 3.09), and any 

neural tube defect (OR 1.43, 95% CI: 1.01, 2.04).  Cases in the various tertiles ranged in number from 

23 to 173.  The study authors noted that higher estimated nitrate intakes from drinking water did not 

increase associations between reported maternal intake of nitrosatable drugs and birth defects. 

Dorsch et al. (1984) evaluated 218 cases of congenital malformations and matched controls between 1951 

and 1979 in an area of South Australia.  In an analysis of data by estimated level of nitrate in the drinking 

water, the risk of malformations was significantly greater at nitrate levels of 5–15 mg/L (OR 2.6, 95% CI: 

1.6, 4.1; 138 cases, 106 controls) and >15 mg/L (OR 4.1, 95% CI: 1.3, 13.1; 10 cases, 5 controls) 

compared to those with nitrate levels <5 mg/L (70 cases, 107 controls). 

Scragg et al. (1982) evaluated possible associations between maternal water source and frequency of 

congenital malformations (mainly neural tube defects) in a locality in South Australia (258 cases and 

matched controls).  A referent group consisted of those women who used rainwater as the drinking water 

source.  Significantly increased risk of occurrence of a malformation was noted for those women who 

drank water from a lake source (RR 2.8, 95% CL: 1.6, 5.1) and for women who used water from private 

wells with nitrate levels typically >15 ppm (RR 4.1, 95% CL: 1.7, 10.0). 

Cedergren et al. (2002) reported nonstatistically significant increased risk of cardiac defects among 

infants of mothers exposed to nitrate in the drinking water at levels ≥2 mg/L (OR 1.18, 95% CI: 0.97, 

1.44; 392 cases, 27,962 controls) compared to those with nitrate levels <2 mg/L; all measured nitrate 

concentrations were below the Swedish maximum contaminant level.  The study population included 

75,832 infants born in a Swedish county between January 1982 and December 1996. 

Croen et al. (2001) evaluated 538 cases of neural tube defects and 539 normal controls in an area of 

California between June 1989 and May 1991.  Exposure to nitrate in drinking water at concentrations 

>45 mg/L was associated with statistically significantly increased risk of anencephaly (OR 4.0, 95% CI: 
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1.0, 15.4), but no increased risk for spina bifida.  Increased risk was also noted at nitrate levels <45 mg/L 

among groundwater drinkers. 

Arbuckle et al. (1988) evaluated mothers in the area of New Brunswick where private wells averaged 

26 mg/L nitrate and public municipal sources averaged 0.1 mg/L nitrate.  There was no statistically 

significant increased risk for delivering a central nervous system-malformed infant by mothers using 

private wells (OR 2.30, 95% CI: 0.73, 7.29). The study included 130 cases of central nervous system 

birth defects for the years 1973–1983, each matched to 2 controls. 

Aschengrau et al. (1993) found no statistically significant association between drinking water nitrate 

levels (up to 4.5 mg/L) or nitrite levels (up to 0.15 mg/L) and frequency of congenital anomalies, 

stillbirth, or neonatal death among 1,171 cases and 1,177 controls who delivered at a Massachusetts 

hospital between August 1977 and March 1980. 

Holtby et al. (2014) evaluated possible associations between nitrate in drinking water sources and 

incidence of congenital anomalies in the agricultural region of Kings County, Nova Scotia, Canada 

between 1988 and 2006.  A mean level of 6.44 mg nitrate-nitrogen/L was calculated for rural wells 

(equivalent to 28.34 mg nitrate/L), based on 1,113 water samples from 140 wells. A mean level of 

2.03 mg nitrate-nitrogen/L was calculated for municipal water supplies (equivalent to 8.93 mg nitrate/L), 

based on 53 water samples from 20 water sources (19 groundwater sources and 1 surface water source).  

Nitrate-nitrogen concentration estimates were divided into tertiles (<1, 1–5.56, and >5.56 mg nitrate-

nitrogen/L; equivalent to <4.4, 4.4–24.46, and >24.46 mg nitrate/L).  Overall, no significant association 

was found between nitrate levels in drinking water sources and incidences of congenital malformations. 

However, stratification of the data by conception before or after the onset of food fortification with folate 

in Canada (instituted in 1998) resulted in an OR of 2.44 (95% CI 1.05, 5.66) for risk of congenital 

anomalies with exposure of 1–5.56 mg nitrate-nitrogen/L (4.4–24.46 mg nitrate/L) for the time period 

(1998–2006). 

Ericson et al. (1988) found no association between frequency of neural tube defects and levels of nitrate 

in the drinking water in a case-control study that included 1,458 cases of neural tube defects and 

280 matched controls. The reported average nitrate levels in the water were 4.9 mg/L among the cases 

and 5.1 mg/L among the controls. 

http:4.4�24.46
http:4.4�24.46
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Super et al. (1981) evaluated the status of 486 infants in a geographical area of southwest Africa served 

by 153 wells divided into regions of high nitrate (>20 mg/L) and low nitrate (≤20 mg/L).  There was no 

significant association between nitrate levels in drinking water sources and incidence of stillbirths, 

prematurity, or birth size; however, an increased incidence of deaths during the first year of life was noted 

for the high-nitrate region. 

Winchester et al. (2009) investigated whether U.S. live births are at increased risk for birth defects when 

conception occurs during months when surface water agrichemicals (including nitrate, atrazine, and other 

pesticides) are at greatest concentrations (April–July).  For the years 1996–2002, monthly agrichemical 

concentrations were calculated using USGS’s National Water Quality Assessment data and live birth data 

collected from the Centers for Disease Control and Prevention (CDC) natality data sets.  Birth defects 

were more likely to occur in live births conceived between April and July.  However, this finding does not 

necessarily implicate nitrate in the drinking water. 

Brender et al. (2004) found no significant association between dietary nitrate or nitrite intake and risk of 

offspring with neural tube defects at estimated total nitrite doses (dietary nitrite plus 5% dietary nitrate) 

ranging from <7.5 to >10.53 mg/day.  However, the risk of neural tube defect was significant among 

those women with total nitrite doses >10.53 mg/day who also reported taking nitrosatable drugs (OR 7.5, 

95% CI: 1.8, 45). 

Huber et al. (2013) estimated daily nitrate and nitrite intakes among 6,544 mothers of infants with neural 

tube defects, oral clefts, or limb deficiencies and 6,807 mothers of unaffected control infants, based on 

results of food frequency questionnaires. The study included areas of 10 U.S. states, and the population 

was divided into quartiles of estimated nitrate intake and nitrite intake. There was no statistically 

significant increased risk of neural tube defect with any estimate of nitrate or nitrite intake.  Similar 

results were obtained for oral cleft and limb deficiency, with the exceptions of increased risk at the 

highest quartile of cleft lip only (OR 1.32, 95% CI: 1.01, 1.72) and cleft lip with or without cleft palate 

(OR 1.24, 95% CI: 1.05, 1.48) at the highest quartile of animal-based nitrite intake, and increased risk of 

intercalary limb defect (OR 4.70, 95% CI: 1.23, 17.93) at the highest quartile of total nitrite intake. 

Aschengrau et al. (1989) found no nitrate-related increased risk of spontaneous abortion in a study of 

286 women who presented at a Massachusetts hospital between July 1976 and February 1978 with a 

spontaneous loss through gestation week 27 and 1,391 controls. 
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The CDC (1996) investigated a small cluster of spontaneous abortions (three women, six spontaneous 

abortions) in close proximity to one another and to a hog farm in LaGrange County, Indiana during 1991– 

1993. Well water on the hog farm contained >50 mg nitrate/L.  Water samples from wells supplying the 

women who aborted contained 19–26 mg nitrate/L.  A mean concentration of 3.1 mg nitrate/L (1.6– 

8.4 mg/L) was determined for well water supplies to residences of a comparison group of five women, 

each having full-term birth within the same time period.  During the investigation, another case was 

identified in which a 35-year-old woman, living approximately 10 miles from the other three women, had 

two spontaneous abortions after having five previous live births.  Well water during the first four 

pregnancies was found to contain 1.2 mg nitrate-nitrogen/L (5.3 mg nitrate/L); the spontaneous abortions 

occurred after installation of a new well that was found to contain 28.7 mg nitrate-nitrogen/L (126 mg 

nitrate/L).  Although all four women delivered full-term, live-born infants after changing to nitrate-free 

drinking water sources, the occurrences of spontaneous abortion may have been unrelated to nitrate-

containing drinking water. 

George et al. (2001) evaluated the geographical and seasonal distribution of sudden infant death 

syndrome (SIDS) in Sweden during the period 1990–1996 in relation to nitrate levels in drinking water 

and changes in groundwater nitrate content. The local incidence of SIDS was correlated to maximally 

recorded concentrations of nitrate in the drinking water.  However, in addition to lack of dose-response 

data for individuals, the SIDS incidence was declining during the study period, numbers of SIDS cases 

were small in scarcely populated areas, and nitrate concentrations in groundwater sources may have 

changed rapidly with weather changes and other factors. 

Tabacova et al. (1997) evaluated maternal health among 61 pregnant women who lived near an 

ammonium nitrate fertilizer plant and presented at a local prenatal care clinic.  Tabacova et al. (1998) 

evaluated the status of 51 mother-infant pairs in the same region. Nitrogen oxides in the air averaged 

23.1 µg/m3 with short-term peak levels as high as 238.5; nitrate concentrations in the public drinking 

water supply measured 8–54 mg/L; nitrate levels in private wells measured as much as 13–400 mg/L. Of 

the 61 pregnant mothers in the sample of Tabacova et al. (1997), only 10 had “normal” pregnancies.  

Mothers diagnosed with anemia (41 cases), toxemia (20 cases), and/or threatened abortion/premature 

labor (20 cases) exhibited ≥2-fold higher serum methemoglobin than those with “normal” pregnancies. 

Of the 51 mothers in the sample of Tabacova et al. (1998), there were 38 full-term and normal-weight 

infants, 7 full-term and low-weight infants, 6 premature deliveries, 1 Caesarean delivery, and 1 breech 

delivery. Elevated methemoglobin was observed in serum from 28/51 of the mothers, and 24/51 cord 

blood samples.  Both maternal and cord blood methemoglobin levels were higher in cases of abnormal 
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birth outcome.  These results could not be directly linked to elevated nitrate intake from drinking water or 

food sources. 

Developmental end points have been assessed in some animal studies. No indications of treatment-

related developmental toxicity were seen in fetuses from pregnant mice administered sodium nitrite in the 

drinking water during gestation days 7–18 at concentrations as high as 1,000 mg/L (approximate doses as 

high as 113.2 mg nitrite/kg/day) (Shimada 1989).  There were no signs of toxicity in offspring of pregnant 

rats administered 80 mg sodium nitrite/kg (53.6 mg nitrite/kg) on gestation day 15; offspring were 

observed for up to 140 days postpartum (Khera 1982). There were no signs of treatment-related 

developmental effects during the production of two litters by female Wistar rats provided sodium nitrite 

in the food at concentrations resulting in estimated doses as high as 160 mg nitrite/kg/day (Hugot et al. 

1980). Among three female guinea pigs provided potassium nitrate in the drinking water for up to 

204 days of cohabitation at a concentration resulting in estimated intake of 4,972 mg nitrate/kg/day, one 

female died and the other two females produced a total of two litters (one live birth per litter) (Sleight and 

Atallah 1968).  During 191 days of cohabitation, four control females produced eight litters and a total of 

31 live births.  The only indication of a treatment-related effect on the offspring of pregnant mice 

administered sodium nitrite by gavage at 0.5 mg/mouse/day (approximate dose of 13 mg nitrite/kg/day) 

on gestation days 1–14, 16, or 18 was increased fetal hepatic erythropoiesis at gestation days 14 and 16, 

which was thought to have been a response to nitrite-induced fetal methemoglobinemia (Globus and 

Samuel 1978). 

Significantly impaired auditory and visual discrimination learning behavior and retention of passive 

avoidance responses (Nyakas et al. 1990), and delay in cholinergic and serotonergic fiber outgrowth in 

cortical target areas of the brain (Nyakas et al. 1994), presumably due to nitrite-induced hypoxia, were 

reported in offspring of Wistar rats provided sodium nitrite in the drinking water at 2,000 mg/L (1,334 mg 

nitrite/L) during gestation day 13 until parturition. However, lack of information regarding body weight 

and water consumption of the pregnant rats precludes estimation of nitrite doses to the pregnant dams. 

Shuval and Gruener (1972) provided sodium nitrite in the drinking water of pregnant rats for 6 weeks 

(that presumably included gestation and lactation) at concentrations of 2,000 or 3,000 mg/L (1,334 or 

2,001 mg nitrite/L, respectively).  There were no treatment-related effects on group litter sizes or pup 

birth weights.  However, during 3 weeks postpartum, 30 and 53% of the low- and high-dose pups died 

(compared to 6% of control pups); surviving pups from the low- and high-dose groups exhibited 43 and 

66% lower mean body weight than controls at 3 weeks postpartum.  Lack of information regarding body 
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weight and water consumption of the pregnant rats precludes estimation of nitrite doses to the pregnant 

dams. 

Increased pup mortality, depressed preweaning pup body weight, and delayed swimming development 

were observed in offspring of male and female rats provided sodium nitrite in the diet at 0.025 or 0.05% 

(estimated dose levels of 14.4 and 28.1 mg nitrite/kg/day, based on author-reported dose of 43 mg sodium 

nitrite/kg/day for the high-dose group) (Vorhees et al. 1984).  There were no treatment-related effects on 

preweaning behavior that included surface righting, pivoting, negative geotaxis, or auditory startle and no 

effects on postweaning survival, body weight, or most behavioral indices, with the exception of decreased 

open-field behavior on days 40–45 in groups from dams exposed to 0.0125 or 0.05% (but not 0.025%) 

sodium nitrite in the diet. 

3.2.2.7  Cancer 

Human Data.  Numerous studies are available in which the carcinogenicity of ingested nitrate and nitrite 

in humans was assessed.  A comprehensive review of the cancer epidemiology studies of nitrate and 

nitrite, published up to approximately 2007, is provided in IARC (2010).  Up to that point, most studies 

employed ecological designs and fewer case-control or cohort studies were available on cancers other 

than gastrointestinal cancers.  Since then, several cohort and case-control studies have been reported that 

examine a variety of different cancer types (Aschebrook-Kilfoy et al. 2011, 2013a, 2013b; DellaValle et 

al. 2013; Espejo-Herrera et al. 2015, 2016a, 2016b; Inoue-Choi et al. 2012, 2015; Kilfoy et al. 2010, 

2011; Kim et al. 2007; Michaud et al. 2009; Ward et al. 2007, 2008; Wu et al. 2013; Yang et al. 2010; 

Zeegers et al. 2006; Table 3-2).  Ecological studies measure exposure and outcomes at the group level 

rather than the individual level.  Interpretation of outcomes of these studies is more uncertain because of 

various factors that contribute to ecologic bias (group-based associations between exposure and cancer 

outcomes may not apply to individuals).  Ecological studies can be valuable for exploring causal 

relationships when the exposures within exposure groups have low variability (homogenous), differences 

in exposure are large between exposure groups, and when groups are assigned based on geography and 

migration in and out of exposure areas is minimal (IARC 2010).  A typical example of an ecological 

design assigns group exposures based on residence within a public water supply (PWS) district, where the 

average (or median) concentration of nitrate or nitrite in the PWS is the exposure metric and outcomes are 

measured at the level of the PWS area (e.g., cancer incidences in two areas served by public water 

supplies that have different nitrate or nitrite levels). The major limitation of this approach is that the 

group-based exposure estimate may (and probably does not) apply to individuals and their cancer 



   
 

    
 
 

 
 
 
 
 

 

 
  

 
 

 
 

    

 
 

 
  

 
 

 
 

 

 
 

 
  

 
 

   
 

 
   

 
   

 

 
 

 

 
 

 
   

 
 

   
 

  
 

 
 

 
  

 

 
 

  
 

 
 

 
 

 

 
 

 
 

  
   

 
 
 

   
 

   
 

 
 
 

  

 

 
 

 
 

 
  

 
 

 
 

  
  
  

81 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Aschebrook- Pancreatic	 Cohort from NIH- Quintile median 
Kilfoy et al.	 AARP Diet and intake: 
2011 Health Study, Nitrate from food: 

1995–2006 34.8, 56.9, 75.0, 
95.3, 150.3 mg/day; 

303,156 cohort, 19.3, 29.9, 40.9, 
1,728 cases 57.4, 

94.8 mg/1,000 kcal 

Nitrite from food: 0.8, 
1.0, 1.2, 1.2, 
1.6 mg/day; 0.45, 
0.57, 0.65, 0.74, 
0.9 mg/1,000 kcal 

Based on food 
frequency 
questionnaire, 
24-hour recall, and 
published food 
nitrate and nitrite 
levels 

Aschebrook- Thyroid	 Cohort from Quartile median 
Kilfoy et al.	 Shanghai intake: 
2013a	 Women’s Health Nitrate from food: 

Study, 1996–2000 165.8, 257.8, 350.6, 
506.8 mg/day; 

73,317 cohort, 108.6, 164.2, 217.6, 
164 cases 250.9 mg/1,000 kcal 

Nitrite from food: 
0.89, 1.27, 1.61, 
2.14 mg/day; 0.62, 
0.81, 0.95, 
1.12 mg/1,000 kcal 

Based on food 
frequency 
questionnaire, 
24-hour dietary 
recall, and published 
food nitrate and 
nitrite levels 

Highest quintile vs lowest quintile:
 

Nitrate:
 
OR 1.01 (95% CI 0.85, 1.20)
 

Nitrite:
 
OR 0.92 (95% CI 0.78, 1.08)
 
No increased risk when accounting
 
for nitrite intake from plant sources,
 
animal sources, or processed meats
 

Adjustments: age, race, caloric
 
intake, smoking, family history of
 
cancer and diabetes, BMI; intakes of
 
saturated fat, folate, vitamin C
 

Highest quartile vs lowest quartile:
 

Nitrate:
 
RR 0.93 (95% CI 0.42, 2.07)
 

Nitrite: RR 2.05 (95% CI 1.20, 3.51)
 
with total nitrite intake
 
RR 1.96 (95% CI 1.28, 2.99) for
 
nitrite intake from processed meat
 

Adjustments: age, caloric intake,
 
education, history of thyroid disease;
 
intakes of vitamin C, carotene, folate
 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 
 

 

 
 

 
 

 
 

 
 

  

 
 

 
 

 
 

 

 
 

 

 
 

 
  

 
 

 
 

 
 

  
  

  
 

     
  

 

  
 

  
 

 

 
 

 
 

 

  
 

  
 

  

  
 

 
 

  

 
 

  
  

 

82 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Aschebrook- Non-	 Case-control with Quartile median 
Kilfoy et al. Hodgkin’s	 subjects from intake: 
2013b lymphoma	 Nebraska 

between 1999 and Nitrate from food: 
2002 22.0, 39.1, 57.5, 

106.1 mg/day; 22.2, 
348 cases, 38.2, 55.5, 88.3 
470 controls mg/1,000 kcal 

Nitrite from food: 0.5, 
0.6, 0.7, 0.9 mg/day; 
0.49, 0.61, 0.71, 
0.86 mg/1,000 kcal 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

Chiu et al. Colon	 Case-control from Tertile median 
2011 Taiwan Provincial Nitrate-nitrogen 

Department of ranges in drinking 
Health, 2003– water: <0.38, 0.39– 
2007 0.57, ≥0.60 mg/L 

(<1.67, 1.72–2.51, 
3,707 cases, ≥2.64 mg nitrate/L) 
3,707 controls 

Based on PWS data 

Highest quartile vs lowest quartile:
 

Nitrate:
 
OR 0.8 (95% CI 0.5, 1.3; p-trend 

0.6)
 

Nitrite:
 
OR 1.3 (95% CI 0.8, 1.9; p-trend 

0.4)
 

No significant associations for nitrate 

or nitrite by lymphoma subtype
 
t(14;18)-positive or -negative)
 

Adjustments: sex, age, BMI, caloric
 
intake, education, family history of
 
cancer, vitamin C intake
 

Highest tertile vs lowest tertile:
 

OR 1.16 (95% CI 1.04, 1.30; p-trend 

0.001)
 
OR 1.37 (95% CI 1.11, 1.69) with
 
drinking water calcium levels <34.6 

mg/L
 

Adjustments: age, gender, marital
 
status, urbanization level of
 
residence
 

http:1.72�2.51


   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 
   

 
 

 
 

 
 

 
 

 

  

 
 

  

  

 
 

 

 

 
 

 
 

  
 

 

    
  

  
 

 
  

 
 

 
  

 
 

 
 

   
 

 
  

 
 
 

 
 

 
  

 
  

 

83 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

DellaValle et 
al. 2013 

Kidney 
(RCC) 

Cohort from NIH-
AARP Diet and 
Health Study, 
1995–2006 

491,841cohort, 
488 cases 

Quintile median 
intake: 

Nitrate intake from 
food: 19.3, 40.9, and 
94.8 mg/1,000 kcal, 
for quintiles 1, 3, and 
5, respectively 

Highest quintile vs lowest quintile: 

Nitrate: 
No increased risk (HR 0.98; 95% CI 
0.84, 1.14 for total RCC) 

Nitrite: 
No increased risk for total nitrite (HR 
1.02; 95% CI 0.87, 1.19 for total 

Nitrite intake from 
food: 0.5, 0.7, and 
0.9 mg/1,000 kcal, 
for quintiles 1, 3, and 
5, respectively 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

RCC) or nitrite from plant sources 
(HR 0.89; 95% CI 0.76, 1.04 for total 
RCC) 
Increased risk for nitrite from animal 
sources (HR 1.28; 95% CI 1.10, 
1.49; p-trend <0.01 for total RCC), 
nitrite from processed meat sources 
(HR 1.16; 95% CI 1.00, 1.35; p-trend 
0.04 for total RCC), nitrite from 
animal sources other than 
processed meat (HR 1.23 (95% CI 
1.06, 1.43; p-trend 0.02 for total 
RCC), nitrate and nitrite from 
processed meat sources (HR 1.17; 
95% CI 1.00, 1.37; p-trend 0.03 for 
total RCC) 

Risk of RCC mainly associated with 
clear cell histological subtype (e.g., 
HR 1.68; 95% CI 1.25, 2.27; p-trend 
<0.01 for nitrite from animal sources 
and clear cell subtype) 

Adjustments: age, sex, caloric 
intake, race, smoking, family history 
of cancer, BMI, alcohol intake, 
education; history of hypertension, 
diabetes 
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3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Espejo- Bladder Case-control. 
Herrera et al. Spain, 1998–2001 

556 controls, 
531 cases 

Espejo- Breast Case-control. 
Herrera et al. Spain, 2008–2013 
2016b 

1,520 controls, 
1,245 cases 

Average residential No associations between risk of 
ranges in drinking bladder cancer and average nitrate 
water by tertiles: ≤5 level (OR 1.09; 95% CI 0.63, 1.87) 
mg/L, >5–10 mg/L, for highest versus lowest level 
>10 mg/L 

For subjects with longest exposure 
Based on historical duration (>20 years) to highest 
records of nitrate levels (>9.5 mg/L), OR=1.42; 95% 
levels in municipal CI 0.989 2.26 
water sources 

Stratification by intake of vitamin C, 
vitamin E, meat, and gastric ulcer 
did not modify the results 

Adjustments: age, sex and area of 
residence smoking status, NSAIDs 
use, night-time urinary frequency, 
time working in farm/agriculture 
activities, tap water and vitamin C 
daily intake, urinary infections (ever) 

Average waterborne No associations between dietary 
ingested nitrate nitrate intake or waterborne ingested 
ranged from 2.9 ±1.9 nitrate and risk of breast cancer 
mg/day (mean ± SD) overall, but increased risk (OR 1.64; 
to 13.5 ±7.5 mg/day 95% CI 1.08, 2.49) among 

postmenopausal women with both 
Based on historical high waterborne nitrate intake (>6 
records of nitrate mg/day) and high red meat intake 
levels in municipal (≥20 g/day) 
water sources and 
monitoring of other Adjustments: study area, age, 
sources education, BMI, family history of 

breast cancer, age at first birth, age 
Average dietary at menopause, oral contraceptives 
nitrate intake ranged use, energy intake 
from 88.5±48.7 
mg/day to 154±87.8 
mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

  
 

   

 
 

  
  

 

 
 
   

 
 

 

 

 
 

 

 
 

 

 
 

 
  

 

 

 

  
 

  
 

  
 

  
 

 

 
 

  
 

  
 

 

 
 

  
  

 
 

 

85 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Espejo- Colorectal Case-control. 
Herrera et al. Spain and Italy, 
2016a 2008–2013 

3,530 controls, 
1,869 cases 
(1,285 colon; 557 
rectal) 

Average waterborne 
ingested nitrate 
ranged from 3.4±3.3 
mg/day to 19.7±22.6 
mg/day 
Tertiles: ≤5, <5–10, 
>10 mg/day 

Based on historical 
records of nitrate 
levels in municipal 
water sources and 
monitoring of other 
sources 

Mean dietary nitrate 
intake was 118±72 
mg/day overall 
(102±70.5 mg/day 
from vegetables and 
6.2±3.3 mg/day from 
animal sources) 
Tertiles: <4.5, 4.5– 
6.8, >6.8 mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

For highest versus lowest 
waterborne nitrate intake: 
OR 1.49 (95% CI 1.24, 1.78) for 
colorectal cancer 
OR 1.52 (95% CI 1.24, 1.86) for 
colon cancer 
OR 1.62 (95% CI 1.23, 2.14) for 
rectal cancer 

For risk of rectal cancer among 
subjects with dietary intake of nitrate 
from animal sources: 
OR 1.59 (95% CI 1.22, 2.06) for mid 
tertile 
OR 1.55 (95% CI 1.17, 2.05) for 
highest tertile 

Greater risk among men than 
women 

Adjustments: sex, age, education, 
physical activity, BMI, family history 
of colorectal cancer, NSAIDs use, 
energy intake, oral contraceptives 
use 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

  
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

  
 

 

 

 
 

  
 

  
 

 
 

  
  

   
  

 
  

   
  

  
  

  
 

 

86 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Inoue-Choi et Breast	 Cohort of post-
al. 2012	 menopausal 

women from Iowa 
Women’s Health 
Study, 1989–2008 

34,388 cohort, 
2,875 cases 

Quintile median 
nitrate intake from 
drinking water: 1.6, 
4.1, 9.4, 21.2, and 
57.8 mg/2 L 

Based on historical 
database of Iowa 
municipal water 
supplies 

Quintile median 
nitrate intake from 
food: 49.3, 78.7, 
106.1, 140.2, 209.9 
mg/day 

Quintile median 
nitrite intake from 
food: 0.6, 0.9, 1.1, 
1.4, 1.8 mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

Highest quintile vs lowest quintile: 

Overall, no increased risk of breast 
cancer with intake of nitrate and/or 
nitrite from diet and/or drinking water 
Significant trend for increasing HR 
with increasing nitrite intake 

HR 1.40 (95% CI 1.05, 1.87) for 
nitrate and folate ≥400 µg/day 
HR 1.0 95% CI (0.79, 125) for nitrate 
and folate <400 µg/day 

Adjustments: age; caloric intake; 
BMI; waist-hip ratio; education; 
smoking; physical activity level; 
alcohol intake; family history of 
breast cancer; age at menopause; 
age at first live birth; estrogen use; 
intakes of alcohol, vitamin C, vitamin 
E, flavonoids, cruciferae, red meat 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

  
 

 
 

 
  

  

  
  

 
 

 

 
 

 

 
 

 
 

 
   

 
 

 

 

 

 
 

 
 

 
  

 
    

  
 

 
  

 
 

  
   

  
 

 
  

  
 

 
  

 

 

 

 
 

  
 

 

 
 

 
  

 
 

 
 

  
 

 
 

 

 

 
 

 
  
  

 
 

 
 

 

 
 

 
 

 

87 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Inoue-Choi et Ovarian Cohort of post- Quartile median 
al. 2015 menopausal nitrate levels in 

women from Iowa drinking water: 0.31, 
Women’s Health 0.75, 1.68, 3.81 mg 
Study, 1986–2010 nitrate-nitrogen/L 

(1.36, 3.3, 7.39, 
28,555 cohort, 16.76 mg nitrate/L) 
315 cases 

Historical database 
of Iowa municipal 
water supplies 

Quintile median 
nitrate intake from 
food: 49.5, 78.9, 
106.2, 140.2, 209.2 
mg/day 

Quintile medium 
nitrite dietary intake: 
0.7, 0.9, 1.1, 1.4, 1.8 
mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

Kilfoy et al. Non- Case-control of Quartile ranges: 
2010 Hodgkin’s women in 

lymphoma Connecticut Nitrate from food: 
between 1995 and <63.9, 63.9 to <93.0, 
2001 93.0 to <140.5, 

≥140.5 mg/day 
594 cases, 
710 controls Nitrite from food: 

<0.77, 0.77 to <0.99, 
0.99 to <1.32, ≥1.32 
mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

Highest quartile/quintile vs lowest 
quartile/quintile: 

HR 2.03 (95% CI 1.22, 3.38) for 
highest quartile of nitrate in public 
drinking water; association was 
stronger when vitamin C intake was 
≤190 mg/day and when red meat 
servings exceeded 5 per week 

Overall, no increased risk of ovarian 
cancer with total intake of nitrate or 
nitrite. 

Adjustments: age, BMI, family 
history of ovarian cancer, number of 
live births, age at menarche, age at 
menopause, age at first live birth, 
oral contraceptive use, estrogen 
use, history of unilateral 
oophorectomy, and/or total energy 
intake 

Highest quartile vs lowest quartile: 

Overall non-Hodgkin’s lymphoma: 
OR 0.9 (95% CI 0.6, 1.2) for nitrate 
OR 1.4 (95% CI 0.9, 2.2) for nitrite 

Significant trend (p=0.04) for 
follicular lymphoma with increasing 
nitrate intake 

OR 2.3 (95% CI 1.1, 4.9; p-trend 
0.008) for follicular lymphoma with 
nitrite intake 

Adjustments: age; family history of 
cancer; calories; intakes of vitamins 
C, vitamin E, protein 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 

 

  
 

 
  

 
 

  
 

 
 

 
 

   
  

 
   

 
 

 
  

 
   

 

 
 

 

 
 

 
 

  
 

 
   

 
  

 
 

 
  

 

  
  

 
 

   
  

  
   

 
 

 
 

 

 
 

 
 

 

 
 

 
  

 
 

 

 

 

  
 

  
   

  
   

 
 

   
   

   
 

  
 

88 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Kilfoy et al. 
2011 

Thyroid Cohort from NIH-
AARP Diet and 
Health Study, 
1995–1996 with 

Quintile median 
ranges: 

Nitrate from food: 

Highest quintile versus lowest 
quintile: 

Nitrate: 
average of 7 years 
of follow-up 

490,194 cohort 
(292,125 men; 
198,069 women), 
370 cases (170 
men; 200 women) 

29.6, 49.8, 70.2, 
100.9, 166.8 mg/day 
(19.4, 29.9, 40.9, 
57.4, 
94.8 mg/1,000 kcal) 

Nitrite from food: 0.6, 
0.9, 1.1, 1.4, 1.9 
mg/day (0.5, 0.6, 
0.7, 0.7, 

Men: RR 2.28 (95% CI 1.29, 4.04; p-
trend <0.01) for thyroid cancer 
RR 2.10 (95% CI 1.09, 4.05; p-trend 
0.05) for papillary thyroid cancer 
RR 3.42 (95% CI 1.03, 11.4; p-trend 
<0.01) for follicular thyroid cancer 
Women: RR 0.76 (95% CI 0.48, 
1.10) for thyroid cancer 

Nitrite: 
0.9 mg/1,000 kcal) 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 

Men: RR 1.36 (95% CI 0.78, 2.37) 
for thyroid cancer 
RR 2.74 (95% CI 0.86, 8.77; p-trend 
0.04) for follicular thyroid cancer 
Women: RR 1.19 (95% CI 0.71, 
1.98) for thyroid cancer 

levels Adjustments: sex; age; smoking 
status; race; physical activity; 
alcohol use; BMI; caloric intake; 
education; family history of cancer; 
intakes of vitamin C, beta-carotene, 
folate 

Kim et al. 
2007 

Stomach Case-control with 
subjects from two 
Korean hospitals, 
1997–1998 

136 controls, 
136 cases 

Tertile median 
values: 

Nitrate from food: 
240, 458, and 811 
mg/day 

Based on food 

Highest tertile vs lowest tertile: 

OR 1.13 (95% CI 0.42, 3.06) 
OR 2.78 (95% CI 1.01, 7.67) for 
nitrate/86.7 mg/mg vitamin E 
OR 3.37 (95% CI 1.28, 8.87) for 
nitrate/2.47 mg/µg folate 

frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels 

Adjustments: age; sex; SES; family 
history of gastric cancer; refrigerator 
use; Helicobacter pylori infection; 
intakes of charcoal grilled beef, 
Korean cabbage kimichi, Dongchimi, 
spinach, garlic, mushroom, salty 
foods 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 

 
 

 
  

 

  
 

  

 
  

 

 

 

 
 

 
  
 

  
 

 
 

 
    

 
 

  
 

 
 

 
 

 

 
 

 
 

 
 

  
 

 
  

 

 

 

  
 

    
 

    
 

   
 

 
  

 
 

  
 

 
  

89 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

McElroy et 
al. 2008 

Colorectal Wisconsin, United 
States, 1990– 
2001 

Quintile cutoff range: 

Nitrate in water: 

Highest quintile versus lowest 
quintile: 

4,297 controls, 
<0.5, 0.5–1.9, 2.0– 
5.9, 6.0–9.9, 

OR 1.52 (95% CI 0.95, 2.44) for all 
colon cancer sites 

1,476 cases, 
all females 

≥10 mg/L 

Based on 

OR 2.91 (95% CI 1.52, 5.56) for all 
proximal colon sites 

groundwater nitrate 
data and spatial 
interpolation to 
individual residences 

Adjustments: age 

Michaud et 
al. 2009 

Brain 
(glioma) 

Combined 
analysis of cohorts 
from NHS I 
(1980–2004), 
NHS II (1991– 
2005), and HPFS 
(1986–2004) 

230,655 cohort, 
335 cases 

Quintile cutoff 
ranges, based on 
baseline values: 

Nitrate from food: 
43–205 mg/day 

Nitrite from food: 
1.1–2.4 mg/day 

NDMA from food: 
0.02–0.09 mg/day 

Highest tertile vs lowest tertile: 

Nitrate: RR 1.02 (95% CI 0.66, 1.58) 

Nitrite: RR 1.26 (95% CI 0.89, 1.79) 

NDMA: RR 0.88 (95% CI: 0.57, 
1.36) 

Processed meat: RR 0.92 (95% CI 
0.48, 1.77) 

No effect of vitamin C, vitamin E, or 
Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 

ferric-reducing ability of plasma 

Adjustments: age, caloric intake 

levels 



   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 
 

 
 

 
 

 
 

 

 
  

 
 

 
  

 
 
 

 
  

 
  

 
 

  
 

 

  
 

 
 

 
  

  
  

 
 

    
  

 
 

 
  

 
 

  
 

90 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Ward et al. Kidney	 Case-control, 
2007 (RCC)	 Iowa, United 

States, 1986– 
1989 

2,434 controls, 
406 cases 

Quartile cutoff 
ranges: 

Nitrate from food: 
<59.32, 59.32– 
86.62, 86.63– 
122.00, 
≥122.01 mg/day 

Nitrite from food: 
<0.70, 0.70–0.93, 
0.94–1.25, 
≥1.26 mg/day 

Nitrate in water: 
<0.62, 0.62–<1.27, 
1.27–≤2.78, 
≥2.78 mg/L 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels, and PWS 
data 

Highest quartile versus lowest 
quartile: 

Nitrate: OR 0.41 (95% CI 0.28, 0.60) 
for dietary nitrate 
OR 0.89 (95% CI 0.57, 1.39) for 
nitrate in water 

Nitrite: OR 0.82 (95% CI 0.50, 1.33) 
OR 1.00 (95% CI 0.63, 1.59) for 
nitrite from animal sources 

OR 1.91 (95% CI 1.04, 3.51) for red 
meat intake ≥1.2 servings/day and 
PWS nitrate >5 mg/L for >10 years 

Adjustments: age, sex, BMI, caloric 
intake, intakes of sodium and fat 

http:1.27��2.78
http:0.62�<1.27
http:0.94�1.25
http:0.70�0.93


   
 

    
 
 

 
 
 
 
 

 
  

 
 

 
 

    

 
 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

  
 

 
  

 

 
 

 
 

 

   
 

 

  
 

 
 

 
  

 
  

 
 

   
  

 
 

 
   

 
 

  
 

    
   

 
  

 
 

 
 

 
 

 
 

 

 
 

  
 

  

 
 

  
  

 
  

  
 

   
  
 

 

91 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 

Reference type Study design intakes Outcomesa
 

Ward et al. 
2008 

Esophagus, 
Stomach 

Case-control, 
Nebraska, United 
States, 1988– 

Quartile cutoff 
ranges: 

Highest quartile versus lowest 
quartile: 

1993 

321 controls, 
79 stomach 
cases, 

Nitrate-nitrogen in 
water: <2.45, 2.45– 
<2.58, 2.58–4.32, 
>4.32 mg/L (<10.78, 
10.78–<11.35, 

Nitrate in water: OR 1.2 (95% CI 0.5, 
2.7) for stomach cancer 
OR 1.2 (95% CI 0.6, 2.7) for 
esophageal cancer 

84 esophagus 
cases 

11.35–19.01, 
>19.01 mg nitrate/L) 

Dietary nitrate from 
plant sources: <16.9, 
16.9–<26.2, 26.2– 

Nitrate from plant sources: OR 1.6 
(95% CI 0.7, 3.6) for stomach cancer 
OR 0.8 (95% CI 0.3, 1.8) for 
esophageal cancer 

Nitrate and nitrite from animal 
<38.8, >38.8 mg/day 
nitrate-nitrogen 
(<74.4, 74.4–<115.3, 
115.3–<170.7, 
>170.7 mg 
nitrate/day) 

Nitrate and nitrite 

sources: OR 1.6 (95% CI 0.7, 3.7) 
for stomach cancer 
OR 2.2 (95% CI 0.9, 5.7; p-trend 
0.015) for esophageal cancer 

Adjustments: year of birth; sex; BMI; 
smoking; alcohol; caloric intake; 
intakes of vitamin A, folate, 

from animal sources: 
<3.8, 3.8–<5.7, 5.7– 

riboflavin, zinc, protein, carbohydrate 

<8.3, ≥8.3 mg/day 

Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels, and PWS 
data 

Wu et al. 
2013 

Prostate Case-control with 
subjects from 
HPFS (1997– 
2005) 

630 controls, 
630 cases 

Quartile median 
range: 

Plasma nitrate 
(cases): 29.39, and 
51.47 µmol/L (1.82 
and 3.19 mg/L) 

Adjusted RR not significant; no 
significant trend 

RR 0.99 (95% CI 0.68, 1.48) for 
highest plasma nitrate quintile 

Adjustments: age, BMI, caloric 
intake, time of blood draw, hours 
since last meal before blood draw 
year of blood draw, family history of 
prostate cancer, smoking, history of 
hypertension, history of diabetes, 
physical activity 
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Table 3-2.  Selected Cohort and Case-Control Studies Published Since 2006
 
Examining Possible Associations Between Nitrate and Nitrite Intake and
 

Cancer
 

Cancer Nitrate and nitrite 
Reference type Study design intakes Outcomesa 

Yang et al. 
2010 

Breast Case-control. 
Seoul, South 
Korea, 2004–2006 

362 controls, 
362 cases 

Quintile median 
nitrate intake from 
food: 179.4, 299.7, 
372.1, 492.5, 
716.1 mg/day 

Based on food 

Adjusted OR not significant for 
dietary nitrate, no significant trend. 
Significant trend for increasing OR 
with increasing nitrate/folate ratio; 
OR significantly elevated in highest 
nitrate/folate quintile. 

frequency 
questionnaire and 
published food 
nitrate levels 

OR 1.54 (95% CI 0.88, 2.70) for 
nitrate 

OR 2.03 (95% CI 1.16, 3.54) for 
nitrate/folate intake ratio (2.10) 

Adjustments: age, education, 
physical activity, family history of 
breast cancer, parity, breast feeding, 
menopause, oral contraceptive use; 
intakes of soy protein, mushroom, 
fat 

Zeegers et 
al. 2006 

Bladder Cohort from 
Netherlands 
Cohort Study, 
1986–1996 

Quintile median 
nitrate intakes: 

Nitrate from food: 

Adjusted RR not significant for 
nitrate in food or water; no significant 
trend 

cohort 120,852, 
889 cases, 
4,441 subcohort 

57.4, 78.6, 97.8, 
119.5, 158.9 mg/day 

Nitrate from water: 

Highest quintile vs lowest quintile: 

RR 1.06 (95% CI 0.81, 1.37) for 
nitrate from food 

0.5, 1.4, 3.4, 5.6, 
10.6 mg/day RR 1.06 (95% CI 0.82, 1.37) for 

nitrate from water 
Based on food 
frequency 
questionnaire and 
published food 
nitrate and nitrite 
levels, and 

RR 1.09 (95% CI 0.84, 1.42) for total 
nitrate intake 

Adjustments: age, sex, smoking 

PWS data 

aRisk estimates (95% confidence limits) 

AARP = American Association of Retired Persons; BMI = body mass index; HPFS = Health Professionals Follow-Up 
Study; HR = multivariate hazard ratio; NDMA = nitrosodimethylamine; NIH = National Institutes of Health; 
NHS = Nurses’ Health Study; NSAIDs = non-steroidal anti-inflammatories; OR = odds ratio; PWS = public water 
supply; RCC = renal cell carcimoma; RR = relative risk; SD = standard deviation; SES = socioeconomic status 
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outcomes.  Exposure misclassification can occur for various reasons including dietary factors that 

contribute to variability in dose of nitrosation precursors (e.g., nitrate or nitrite in fish, meat, and 

vegetables) and nitrosatable compounds; consumption of antioxidants that can inhibit nitrosation (e.g., 

vitamin C, flavenoids, polyphenols); migration in and out of the PWS district; and ingestion of other 

water sources (e.g., bottled water).  Estimates of exposure from drinking water can be made at the 

individual subject level.  This can be accomplished with surveys of the individual’s residence history and 

consumption patterns (e.g., percentage of drinking water consumed from the PWS and other sources, such 

as bottled water), along with data on nitrate concentrations in the water supply (Inoue-Choi et al. 2012).  

Dietary surveys (e.g., food frequency questionnaires, 24-hour recalls), coupled with data from residue 

monitoring studies of market basket foods, can be used to estimate individual exposures to nitrosation 

precursors in foods.  However, in this approach, exposure misclassification can occur as a result of 

ingestion of nitrosation precursors from non-market basket foods.  Also, the diet survey is typically cross-

sectional, even in longitudinal studies, and results may not accurately reflect the average diets during the 

entire follow-up period.  Exposure misclassification can also occur in studies that examine associations at 

the individual level.  However, in these studies, exposure misclassification is likely to be non-differential 

or independent of cancer status.  As a result, exposure comparisons (exposed versus unexposed) would 

tend to be biased towards the null if there truly is an effect of the exposure on cancer outcome, and if 

more than two levels of exposure are being evaluated (e.g., high, low, versus no exposure), then the bias 

can be in either direction for the middle levels of exposure and tend to be biased towards the null at the 

highest level so that exposure-response relationships are distorted (e.g., the risk would be attenuated or 

fall at the highest levels of exposure because of this bias). Most of the nitrate and nitrite ingested comes 

from the diet (Zeegers et al. 2006); therefore, studies that quantify exposure only from drinking water are 

weak designs for assessing cancer risk unless the water supply is extraordinarily contaminated (>20 mg 

nitrate/L).  Some studies have employed biomarkers (blood, plasma, saliva, or urine) as exposure metrics 

(Armijo et al. 1981; Cuello et al. 1976; Forman et al. 1985; Joossens et al. 1996; Kamiyama et al. 1987; 

Knight et al. 1990; Lin et al. 2003; Lu et al. 1986; Sierra et al. 1993; Tsugane et al. 1992; Wu et al. 1993, 

2013).  Biomarkers can provide more accurate estimates of the steady-state levels of nitrate (or nitrite) in 

an individual; however, they may not reflect the cumulative absorbed dose or the dose of nitrosation 

products that may contribute to cancers (e.g., N-nitrosodimethylamine) (Zeilmaker et al. 2010a).  An 

additional uncertainty that applies to all studies described in this summary is that cancer risk may be mis-

attributed to nitrite (or nitrosation precursors) as a result of other factors that contribute cancer risk that 

co-vary with exposure to nitrite or nitrite precursors.  These may include other carcinogens in drinking 

water or diet.  However, unless these risk factors have extremely strong associations with exposures to 

nitrate or nitrite (or nitrosation precursors), confounding from these factors is unlikely to be a major 
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source of uncertainty in interpretation of cancer risk estimates.  One potentially important class of 

confounders is anti-oxidants, which can interfere with nitrosation of dietary amines and, thereby, the 

mode of carcinogenicity of nitrite, and may also interfere with other carcinogenic process that involve 

reactive intermediates.  In the discussions of individual studies, the terms “statistically significant” refer 

to relative risks that are estimated to be ≥1 or trends that were reported by the investigators to be 

statistically significant, typically p<0.05). 

In general, outcomes of cohort and case-control studies have found no or weak associations between 

nitrate intakes and cancer in humans, with stronger associations for exposures to nitrite or intake of high-

nitrite foods such as cured meat (Aschebrook et al. 2013; DellaValle et al. 2013; IARC 2010; Inoue-Choi 

et al. 2012).  Mechanistically, this outcome is consistent with nitrite being a reactive intermediate in the 

cancer mode of action of nitrate (see Section 3.5.2). 

Studies that form the basis for evidence of carcinogenicity of nitrate or nitrite are briefly described below. 

Most of these studies are described in greater detail in IARC (2010). Studies published since IARC 

(2010) are summarized in Table 3-2. Studies included in Table 3-2 estimated nitrate or nitrite intakes 

from dietary survey instruments of individuals, in some cases, supplemented with estimates from drinking 

water based on well water or PWS data and geographic location of the residence, or with biomarkers of 

exposure. The table summarizes major features of the design of each study and the major outcomes. 

Complete details of the outcomes for various design strata can be obtained from the cited references. 

This summary of carcinogenicity of nitrate and nitrite in humans is intentionally biased for the sake of 

brevity, in that it is restricted to case-control and cohort studies and emphasizes studies that have found 

associations between nitrate or nitrite and cancer, while most studies that found no associations are not 

described.  Descriptions of important ecological studies and negative outcome studies can be found in 

IARC (2010). In the summary below, reported risks are adjusted for co-variables, which differed across 

studies.  Most studies adjusted for age, sex, body mass index (BMI), caloric intake, family history of 

cancer, smoking, and alcohol consumption. Some studies also adjusted for socioeconomic status, 

education, and various dietary intakes (e.g., vitamin C, vitamin E, flavenoids, folate), as well as cancer 

specific-adjustments (e.g., reproductive history in breast cancer studies).  Estimates of risk for studies not 

included in Table 3-2 were those reported in IARC (2010) where they were expressed as relative risk 

(RR) without specification of the actual risk metric estimated in the study.  Risk metrics reported in 

Table 3-2 are ORs for case-control studies and RR or hazard ratio (HR) for cohort studies. 
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Gastrointestinal Cancer. Associations between intake of nitrite and a variety of cancer types has been 

studied; however, the strongest and most consistent evidence for carcinogenicity of nitrite derives from 

studies of gastrointestinal cancers and, in particular, gastric cancer (Buiatti et al. 1990; Engel et al. 2003; 

La Vecchia et al. 1994, 1997; Mayne et al. 2001; Palli et al. 2001; Risch et al. 1985; Rogers et al. 1995; 

Ward et al. 2007, 2008). In general, these studies have found significant positive trends for cancer risk 

(risk increases with increasing intake), and three studies found elevated cancer risk (Engel et al. 2003; 

Kim et al. 2007; Risch et al. 1985). In the Risch et al. (1985) case-control study (246 cases, 

246 controls), relative risk was 1.71 (95% CI: 1.24, 2.37) for a nitrite intake of 1 mg/day. In another case-

control study (369 cases, 695 controls) (Engel et al. 2003; Mayne et al. 2001), risk for stomach cancer 

(non-cardia) was elevated at nitrite intakes ≥6 mg/day (OR 2.5, 95% CI: 1.4, 4.3).  Risk increased with 

decreasing vitamin C intake (RR 2.95, 95% CI: 1.90, 4.59). Additional support for antioxidants as effect 

modifiers comes from a case-control study (136 cases, 136 controls) in which stomach cancer risk 

increased in association with increasing ratio of nitrate to antioxidants in the diet (e.g., vitamin C, vitamin 

E, folate) (Kim et al. 2007).  Risk (OR) at the highest nitrate/vitamin E ratio (86.7 mg nitrate/mg vitamin 

E) was 2.78 (95% CI: 1.01, 7.67).  At the highest nitrate/folate ratio (2.47 mg nitrate/µg folate), an OR of 

3.37 (95% CI: 1.28, 8.87) was determined. 

Associations between exposure to nitrate or nitrite and colorectal cancer have been studied in cohort and 

case-control studies (Chiu et al. 2011; De Roos et al. 2003; Knekt et al. 1999; Weyer et al. 2001).  The 

largest of the case-control studies (3,707 cases, 3,707 controls) (Chiu et al. 2011) found a significant 

positive trend (chi-square for trend =13.26, p=0.001) for mortality from colon cancer with increasing 

nitrate levels in drinking water (OR 1.16, 95% CI: 1.04, 1.30 at nitrate-nitrogen levels >0.6 mg/L; 

>2.65 mg nitrate/L). Risks were higher in a stratum exposed to drinking water that had a calcium level 

>34.6 mg/L (OR 1.37, 95% CI: 1.11, 1.69 for nitrate <2.64 mg/L).  The De Roos et al. (2003) case-

control study (685 cases of colon cancer, 655 cases of rectal cancer, 2,434 controls) found elevated risk of 

colon (RR 1.5, 95% CI: 1.0, 2.1) and rectal cancer (RR 1.7, 95% CI: 1.1, 2.5) at a dietary nitrite intake 

>1.26 mg/day.  Risk of colon cancer was higher in a stratum exposed to nitrate in drinking water at levels 

>5 mg/L in combination with a low vitamin C intake (RR 2.0, 95% CI: 1.2, 3.3). Two meta-analyses 

reported in IARC (2010) concluded that ingestion of cured meats was associated with increased risk of 

colorectal cancer (Norat et al. 2002; Sandhu et al. 2001). 

Central Nervous System Cancer. Cancer of the central nervous system has been studied extensively in 

case-control studies (IARC 2010).  Some studies found significant positive trends with nitrite and/or 

cured meat intake; elevated risk was reported in a few studies (Blowers et al. 1997; Giles et al. 1994, Lee 
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et al. 1997; Mueller et al. 2004; Pogoda and Preston-Martin 2001a, 2001b; Preston-Martin et al. 1996). 

Risks increased with higher nitrite intake or cured meat/antioxidant ratios (Blowers et al. 1997; Preston-

Martin et al. 1996).  The study of Preston-Martin and coworkers (Pogoda and Preston-Martin 2001a, 

2001b; Preston-Martin et al. 1996) included 540 cases and 801 controls. Significantly increased risk (OR 

3.0, 95% CI: 1.2, 7.9) was observed for central nervous system cancers (brain, cranial nerves, or cranial 

meninges) in children of mothers reporting a nitrite intake >3.0 mg/day from cured meat during 

pregnancy.  The Mueller et al. (2004) case-control study (1,218 cases, 2,223 controls) found elevated risk 

(RR 5.7, 95% CI: 1.2, 27.2) for astroglial tumors in children in association with maternal exposure to 

drinking water to nitrite concentrations ≥5 mg/L during pregnancy.  Risks for other types of brain tumors 

were not elevated. A smaller case-control study (94 cases, 94 controls) found elevated risk of glioma in 

women (with trend p=0.07) in association with intake of nitrite from cured meat (RR 2.1, 95% CI: 1.0, 

4.6).  Results of meta-analyses of brain cancer studies also support associations between intake of cured 

meat during pregnancy and brain tumors in children and cured meat ingestion and brain tumors in adults 

(Huncharek and Kupelnick 2004; Huncharek et al. 2003). A large cohort study (230,655 subjects, 

335 cases) of associations between intakes of nitrate, nitrite, and nitrosodimethylamine (NDMA) and 

glioma in adults did not find significant trends or elevated risk for glioma (Michaud et al. 2009, 

Table 3-2). 

Urinary Tract Cancer.  Cancer of the urinary tract has been studied in several case-control and large 

cohort studies (DellaValle et al. 2013; Espejo-Herrera et al. 2015; IARC 2010; Ward et al. 2007, Zeegers 

et al. 2006).  Positive trends for risk or elevated risk were found in some studies (DellaValle et al. 2013; 

Ward et al. 2007; Wilkens et al. 1996). In the Wilkens et al. (1996) case-control study (272 cases, 

522 controls), risk was elevated (trend p=0.05) in association with dietary nitrite intake (RR 2.0, 95% CI: 

1.0, 4.0).  In the Ward et al. (2007) case-control study (406 cases, 2,434 controls), risk of kidney cancer 

was elevated in the strata who consumed >1.2 servings of red meat/day and who resided for >10 years in 

a PWS district that had nitrate concentrations >5 mg/L (OR 1.91, 95% CI: 1.04, 3.51; see Table 3-2).  A 

large cohort study (491,841 subjects, 488 cases) found a significant positive trend and elevated risk for 

renal cell carcinoma in association with nitrite intake from animal sources (HR 1.28, 95% CI: 1.10, 1.49 

for renal cell carcinoma; HR 1.68, 95% CI: 1.25, 2.27 for clear cell carcinoma, both at 0.9 mg 

nitrite/1,000 kcal) (DellaValle et al. 2013). The Zeegers et al. (2006) cohort study (120,852 subjects, 

889 cases) found no association between bladder cancer and intake of nitrate from food or drinking water. 

Wang et al. (2012) evaluated possible association between nitrate in drinking water and risk of bladder 

cancer in a meta-analysis that included results from one ecological study (Morales et al. 1993), two cohort 

studies (Weyer et al. 2001; Zeegers et al. 2006), and two case-control studies (Chiu et al.2007; Ward et al. 
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2003) and found no evidence that nitrate in the drinking water was associated with risk of bladder cancer 

(combined RR 1.27; 95% CI 0.75, 2.15) based on data for highest nitrate levels reported relative to 

reference values from each study. 

Reproductive Organ Cancer. A small number of case-control and cohort studies have examined 

associations between exposure to nitrate or nitrite and cancers of breast, ovary, uterus, prostate, and testis 

(Barbone et al. 1993; IARC 2010; Espejo-Herrera et al. 2016b; Inoue-Choi et al. 2012, 2015; Moller 

1997;Wu et al. 2013; Yang et al. 2010).  A cohort study of post-menopausal women (34,388 subjects, 

2,875 cases) found a significant positive trend (p=0.04) and elevated risk (HR 1.40, 95% CI: 1.05, 1.87) 

for breast cancer in association with consumption of public drinking water at ≥33.5 mg nitrate/2 L 

(median 57.8 mg nitrate/2 L) among women who consumed folate at rates ≥400 µg/day; risk was not 

elevated among those women who ingested folate at <400 µg/day (Inoue-Choi et al. 2012).  Similarly 

increased risk (HR 1.38, 95% CI: 1.05, 1.82) was noted for private well users who ingested folate at 

>400 µg/day when compared to the lowest quintile of users of the public drinking water sources who 

ingested folate at >400 µg/day.  In contrast, Yang et al. (2010) reported elevated risk for breast cancer in 

association with increasing dietary nitrate/folate ratio, with significantly elevated risk (OR 2.03, 95% CI: 

1.16, 3.54) at nitrate/folate ratios in the range of 1.79–8.19.  The contrasting effects of folate in these two 

studies may reflect dose-dependent effect modification: an antioxidant effect at lower folate intakes and a 

tumor promoting effect of folate at higher folate intakes (Inoue-Choi et al. 2012). Inoue-Choi et al. 

(2015) reported increased risk of ovarian cancer (HR 2.03; 95% CI 1.22, 3.38) among subjects with 

public water containing ≥2.98 mg nitrate-nitrogen/L (≥13.1 mg nitrate/L) in a cohort study of 

28,555 post- menopausal women (315 ovarian cancer cases) in the Iowa Women’s Health Study.  

Associations were stronger when vitamin C intake was ≤190 mg/day and when red meat servings 

exceeded five per week. Espejo-Herrera et al. (2016b) reported increased risk (OR 1.64; 95% CI 1.08, 

2.49) of breast cancer among postmenopausal women with both high waterborne nitrate intake 

(>6 mg/day) and high red meat intake (≥20 g/day) in a case control study in Spain (1,245 cases, 

1,520 controls).  A case-control study of prostate cancer (630 cases, 630 controls) did not find significant 

associations between prostate cancer risk and plasma nitrate concentrations (1.8–3.8 mg/L) (Wu et al. 

2013).  In the Moller (1997) case-control study (514 cases, 720 controls), elevated risk of testicular cancer 

(OR 1.51, 95% CI: 1.03, 2.20) was found among men who had lived in areas during childhood with 

drinking water containing >25 mg nitrate/L. Barbone et al. (1993) conducted a case-control study of 

endometrial cancer (168 cases, 334 controls) and found a negative trend for risk (risk decreased with 

increasing dietary nitrate intake). 

http:1.79�8.19
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Reticuloendothelial Cancer. Associations between exposure to nitrate or nitrite and leukemia or non-

Hodgkin’s lymphoma have been studied in population-based case-control studies (Aschebrook-Kilfoy et 

al. 2013; Chiu et al. 2008; Freedman et al. 2000; Kilfoy et al. 2010; Ward et al. 1996, 2006) and a 

prospective cohort study (Weyer et al. 2001).  One case-control study (181 cases, 142 controls) reported 

elevated risk (OR 3.1, 95% CI: 1.7, 5.5) of non-Hodgkin’s lymphoma in association with dietary nitrite 

(but not nitrate) at dietary nitrite intake >1.21 mg/day (Ward et al. 2006).  Another case-control study 

(156 cases, 527 controls) reported elevated risk (OR 2.0; 95% CI 1.1, 3.6) of non-Hodgkin’s lymphoma in 

association with average nitrate levels ≥4 mg/L nitrate-nitrogen (17.6 mg nitrate/L) in the community 

drinking water supply (Ward et al. 1996). Chiu et al. (2008) evaluated possible associations between diet 

and non-Hodgkin’s lymphoma according to t(14;18) status (one of the most common chromosomal 

abnormalities in non-Hodgkin’s lymphoma.  Dietary factors in 60 t(14;18)-positive and 87 t(14; 18)-

negative cases were compared with 1,075 controls. The study authors reported increased risk (OR 2.8; 

95% CI 1.3, 6.1) of t(14;18)-positive non-Hodgkin’s lymphoma for the highest tertile of dietary nitrite 

(>1 mg/day) versus the lowest tertile (<1 mg/day). The Freedman et al. (2000) case-control study 

(73 cases, 147 controls) found no association between non-Hodgkin’s lymphoma and nitrate levels in 

public drinking water. Kilfoy et al. (2010) evaluated risk of non-Hodgkin’s lymphoma overall and by 

histological type in relation to self-reported dietary nitrate and nitrite intake in a case-control study of 

1,304 women.  No significant association was found between risk of non-Hodgkin’s lymphoma overall 

and dietary nitrate or nitrite.  Significant positive trends were reported for follicular lymphoma and 

increasing intakes of nitrate (p-trend =0.04) and nitrite (p-trend <0.01); a significant association (OR 2.3; 

95% CI 1.1, 4.9) was noted for the highest nitrite intake quartile (≥1.32 mg/day).  Aschebrook-Kilfoy et 

al. (2013) estimated dietary intake of nitrate and nitrite intake via food frequency questionnaire among 

348 non-Hodgkin’s lymphoma cases and 470 controls in Nebraska in 1999–2002 and reported 

nonsignificant excess risk of non-Hodgkin’s lymphoma (OR 1.6; 95% CI 0.8, 2.9) among women in the 

highest quartile of nitrite intake (median nitrite intake 0.86 mg/1,000 kcal) compared to the lowest 

quartile (median nitrite intake 0.49 mg/kcal).  An OR of 1.9 (95% CI 1.0, 3.4) was estimated for the 

highest quartile based on nitrite intake from animal sources (median nitrite intake 0.41 mg/kcal versus 

0.16 mg/kcal for the lowest quartile).  There were no significant associations between estimated nitrate or 

nitrite intake and risk of non-Hodgkin’s lymphoma subtypes. The Weyer et al. (2001) cohort study 

(21,977 subjects, 105 cases of non-Hodgkin’s lymphoma, 94 cases of leukemia) did not find positive 

associations or elevated risk of non-Hodgkin’s lymphoma or leukemia in association with dietary or 

drinking water nitrate. 
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Thyroid Cancer. Kilfoy et al. (2011) evaluated possible associations between dietary intake of nitrate and 

nitrite and risk of thyroid cancer in a cohort of 292,125 men (170 thyroid cancer cases) and 

198,069 women (200 thyroid cancer cases) from the NIH-AARP Diet and Health Study 1995–1996.  The 

study authors reported increased risk of thyroid cancer overall with nitrate intake among men (RR 2.28; 

95% CI 1.29, 4.04; p-trend <0.01), but not women (RR 0.69; 95% CI 0.42, 1.15; p-trend 0.61).  For 

nitrate intake among the men, thyroid cancer risk was increased by subtype as well; RR 2.10; 95% CI 

1.09, 4.05; p-trend 0.05 for papillary cancer and RR 2.74; 95% CI 0.86, 8.77; p-trend 0.04 for follicular 

cancer. There were no significant associations between nitrite intake and risk of thyroid cancer among 

men or women. Aschebrook-Kilfoy et al. (2013a) evaluated possible associations between dietary intake 

of nitrate and nitrite and risk of thyroid cancer in a cohort of 73,317 women enrolled in the Shanghai 

Women’s Health Study in 1996–2000 and followed-up for 11 years (164 thyroid cancer cases).  The study 

authors reported increased risk of thyroid cancer among the group with highest nitrite intake (RR 2.05; 

95% CI 1.20, 3.51).  The risk was strongest for nitrite intake from processed meats (RR 1.96; 95% CI 

1.28, 2.99).  Nitrate intake was not associated with increased risk (RR 0.93; 95% CI 0.42, 2.07).  Meta-

analysis of the results from selected studies that evaluated risk of thyroid cancer with nitrate intake 

(Aschebrook-Kilfoy et al. 2013a; Kilfoy et al. 2011; Ward et al. 2010) or nitrite intake (Aschebrook-

Kilfoy et al. 2013a; Kilfoy et al. 2011) indicated increased risk of thyroid cancer with nitrite intake (RR 

1.48; 95% CI 1.09, 2.02), but not with nitrate intake (RR 1.36; 95% CI 0.67, 2.75) (Bahadoran et al. 

2015). 

Other Cancers. In general, case-control and cohort studies of cancers of larynx, liver, lung, mouth, 

pancreas, or pharynx have found no consistent associations with exposure to nitrate or nitrite 

(Aschebrook-Kilfoy et al. 2011; IARC 2010). 

Studies of Laboratory Animals.  The potential carcinogenicity of nitrate has been investigated in several 

animal studies that employed the oral exposure route. Studies in which negative results were reported 

include MCR-derived rats (15/sex/group) provided 5,000 mg sodium nitrate/L (3,650 mg nitrate/L) in the 

drinking water for 84 weeks and sacrificed 20 weeks later (Lijinsky et al. 1973a), male white rats 

provided 4,000 mg sodium nitrate in the drinking water for 273 days and sacrificed at 10 months (Pliss 

and Frolov 1991), strain A male mice (n=40) provided 12,300 mg sodium nitrate/L in the drinking water 

for 25 weeks and sacrificed 13 weeks later (Greenblatt and Mirvish 1973), female NMRI mice provided 

1,000 mg calcium nitrate/L in the drinking water for 18 months (Mascher and Marth 1993), Fischer 344 

rats (50/sex/group) fed diets containing up to 5% sodium nitrate (1,517–1,730 mg nitrate/kg/day) for 

2 years (Maekawa et al. 1982), and ICR mice (10/sex/group) fed diets containing up to 5% sodium nitrate 
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for 2 years (IARC 2010). In the study of Pliss and Frolov (1991) some groups of male white rats were 

treated with drinking water containing 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBNA, an 

inducer of urinary bladder cancer in laboratory animals) for 30 days, either alone or followed by 4,000 mg 

sodium nitrate/L drinking water for 273 days.  The group treated with BBNA followed by sodium nitrate 

exhibited a significantly increased incidence of urinary bladder carcinoma (6/20 rats versus 1/18 rats 

treated with 0.05% BBNA only). These results indicate that sodium nitrate promoted BBNA-induced 

bladder tumors. 

The potential carcinogenicity of ingested nitrite has been investigated in numerous animal studies. Nitrite 

treatment alone did not result in increased incidences of tumors in most studies.  Nitrite doses (expressed 

as nitrite/kg/day) reported in this Toxicological Profile for Nitrate and Nitrite were either provided by the 

study authors or estimated using available body weight and oral intake data; otherwise, EPA (1988) 

default reference values for body weight, food consumption, and water intake were used to calculate 

doses. 

NTP (2001) performed a cancer bioassay of male and female F344/N rats (50/sex/group) provided sodium 

nitrite in the drinking water for 2 years at concentrations of 0, 750, 1,500, or 3,000 ppm.  Author-reported 

average doses were 35–130 mg sodium nitrite/kg/day (23.5–87.1 mg nitrite/kg/day) to the males and 40– 

150 mg sodium nitrite/kg/day (26.8–100.5 mg nitrite/kg/day) to the females.  There was no evidence of 

sodium nitrite-induced forestomach neoplasms.  Although the mid-dose group of female rats exhibited a 

significantly increased incidence of mammary gland fibroadenoma, the incidence in the high-dose group 

was not significantly different from that of controls; based on this finding and the high historical 

background incidence of mammary gland fibroadenomas, the incidence in the mid-dose group was not 

considered treatment related.  Significantly decreased incidences of mononuclear cell leukemia were 

observed in mid- and high-dose male and female rats. It was speculated that increased methemoglobin 

concentrations may have played a role in the decreased incidences of mononuclear cell leukemia. 

Significantly increased incidence of fibroma of the subcutis was noted in mid-dose male rats; however, 

several factors (the incidence only slightly exceeded the historical range of NTP controls, lacked a dose-

response characteristic, combined incidences of fibroma or fibrosarcoma were within the historical range 

for NTP controls, and fibromas and fibrosarcomas are common neoplasms in the skin of F344/N rats) 

suggested that the fibroma was not related to sodium nitrite exposure.  NTP (2001) concluded that there 

was "no evidence of carcinogenic activity" of sodium nitrite in the male or female F344/N rats under the 

conditions of the study. 



   
 

    
 
 

 
 
 
 
 

 

    

    

     

   

     

 

 

  

    

   

    

  

  

  

 

  

   

   

 

 

   

   

  

 

 

    

 

      

     

      

  

  

101 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

NTP (2001) also provided sodium nitrite in the drinking water of B6C3F1 mice (50/sex/group) for 2 years 

at concentrations of 0, 750, 1,500, or 3,000 ppm.  Author-reported average doses were 60–220 mg sodium 

nitrite/kg/day (40.2–107.2 mg nitrite/kg/day) to the males and 45–160 mg sodium nitrite/kg/day (30.2– 

107.2 mg nitrite/kg/day) to the females.  Female mice exhibited a significant positive trend for increased 

incidence of forestomach squamous cell papilloma or carcinoma (combined) and the incidence in the 

high-dose female mice exceeded the historical range for NTP controls; however, based on concurrent 

controls, incidences of squamous cell adenoma (1/50, 0/50, 1/50, and 3/50 for controls, 750, 1,500, and 

3,000 ppm groups, respectively), squamous cell carcinoma (0/50, 0/50, 0/50, and 2/50 for controls, 750, 

1,500, and 3,000 ppm groups, respectively), and squamous cell adenoma or carcinoma (1/50, 0/50, 1/50, 

and 5/50 for controls, 750, 1,500, and 3,000 ppm groups, respectively) were not statistically significantly 

increased for any sodium nitrite exposure group.  NTP (2001) considered the positive trend for incidences 

of forestomach squamous cell papilloma or carcinoma (combined) in the female B6C3F1 mice to provide 

"equivocal evidence of carcinogenic activity" of sodium nitrite and noted that there was "no evidence of 

carcinogenic activity" in the male B6C3F1 mice under the conditions of the study.  Incidences of 

alveolar/bronchiolar adenoma or carcinoma (combined) in sodium nitrite-exposed groups of female mice 

were slightly greater than that of controls (incidences of 1/50, 6/50, 5/50, and 6/50 for controls, 750, 

1,500, and 3,000 ppm groups, respectively); however, incidences were within that of historical NTP 

controls.  Because the incidences did not exhibit exposure concentration-response characteristics and 

were not accompanied by increased incidences of preneoplastic lesions, the study authors did not consider 

them to be sodium nitrite exposure-related effects.  Significantly increased incidence of fibrosarcoma of 

the subcutis was noted in mid-dose female mice (incidences of 0/50, 5/50, 1/50, and 2/50 for 0, 750, 

1,500, and 3,000 ppm groups, respectively) and exceeded the historical range for NTP controls; however, 

lack of exposure concentration-response characteristics and the fact that combined incidence of fibroma 

or fibrosarcoma (0/50, 5/50, 1/50, and 3/50 for 0, 750, 1,500, and 3,000 ppm groups, respectively) were 

within the historical range for NTP controls suggest that these neoplasms were not related to sodium 

nitrite exposure. 

In two other studies of male and female F344 rats, addition of sodium nitrite to the drinking water at 

concentrations as high as 2,000–3,000 ppm for up to 2 years did not result in significant increases in 

tumor incidences at any site (Lijinsky 1984a, 1984b; Lijinsky et al. 1983; Maekawa et al. 1982). 

Conversely, incidences of mononuclear cell leukemia were significantly lower in the nitrite-treated 

groups relative to controls.  In a 26-month study of male and female Sprague-Dawley rats provided 

drinking water to which up to 2,000 ppm sodium nitrite was added, the study author reported increased 

incidence of lymphomas, but not other types of tumors (Newberne 1979); however, IARC (2010) and 
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NTP (2001) noted that a working group sponsored by the U.S. FDA reevaluated the histology and did not 

confirm the results of Newberne (1979).  IARC (2010) reported that the working group considered the 

incidences of lymphomas to be similar to those arising spontaneously in Sprague-Dawley rats. Shank and 

Newberne (1976) reported increased incidences of total tumors and lymphoreticular tumors in rats fed 

diet to which sodium nitrite was added at 1,000 ppm (total tumors: 58/96 versus 28/156 controls; 

lymphoreticular tumors: 26/96 versus 9/156 controls); the results were reported for F1 and F2 offspring 

that had been exposed via their mothers during gestation and lactation and directly from the diet 

thereafter. In a 96-week study, Iurchenko et al. (1986) reported significantly increased incidences of 

benign liver tumors among male CBA mice administered drinking water to which sodium nitrite was 

added at a concentration resulting in author-estimated total dose of 1,600 mg sodium nitrite/mouse 

compared to a group of untreated controls; however, there was no apparent sodium nitrite treatment-

related effect at a higher estimated dose (2,000 mg sodium nitrite/mouse). 

Significantly increased incidences of forestomach squamous papillomas (by the life-table method) were 

reported for male and female MRC Wistar rats provided drinking water to which sodium nitrite was 

added at 3,000 ppm on 5 days/week for life (5/22 males and 3/23 females versus 2/47 control males and 

0/44 control females) (Mirvish et al. 1980).  The study authors stated that the sodium nitrite-treated rats 

received a total dose of 63 g sodium nitrite/kg.  Total numbers of rats and incidences of rats with 

papillomas were small. 

Grant and Butler (1989) added sodium nitrite to a reduced-protein diet and administered the diet to male 

and female F344 rats for up to 115 weeks; a control group received reduced-protein diet alone. The study 

authors reported dose-related decreases in time of onset and incidence of lymphomas, mononuclear cell 

leukemia, and testicular interstitial-cell tumors in the nitrite-treated groups. 

There was no evidence of increased tumor incidences in male or female ICR mice provided sodium nitrite 

in the drinking water for up to 109 weeks at concentrations as high as 0.5% (5,000 ppm sodium nitrite) 

(Inai et al. 1979), or in male or female Swiss mice or their offspring following a single gavage 

administration of 10 mg/kg nitrite and subsequent exposure to 0.1% sodium nitrite (1,000 ppm) in the 

drinking water during gestation days 15–21; terminal sacrifices occurred 10 months following the 

initiation of treatment (Börzsönyi et al. 1978).  Hawkes et al. (1992) found no evidence of treatment-

related effects on incidences of nervous system tumors among male and female VM mice (susceptible to 

spontaneous development of cerebral gliomas) provided drinking water to which sodium nitrite was 
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added at 0.2% (2,000 ppm) from weaning for a lifetime and others exposed via their mothers during 

gestation and lactation as well. 

The potential carcinogenicity of combined exposure to sodium nitrite and selected nitrosatable substances 

(oral exposures via combinations of drinking water, diet, and/or gavage dosing) has been well-studied in 

laboratory animals.  Many of the studies included sodium nitrite-only treatment groups for which there 

was no evidence of sodium-nitrite induced carcinogenicity (Anderson et al. 1985; Börzsönyi and Pintér 

1977; Börzsönyi et al. 1976; Greenblatt and Lijinsky 1972, 1974; Greenblatt and Mirvish 1973; 

Greenblatt et al. 1971, 1973; Hirose et al. 2002; Ivankovic 1979; Ivankovic and Preussman 1970; Kitano 

et al. 1997; Murthy et al. 1979; Lijinsky 1984a, 1984b; Lijinsky and Reuber 1980; Mirvish et al. 1972; 

Miyauchi et al. 2002; Rijhsinghani et al. 1982; Scheunig et al. 1979; Taylor and Lijinsky 1975a, 1975b; 

van Logten et al. 1972; Yada et al. 2002; Yoshida et al. 1993, 1994).  However, Lijinsky et al. (1983) 

reported significantly increased incidences of hepatocellular neoplasms in female (but not male) F344 rats 

administered diet to which sodium nitrite was added at 2,000 ppm for 2 years; significantly decreased 

incidences of mononuclear-cell leukemia was observed as well. 

Significantly increased incidences of selected tumor types were observed in some studies of laboratory 

animals that employed coexposure to various amino compounds and sodium nitrite (Anderson et al. 1985; 

Börzsönyi and Pintér 1977; Börzsönyi et al. 1976, 1978; Chan and Fong 1977; Greenblatt and Mirvish 

1973; Greenblatt et al. 1971; Hirose et al. 1990; Iurchenko et al. 1986; Ivankovic 1979; Ivankovic and 

Preussmann 1970; Kawabe et al. 1994; Murthy 1979; Lijinsky 1984a, 1984b; Lijinsky and Reuber 1980; 

Lijinsky and Taylor 1977; Lijinsky et al. 1973b; Lin and Ho 1992; Maekawa et al. 1977; Mirvish et al. 

1972, 1976, 1980; Miyauchi et al. 2002; Mokhtar et al. 1988; Newberne and Shank 1973; Nishiyama et 

al. 1998; Nixon et al. 1979; Oka et al. 1974; Rijhsinghani et al. 1982; Rustia and Shubik 1974; Scheunig 

et al. 1979; Shank and Newberne 1976; Tahira et al. 1988; Taylor and Lijinsky 1975a, 1975b; Weisburger 

et al. 1980; Xiang et al. 1995; Yada et al. 2002; Yamamoto et al. 1989; Yoshida et al. 1993, 1994).  These 

results were typically attributed to in vivo nitrosation of amines by nitrite to produce carcinogenic 

N-nitrosoamines; some of the studies did not include sodium nitrite-only treatment groups. Addition of 

sodium nitrite or potassium nitrite to the food of rats in three other studies resulted in increased incidences 

of selected tumors; analysis of the food revealed the presence of N-nitroso compounds (likely formed by 

nitrosation in the presence of nitrite and selected amine compounds in the food), which were considered 

the probable principal cause of the tumors (Aoyagi et al. 1980; Matsukura et al. 1977; Olsen et al. 1984). 

Börzsönyi et al. (1978) reported 30–70% incidences of malignant lymphomas, lung adenomas, and 

hepatomas among maternal mice and their offspring following gavage treatment of the dams with the 
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fungicide, dodecylguanidine acetate, together with 0.05% sodium nitrite; the frequency of spontaneous 

tumors in untreated controls was 6%.  Dodecylguanidine acetate alone had no effect on cancer incidence.  

Lijinsky et al. (1973a) found no significant increase in tumor incidences among male and female MCR 

rats provided drinking water comprised of 0.5% nitrilotriacetic acid or iminodiacetic acid and 0.2 or 0.5% 

sodium nitrite on 5 days/week for a lifetime. 

There were no signs of treatment-related effects on incidences of tumors at any site among groups of 

pregnant Syrian golden hamsters and their offspring fed diets to which sodium nitrite and/or morpholine 

were added throughout production of an F2 generation (Shank and Newberne 1976). Fresh diet was 

prepared every 2–7 days and 25% of the initial concentration of sodium nitrite was lost during 7 days 

after preparation of the diet. 

Based on available human data, IARC (2010) determined that there is inadequate evidence for the 

carcinogenicity of nitrate in food or drinking water and limited evidence for the carcinogenicity of nitrite 

in food (based on association with increased incidence of stomach cancer).  Evaluation of available 

animal data by IARC (2010) resulted in the determination that there is inadequate evidence for the 

carcinogenicity of nitrate, limited evidence for the carcinogenicity of nitrite per se, and sufficient evidence 

for the carcinogenicity of nitrite in combination with amines or amides.  The overall conclusions of IARC 

(2010) were that “ingested nitrate and nitrite under conditions that result in endogenous nitrosation is 

probably carcinogenic to humans (Group 2A).”  IARC (2010) noted that: (1) the endogenous nitrogen 

cycle in humans includes interconversion of nitrate and nitrite; (2) nitrite-derived nitrosating agents 

produced in the acid stomach environment can react with nitrosating compounds such as secondary 

amines and amides to generate N-nitroso compounds; (3) nitrosating conditions are enhanced upon 

ingestion of additional nitrate, nitrite, or nitrosatable compounds; and (4) some N-nitroso compounds are 

known carcinogens. 

The U.S. EPA IRIS (2002) does not include a carcinogenicity evaluation for nitrate or nitrite. 
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3.2.3 Dermal Exposure 

No relevant information was located regarding the following effects in humans or animals exposed to 

nitrate or nitrite via the dermal route: 

3.2.3.1  Death 
3.2.3.2  Systemic Effects 
3.2.3.3  Immunological and Lymphoreticular Effects 
3.2.3.4  Neurological Effects 
3.2.3.5  Reproductive Effects 
3.2.3.6  Developmental Effects 
3.2.3.7  Cancer 

3.3  GENOTOXICITY 

No studies were located regarding genotoxicity in human populations exposed to exogenous nitrite.  

Limited information is available for nitrate. Kleinjans et al. (1991) examined the association between 

nitrate levels in drinking water and frequency of sister chromatid exchanges (SCEs) in peripheral 

lymphocytes from women from the Netherlands.  Three groups were formed, low- (n=30), medium-

(n=30), and high- (n=18) exposure groups, based on the levels of nitrate in their drinking water.  The 

corresponding nitrate levels were 0.13, 32.0, and 133.5 mg/L.  Regression analysis showed a good 

correlation between levels on nitrate in water and nitrate body burden monitored by 24-hour urine levels 

of nitrate.  Examination of peripheral lymphocytes showed no significant association between 24-hour 

urine excretion of nitrate and frequency of SCEs.  Another study examined the frequency of 

hypoxanthine-guanine phosphoribosyltransferase (HPRT) variants (an index of genetic risk) in peripheral 

lymphocytes in groups of women from the Netherlands in relation to levels of nitrate in drinking water 

(van Maanen et al. 1996a).  A total of 50 subjects were exposed to concentrations of nitrate of 0.02 mg/L 

(n=14), 17.5 mg/L (n=21), 25 mg/L (n=6), or 135 mg/L (n=9).  The two lower concentrations were from 

PWS, whereas the two highest originated from private wells.  Analysis of 24-hour urine samples showed 

a positive correlation between nitrate in drinking water and urinary nitrate.  Also, salivary nitrate and 

nitrite were similarly increased.  Results of multiple regression analysis showed that the mean log 

frequency of HPRT variants was significantly higher in the group exposed to 25 mg/L nitrate than in the 

groups exposed to 0.02 and 17.5 mg/L nitrate.  The analyses also showed a significant correlation 

between frequency of HPRT variants and 24-hour urinary nitrate and salivary nitrite levels and between 

24-hour urinary excretion of N-nitrosopyrrolidine and 24-hour urinary excretion of nitrate. The results 

suggested that drinking water with nitrate poses a genetic risk due to the potential formation of 

nitrosamines after endogenous reduction of nitrate to nitrite and reaction with amino compounds.  A third 
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study examined the frequency of SCEs and chromosomal aberrations in peripheral blood lymphocytes 

from70 male and female Greek children (12–15 years of age) who were exposed to high nitrate in 

drinking water (55.7–88.0 mg/L) (Tsezou et al. 1996).  Controls consisted of 20 children from areas with 

low nitrate content in the drinking water (0.70 mg/L).  No measurements of nitrate or nitrite in biological 

fluids were conducted in this study.  Analyses of the results showed a significant increase in chromatid 

and chromosome breaks in children exposed to nitrate levels ≥70.5 mg/L of drinking water.  However, 

levels of SCEs showed no significant increase with increasing nitrate levels.  IARC (2010) noted that the 

possibility that chemicals other than nitrate could have been responsible for the elevated chromosomal 

aberrations could not be ruled out. 

A limited number of studies have examined the in vivo genotoxicity of nitrate in laboratory animals.  

Gavage administration of up to 500 mg/kg/day sodium nitrate to pregnant Syrian Golden hamsters on 

gestation days 11 and 12 did not significantly affect the frequency of micronuclei, chromosomal 

aberrations, morphological or malignant cell transformation, or drug-resistant mutations in embryonic 

cells (Inui et al. 1979).  In another in vivo study, oral administration of 150 mg/kg sodium nitrate (only 

dose tested) to male Swiss mice did not inhibit testicular DNA synthesis measured 3.5 hours after dosing 

(Friedman and Staub 1976).  Gavage administration of up to 2,120 mg/kg/day sodium nitrate for 2 days to 

male Wistar rats did not induce chromosomal aberrations in bone marrow cells examined 24 hours after 

the last dose (Luca et al. 1985).  A similar experiment with male Swiss mice showed induction of 

chromosomal aberrations at 706.6 mg/kg/day sodium nitrate but not at 2,120 mg/kg/day (Luca et al. 

1985).  Daily administration of ≥78.5 mg/kg sodium nitrate for 2 weeks to rats resulted in a significant 

dose-dependent increase in chromosomal aberrations in bone marrow cells 24 hours after the last dose 

(Luca et al. 1985).  Evaluation of micronuclei in mice treated daily for 2 weeks showed significant 

increases (approximately 2-fold greater than controls) at the low concentrations tested, 78.5 and 

235.5 mg/kg/day sodium nitrate, but not at 706.6 or 2,120 mg/kg/day, which the investigators attributed 

to possible induction of cytotoxic effects (Luca et al. 1985). Alavantić et al. (1988a) treated male mice 

with sodium nitrate by gavage for 3 days at doses of 0, 600, or 1,200 mg/kg/day; there was no sign of 

treatment-related unscheduled DNA synthesis in spermatids analyzed 17 days following treatment. 

Alavantić et al. (1988b) treated male mice with sodium nitrate by gavage for 2 weeks doses of 0, 600, or 

1,200 mg/kg/day and subsequently mated them to virgin females; evaluation of primary spermatocytes 

from F1 males revealed no sign of treatment-related heritable translocations. 

In studies in vitro, neither potassium nitrate nor sodium nitrate in concentrations of up to 20 and 

5 mg/plate, respectively, was mutagenic in various strains of Salmonella typhimurium (TA92, TA94, 
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TA98, TA100, TA1535) (Ishidate et al. 1984), tested with and without metabolic activation.  Lanthanum 

nitrate hexahydrate also yielded negative results in S. typhimurium strains TA100 and TA1535 (Zeiger et 

al. 1992). Tests for chromosomal aberrations in Chinese hamster fibroblast cells were positive for sodium 

nitrate, but negative for potassium nitrate (Ishidate et al. 1984).  IARC (2010) noted that since sodium 

chlorite also yielded positive results in the same assay, the chromosomal aberrations induced by sodium 

nitrate could have been due to the high osmotic pressure and sodium ion concentration.  In another study, 

incubation of Chinese hamster ovary cells with up to 10 mM ammonium nitrate for up to 24 hours in the 

presence of metabolic activation or up to 48 hours without metabolic activation did not induce 

chromosomal aberrations (Kim et al. 2011). 

Several studies have examined the in vivo genotoxicity of nitrite using a variety of tests, a summary is 

shown in Table 3-3.  The results have been mixed, and at times inconsistent, between laboratories that 

used the same tests.  Administration of up to 7.3 mg sodium nitrite to pregnant mice (~290 mg/kg 

assuming 0.025 kg body weight) on gestation days 7–18 via the drinking water did not induce 

chromosomal aberrations in maternal bone marrow cells or in fetal liver cells (Shimada 1989).  Negative 

results for chromosomal aberrations were also reported in embryonic hamster cells after administration of 

a single dose of up to 500 mg/kg sodium nitrite on gestation day 11 or 12 (Inui et al. 1979).  However, 

significantly increased incidences of chromosomal aberrations were reported in bone marrow cells from 

male rats (ca. 2.1–2.4 times greater than controls), mice (ca. 4–5 times greater than controls), and rabbits 

(ca. 2–3.6 times greater than controls) dosed with ≥1.7 mg/kg sodium nitrite (Luca et al. 1987).  Rats and 

mice were dosed twice by gavage, whereas rabbits received sodium nitrite via the drinking water for 

3 months.  No dose-response was apparent in the studies by Luca et al. (1987) over an approximately 

27-fold dose range, suggesting that maximum response was already achieved with the lowest dose, 

1.7 mg/kg.  Sodium nitrite also induced micronuclei in polychromatic erythrocytes of mice dosed twice at 

≥1.7 mg/kg (Luca et al. 1987) and in embryonic hamster cells after a single administration of 250 mg/kg 

sodium nitrite to the pregnant dams (Inui et al. 1979). However, in another study (NTP 2001), sodium 

nitrite did not induce micronuclei in male rat or mouse bone marrow cells after three intraperitoneal 

injections at nonlethal doses up to 50 mg/kg/day (rats) and 125 mg/kg/day (mice).  Evaluation of SCEs 

also provided seemingly conflicting results.  In a study by Giri et al. (1986), single doses of ≥5 mg/kg 

sodium nitrite by gavage induced dose-related significant increases in SCEs in mouse bone marrow cells, 

but Bambrilla et al. (1983) reported that a single gavage dose of 80 mg/kg sodium nitrite did not induce 

SCEs in mouse bone marrow cells.  Results from assays for DNA repair, DNA damage, or DNA 

synthesis in mammalian cells from rats or mice generally yielded negative results (Bambrilla et al. 1983; 

Friedman and Staub 1976; Hellmér and Bolcsfoldi 1992; Robbiano et al. 1990).  Sodium nitrite induced 
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Table 3-3.  Genotoxicity of Sodium Nitrite In Vivo 

Species (test system) End point Results Reference 
Mammalian cells: 

Pregnant mouse bone marrow Chromosomal aberrations − Shimada 1989 
cells 
Mouse fetal liver cells Chromosomal aberrations – Shimada 1989
 

Embryonic hamster cells Chromosomal aberrations − Inui et al. 1979
 

Rat bone marrow cells Chromosomal aberrations + Luca et al. 1987
 

Mouse bone marrow cells Chromosomal aberrations + Luca et al. 1987
 

Rabbit bone marrow cells Chromosomal aberrations + Luca et al. 1987
 

Mouse polychromatic Micronuclei + Luca et al. 1987 

erythrocytes 
Rat bone marrow cells Micronuclei − NTP 2001 
Mouse bone marrow cells Micronuclei − NTP 2001 
Embryonic hamster cells Micronuclei + Inui et al. 1979 
Embryonic hamster cells Malignant cell transformation + Inui et al. 1979 
Embryonic hamster cells Drug-resistant mutations + Inui et al. 1979 
Mouse bone marrow cells Sister chromatid exchange + Giri et al. 1986 
Mouse bone marrow cells Sister chromatid exchange − Brambrilla et al. 1983 
Mouse host-mediated assay Mutations in Salmonella − Couch and Friedman 1975 
Mouse host-mediated assay DNA repair in E. coli K-12 − Hellmér and Bolcsfoldi 1992 

uvrb/recA
 

Rat liver cells DNA damage − Robbiano et al. 1990
 

Rat liver and gastric mucosa DNA damage − Brambrilla et al. 1983
 
cells 
Mouse testicular cells DNA synthesis − Friedman and Staub 1976 
Male mouse germ cells Unscheduled DNA synthesis − Alavantić et al. 1988a 
Male mouse germ cells Heritable translocations − Alavantić et al. 1988b 

Insect systems: 
Drosophila melanogaster (wing Somatic mutation + Graf et al. 1989 
spot test) 

+ = positive results; – = negative results 



   
 

    
 
 

 
 
 
 
 

  

      

     

  

 

 

    

  

   

    

  

   

 

   

  

    

  

       

   

      

    

      

     

     

     

 

 

 

   
 

  

 

 

    

109 NITRATE AND NITRITE 

3. HEALTH EFFECTS 

malignant cell transformation and produced drug-resistant mutations in embryonic hamster cells 

following treatment of the pregnant dams on gestation day 11 or 12 with a single dose of ≥125 mg/kg 

(Inui et al. 1979).  Alavantić et al. (1988a) treated male mice with sodium nitrite by gavage for 3 days at 

doses of 0, 60, or 120 mg/kg/day; there was no sign of treatment-related unscheduled DNA synthesis in 

spermatids analyzed 17 days following treatment.  Alavantić et al. (1988b) treated male mice with sodium 

nitrite by gavage for 2 weeks doses of 0, 60, or 120 mg/kg/day and subsequently mated them to virgin 

females; evaluation of primary spermatocytes from F1 males revealed no sign of treatment-related 

heritable translocations. In a host-mediated assay, mice were intraperitoneally inoculated with 

S. typhimurium strain G46 and gavaged with sodium nitrite (Couch and Friedman 1975); the sodium 

nitrite treatment did not induced increased frequency in S. typhimurium mutation rate in this host-

mediated assay.  Finally, feeding sodium nitrite to larvae of Drosophila melanogaster induced somatic 

mutations as assessed by the wing spot test (Graf et al. 1989). 

Numerous studies have examined the genotoxicity of nitrite in in vitro assays.  As shown in Table 3-4, 

there seem to be more positive results than negative results in tests of gene mutations in prokaryotic 

organisms, but it is difficult to draw a firm conclusion (Andrews et al. 1980, 1984; Balimandawa et al. 

1994; Brams et al. 1987; De Flora 1981, De Flora et al. 1984; Ehrenberg et al. 1980; Ishidate et al. 1981, 

1984; McCann et al. 1975; Törnqvist et al. 1983; Zeiger et al. 1992). However, it appears that the 

addition of metabolic activation systems to the incubation mixtures did not make a difference in the 

results. That is, tests that were positive without activation were also positive with activation; tests that 

were negative without activation were also negative with activation. This would indicate that nitrite can 

be a direct mutagenic chemical. In vitro tests that assessed chromosomal aberrations, SCEs, DNA repair, 

and cell transformations in sodium nitrite-treated mammalian cells yielded positive results (Inoue et al. 

1985; Ishidate et al. 1984; Luca et al. 1987; Lynch et al. 1983; Tsuda and Kato 1977; Tsuda et al. 1973, 

1981). Nitrite enhanced neutrophil-induced DNA strand breakage in rat lung type II epithelial cells; the 

enhancement was associated with an inhibition of neutrophil-derived myeloperoxidase (Knaapen et al. 

2005). 

3.4  TOXICOKINETICS 

No information was located regarding the pharmacokinetics of nitrate or nitrite following inhalation or 

dermal exposure.  However, numerous reports are available regarding the pharmacokinetics of ingested 

nitrate and nitrite.  Comprehensive reviews of the available data (Bailey et al. 2012; Bryan and van 

Grinsven 2013; IARC 2010; JECFA 2003a, 2003b; Lundberg and Weitzberg 2013; Lundberg and Govoni 
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Table 3-4.  Genotoxicity of Sodium Nitrite In Vitro 

Results 
With Without 

Species (test system) End point activation activation Reference 
Prokaryotic organisms: 

Salmonella typhimurium Gene mutation – 
TA98 
S. typhimurium TA100 Gene mutation + 

S. typhimurium TA98, TA100, Gene mutation + 
TA1537 
S. typhimurium TA100, Gene mutation + 
TA1535 
S. typhimurium TA98, TA100, Gene mutation − 
TA1535, TA1537, TA1538 
S. typhimurium TA100, Gene mutation + 
TA1530, TA1535 
S. typhimurium TA102, Gene mutation − 
YG1024, DJ400, DJ460 
S. typhimurium TA100 Gene mutation + 
S typhimurium TA97, TA98 Gene mutation − 
S. typhimurium TA1530 Gene mutation NT 
S typhimurium TA100, Gene mutation −a 

TA1535 
S typhimurium TA98, Gene mutation − 
TA1537, TA1538 
S. typhimurium TA1535 Gene mutation NT 
Escherichia coli WP2, WP67, DNA repair + 
CM871 

Eukaryotic organisms: 

Cultured human lymphocytes Sister chromatid NT 
exchange 

Chinese hamster ovary cells Sister chromatid NT 
exchange 

Chinese hamster ovary cells Chromosomal NT 
aberrations 

Monkey BS-C-1 fetal liver Chromosomal NT 
cells aberrations 
HeLa cells Chromosomal NT 

aberrations 
Chinese hamster fibroblasts Chromosomal NT 

aberrations 
Syrian hamster embryo cells Chromosomal NT 

aberrations 

–	 NTP 2001; Zeiger et al.
 
1992
 

+	 NTP 2001; Zeiger et al.
 
1992
 

+	 Ishidate et al. 1981
 

+	 Ishidate et al. 1984
 

−		 Andrews et al. 1980,
 
1984
 

+ Balimandawa et al. 1994
 

− Balimandawa et al. 1994
 

NT Brams et al. 1987
 

NT	 Brams et al. 1987
 

+	 Ehrenberg et al. 1980
 

+ De Flora 1981, 1984
 

− De Flora 1981, 1984
 

(+) McCann et al. 1975
 

+	 De Flora et al. 1984
 

+	 Inoue et al. 1985
 

+	 Tsuda et al. 1981
 

+	 Tsuda et al. 1981
 

+	 Luca et al. 1987
 

+	 Luca et al. 1987
 

+	 Ishidate et al.1984 

+	 Tsuda and Kato 1977
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Table 3-4.  Genotoxicity of Sodium Nitrite In Vitro 

Results 
With Without 

Species (test system) End point activation activation Reference 
HeLa S3 carcinoma cells DNA repair NT + Lynch et al. 1983
 

Syrian hamster embryo cells Cell transformation NT + Tsuda et al. 1973
 

aReported as a decrease in mutagenicity in the presence of S9 mix; however, it was not specified whether the 
decrease was relative to controls or sodium nitrite treatment in the absence of S9 mix. 

+ = positive results; (+) = weakly positive; – = negative results; DNA = deoxyribonucleic acid; NT = not tested 
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2004; Lundberg et al. 2008, 2009; Weitzberg and Lundberg 2013; Weitzberg et al. 2010; WHO 2011b) 

serve as references for the major portion of toxicokinetic data presented in this section of the ATSDR 

Toxicological Profile for Nitrate and Nitrite. 

Ingestion is the major source of exposure to nitrate and nitrite.  Vegetables are the main source of nitrate 

in the diet (approximately 60–80% of total nitrate intake); nitrate in some drinking water sources may 

contribute 15–20% of total nitrate intake.  Small amounts of nitrate and nitrite are added to some animal-

based products to serve as preservatives and to enhance taste.  Approximately 80–85% of nitrite in 

humans is produced from in vivo reduction of nitrate. 

The nitrate-nitrite-nitric oxide pathway in mammals includes a dietary component and an endogenous 

component.  Figure 3-2 depicts the metabolic pathways for ingested nitrate and nitrite, as well as the 

endogenous production of nitric oxide via nitric oxide synthase (NOS).  Numbers in brackets in the figure 

coincide with those in the following description of the pathways. Ingested nitrate passes through the 

stomach [1] to the small intestine [2] where it is nearly completely absorbed into the blood [3].  Following 

a nitrate-containing meal, circulating nitrate concentrations are normally in the range of 20–40 µM, 

depending on the type of diet and activity of nitric oxide synthases.  Peak plasma nitrate levels are 

reached 15–30 minutes following ingestion; the half-time of plasma nitrate is on the order of 5–6 hours.  

Most nitrate that passes through the kidney [4] is reabsorbed into the blood [5].  However, some is 

excreted in the urine [6]. In humans, approximately 25% of plasma nitrate is taken up by the salivary 

glands and secreted in the saliva [7]; concentrations salivary nitrate can be as much as 10–20 times that of 

plasma nitrate.  Approximately 20% of the nitrate in saliva undergoes anaerobic, nitrate reductase-

catalyzed reduction to nitrite by commensal bacteria; thus, salivary secretion and reduction in saliva 

results in conversion of approximately 5% of ingested nitrate to nitrite (Gangolli et al. 1994; Walker 

1996).  In vitro results using selected rat and mouse tissues and human liver tissues suggest a possible 

metabolic pathway whereby some plasma nitrate could be reduced to nitrite by enzymes such as xanthine 

oxidase (Jansson et al. 2008). Most salivary nitrate, however, passes to the small intestine and is 

absorbed into the blood.  A portion of nitrite (either produced from reduction of nitrate or ingested from 

food sources) that enters the stomach is rapidly protonated to nitrous acid (HNO2), which decomposes 

spontaneously to nitric oxide and other biologically active nitrogen oxides (e.g., nitrogen dioxide [NO2]; 

dinitrogen trioxide [N2O3]) in the acid environment of the stomach [8]; this process is enhanced in the 

presence of reducing compounds such as ascorbic acid and polyphenols.  Nitrite can also react with 

proteins, amines, and amides in the stomach.  Reaction of nitrite with some low-molecular-weight amines 
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Figure 3-2.  The Nitrate-Nitrite-Nitric Oxide Cycle in Humans* 
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dioxide; N2O3 = dinitrogen trioxide; NOS = nitric oxide synthase; oxyHb = oxyhemoglobin 
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(nitrosation) produces N-nitroso derivatives [9], including carcinogenic compounds, portions of which 

can be absorbed and distributed via systemic circulation.  However, most nitrite passes to the small 

intestine where it is absorbed into the blood.  Plasma levels of nitrite increase within 30 minutes 

following ingestion of nitrate.  Although the biological half-time of plasma nitrite is only 20–30 minutes, 

plasma levels remain elevated for several hours due to the enterosalivary circulation of nitrate.  Plasma 

nitrite concentrations, which are normally 50–100 nM, may increase as much as 5 times after a nitrate-

rich meal. The production of N-nitroso derivatives from plasma nitrite occurs to some extent in selected 

tissues. 

Nitrite in the blood and tissues can be reduced to nitric oxide, which is involved in a variety of 

physiological processes. In the presence of deoxyhemoglobin, reduction of nitrite to nitric oxide occurs 

via oxidation of ferrous (Fe2+) hemoglobin (which transports oxygen) to ferric (Fe3+) hemoglobin 

(methemoglobin, a poor transporter of oxygen) [10]. Methemoglobin is converted to deoxyhemoglobin 

[11] in a reaction catalyzed by methemoglobin reductase.  Nitrite can also react with oxyhemoglobin to 

form nitrate and methemoglobin [12]. 

In addition to exogenous sources of nitrate and nitrite (e.g., diet), nitrate, nitrite, and nitric oxide are 

produced endogenously.  A major endogenous production mechanism is oxygen-dependent reduction of 

L-arginine (a biologically-relevant amino acid) to nitric oxide [13], which occurs in most cells of the body 

in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and cofactors flavin adenine 

dinucleotide (FAD), tetrahydrobiopterin (BH4), heme, and calmodulin.  Nitric oxide is involved in a 

variety of physiological functions that include regulation of blood flow, platelet function, pulmonary 

function, nerve function, host defense, and metabolic control.  Nitric oxide may also be formed via an 

oxygen-independent one-electron reduction of nitrite in acidic and hypoxic tissues [14]. Nitrite may serve 

as an important source of nitric oxide under such acidic and hypoxic conditions because the half-time for 

plasma nitrite (15–20 minutes) is much longer than that of nitric oxide (<6 seconds). Nitric oxide is 

rapidly oxidized to nitrite in the presence of oxygen and ceruloplasmin [15]. Nitric oxide can also react 

with oxyhemoglobin to form nitrate and methemoglobin [16].  Various physiological processes are 

involved in maintaining a balance between systemic levels of nitrate, nitrite, and nitric oxide. The 

endogenous nitrate-nitrite-nitric oxide pathway provides baseline levels of nitrate and nitrite in the body 

which are supplemented by dietary intake.  The total plasma nitrate and nitrite content consists of portions 

entering the blood from oral intake and portions generated endogenously from nitric oxide in the body. 
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As much as 60–75% of plasma nitrate is excreted unchanged in the urine within 24 hours following 

ingestion.  Under normal physiological conditions, nitrite is not detected in the urine and its presence in 

urine is an indication of infection by nitrate-reducing organisms.  Zhou et al. (2014) reported increased 

urinary excretion of N-nitroso compounds following ingestion of nitrite from the drinking water of rats. 

Minor urinary products of nitrate and nitrite metabolism include ammonia and urea.  Nitrate and nitrite 

are secreted to some extent in breast milk and perspiration. Fecal excretion of nitrate and nitrite is 

negligible. 

3.4.1 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points. 

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters. The 
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numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.  

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems.  However, if the uptake and disposition of the chemical substance(s) 

are adequately described, this simplification is desirable because data are often unavailable for many 

biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty. The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species. 

Figure 3-3 shows a conceptualized representation of a PBPK model. 

If PBPK models for nitrate and nitrite exist, the overall results and individual models are discussed in this 

section in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species 

extrapolations. 

Kinetics of absorption of nitrate from the gastrointestinal tract and elimination in urine can be described 

mathematically with simple one-compartment first-order models (Schultz et al. 1985; Wagner et al. 

1983). The complex kinetics of salivary secretion of nitrate, reduction and absorption in the 

gastrointestinal tract, and binding to hemoglobin and formation of methemoglobin have been described 

with a multicompartment model (Zeilmaker et al. 1996, 2010b). 
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Figure 3-3.  Conceptual Representation of a Physiologically Based
 
Pharmacokinetic (PBPK) Model for a 


Hypothetical Chemical Substance
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Note:  This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 

Source:  adapted from Krishnan and Andersen 1994 
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The Zeilmaker et al. (1996, 2010b) Model 

Description of the Model. Zeilmaker et al. (1996, 2010b) developed a PBPK model for simulating 

kinetics of methemoglobin formation resulting from absorption of nitrate in adult humans. The structure 

of the model is depicted in Figure 3-4.  Parameters and parameter values for the model are presented in 

Table 3-5.  

The model simulates absorption of nitrate from the gastrointestinal tract as a first-order transfer to a 

central nitrate distribution compartment, which is assumed to be in equilibrium with blood plasma (ka,NO3, 

hour-1). The fraction of ingested nitrate that is absorbed is assumed to be 100% (Fa=1).  The model also 

simulates delivery of endogenously produced nitrate to blood (zero-order Kend = 162 mg NO3/24 hours).  

Absorbed nitrate is eliminated from the central compartment by excretion into urine, metabolism (tissues 

and gastrointestinal bacteria), and secretion into saliva. The metabolism and urinary pathways are 

combined in the model into a single first-order pathway (kel, hour-1), a fraction of which goes to urine 

(fu=0.56).  Secretion of nitrate into saliva is simulated as a separate pathway.  Secretion occurs by 

capacity-limited transport mediated by a sodium/iodide (Na+/I- symporter, NIS) in the salivary gland 

epithelium.  Although the NIS has limited capacity for nitrate, relatively large nitrate doses and blood 

nitrate concentrations are required to exceed linear blood-to-saliva kinetics in vivo, indicative of 

saturation of the carrier. The model can simulate salivary secretion of nitrate as either a first-order 

process (ksec,NO3, hour-1), or a capacity-limited process (Km, mM; Cs,max,NO3, mg/L), depending on the dose 

(<1,000 mg/70 kg; 14 mg/kg) or plasma nitrate concentration (<34 mg NO3/L). Nitrate is eliminated 

from saliva by transfer to the gastrointestinal tract (flow-limited B, L/hour) or reduction to nitrite (first-

order kconv, hour-1). Nitrite in saliva undergoes transfer to the gastrointestinal tract (flow-limited B, 

L/hour), from where it can be absorbed into blood (first-order ka,NO2, hour-1) or be converted to other 

metabolites and reaction products (first-order kdec, hour-1).  Nitrite in blood is secreted into saliva (first-

order ksec,NO2, hour-1) or reacts with hemoglobin to produce methemoglobin (first-order kNO2, hour-1) and 

nitrate.  Methemoglobin is regenerated as a product of methemoglobin reductase (capacity-limited Km,r, 

mM). Nitrate formed in the reaction of nitrite with hemoglobin is returned to blood (first-order z⋅kNO2, 

hour-1).  Background production of methemoglobin from reactants other than nitrite is accounted for as a 

background concentration of reactants (Cbg, mM), which combines additively with the concentration of 

nitrite (CNO2, mM) to react with hemoglobin. 
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Figure 3-4.  Structure of the Zeilmaker et al. (1996, 2010b) Model* 

*See Table 3-5 for explanation of symbols; solid lines = mass flows; dotted lines = functional relationships 

Hb = hemoglobin; MetHb = methemoglobin 

Source:  Adapted from Zeilmaker et al. (2010b) 
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Table 3-5.  Parameter Values for the Zeilmaker et al. (1996, 2010) PBPK Model of
 
Nitrate and Nitrite in Humans
 

Parameter Value (standard deviation or range) 
Physiological parameters 

Volume of saliva compartment (Vs) 0.001 L 
Salivary flow (B) 0.069 L/hour (0.042–0.120) 

Nitrate parameters 
Volume fraction (of body weight) of central nitrate distribution 0.30 (0.29–0.33) 
compartment (VNO3) 
Nitrate dose averaging time (∆t) 0.1 hours (drinking water); 0.8 hours 

(vegetables) 
Nitrate gastrointestinal absorption rate (ka,NO3) >5 hour-1 

Nitrate gastrointestinal absorption fraction (Fa,NO3) 1 
Nitrate endogenous production (Kend) 162 mg/24 hours 
Nitrate elimination rate (kel) 0.14±0.01 hour-1 

Nitrate urinary elimination fraction (fu) 0.56±0.029 
Nitrate blood-to-saliva secretion rate (ksec,NO3) 0.045±0.003 hour-1 

Nitrate blood-to-saliva half-maximum (KM,s) 104 mg/L 
Nitrate blood-to-saliva maximum (Cmax,s) 2,258 mg/L 
Nitrate-to-nitrite conversion rate in saliva (kconv) 19.95±1.75 hour-1 

Nitrite parameters 
Volume fraction (of body weight) of central nitrite distribution 0.65±0.03 
compartment (VNO2) 
Nitrite gastrointestinal absorption rate (ka,NO2) >5 hour-1 

Nitrite gastrointestinal absorption fraction (Fa,NO2) 1 
Nitrite blood-to-saliva secretion rate (ksec,NO2) 0.045±0.003 hour-1 

Nitrite gastrointestinal conversion rate to other products (kdec) 0.67 hour-1 (at pH 1.5) 
Hemoglobin/methemoglobin parameters 

Nitrite reaction rate with hemoglobin (kNO2) 4.23±0.15 mM-1hour-1 

Methemoglobin reductase half maximum (KM,r) 0.012±0.0018 mM 
Methemoglobin reductase maximum (Vmax,r) 4.23±0.15 mM/hour 
Stoichiometric constant for regeneration of nitrate from 0.5±0.01 
methemoglobin (z)
 
Hemoglobin concentration in blood (CHg) 8 mM 

Background methemoglobin concentration in blood (CMetHb,bg) 0.03 mM
 

Background concentration of hemoglobin oxidizing reactants in 0.0058 mM
 
blood(Cbg) 

aBased on Zeilmaker et al. (2010b) 

http:0.5�0.01
http:4.23�0.15
http:4.23�0.15
http:0.65�0.03
http:19.95�1.75
http:0.14�0.01
http:0.29�0.33
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Following ingestion of nitrate in a given medium (e.g., drinking water or vegetables), the ingested nitrate 

dose is assumed to enter the absorption compartment at a rate (mg/hour) given by the oral dose (mg) 

divided by a dose averaging time, ∆t (hour), where the parameter, ∆t, is assigned a value specific for the 

ingested medium. 

Sources for model parameter estimates are presented in Table 3-5.  Nine parameters were derived by 

statistical optimization to experimental in vivo data (Kortboyer et al. 1997b, 1998b; Wagner et al. 1983).  

Data from Wagner et al. (1983) were used to optimize parameters ∆twater, ka,NO3, ksec,NO3, and kconv. Wagner 

et al. (1983) measured plasma, saliva, and urine, and nitrite in plasma and saliva, in 12 healthy adults 

following a single oral dose of 15N-nitrate in drinking water. The parameter, ∆tveg (for vegetables), was 

optimized with data from a study in which plasma nitrate was measured in six adults before and following 

a vegetable meal (Kortboyer et al. 1998b). The parameter, VNO2, was optimized with data from a study in 

which plasma nitrite concentrations were measured in nine adults before and following an intravenous 

dose of sodium nitrite (Kortboyer et al. 1997b). Parameters describing reactions with hemoglobin and 

methemoglobin (kNO2, [Km,r, Vmax,r, z]) were derived by statistical optimization to experimental in vitro 

studies in which reaction kinetics of nitrite with hemoglobin were measured in whole human blood 

(Kosaka et al. 1979; Rodkey 1976). The remaining parameters were estimated from reported literature or 

calculated from other parameters (Cortas and Wakid 1991; Kortboyer et al. 1995, 1997a, 1997b, 1998a, 

1998b; Lambers et al. 2000; McKnight et al. 1997; Mirvish et al. 1975; Schultz et al. 1985; Wagner et al. 

1983). 

Validation of the Model. The optimized model was evaluated by comparing predictions of plasma 

nitrate and nitrite concentrations and blood methemoglobin concentrations in nine adults who consumed a 

single oral dose of sodium nitrite (2.42 or 4.84 mg sodium nitrite/kg) (Kortboyer et al. 1997b). The 

results of the evaluation are reported in Zeilmaker et al. (2010b) as overlay plots of observations and 

predictions.  Statistical evaluations of the agreement between predictions and observations were not 

reported. 

Risk Assessment. The model has been used to predict concentrations of methemoglobin that would 

result from a vegetable meal and to evaluate whether the average daily intake of nitrate would result in 

clinically significant methemoglobinemia (JECFA 2003a).  JECFA (2003a) applied the model to make 

predictions in adults and infants. In order to apply the model to infants, blood volume and volumes of the 

central nitrate and nitrite compartments were scaled to infants (the exact scaling procedure or scaled 

parameter values were not reported).  JECFA (2003a) also applied the model to predict methemoglobin 
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concentrations that might occur in patients who have inflammatory reactions to absorbed nitrite. 

Absorbed doses of nitrate in patients were simulated in the model as an intravenous infusion of nitrite. 

Target Tissues. The model was calibrated to predict concentrations of nitrate and nitrite in plasma 

and blood methemoglobin concentrations in humans.  

Species Extrapolation. The model simulates nitrate and nitrite kinetics in humans. Applications to 

other species would require development of appropriate scaling methods, optimization, and validation. 

Interroute Extrapolation. The model is currently configured to simulate kinetics associated with 

intravenous and oral dosing. Simulation of other potential routes of exposure (e.g., inhalation, dermal) 

would require development of models for the absorption of inhaled nitrate or nitrate deposited on the skin. 

3.5  MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

Ingestion is the major route of exposure to exogenous nitrate and nitrite.  Nitrate is assumed to enter the 

blood from the upper small intestinal tract via active transport (EPA 1990b), which may involve active 

transport systems such as the sodium iodide symporter (NIS) because nitrate has been shown to be a 

relatively weak competitive inhibitor of NIS (e.g., Eskandari et al. 1997) and the NIS-mediated uptake of 

iodine from the intestine has been demonstrated (Nicola et al. 2009). Nitrite is readily absorbed via 

diffusion across the gastric mucosa and wall of the small intestine (EPA 1990b). As described in detail in 

Section 3.4, nitrate and nitrite are readily distributed throughout the body and a portion of plasma nitrate 

is concentrated in the salivary gland at concentrations as much as 10 times that of plasma nitrate. Qin et 

al. (2012) demonstrated that the scialic acid (SA)/H+ cotransporter, sialin, is endogenously localized in the 

plasma membrane of salivary gland cells and functions as an electrogenic 2NO3
-/H+ cotransporter; this 

active transport mechanism may be responsible for high concentrations of nitrate in the salivary gland. 

Refer to Section 3.4 for information regarding metabolic pathways involved in the nitrate-nitrite-nitric 

oxide cycle. No information was located regarding specific mechanisms involved in transfer of nitrate to 

the urine. 
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3.5.2 Mechanisms of Toxicity 

The most sensitive and widely-recognized toxic effect of nitrate and nitrite is that of nitrite-induced 

methemoglobinemia in which nitrite (ingested as nitrite, formed via bacterial reduction of ingested nitrate, 

and/or produced as an endogenous product of the nitric oxide oxidation) reacts with ferrous (Fe2+) 

hemoglobin (which transports oxygen) to form ferric (Fe3+) hemoglobin (methemoglobin, a poor 

transporter of oxygen) (refer to Section 3.4 for additional information regarding the nitrate-nitrite-nitric 

oxide pathway). 

As stated in Section 3.2.2.2 (Endocrine Effects), nitrate is a dose-dependent competitive inhibitor of the 

NIS, which mediates the uptake of iodine by the thyroid.  Sufficiently decreased iodine uptake by the 

thyroid might result in decreased production of thyroid hormones T3 and T4 and consequent adverse 

effects associated with thyroid dysfunction (e.g., hypothyroidism), including effects on developing 

fetuses. 

Proposed mechanisms of carcinogenicity involve the production of N-nitrosamines via nitrosating 

reactions that involve nitrite and amines or amides.  Such reactions may occur within some food items 

during storage or preparation or in the body (usually in the stomach) (Mirvish 1975).  The National 

Toxicology Program’s 12th Report on Carcinogens (NTP 2011) lists 17 N-nitroso compounds (mostly 

nitrosamines) as reasonably anticipated to be a human carcinogen based on sufficient evidence of 

carcinogenicity from studies in experimental animals and one nitrosourea compound as known to be a 

human carcinogen and one nitrosourea compound (1-(2-chloroethyl)-3-(4-methylcyclohexyl)-

1-nitrosourea) as known to be a human carcinogen based on sufficient evidence of carcinogenicity from 

studies in humans.  The International Agency for Research on Cancer (IARC 2014) lists eight of these 

compounds in Group 2A (probably carcinogenic to humans), another eight in Group 2B (possibly 

carcinogenic to humans), and two compounds (N-nitrosopiperadine and 4-(N-nitrosomethylamino)-

1-(3-pyridyl)-1-butanone) in Group 1 (carcinogenic to humans).  Interactions between nitrite and a variety 

of drugs have been shown to result in the formation of carcinogenic N-nitroso compounds (Brambilla and 

Martelli (2007). 

3.5.3 Animal-to-Human Extrapolations 

Interspecies differences in nitrate-nitrite-nitric acid pathways indicate that laboratory animals do not 

represent reliable models of nitrate-nitrite-nitric oxide pathways for humans (EPA 1990b; Health Canada 

2012; Kortboyer et al. 1997a, 1997b; Walker 1995; WHO 2011b). For example, Til et al. (1988) reported 
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that the rate of conversion of nitrate to nitrite is much lower in rats than humans.  Cohen and Myant 

(1959) reported that the rat lacks the active transport mechanism (sodium iodide symporter) responsible 

for secretion of plasma nitrate to the salivary gland in humans. Therefore, the rate of reduction of salivary 

nitrate to nitrite in the rat is likely much less than the estimate of 25% reduction in human saliva. 

3.6  TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to 

develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors.  In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 

(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 
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As discussed in detail in Section 3.2.2.2 (Endocrine Effects), available human data provide some evidence 

that elevated levels of nitrate in drinking water and/or nitrate-rich diets may be associated with signs of 

thyroid dysfunction (Aschebrook-Kilfoy et al. 2012; Gatseva and Argirova 2008; Rádiková et al. 2008; 

Tajtáková et al. 2006; Ward et al. 2010).  In animals, orally-administered nitrate has been demonstrated to 

cause decreased iodine uptake by the thyroid and changes in serum thyroid hormone levels (e.g., 

Bloomfield et al. 1961; El-Wakf et al. 2008; Eskiocak et al. 2005; Mukhopadhyay et al. 2005; Zaki et al. 

2004). 

No in vitro studies were located regarding endocrine disruption of nitrate or nitrite. 

3.7  CHILDREN’S SUSCEPTIBILITY 

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when most biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to adverse health effects from exposure to 

hazardous chemicals, but whether there is a difference depends on the chemical(s) (Guzelian et al. 1992; 

NRC 1993).  Children may be more or less susceptible than adults to exposure-related health effects, and 

the relationship may change with developmental age (Guzelian et al. 1992; NRC 1993).  Vulnerability 

often depends on developmental stage.  There are critical periods of structural and functional 

development during both prenatal and postnatal life that are most sensitive to disruption from exposure to 

hazardous substances.  Damage from exposure in one stage may not be evident until a later stage of 

development. There are often differences in pharmacokinetics and metabolism between children and 

adults.  For example, absorption may be different in neonates because of the immaturity of their 

gastrointestinal tract and their larger skin surface area in proportion to body weight (Morselli et al. 1980; 

NRC 1993); the gastrointestinal absorption of lead is greatest in infants and young children (Ziegler et al. 

1978).  Distribution of xenobiotics may be different; for example, infants have a larger proportion of their 
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bodies as extracellular water, and their brains and livers are proportionately larger (Altman and Dittmer 

1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 1966; Widdowson and Dickerson 1964).  Past 

literature has often described the fetus/infant as having an immature (developing) blood-brain barrier that 

is leaky and poorly intact (Costa et al. 2004).  However, current evidence suggests that the blood-brain 

barrier is anatomically and physically intact at this stage of development, and the restrictive intracellular 

junctions that exist at the blood-CNS interface are fully formed, intact, and functionally effective 

(Saunders et al. 2008, 2012). 

However, during development of the brain, there are differences between fetuses/infants and adults that 

are toxicologically important. These differences mainly involve variations in physiological transport 

systems that form during development (Ek et al. 2012).  These transport mechanisms (influx and efflux) 

play an important role in the movement of amino acids and other vital substances across the blood-brain 

barrier in the developing brain; these transport mechanisms are far more active in the developing brain 

than in the adult.  Because many drugs or potential toxins may be transported into the brain using these 

same transport mechanisms—the developing brain may be rendered more vulnerable than the adult.  

Thus, concern regarding possible involvement of the blood-brain barrier with enhanced susceptibility of 

the developing brain to toxins is valid.  It is important to note however, that this potential selective 

vulnerability of the developing brain is associated with essential normal physiological mechanisms; and 

not because of an absence or deficiency of anatomical/physical barrier mechanisms. 

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing; 

whether these mechanisms provide protection for the developing brain or render it more vulnerable to 

toxic injury is an important toxicological question.  Chemical exposure should be assessed on a case-by-

case basis.  Research continues into the function and structure of the blood-brain barrier in early life 

(Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002). 

Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of 

growth and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns given their low glomerular filtration rate and not having developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  
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Children and adults may differ in their capacity to repair damage from chemical insults. Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

As discussed in detail in Section 3.4 (Toxicokinetics), a portion of ingested nitrate is reduced to nitrite by 

commensal bacteria in the mouth; however, the acid environment of the normal stomach does not support 

the growth of such bacteria.  Most nitrite (ingested or reduced from nitrate) is absorbed from the upper 

gastrointestinal tract and enters the blood; plasma nitrite readily reacts with hemoglobin to form 

methemoglobin.  Sufficiently high levels of methemoglobin levels result in poor oxygen supply to tissues.  

Clinical methemoglobinemia is generally indicated at methemoglobin levels >10% of total hemoglobin 

and cyanosis is an early clinical sign.  The first 6 months of postnatal life is a period of increased 

susceptibility to methemoglobinemia (termed infantile methemoglobinemia or blue baby syndrome); 

possible contributing factors to this increased susceptibility (pH of the infant stomach, proportion of fetal 

hemoglobin to adult hemoglobin, and concentration of NADH-dependent methemoglobin reductase) 

(Greer and Shannon 2005) are discussed below. 

A portion of ingested nitrate is reduced to nitrite by commensal bacteria in the mouth; however, the acid 

environment of the normal stomach does not support the growth of such bacteria and most of the nitrate 

that reaches the stomach passes to the small intestine from which it is nearly completely absorbed into the 

blood.  However, a higher pH in the stomach of the newborn may favor growth of nitrate-reducing 

bacteria and increased reduction of nitrate to nitrite and consequent increased plasma methemoglobin. 

Most hemoglobin in the newborn is in a form termed fetal hemoglobin, which appears to be more readily 

oxidized to methemoglobin than adult hemoglobin; fetal hemoglobin is replaced by adult hemoglobin 

during early postnatal life.  Levels of NADH-dependent methemoglobin reductase (the major enzyme 

responsible for reduction of methemoglobin to normal hemoglobin) in the newborn increase 

approximately 2-fold during the first 4 month of postnatal life to reach adult levels. 
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There is some evidence that methemoglobinemia in infants drinking formula prepared using drinking 

water with relatively high levels of nitrate may be related to bacterial contamination of such water sources 

and consequent gastrointestinal disorders, as well as gastrointestinal infection and inflammation and the 

ensuing overproduction of nitric oxide (Avery 1999). Kanady et al. (2012) reported little or no bacterial 

conversion of nitrate to nitrite in the saliva of a group of 10 infants during the first 2 postnatal months that 

was considered mainly due to lower numbers of major nitrate-reducing oral bacteria than adults.  Ibrahim 

et al. (2012) found that blood nitrite levels of newborns approximately 1–2 days of age were 35–55% 

lower than that of adults. 

Some investigators have reported significant associations between nitrate levels in drinking water (or 

living in areas presumed to have elevated nitrate levels in drinking water sources) and risk of childhood 

type 1 diabetes (Dahlquist et al. 1990; Kostraba et al. 1992; Parslow et al. 1997; Virtanen et al. 1994).  

However, no such relationship was observed in two other studies (van Maanen et al. 2000; Zhao et al. 

2001).  Refer to Section 3.2.2.2 (Metabolic Effects) for summaries of these study reports. 

Results of studies designed to assess possible associations between nitrate levels in drinking water 

sources and developmental end points in humans provide equivocal evidence of nitrate-related effects on 

the developing fetus and infant (see Section 3.2.2.6, Developmental Effects). There is limited evidence of 

nitrate-induced thyroid dysfunction (see Section 3.2.2.2, Endocrine Effects), which could result in adverse 

effects on the developing fetus of a pregnant mother. 

3.8  BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

The National Report on Human Exposure to Environmental Chemicals provides an ongoing assessment 

of a generalizable sample of the exposure of the U.S. population to environmental chemicals using 

biomonitoring.  This report is available at http://www.cdc.gov/exposurereport/. The biomonitoring data 

for nitrate from this report is discussed in Section 6.5. A biomarker of exposure is a xenobiotic substance 

or its metabolite(s) or the product of an interaction between a xenobiotic agent and some target 

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989). The 

preferred biomarkers of exposure are generally the substance itself, substance-specific metabolites in 

http://www.cdc.gov/exposurereport
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readily obtainable body fluid(s), or excreta.  However, several factors can confound the use and 

interpretation of biomarkers of exposure.  The body burden of a substance may be the result of exposures 

from more than one source.  The substance being measured may be a metabolite of another xenobiotic 

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic 

compounds).  Depending on the properties of the substance (e.g., biologic half-life) and environmental 

conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the 

body by the time samples can be taken.  It may be difficult to identify individuals exposed to hazardous 

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as 

copper, zinc, and selenium).  Biomarkers of exposure to nitrate and nitrite are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific. They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by nitrate and nitrite are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are 

discussed in Section 3.10, Populations That Are Unusually Susceptible. 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Nitrate and Nitrite 

There are no biomarkers of exposure that are specific to nitrate or nitrite. Although nitrate and nitrite can 

be detected in blood, saliva, and urine (mostly nitrate), nitrate and nitrite are also produced endogenously 

via the nitrate-nitrite-nitric oxide pathway.  Sources for nitrate and nitrite levels in the body may therefore 

include not only ingested food and drinking water, but also oxidation of nitric oxide produced 

endogenously.  Similarly, N-nitroso compounds that may be detected in the blood or urine may indicate 

exposure to nitrate or nitrite; however, these compounds may also be products of the endogenous nitrate-

nitrite-nitric oxide pathway. 
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3.8.2 Biomarkers Used to Characterize Effects Caused by Nitrate and Nitrite 

Biomarkers of effects from exposure to nitrate or nitrite are not specific to nitrate or nitrite.  Blood 

methemoglobin level has been used as a biomarker of nitrate and nitrite toxicity; however, 

methemoglobinemia may be elicited by other substances such as selected drugs, pesticides, industrial and 

commercial products, and medical conditions such as pediatric gastrointestinal infection, sepsis, and sickle 

cell crisis (ATSDR 2013a). Methemoglobinemia may also be inherited (genetic conditions that result in 

decreased activity of enzymes that reduce methemoglobin or the presence of hemoglobin M). Jansen et al. 

(1995) reported a rapid 6-fold increase in urinary N-methylnicotinamide (a metabolite of tryptophan) in 

four of eight volunteers following the ingestion of sodium nitrate at 10 mg/kg; however, little to no 

increase in urinary N-methylnicotinamide was observed in the other four volunteers. Urinary levels of 

various other N-nitroso compounds (e.g., nitrosoproline) have been measured as an index of nitrosation 

(Ohshima and Bartsch 1988); however, N-nitroso compounds can form via endogenous nitrosation and do 

not require the intake of nitrate or nitrite. 

3.9  INTERACTIONS WITH OTHER CHEMICALS 

Information regarding interactions between nitrate or nitrite and other substances is comprised mainly of 

studies that assessed the tumorigenicity of oral exposure to sodium nitrite in the presence of selected 

amino compounds or other substances suspected or known to cause cancer and studies that assessed 

modulation of tumorigenicity by selected antioxidants. As discussed in Section 3.5 (Mechanisms of 

Action), nitrosating reactions that involve nitrite and amines or amides may result in the production of 

N-nitrosamines, some of which may be carcinogenic.  Interactions between nitrite and a variety of drugs 

may also result in the formation of carcinogenic N-nitroso compounds (Brambilla and Martelli (2007). 

Adverse effects elicited in laboratory animals exposed to selected substances were enhanced or 

diminished upon co-exposure to nitrite, although mechanisms for such nitrite-induced enhanced or 

diminished responses have not been identified.  For example, Kawabe et al. (1994) observed increased 

severity of forestomach hyperplasia in groups of catechol- or 3-methoxycatechol-treated rats 

coadministered sodium nitrite and increased thickness of forestomach mucosa (indication of cellular 

proliferation) in rats treated with sodium nitrite in combination with phenolic compounds such as 

t-butylhydroquinone, catechol, gallic acid, 1,2,4-benzenetriol, dl-3-(3,4-dihydroxyphenyl)-alanine, and 

hydroquinone. Coadministration of sodium nitrite with catechol resulted in enhanced cellular 

proliferation. Pregnant Syrian golden hamsters fed a diet containing nitrite and morpholine exhibited a 
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higher incidence of liver-cell carcinoma (5/16 hamsters) compared to those fed diets containing 

morpholine in the absence of nitrite (0/22) (Shank and Newberne 1976).  Sodium nitrite treatment 

resulted in increased incidences of forestomach papillomas and decreased incidences of glandular 

stomach epithelial adenomas in rats provided drinking water to which sodium nitrite and either catechol 

or 3-methoxycatechol were added either with or without coexposure to known carcinogens (Hirose et al. 

1990, 1993). IARC (2010) summarized results from a Russian study (Ilnitsky and Kolpakova 1997) in 

which sodium nitrite appeared to enhance the carcinogenic effect of leukemia viruses in mice. Hirose et 

al. (2002) observed a reduction of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced mammary 

gland tumors in rats coexposed to sodium nitrite in the drinking water.  Commoner et al. (1970) reported 

an inhibition of the tumorigenic action of 2-acetylaminofluorene in rats co-treated with nitrite. 

Nitrate, thiocyanate, and perchlorate are dose-dependent competitive inhibitors of the sodium-iodide 

symporter (NIS), which mediates the uptake of iodine by the thyroid (De Groef et al. 2006).  

Overexposure to any one of these competitive inhibitors could decrease iodine uptake and result in 

thyroid dysfunction; this effect could be more severe during exposures to combinations of these 

substances (and possibly other NIS competitive inhibitors). 

3.10  POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to nitrate and nitrite than will most 

persons exposed to the same level of nitrate and nitrite in the environment.  Factors involved with 

increased susceptibility may include genetic makeup, age, health and nutritional status, and exposure to 

other toxic substances (e.g., cigarette smoke).  These parameters result in reduced detoxification or 

excretion of nitrate and nitrite, or compromised function of organs affected by nitrate and nitrite.  

Populations who are at greater risk due to their unusually high exposure to nitrate and nitrite are discussed 

in Section 6.7, Populations with Potentially High Exposures. 

Infants 1–6 months of age appear to be particularly sensitive to nitrite-induced methemoglobinemia 

following ingestion of formula prepared from drinking water containing elevated levels of nitrate (see 

Section 3.7 for detailed discussion of biological factors that may be responsible for increased sensitivity 

of infants).  Infants with gastroenteritis may be at increased risk for nitrite-induced methemoglobinemia, 

although nitrite and nitrate generation from oxidation of endogenous nitric oxide produced under 

inflammatory conditions may be a major contributory factor (Avery 1999). Individuals with higher-than-

normal gastric pH (e.g., achlorhydria, a condition whereby gastric acid production is low or absent; 
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individuals taking antacids) may be at increased risk of methemoglobinemia if the gastric environment 

supports survival of nitrate-reducing bacteria. 

Some epidemiological studies provide suggestive evidence of associations between exposure to nitrates in 

drinking water and spontaneous abortions, intrauterine growth restriction, and selected birth defects (e.g., 

Brender et al. 2013; Bukowski et al. 2001; CDC 1996; Dorsch et al. 1984; Schmitz 1961; Tabacova et al. 

1997, 1998).  Results from these studies suggest that the pregnant mother and her developing fetus might 

be particularly susceptible to nitrate/nitrite toxicity.  However, estimates of nitrate intakes were typically 

based on measurements of nitrate levels in drinking water sources at selected time points and self-

reported estimates of water consumption.  Furthermore, possible confounding by other potential toxicants 

was not evaluated and studies did not typically account for dietary nitrate or nitrite. 

Other factors that may contribute to increased risk of methemoglobinemia include glucose-6-phosphate 

dehydrogenase deficiency (which can result in decreased numbers of red blood cells); deficiency in 

NADH-dependent methemoglobin reductase (the major enzyme responsible for the reduction of 

methemoglobin to normal hemoglobin); diseases such as anemia, cardiovascular disease, lung disease, 

and sepsis; and abnormal hemoglobin species including carboxyhemoglobin, sulfhemoglobin, and sickle 

hemoglobin.  Individuals consuming diets deficient in selected antioxidants (e.g., vitamin C, vitamin E) 

might be at increased risk of cancer associated with the production of potentially carcinogenic N-nitroso 

compounds (WHO 2011b). 

3.11  METHODS FOR REDUCING TOXIC EFFECTS 

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to nitrate and nitrite.  Because some of the treatments discussed may be experimental and 

unproven, this section should not be used as a guide for treatment of exposures to nitrate and nitrite.  

When specific exposures have occurred, poison control centers, board certified medical toxicologists, 

board-certified occupational medicine physicians and/or other medical specialists with expertise and 

experience treating patients overexposed to nitrate and nitrite can be consulted for medical advice.  The 

following texts provide specific information about treatment following exposures to nitrate and nitrite: 

Barclay PJ. 1998.  Nitrates and nitrites.  In: Viccellio P, ed.  Emergency toxicology.  2nd ed.  
Philadelphia, PA:  Lippincott-Raven Publishers, 315-323. 

Leikin JB, Paloucek FP, eds.  2008.  Poisoning and toxicology handbook.  4th ed.  Boca Raton, FL:  CRC 
Press, 830. 
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Seifert SA.  2004.  Nitrates and nitrites.  In:  Dart RC, ed.  Medical toxicology.  3rd ed.  Philadelphia, PA: 
Lippincott Williams & Williams, 1174-1180. 

Additional relevant information can be found in the front section of this profile under QUICK 

REFERENCE FOR HEALTH CARE PROVIDERS. 

3.11.1 Reducing Peak Absorption Following Exposure 

Ingestion is the most likely route of overexposure to nitrate or nitrite.  Nitrate and nitrite bind to activated 

charcoal, which may be administered (1 g/kg without cathartic) within 1–2 hours following significant 

ingestion (Seifert 2004).  Use of mouthwash containing chlorhexidine (an active antibacterial) resulted in 

a large decrease in the mean percent reduction of salivary nitrate to nitrite (van Maanen et al. 1996b). 

3.11.2 Reducing Body Burden 

No information was located regarding methods to reduce the body burden of nitrate or nitrite. 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects 

Severe methemoglobinemia (methemoglobin levels generally >30% of total hemoglobin) can be reduced 

by intravenous administration of methylene blue (1–2 mg/kg) (Barclay 1998; Leikin and Paloucek 2008; 

Seifert 2004).  Exchange transfusions may be considered for patients who do not respond to methylene 

blue (particularly patients with glucose-6-phosphate dehydrogenase deficiency or hemoglobin M), and 

patients where methylene blue is contraindicated (e.g., patients on serotonin uptake inhibitors) (ATSDR 

2013a; Barclay 1998).  In symptomatic patients, 100% oxygen and assisted ventilation should be 

considered; seizures can be treated with oxygen and benzodiazepines, followed by phenobarbital (Seifert 

2004).  Hyperbaric oxygen therapy may be of some benefit, but has not been demonstrated in controlled 

studies (Leikin and Paloucek 2008; Seifert 2004). Management of nitrite-induced hypotension involves 

placement of the patient in Trendelenburg position, administration of intravenous isotonic fluids at 10– 

20 mL/kg bolus and as required thereafter, and pressors such as dopamine or norepinephrine, as needed 

(Seifert 2004). 

In several rat studies, tumorigenicity associated with concurrent exposure to nitrite and various amino 

compounds was modulated by coexposure to selected antioxidants such as ascorbic acid, catechol, 

3-methoxycatechol, tert-butylhydroquinone, α-tocopherol, and propyl gallate (Chan and Fong 1977; 
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Mirvish et al. 1976, 1983; Miyauchi et al. 2002; Mohktar et al. 1988; Yada et al. 2002; Yoshida et al. 

1994); thioproline (which may serve as a nitrite scavenger when nitrosated to nitrosothioproline) (Tahira 

et al. 1988); or soy bean (Mokhtar et al. 1988). 

3.12  ADEQUACY OF THE DATABASE 

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of nitrate and nitrite is available.  Where adequate information 

is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to 

assure the initiation of a program of research designed to determine the adverse health effects (and 

techniques for developing methods to determine such health effects) of nitrate and nitrite. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health risk assessment.  This definition should not be interpreted to 

mean that all data needs discussed in this section must be filled.  In the future, the identified data needs 

will be evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of Nitrate and Nitrite 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

nitrate and nitrite are summarized in Figures 3-5 and 3-6.  The purpose of this figure is to illustrate the 

existing information concerning the health effects of nitrate and nitrite. Each dot in the figure indicates 

that one or more studies provide information associated with that particular effect.  The dot does not 

necessarily imply anything about the quality of the study or studies, nor should missing information in 

this figure be interpreted as a “data need”.  A data need, as defined in ATSDR’s Decision Guide for 

Identifying Substance-Specific Data Needs Related to Toxicological Profiles (Agency for Toxic 

Substances and Disease Registry 1989), is substance-specific information necessary to conduct 

comprehensive public health assessments.  Generally, ATSDR defines a data gap more broadly as any 

substance-specific information missing from the scientific literature. 
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Figure 3-5.  Existing Information on Health Effects of Nitrate 
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Figure 3-6.  Existing Information on Health Effects of Nitrite 
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3.12.2 Identification of Data Needs 

Acute-Duration Exposure. No information was located regarding the effects of acute-duration 

inhalation exposure to nitrate or nitrite in humans.  Available information in laboratory animals is limited.  

RTECS (2014) lists a rat 4-hour LC50 of 5.5 mg/m3 (1.95 ppm) for sodium nitrite and a rat 2-hour LC50 of 

85 mg/m3 (24.42 ppm) for potassium nitrite. There was no evidence of exposure-related pulmonary or 

cardiac effects in anesthetized dogs exposed at up to 10 mg sodium nitrate/m3 (2.88 ppm) for 7.5 minutes 

or anesthetized dogs or conscious sheep exposed at 5 mg sodium nitrate/m3 (1.44 ppm) for 4 hours. 

Additional information regarding the effects of acute-duration inhalation exposure to nitrate or nitrite is 

not considered necessary because the general population is not likely to be exposed to airborne nitrate or 

nitrite concentrations at levels that might cause adverse health effects. 

Refer to the section titled “Epidemiological and Human Dosimetry Studies” for a summary of available 

information regarding noncancer effects in humans following oral exposure to nitrate or nitrite. 

Among laboratory animals, acute oral LD50 values range from 1,267 to 3,750 mg/kg for selected nitrate 

salts (RTECS 2014) and from 150 to 200 mg/kg for selected nitrite salts (Imaizumi et al. 1980; RTECS 

2014; Sheehy and Way 1974).  Imaizumi et al. (1980) administered aqueous sodium nitrite to fasted 

Sprague-Dawley rats by gavage and observed dose-related increased methemoglobin levels.  Additional 

studies regarding the effects of acute-duration oral exposure of laboratory animals to nitrate or nitrite are 

not considered necessary, in part due to interspecies differences in kinetics of the nitrate-nitrite-nitric 

oxide pathway. 

No information was located regarding health effects in humans or animals following acute-duration 

dermal exposure to nitrate or nitrite.  Information regarding the effects of acute-duration dermal exposure 

to nitrate or nitrite is not considered necessary because the general population is not likely to be dermally-

exposed to nitrate or nitrite concentrations at levels that might cause adverse health effects. 

Intermediate-Duration Exposure. No information was located regarding the effects of 

intermediate-duration inhalation exposure to nitrate or nitrite in humans or animals.  The general 

population is not likely to be exposed to airborne nitrate or nitrite concentrations at levels that might 

cause adverse health effects. 
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Refer to the section titled “Epidemiological and Human Dosimetry Studies” for a summary of available 

information regarding noncancer effects in humans following oral exposure to nitrate or nitrite. 

Epithelial hyperplasia was noted in the forestomach of mice provided sodium nitrite in the drinking water 

for 14 weeks (NTP 2001).  Another study found no evidence of treatment-related forestomach lesions in 

male rats provided sodium nitrite in the drinking water for 35 weeks (Kawabe et al. 1994).  Increased 

methemoglobin levels and other evidence of hematological effects have been reported in laboratory 

animals administered sodium nitrite or potassium nitrite orally for intermediate-duration time periods 

(Behroozi et al. 1972; Chow et al. 1980; Grant and Butler 1989; Imaizumi et al. 1980; NTP 2001; Shuval 

and Gruener 1972; Til et al. 1988, 1997).  Several animal studies found no indications of sodium nitrite-

induced effects on liver function or histopathology (Asahina et al. 1971; Lijinsky and Greenblatt 1972; 

Lin and Ho 1992; Shuval and Gruener 1972; van Logten et al. 1972).  El-Wakf et al. (2008) reported 

significantly increased urinary levels of urea and creatinine in male rats provided sodium nitrate in the 

drinking water for 4 months.  Sodium or potassium nitrate-induced effects on the endocrine system of 

laboratory animals have been reported by several groups of investigators; effects include decreased serum 

thyroidal iodine uptake, decreased serum thyroid hormone levels, increased thyroid weight, and follicular 

hyperplasia (El-Wakf et al. 2008; Eskiocak et al. 2005; Mukhopadhyay et al. 2005; Zaki et al. 2004).  Til 

et al. (1988, 1997) observed adrenal gland hypertrophy in rats administered potassium nitrite in the 

drinking water for 13 weeks; results of a subsequent study indicated that this effect was a physiological 

adaptation to repeated episodes of hypotension caused by nitrite (RIVM 1996).  Depressed body weight 

and/or body weight gain were observed in some laboratory animals receiving nitrate or nitrite from the 

drinking water for intermediate exposure durations (El-Wakf et al. 2008; Maekawa et al. 1982; Zaki et al. 

2004).  Intermediate-duration oral exposure to sodium nitrite in the drinking water of laboratory animals 

has been associated with neurological effects such as abnormalities in EEGs (Behroozi et al. 1972), 

increased aggressive behavior (Gruener 1974), and reduced motor activity (Shuval and Gruener 1972).  

Available intermediate-duration oral studies in laboratory animals adequately characterize nitrate- and 

nitrite-induced effects; additional animal studies do not appear necessary. 

No information was located regarding health effects in humans or animals following intermediate-

duration dermal exposure to nitrate or nitrite.  Information regarding the effects of intermediate-duration 

dermal exposure to nitrate or nitrite is not considered necessary because the general population is not 

likely to be dermally-exposed to nitrate or nitrite concentrations at levels that might cause adverse health 

effects. 
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Chronic-Duration Exposure and Cancer. Information regarding the effects of chronic-duration 

inhalation exposure is limited.  A cohort mortality study of male workers involved in the manufacture of 

nitrate fertilizer for at least 1 year between 1946 and 1981 found no evidence of associations between 

exposure to nitrate dusts and death from respiratory or circulatory diseases (Al-Dabbagh et al. 1986).  

Among workers described as having been heavily exposed to nitrate dust, slight excesses were noted for 

death from lung cancer and death from all malignant neoplasms, but not for cancers of the esophagus, 

stomach, or bladder.  After categorizing the heavily-exposed workers by duration of exposure and time 

since first exposure, excess death from lung cancer was noted for those exposed for ≥10 years, with a lag 

time of ≥20 years since first exposure.  The study authors indicated that they were unable to adjust for 

smoking.  In a census-based mortality study of workers involved in production of nitrate fertilizer, there 

was no evidence of associations between exposure to nitrate dust and death from circulatory diseases; 

slight excesses were noted for deaths from lung cancer and death from all malignant neoplasms, but not 

for cancers of the esophagus, stomach, or bladder (Fraser et al. 1982, 1989).  No significant increased risk 

for cancer at any site was observed at 7-year follow-up evaluation.  In yet another cohort of workers at a 

nitrate fertilizer production facility (Hagmar et al. 1991), death from prostate cancer was in excess; 

however, risk of prostate cancer within this cohort was not enhanced following application of a ≥10-year 

latency period, and there was no significant increase in death from tumors of the lips, oral cavity, 

pharynx, salivary glands, gastrointestinal tract, stomach, respiratory tract, lung, urinary bladder, blood, or 

all sites combined.  The general population is not likely to be exposed to airborne nitrate or nitrite 

concentrations at levels that might cause adverse health effects. 

Refer to the section titled “Epidemiological and Human Dosimetry Studies” for a summary of available 

information regarding noncancer effects in humans following oral exposure to nitrate or nitrite. 

Numerous case-control and cohort studies regarding the carcinogenicity of ingested nitrate and nitrite in 

humans have been reported (IARC 2010).  Many ecological studies have also been reported; however, 

interpretation of outcomes of these studies is more uncertain because of various factors that contribute to 

ecologic bias (group-based associations between exposure and cancer outcomes may not apply to 

individuals).  In general, outcomes of case-control and cohort studies have found no or weak associations 

between exposure to nitrate and cancer in humans, with stronger associations with exposures to nitrite or 

intake of high nitrite foods such as cured meat (Aschebrook et al. 2013; DellaValle et al. 2013; IARC 

2010; Inoue-Choi et al. 2012).  Mechanistically, this outcome is consistent with nitrite and being a 

reactive intermediate in the cancer mode of action of nitrate. This is further supported by studies that 

found interactions between cancer risk attributed to nitrite and exposure to antioxidants (IARC 2010; 
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Inoue-Choi et al. 2012; Kim et al. 2007; Yang et al. 2010).  Uncertainties in estimates of cancer risk from 

exposure to nitrate or nitrite include those typical of epidemiological studies in general:  uncertainties in 

estimation of exposure (e.g., estimating long-term dietary intakes from food frequency questionnaires or 

levels in PWS), exposure misclassification of individual outcomes (e.g., assigning group-level exposure 

estimates to individuals), and adequacy of controlling for confounders (e.g., other factors contributing to 

the cancer).  One potentially important class of confounders is antioxidants that can interfere with 

nitrosation of dietary amines, and thereby the mode of carcinogenicity of nitrite, and may also interfere 

with other carcinogenic processes that involve reactive intermediates. 

The strongest and most consistent evidence for carcinogenicity of nitrite is from studies of gastrointestinal 

cancers and, in particular, gastric cancer (Buiatti et al. 1990; Engel et al. 2003; La Vecchia et al. 1994, 

1997; Mayne et al. 2001; Palli et al. 2001; Risch et al. 1985; Rogers et al. 1995; Ward et al. 2007, 2008). 

Results have been mixed for other types of cancer.  Some case-control or cohort studies found 

associations between exposure to nitrite (or foods high in nitrite such as cured meat) and brain cancer in 

children and adults (Blowers et al. 1997; Giles et al. 1994, Huncharek and Kupelnick 2004; Huncharek et 

al. 2003; Lee et al. 1997; Pogoda and Preston-Martin 2001a, 2001b; Preston-Martin et al. 1996; Mueller 

et al. 2004), breast cancer (Inoue-Choi et al. 2012; Yang et al. 2010), kidney cancer (DellaValle et al. 

2013; Ward et al. 2007; Wilkens et al. 1996), testicular cancer (Moller 1997), and non-Hodgkin’s 

lymphoma (Ward et al. 2006).  Of these studies, the highest risks were reported for brain cancers.  Two 

case-control studies found elevated relative risk of brain cancer in children in association with maternal 

nitrite intake (Mueller et al. 2004; Pogoda and Preston-Martin 2001a, 2001b; Preston-Martin et al. 1996). 

In general, case-control and cohort studies of cancers of larynx, liver, lung, mouth, pancreas, and pharynx 

have found no consistent associations with exposures to nitrate or nitrite (IARC 2010). 

The potential carcinogenicity of nitrate has been investigated in several animal studies that employed the 

oral exposure route.  Studies in which negative results were reported include MCR-derived rats provided 

sodium nitrate in the drinking water for 84 weeks (Lijinsky et al. 1973a), male white rats provided sodium 

nitrate in the drinking water for 273 days (Pliss and Frolov 1991), strain A male mice provided sodium 

nitrate in the drinking water for 25 weeks (Greenblatt and Mirvish 1973), female NMRI mice provided 

calcium nitrate in the drinking water for 18 months (Mascher and Marth 1993), Fischer 344 rats fed diet 

containing sodium nitrate for 2 years (Maekawa et al. 1982), and ICR mice fed diets containing sodium 

nitrate for 2 years (IARC 2010).  In the study of Pliss and Frolov (1991), some groups of male rats were 

treated with drinking water containing BBNA (an inducer of urinary bladder cancer in laboratory animals) 

for 30 days, either alone or followed by sodium nitrate in the drinking water for 273 days.  The group 
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treated with BBNA followed by sodium nitrate exhibited significantly increased incidence of urinary 

bladder carcinoma. These results indicate that sodium nitrate promoted BBNA-induced bladder tumors. 

The potential carcinogenicity of ingested nitrite has been investigated in numerous animal studies.  Nitrite 

treatment alone was not associated with tumor incidences in most studies (Börzsönyi et al. 1978; Hawkes 

et al. 1992; Inai et al. 1979; Lijinsky 1984a, 1984b; Lijinsky et al. 1983; Maekawa et al. 1982; NTP 

2001).  Significantly increased incidences of forestomach squamous papillomas were reported for male 

and female MRC Wistar rats provided drinking water to which sodium nitrite was added for life (Mirvish 

et al. 1980).  Dose-related decreases in time of onset and incidence of lymphomas, mononuclear cell 

leukemia, and testicular interstitial-cell tumors were reported for male and female F344 rats administered 

reduced-protein diet to which sodium nitrite was added for up to 115 weeks (Grant and Butler 1989).  In a 

96-week study, Iurchenko et al. (1986) reported a significantly increased incidence of benign liver tumors 

among male CBA mice receiving sodium nitrite from the drinking water at an author-estimated total dose 

of 1,600 mg sodium nitrite/mouse; however, there was no apparent sodium nitrite treatment-related effect 

at a higher estimated dose (2,000 mg sodium nitrite/mouse).  Increased incidences of total tumors and 

lymphoreticular tumors were reported in rats fed diet to which sodium nitrite was added; the results were 

reported for F1 and F2 offspring that had been exposed via their mothers during gestation and lactation 

and directly from the diet thereafter (Shank and Newberne 1976).  A positive trend for incidences of 

forestomach squamous cell papilloma or carcinoma (combined) in female B6C3F1 mice administered 

sodium nitrite in the drinking water for 2 years was considered to provide "equivocal evidence of 

carcinogenic activity" of sodium nitrite (NTP 2001).  In a 26-month study of male and female Sprague-

Dawley rats provided drinking water to which sodium nitrite was added, the study author reported 

increased incidence of lymphomas, but not other types of tumors (Newberne 1979); however, IARC 

(2010) and NTP (2001) noted that a working group sponsored by the U.S. FDA reevaluated the histology 

and did not confirm the results of Newberne (1979).  IARC (2010) reported that the working group 

considered the incidences of lymphomas to be similar to those arising spontaneously in Sprague-Dawley 

rats. 

The potential carcinogenicity of combined exposure to sodium nitrite and selected nitrosatable substances 

(oral exposures via combinations of drinking water, diet, and/or gavage dosing) has been well-studied in 

laboratory animals.  Many of the studies included sodium nitrite-only treatment groups for which there 

was no evidence of sodium-nitrite induced carcinogenicity (Anderson et al. 1985; Börzsönyi and Pintér 

1977; Börzsönyi et al. 1976; Greenblatt and Lijinsky 1972, 1974; Greenblatt and Mirvish 1973; 

Greenblatt et al. 1971, 1973; Hirose et al. 2002; Ivankovic 1979; Ivankovic and Preussman 1970; Kitano 
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et al. 1997; Murthy et al. 1979; Lijinsky 1984a, 1984b; Lijinsky and Reuber 1980; Mirvish et al. 1972; 

Miyauchi et al. 2002; Rijhsinghani et al. 1982; Scheunig et al. 1979; Taylor and Lijinsky 1975a, 1975b; 

van Logten et al. 1972; Yada et al. 2002; Yoshida et al. 1993, 1994).  However, Lijinsky et al. (1983) 

reported significantly increased incidences of hepatocellular neoplasms in female (but not male) F344 rats 

administered diet to which sodium nitrite was added for 2 years. 

Significantly increased incidences of selected tumor types were observed in some studies of laboratory 

animals that employed coexposure to various amino compounds and sodium nitrite (Anderson et al. 1985; 

Aoyagi et al. 1980; Börzsönyi and Pintér 1977; Börzsönyi et al. 1976, 1978; Chan and Fong 1977; 

Greenblatt and Mirvish 1973; Greenblatt et al. 1971; Hirose et al. 1990; Iurchenko et al. 1986; Ivankovic 

1979; Ivankovic and Preussmann 1970; Kawabe et al. 1994; Matsukura et al. 1977; Murthy 1979; 

Lijinsky 1984a, 1984b; Lijinsky and Reuber 1980; Lijinsky and Taylor 1977; Lijinsky et al. 1973b; Lin 

and Ho 1992; Maekawa et al. 1977; Mirvish et al. 1972, 1976, 1980; Miyauchi et al. 2002; Mokhtar et al. 

1988; Newberne and Shank 1973; Nishiyama et al. 1998; Nixon et al. 1979; Oka et al. 1974; Olsen et al. 

1984; Rijhsinghani et al. 1982; Rustia and Shubik 1974; Scheunig et al. 1979; Shank and Newberne 1976; 

Tahira et al. 1988; Taylor and Lijinsky 1975a, 1975b; Weisburger et al. 1980; Xiang et al. 1995; Yada et 

al. 2002; Yamamoto et al. 1989; Yoshida et al. 1993, 1994).  These results were typically attributed to in 

vivo nitrosation of amines by nitrite to produce carcinogenic N-nitrosoamines; some of the studies did not 

include sodium nitrite-only treatment groups. 

Based on available human data, IARC (2010) determined that there is inadequate evidence for the 

carcinogenicity of nitrate in food or drinking water and limited evidence for the carcinogenicity of nitrite 

in food (based on association with increased incidence of stomach cancer).  Evaluation of available 

animal data by IARC (2010) resulted in the determination that there is inadequate evidence for the 

carcinogenicity of nitrate, limited evidence for the carcinogenicity of nitrite per se, and sufficient 

evidence for the carcinogenicity of nitrite in combination with amines or amides.  The overall conclusions 

of IARC (2010) were that “ingested nitrate and nitrite under conditions that result in endogenous 

nitrosation is probably carcinogenic to humans (Group 2A).”  IARC (2010) noted that: (1) the 

endogenous nitrogen cycle in humans includes interconversion of nitrate and nitrite; (2) nitrite-derived 

nitrosating agents produced in the acid stomach environment can react with nitrosating compounds such 

as secondary amines and amides to generate N-nitroso compounds; (3) nitrosating conditions are 

enhanced upon ingestion of additional nitrate, nitrite, or nitrosatable compounds; and (4) some N-nitroso 

compounds are known carcinogens.  The U.S. EPA IRIS (2002) does not include a carcinogenicity 

evaluation for nitrate or nitrite. 
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No information was located regarding health effects in humans or animals following chronic-duration 

dermal exposure to nitrate or nitrite.  Information regarding the effects of chronic-duration dermal 

exposure to nitrate or nitrite is not considered necessary because the general population is not likely to be 

dermally-exposed to nitrate or nitrite concentrations at levels that might cause adverse health effects. 

Genotoxicity. Limited information is available regarding the potential genotoxicity of nitrate in 

human studies.  One study found no significant association between urinary excretion of nitrate and 

frequency of SCEs in peripheral lymphocytes (Kleinjans et al. 1991).  In another study, frequency of 

HPRT variants in peripheral lymphocytes was associated with nitrate levels in drinking water, urinary and 

salivary nitrite levels, and urinary excretion of nitrate and N-nitrosopyrrolidine (van Maanen et al. 1996a).  

The results suggest that drinking water with nitrate poses a genetic risk due to the potential formation of 

nitrosamines after endogenous reduction of nitrate to nitrite and reaction with amino compounds.  Tsezou 

et al. (1996) reported a significant increase in chromatid and chromosome breaks in children exposed to 

nitrate in drinking water. 

A limited number of studies have examined the in vivo genotoxicity of nitrate in laboratory animals; 

results were negative for frequency of micronuclei, chromosomal aberrations, morphological or malignant 

cell transformation, or drug-resistant mutations in embryonic cells in one study (Inui et al. 1979), 

inhibition of testicular DNA synthesis in another study (Friedman and Staub 1976), and chromosomal 

aberrations in bone marrow cells in a 2-day study (Luca et al. 1985).  However, daily administration of 

sodium nitrate for 2 weeks resulted in significant dose-dependent increase in chromosomal aberrations in 

bone marrow cells (Luca et al. 1985).  Gavage administration of 706.6 mg/kg/day sodium nitrate for 

2 days to male Swiss mice showed induction of chromosomal aberrations; however, this effect was not 

observed at a much higher dose (Luca et al. 1985).  Evaluation of micronuclei in mice treated daily for 

2 weeks showed significant increases at the low concentrations tested (78.5 and 235.5 mg/kg/day sodium 

nitrate), but not at 706.6 or 2,120 mg/kg/day; the investigators attributed the result to possible induction 

of cytotoxic effects (Luca et al. 1985). 

Neither potassium nitrate, sodium nitrate, nor lanthanum nitrate hexahydrate were mutagenic to multiple 

strains of S. typhimurium either with or without metabolic activation (Ishidate et al. 1984; Zeiger et al. 

1992).  Tests for chromosomal aberrations in Chinese hamster fibroblast cells were positive for sodium 

nitrate, but negative for potassium nitrate (Ishidate et al. 1984).  IARC (2010) noted that since sodium 

chlorite also yielded positive results in the same assay, the chromosomal aberrations induced by sodium 
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nitrate could have been due to the high osmotic pressure and sodium ion concentration.  Ammonium 

nitrate did not induce chromosomal aberrations in Chinese hamster ovary cells with or without metabolic 

activation (Kim et al. 2011). 

In vivo tests for nitrite conducted in mammalian cells yielded negative results for chromosomal 

aberrations, SCEs, DNA repair, and cell transformations (Inoue et al. 1985; Ishidate et al. 1984; Lynch et 

al. 1983; Tsuda and Kato 1977; Tsuda et al. 1973, 1981).  Numerous studies have examined the in vitro 

genotoxicity of nitrite; more positive results than negative results were found in tests of gene mutations in 

prokaryotic organisms, but it is difficult to draw a firm conclusion (Andrews et al. 1980, 1984; 

Balimandawa et al. 1994; Brams et al. 1987; De Flora 1981, De Flora et al. 1984; Ehrenberg et al. 1980; 

Ishidate et al. 1984; Törnqvist et al. 1983; Zeiger et al. 1992).  However, it appears that the addition of 

metabolic activation systems to the incubation mixtures did not make a difference in the results.  This 

would indicate that nitrite could be a direct mutagenic chemical. 

Additional in vivo and in vitro studies could be designed to further assess the genotoxicity of nitrate and 

nitrite. 

Reproductive Toxicity. Refer to the section titled “Developmental Toxicity” for information 

regarding results of case-control studies that evaluated reproductive/developmental end points. 

Several animal studies included evaluation of selected reproductive end points.  Sleight and Atallah 

(1968) reported death and reduced litter production among female guinea pigs provided potassium nitrate 

in the drinking water for up to 204 days of cohabitation at a concentration resulting in estimated intake of 

4,972 mg nitrate/kg/day.  Reduced litter production was the likely result of maternal toxicity rather than 

reproductive toxicity per se. Sleight and Atallah (1968) also reported decreases in number of litters and 

live births and histopathologic lesions in reproductive organs (placenta, uterus, and cervix) of guinea pigs 

administered sodium nitrite in the drinking water.  No treatment-related reproductive effects were seen in 

female Wistar rats provided sodium nitrite in the food throughout the production of two litters (Hugot et 

al. 1980) or in breeding dogs provided sodium nitrate in the drinking water for 1 year (Kelley et al. 1974).  

NTP (2001) reported degeneration of the testis in male mice provided sodium nitrite in the drinking water 

for 14 weeks, and significantly increased estrous cycles in similarly-treated female mice.  Among 

similarly-treated male and female rats, the males exhibited decreased sperm motility. 
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A multi-generation reproductive toxicity study in laboratory animals could be designed to more 

comprehensively assess the reproductive toxicity potential of ingested nitrate and nitrite. 

Developmental Toxicity. A number of studies evaluated possible associations between 

developmental end points and exposure to nitrate in humans.  The results provide some evidence of 

nitrate-related developmental effects. The results are not adequate for quantitative risk assessment 

because (1) estimations of nitrate intakes were typically based on measurements of nitrate levels in 

drinking water sources at selected time points and self-reported estimates of water consumption; 

(2) possible confounding by other potential toxicants was not evaluated; and (3) most studies did not 

account for dietary nitrate or nitrite intake, which is typically the major source of ingested nitrate and 

nitrite.  Some studies reported significant associations between selected developmental end points and 

nitrate in drinking water sources (Brender et al. 2013; Croen et al. 2001; Dorsch et al. 1984; Scragg et al. 

1982).  One study reported increased risk of intercalary limb defect associated with estimated total nitrite 

intake (Huber et al. 2013).  Other studies found no evidence of associations between nitrate and risk of 

developmental effects (Arbuckle et al. 1988; Aschengrau et al. 1989, 1993; Brender et al. 2004; 

Cedergren et al. 2002; Ericson et al. 1988; Huber et al. 2013; Super et al. 1981).  Tabacova et al. (1997, 

1998) evaluated maternal health among pregnant women and their infants who lived near an ammonium 

nitrate fertilizer plant.  Nitrogen oxides in the air averaged 23.1 µg/m3 with short-term peak levels as high 

as 238.5; nitrate concentrations in the public drinking water supply measured 8–54 mg/L and nitrate 

levels in private wells measured as much as 13–400 mg/L.  Results indicated that both maternal and cord 

blood methemoglobin levels were higher in cases of abnormal birth outcome. 

Developmental end points have been assessed in some animal studies.  Some studies found no indication 

of nitrite treatment-related developmental toxicity (Hugot et al. 1980; Khera 1982; Shimada 1989).  One 

study reported increased fetal hepatic erythropoiesis, which was thought to have been a response to 

nitrite-induced fetal methemoglobinemia (Globus and Samuel 1978).  Significantly impaired auditory and 

visual discrimination learning behavior and retention of passive avoidance responses (Nyakas et al. 1990), 

and delay in cholinergic and serotonergic fiber outgrowth in cortical target areas of the brain (Nyakas et 

al. 1994), presumably due to nitrite-induced hypoxia, were reported in offspring of Wistar rats provided 

sodium nitrite in the drinking water.  Shuval and Gruener (1972) reported decreases in postpartum 

survival and pup body weight during 3 weeks postpartum following addition of sodium nitrite to the 

drinking water of pregnant rats for 6 weeks; no treatment-related effects were observed regarding group 

litter sizes or pup birth weights.  Increased pup mortality, depressed preweaning pup body weight, and 

delayed swimming development were observed in offspring of male and female rats provided sodium 
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nitrite in the diet (Vorhees et al. 1984).  There were no treatment-related effects on preweaning behavior 

(surface righting, pivoting, negative geotaxis, or auditory startle) and no effects on postweaning survival, 

body weight, or most behavioral indices among pups from dams exposed to sodium nitrite in the diet. 

Additional human data are needed to comprehensively assess the developmental toxicity potential of 

ingested nitrate and nitrite. 

Immunotoxicity. No information was located regarding immunological or lymphoreticular effects in 

humans or animals following exposure to nitrate or nitrite by any route.  An animal study could be 

designed to assess the potential immunotoxicity of ingested nitrate and nitrite. 

Neurotoxicity. No information was located regarding the neurotoxicity of nitrate in humans or 

animals.  Ingestion of nitrite has been associated with severe methemoglobinemia in adults and children; 

in many of these cases, clinical signs included dizziness, loss of consciousness, and/or convulsions (CDC 

1997, 2002; Gautami et al. 1995; Greenberg et al. 1945; Sevier and Berbatis 1976; Ten Brink et al. 1982).  

These cases were the result of consumption of food or drink that contained unusually high levels of nitrite 

via contamination, inadvertent use of sodium nitrite instead of table salt, or ingestion of a single sodium 

nitrite tablet (667 mg nitrite).  Headache was induced in a male subject following consumption of a 10 mg 

sodium nitrite solution (Henderson and Raskin 1972).  In a study designed to evaluate the oral 

bioavailability of sodium nitrite in healthy volunteers, headache was reported after ingestion of nitrite at 

doses as low as approximately 1.5–1.8 mg nitrite/kg (Kortboyer et al. 1997b). 

Abnormalities in EEGs were reported in male albino rats provided sodium nitrite in the drinking water for 

2 months at concentrations resulting in ingestion of ≥9.38 mg nitrite/kg/day (Behroozi et al. 1972).  At the 

highest dose (187.6 mg nitrite/kg/day), rats exhibited clinical signs of sedation and became motionless 

during periods of electrical outbursts.  Increased aggressive behavior was observed in male C57B1 mice 

provided sodium nitrite in the drinking water at 1,000 mg/L for up to 13 weeks postweaning (Gruener 

1974).  The mice had also been exposed via their parents during mating and via their mothers during 

gestation and lactation.  Significantly reduced motor activity was reported in male mice provided sodium 

nitrite in the drinking water (Shuval and Gruener 1972). 

The nervous system is not expected to be a particularly sensitive target of nitrate toxicity; available data 

for nitrite appear adequate for the purpose of hazard identification.  Additional neurotoxicity studies do 

not appear necessary. 
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Epidemiological and Human Dosimetry Studies. Oral exposure to nitrate and nitrite is 

ubiquitous because nitrate and nitrite are part of the normal diet.  Elevated methemoglobin levels are 

commonly associated with levels of nitrate in drinking water sources or ingestion of nitrate; clinical signs 

of methemoglobinemia may be observed at sufficiently high nitrate levels, particularly among newborn 

infants (e.g., Bosch et al. 1950; Chapin 1947; Comly 1987; Craun et al. 1981; Donahoe 1949; Fan and 

Steinberg 1996; Fan et al. 1987; Faucett and Miller 1946; Ferrant 1946; Gruener and Toeplitz 1975; 

Gupta et al. 1999; Johnson et al. 1987; Jones et al. 1973; Medovy 1948; Miller 1971; Robertson and 

Riddell 1949; Sadeq et al. 2008; Shuval and Gruener 1972; Simon et al. 1964; Stafford 1947; Super et al. 

1981; Walton 1951; Winton et al. 1971; Zeman et al. 2002).  Although oral exposure to nitrate has been 

associated with methemoglobinemia in bottle-fed infants receiving drinking water containing measurable 

levels of nitrate, available studies are limited by lack of accounting for substances in the drinking water 

(e.g., bacteria) that may have contributed to the methemoglobinemia and the fact that many of the infants 

exhibited gastroenteritis, which in itself can trigger increased methemoglobin levels.  Therefore, 

additional information regarding the effects of oral exposure of infants to nitrate would serve to reduce 

uncertainty as to the role of nitrate in the observed methemoglobinemia cases reported in the literature. 

Available human data provide suggestive evidence that elevated levels of nitrate in drinking water and/or 

nitrate-rich diets may be associated with signs of thyroid dysfunction (Aschebrook-Kilfoy et al. 2012; 

Gatseva and Argirova 2008; Rádiková et al. 2008; Tajtáková et al. 2006; Ward et al. 2010).  However, 

limitations of these studies include lack of individual dose-response data, quantification of iodine intake, 

and control for other potential substances that may affect the thyroid; one study relied on self-reported 

thyroid status and self-reported dietary nitrate intake.  Additional studies should focus on possible 

associations between nitrate and/or nitrite and thyroid status. 

Possible associations between nitrate and/or nitrite in drinking water and/or food sources and risk of type 

1 diabetes have been investigated in a number of epidemiological studies.  Significant associations were 

reported in some studies (Dahlquist et al. 1990; Kostraba et al. 1992; Parslow et al. 1997; Virtanen et al. 

1994), but not in other studies (Casu et al. 2000; Moltchanova et al. 2004; van Maanen et al. 2000; Zhao 

et al. 2001).  Limitations of studies include the lack of quantitative dose-response data and the likelihood 

of confounding by other potential toxicants.  Additional studies should focus on possible associations 

between nitrate and/or nitrite and risk of type 1 diabetes. 
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Ingestion of nitrite has been associated with severe methemoglobinemia in adults and children (Aquanno 

et al. 1981; CDC 1997, 2002; Gautami et al. 1995; Gowans 1990; Greenberg et al. 1945; Kaplan et al. 

1990; Ringling et al. 2003; Sevier and Berbatis 1976; Ten Brink et al. 1982; Walley and Flanagan 1987), 

typically following consumption of food or drink that contained unusually high levels of nitrite via 

contamination, inadvertent use of sodium nitrite instead of table salt, or ingestion of a single sodium 

nitrite tablet (667 mg nitrite).  Other effects noted in some of these cases include hypotension and/or 

tachycardia, abdominal cramps, vomiting, dizziness, loss of consciousness, convulsions, and even death.  

In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy volunteers, ingestion of 

approximately 1.5–1.8 mg nitrite/kg resulted in increased percent methemoglobin and average heart rate, 

and decreased mean arterial blood pressure (Kortboyer et al. 1997b).  Higher ingested doses resulted in 

more pronounced effects and included nausea and vomiting.  Additional information regarding effects of 

oral exposure to nitrite at lower dose levels would be useful in determining minimal risk levels for nitrite 

toxicity if populations with such exposure characteristics are identified. 

Data needs relating to both prenatal and childhood exposures, and developmental effects expressed either 

prenatally or during childhood, are discussed in detail in the Developmental Toxicity subsection above. 

Biomarkers of Exposure and Effect 

Exposure. There are no biomarkers of exposure that are specific to nitrate or nitrite.  Although nitrate 

and nitrite can be detected in blood, saliva, and urine (mostly nitrate), nitrate and nitrite are also produced 

endogenously via the nitrate-nitrite-nitric oxide pathway.  Sources for nitrate and nitrite levels in the body 

may therefore include not only ingested food and drinking water, but also oxidation of nitric oxide 

produced endogenously.  Similarly, N-nitroso compounds that may be detected in the blood or urine may 

indicate exposure to nitrate or nitrite; however, these compounds may also be products of the endogenous 

nitrate-nitrite-nitric oxide pathway. 

Effect. Biomarkers of effects from exposure to nitrate or nitrite are not specific to nitrate or nitrite. 

Blood methemoglobin level has been used as a biomarker of nitrate and nitrite toxicity; however, 

methemoglobinemia may be elicited by other substances such as selected drugs, pesticides, industrial and 

commercial products, and medical conditions such as pediatric gastrointestinal infection, sepsis, and 

sickle cell crisis (ATSDR 2013a).  Methemoglobinemia may also be inherited (genetic conditions that 

result in decreased activity of enzymes that reduce methemoglobin or the presence of hemoglobin M).  

Urinary levels of various N-nitroso compounds have been measured as an index of nitrosation; however, 
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N-nitroso compounds can form via endogenous nitrosation and do not require the intake of nitrate or 

nitrite. 

Absorption, Distribution, Metabolism, and Excretion. No information was located regarding 

the pharmacokinetics of nitrate or nitrite following inhalation or dermal exposure.  However, numerous 

reviews are available regarding the pharmacokinetics of ingested nitrate and nitrite (Bailey et al. 2012; 

Bryan and van Grinsven 2013; IARC 2010; JECFA 2003a, 2003b; Lundberg and Govoni 2004; Lundberg 

and Weitzberg 2013; Lundberg et al. 2008, 2009; Weitzberg and Lundberg 2013; Weitzberg et al. 2010; 

WHO 2011b).  Ingestion is the major source of exposure to nitrate and nitrite.  The data adequately 

describe the pharmacokinetics of nitrate and nitrite; additional studies do not appear necessary. 

A PBPK model (Zeilmaker et al. 1996, 2010b) simulates the kinetics of methemoglobin formation 

resulting from gastrointestinal absorption of nitrate in adult humans.  The model is adequate for this 

purpose; however, the model is not considered adequate for the purpose of simulating the kinetics in 

infants.  Additional information is needed to adapt the model to infants for the purpose of quantitative risk 

assessment. 

Comparative Toxicokinetics. Significant differences exist regarding the kinetics of the nitrate-

nitrite-nitric oxide pathway in humans and laboratory animals, thus precluding the usefulness of results 

from laboratory animals to evaluate the toxicokinetics of nitrate or nitrite in humans. 

Methods for Reducing Toxic Effects. Ingestion is the most likely route of overexposure to nitrate 

or nitrite.  Methods for reducing peak absorption include oral administration of activated charcoal within 

a short period following significant ingestion (Seifert 2004) and use of mouthwash containing 

chlorhexidine (an active antibacterial), which may decrease the reduction of salivary nitrate to nitrite (van 

Maanen et al. 1996b).  No information was located regarding methods to reduce the body burden of 

nitrate or nitrite.  Adequate data are available regarding methods for reducing nitrate- or nitrite-induced 

methemoglobinemia (e.g., Barclay 1998; Leikin and Paloucek 2008; Seifert 2004).  In several rat studies, 

tumorigenicity associated with concurrent exposure to nitrite and various amino compounds was 

modulated by coexposure to selected antioxidants such as ascorbic acid, catechol, 3-methoxycatechol, 

tert-butylhydroquinone, α-tocopherol, and propyl gallate (Chan and Fong 1977; Mirvish et al. 1976, 1983; 

Miyauchi et al. 2002; Mohktar et al. 1988; Yada et al. 2002; Yoshida et al. 1994); thioproline (which may 

serve as a nitrite scavenger when nitrosated to nitrosothioproline) (Tahira et al. 1988); or soy bean 

(Mokhtar et al. 1988). 
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Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

Ingestion of relatively large amounts of nitrate or nitrite can result in methemoglobinemia.  The first 

6 months of postnatal life is a period of increased susceptibility to methemoglobinemia; possible 

contributing factors to this increased susceptibility include a higher pH in the infant stomach, greater 

proportion of fetal hemoglobin (which appears to be more readily oxidized to methemoglobin than adult 

hemoglobin), and higher concentration of NADH-dependent methemoglobin reductase (an enzyme 

involved in the reduction of methemoglobin to hemoglobin).  Some investigators have reported 

significant associations between nitrate levels in drinking water (or living in areas presumed to have 

elevated nitrate levels in drinking water sources) and risk of childhood type 1 diabetes (Dahlquist et al. 

1990; Kostraba et al. 1992; Parslow et al. 1997; Virtanen et al. 1994).  However, no such relationship was 

observed in two other studies (van Maanen et al. 2000; Zhao et al. 2001).  Refer to Section 3.2.2.2 

(Metabolic Effects) for summaries of these study reports. 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs: 

Exposures of Children. 

3.12.3 Ongoing Studies 

The following ongoing study pertaining to nitrate was identified in National Institutes of Health (NIH) 

Research Portfolio Online Reporting Tools (RePORTER 2014): Dr. Paul A Romitti, College of Public 

Health, University of Iowa, is evaluating risk of birth defects associated with nitrate in drinking water. 
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4.1  CHEMICAL IDENTITY 

Information regarding the chemical identity of nitrate and nitrite is provided in Table 4-1 and information 

regarding the chemical identity of selected inorganic nitrate and nitrite compounds is provided in 

Table 4-2. Information regarding ammonia and urea is provided in Table 4-3. 

Inorganic nitrate and nitrite are naturally occurring ionic species that are part of the earth’s nitrogen cycle 

(see Figure 5-1).  These anions are the products formed via the fixation of nitrogen and oxygen.  

Chemical processes, biological processes, and microbial processes in the environment convert nitrogen 

compounds to nitrite and nitrate via nitrogen fixation and nitrification.  Compounds such as urea are 

converted via hydrolysis to ammonia, protonation of ammonia to ammonium (cation), followed by 

oxidation of ammonium to form nitrite, and then oxidation to form nitrate.  Nitrate and nitrite are not 

neutral compounds, but rather the ionic (anionic; negatively charged) portions of compounds, commonly 

found in commerce as organic and inorganic salts.  As used in this profile, the word “ion” is implied and 

not used, unless added for clarity.  

Nitrate and nitrite typically exist in the environment as highly water-soluble inorganic salts, often bound 

when not solubilized to metal cations such as sodium or potassium.  The nitrate ion is the more stable 

form as it is chemically unreactive in aqueous solution; however, it may be reduced through biotic 

processes with nitrate reductase to the nitrite ion.  The nitrite ion is readily oxidized back to the nitrate ion 

via Nitrobacter (a genus of proteobacteria), or conversely, the nitrite ion may be reduced to various 

compounds (IARC 2010; WHO 2011b). 

Under certain conditions, nitrite may be converted to a class of compounds called N-nitrosamines.  In 

foods, endogenous production of N-nitrosamines occurs when nitrite reacts with secondary amines or 

amides.  Several factors, including the presence of antioxidants, such as vitamin C, affect the rate of 

formation.  N-nitrosamines are a class of chemical compounds that have a nitroso (N=O) group bonded to 

an amine (-N(R)R’) with a general chemical structure of RN(R’)-N=O (IARC 94). 

There is a wide range of both organic and inorganic nitrate and nitrite compounds. Common nitrate and 

nitrite salts include potassium nitrate, potassium nitrite, sodium nitrate, sodium nitrite, and ammonium 

nitrate; these salts are highly soluble in water, dissociate under environmental conditions, and exist as 
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ions (WHO 1978, 2011b). Common inorganic fertilizers that contribute to environmental concentrations 

of nitrate and nitrite include ammonia and urea. 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

Information regarding the physical and chemical properties of selected inorganic nitrate and nitrite 

compounds is provided in Table 4-4 and information regarding the physical and chemical properties of 

ammonia and urea is provided in Table 4-5. 
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Table 4-1.  Chemical Identity of Nitrate and Nitrite Ionsa 

Characteristic Nitrate ion Nitrite ion 
Synonym(s) Nitrate ion; nitrate(1-); nitrate ion 

(NO3 -); nitrate ion(1-); nitrato; nitric 
acid, ion (1-) 

Nitrite ion; nitrite (1-); nitrite anion; 
nitrite ion (NO2 -); nitrite ion (1-); 
nitrogen dioxide(1-); nitrogen 
peroxide ion (1-); nitrous acid, 
ion (1-) 

Registered trade name(s) No data No data 
Chemical formula NO3 - NO2 -

Chemical structureb 

O 

O 
N

+ 

O 
O 

N 
O 

Ionic weight 62.005 45.995 
Identification numbers: 

CAS registry 14797-55-8 14797-65-0 
NIOSH RTECS No data No data 
EPA hazardous waste No data No data 
DOT/UN/NA/IMDG shippingc UN3218; UN1447 No data 
HSDB Not applicable Not applicable 
NCI No data No data 
EPA Pesticide Chemical 
Code 

No data No data 

aAll information obtained from IARC (2010), except where noted.
 
bHSDB 2007.
 
cChemIDplus 2014.
 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMDG = Department of Transportation/United Nations/North 

America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency;
 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for
 
Occupational Safety and Health; RTECS = Registry of Toxic Effects of Chemical Substances
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Table 4-2.  Chemical Identity of Selected Inorganic Nitrate and Nitrite 

Compoundsa
 

Ammonium Sodium Sodium Potassium Potassium 
Characteristic nitrate nitrate nitrite nitrate nitrite 
Synonym(s) Nitric acid, 

ammonium salt; 
ammonium nitrate 
(NH4NO3); Emulite; 
EXP 200; German 
saltpeter; Norge 
saltpeter; Norway 
saltpeter; 
Norwegian 
saltpeter; Plenco 
12203; Varioform I; 
ZhVK 

Nitric acid, 
sodium salt; 
Chile saltpeter; 
niter; nitric acid 
sodium 
salt(1:1); 
saltpeter; soda 
niter; nitrate of 
soda; cubic 
niter; nitratine 

Nitrous acid, 
sodium salt; 
nitrous acid 
soda; nitrous 
acid sodium 
salt (1:1) 

Nitric acid, 
potassium 
salt; niter; 
nitre; nitric 
acid 
potassium salt 
(1:1); 
saltpeter; 
saltpetre; 
nitrate of 
potash 

Nitrous acid, 
potassium 
salt; Chile 
saltpeter; 
niter; nitric 
acid sodium 
salt (1:1); 
salpeter; soda 
niter 

Registered trade 
name(s) 

No data No data No data No data No data 

Chemical formula NH4NO3 NaNO3 NaNO2 KNO3 KNO2 

Chemical structure Trigonal NH4+NO3 - Na+NO3 - Trigonal 
Na+NO2 -

Orthorhombic 
K+NO3 -

K+NO2 -

N 
H 

H 

H 
H 

+ 
N

+ 
O 

O 
O 

Na
+ 

N
+ 

O 
O 

O N 
O 

O Na
+ 

K
+ 

N
+ 

O 
O 

N 
O 

O K
+ 

O 

Identification 
numbers: 

CAS registry 6484-52-2 7631-99-4 7632-00-0 7757-79-1 7758-09-0 
NIOSH RTECS BR9050000 WC5600000 RA1225000 TT3700000 TT3750000 
EPA hazardous No data No data No data No data No data 
waste 
DOT/UN/NA/IMDG UN 2426; UN 0223; UN 1498; UN 1500; UN 1486; UN 1488; 
shipping UN 1942; UN 2067; IMO 5.1 IMO 5.1 IMO 5.1 IMO 5.1 

UN 2068; UN 2069; 
UN 2070; UN 2071; 
UN 2072; UN 0222 
IMO 5.1; NA 1942; 
IMO 1.1; IMO 9.0 

HSDB 475 726 757 1227 1216 
NCI No data No data No data No data No data 
NFPA instability 
hazardb 

3 No data No data No data No data 
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Table 4-2.  Chemical Identity of Selected Inorganic Nitrate and Nitrite 

Compoundsa
 

Ammonium Sodium Sodium Potassium Potassium 
Characteristic nitrate nitrate nitrite nitrate nitrite 

EPA Pesticide 076101c 076104c 076204c 076103c 076203c 

Chemical Code 

aAll information obtained from IARC 2010 and HSDB 2007, except where noted.

bNFPA 2002; instability hazard 3 = materials that in themselves are capable of detonation or explosive 

decomposition or explosive reaction, but that require a strong initiating source or that must be heated under
 
confinement before initiation.
 
cEPA 2014f.
 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMDG = Department of Transportation/United Nations/North 

America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency;
 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NFPA = National Fire Protection 

Association; NIOSH = National Institute for Occupational Safety and Health; RTECS = Registry of Toxic Effects of
 
Chemical Substances
 



    
 

  
 
 

 
 
 
 
 

 

    

 

   
  

 
 

  
   

 
   

 

  
   

   
    
    
     
    

 
 

    
    
   

 
  

 

  
 

 

 
      

 

156 NITRATE AND NITRITE 

4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-3.  Chemical Identity of Ammoniaa and Ureab 

Characteristic Ammonia Urea 
Synonym(s) Anhydrous ammonia, ammonia gas; Alphahydrate; carbamide; carbonyl 

aqua ammonia; liquid ammonia diamide; carbonyldiamine; isourea 
Registered trade name(s) BCMW; BUSAN 1215 UAL-37; N-Dure; UF-Concentrate-

85; Ureacin-20 
Chemical formula NH3 CH4N2O 
Chemical structure H OH2N 

NH 
H NH2 

Ionic weight 17.03 60.06 
Identification numbers: 

CAS registry 7664-41-7 57-13-6 
NIOSH RTECS No data No data 
EPA hazardous waste No data No data 
DOT/UN/NA/IMDG shipping UN 1005; UN 3318; UN 2672; UN No data 

2073
 

HSDB 162 163
 

NCI No data No data
 

EPA Pesticide Chemical 005302 085702
 
Code 

aHSDB 2012. 
bHSDB 2003. 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMDG = Department of Transportation/United Nations/North 
America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 
Occupational Safety and Health; RTECS = Registry of Toxic Effects of Chemical Substances 



    
 

  
 
 

 
 
 
 
 

 

 
 

 

 
 

   
 

 
 

 
      

      
  

 
 

 

  
 

  

 
 

     

 
 

     

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

     

      
      
      

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
 

     

      
 

 
     

 
 

  
 

 

 

  

 
 

     

      
 

    
 

 
 

   

 

157 NITRATE AND NITRITE 

4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-4.  Physical and Chemical Properties of Selected Inorganic Nitrate and
 
Nitrite Compoundsa
 

Ammonium Potassium Potassium 
Characteristic nitrate Sodium nitrate Sodium nitrite nitrate nitrite 
CAS 6484-52-2 7631-99-4 7632-00-0 7757-79-1 7758-09-0 
Molecular weight 80.043 84.995 68.985 101.103 85.093 
Color White; colorless White; colorless White to pale Colorless Pale yellow 

(pure); gray or yellow 
brown (fertilizer 
grade) 

Physical state Solid Solid Solid Solid Solid 

Melting point 169.7°C 306°C; 308°C 271°C 334°C; 337°C 440°C 

Boiling point Decomposes at 380°C; 320°C; 400°C; 537°C; 
~210°C (200– decomposes decomposes decomposes explodes 
260°C) 

Density: 1.725 g/cm3 2.26 g/cm3 2.17 g/cm3 2.11 g/cm3 1.915 g/cm3 

at 20°C/4°C 

Odor Odorless Odorlessb No data Odorless No data 
Odor threshold: No data No data No data No data No data 
Taste threshold No data No data No data No data No data 
Solubility: 
Water at 25°C 213 g/100 g 91.2c g/100 g 84.8 g/100 g 38.3 g/100 g 312 g/100 g 
Organic solvent(s) Acetone, Ammonia, Ammonia, Ammonia; Ammonia; 

ammonia, hydrazine, ethanol, glycerol; sl sol alcohol 
ethanol, ethanol, methanol ethanol 
isopropanol, methanol, 
methanol acetone, glycerol 

Partition coefficients Not available Not available Not available Not available Not available 

Vapor pressure Not available Not available Not available Not available Not available 
Henry's law Not available Not available Not available Not available Not available 
constant 
Flashpoint Not available Flames up when 498ºC; May Not flammable Not flammable 

heated to 540°C explode above 
530°C 

Flammability limits Not available Not available Not available Not available Not available 

Explosive limits Not available Not available >1,000°C Not available Not available 

aAll information obtained from HSDB 2007, unless otherwise noted.
 
bLewis 2002.
 
cLide 2013.
 

CAS = Chemical Abstracts Service; HSDB = Hazardous Substances Data Bank 



    
 

  
 
 

 
 
 
 
 

   

 
   

   
   

   
   

   
   

 
   

    
    
   

 
       

   
   

     
     

    
   

   
 

 
 

 
   

158 NITRATE AND NITRITE 

4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-5.  Physical and Chemical Properties of Ammoniaa and Ureab 

Characteristic Ammonia Urea 
CAS 7664-41-7 57-13-6 
Molecular weight 17.03 60.06 
Color Colorless White 
Physical state Gas Crystal/powder 
Melting point -77.7°C 132.70°C 
Boiling point -33.35 °C at 760 mm Hg Decomposes 
Density: 
at 20°C/4°C 0.696 g/L (liquid) 1.3230 
Odor Sharp, pungent, irritating Slight odor of ammonia; odorless 
Odor threshold: Water: 1.5 mg/L; Air: 5.2 µL/L No data 
Taste threshold No data No data 
Solubility: 
Water 4.82x105 mg/L at 24°C 5.45x105 mg/L at 25°C 
Organic solvent(s) Alcohol, chloroform, ether Alcohol; acetic acid; pyrimidine 
Partition coefficients No data -2.11 
Vapor pressure at 25°C 7.51x103 mm Hg 1.2x10-5 mm Hg 
Henry's law constant 1.61x10-5 atm m3/mole at 25°C No data 
Flashpoint No data No data 
Flammability limits No data No data 
Explosive limits No data No data 

aHSDB 2012 
bHSDB 2003 

CAS = Chemical Abstracts Service; HSDB = Hazardous Substances Data Bank 



    
 

  
 
 

 
 
 
 
 

  

  

  

 

  

  

  

  

159 NITRATE AND NITRITE 

4.  CHEMICAL AND PHYSICAL INFORMATION 

Nitrate is the most oxidized form of nitrogen present in the environment (oxidation state of nitrogen +5).  

It accounts for the majority of the total available nitrogen in surface waters (Environment Canada 2012), 

perhaps due to its formation by converting the ammonium ion (e.g., from fertilizer and manure) through a 

2-step oxidation process, first to nitrite and then to nitrate.  In compounds, nitrate and nitrite typically 

exist in an oxidation state of 1-.  Nitrate is the conjugate base of nitric acid (HNO3), a strong acid with 

pKa of -1.38 at 25°C (Dean 1985).  Nitric acid and salts of nitric acid completely dissociate in aqueous 

solutions, except for nitrates of mercury and bismuth (Environment Canada 2012; WHO 1978).  Nitrite is 

the conjugate base of nitrous acid (HNO2), a weak acid with a pKa of 3.14 at 25°C (Dean 1985); nitrite 

readily decomposes to yield water and dinitrogen trioxide (N2O3), or nitric acid, nitric oxide (NO), and 

water (H2O) (WHO 1978, 2011b). 



    
 

  
 
 

 
 
 
 
 

 
 

160 NITRATE AND NITRITE 

4.  CHEMICAL AND PHYSICAL INFORMATION 
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161 NITRATE AND NITRITE 

5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.1  PRODUCTION 

Table 5-1 lists the production year, number of facilities, the state where each facility is located, and the 

range (in pounds) for each domestic manufacturer that reported the production or formulation of nitrate 

compounds in 2012 (TRI12 2014).  Table 5-2 lists Toxics Release Inventory (TRI) data for sodium 

nitrite, a common nitrite salt. Table 5-3 lists the TRI data for ammonia.  Manufacturers are required to 

report Toxics Release Inventory (TRI) data to satisfy EPA requirements. The TRI data should be used 

with caution since only certain types of facilities are required to report (EPA 2005).  Facilities that must 

report to the TRI include industries in a specific business sector such as manufacturing, mining, or electric 

generation, employ ≥10 full-time employees, and manufacture or process 25,000 pounds of a TRI-listed 

chemical or use >10,000 pounds of a TRI listed chemical per calendar year. Therefore, there are some 

facilities that may be processing or using nitrate and/or nitrite, but are not required to report to TRI 

because they do not meet the regulatory criteria. The amounts reported in Tables 5-1, 5-2, and 5-3 

represent those reported by all facilities in each state that are required to report to the TRI and represent 

the range of minimum to maximum amounts of each chemical present on-site at these facilities during the 

year.  This is not an exhaustive list.  

Nitrate and nitrite are not stable compounds, but rather the ionic portions of compounds such as inorganic 

salts.  As used in this profile, the word “ion” is implied and not used, unless added for clarity.  Nitrate and 

nitrite occur naturally in the environment as a part of the nitrogen cycle.  Nitrogen fixation is part of the 

natural process by which free nitrogen gas (N2) is converted to nitrite, then to nitrate, used by plants, and 

returned as free N2 to the atmosphere. This is called the nitrogen cycle, and is shown in Figure 5-1.  This 

cycle occurs through the global environment (Newton 2005).  Nitrogen exists naturally in soils. Topsoils 

contain nitrogen, at content levels as high as 2 to 4 tons/hectare (roughly 1.2–2.4 kg/m3 in the upper 

15 cm of soil; topsoil depths can range between 0 and 30 cm [Hill Laboratories 2014]), typically bound to 

organic matter and mineral soil material; available forms of nitrogen, including nitrate, are present in soils 

at a few kg/hectare (Taylor 2004).  Nitrate is also formed naturally as an end product of oxidation of 

vegetable debris and animal and human waste, mainly urine disposed of in waste water. This process is 

known as nitrification, which is a microbial process that converts ammonia to nitrate and is the principal 

source for nitrate in the terrestrial and aquatic environment (Environment Canada 2012).  Under aerobic 

conditions, the ammonium ion (e.g., from fertilizer or manure, or discharge from municipal and onsite 

waste water treatment systems) is converted to nitrite ion via ammonia-oxidizing bacteria (Nolan 1999).  



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
      
          
       
        
        
      
        
     
      
       
        
     

      
       
       
          
        
        
       
          
        
       
      

       
          
          
          
       
       
      
       
      
        
      
       
        
        
       
          

162 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Nitrate Compounds 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AK 2 1,000,000 9,999,999 1, 5, 12, 14 
AL 56 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 
AR 26 0 49,999,999 1, 3, 4, 5, 7, 9, 11, 12, 13 
AZ 32 0 99,999,999 1, 4, 5, 6, 7, 11, 12 
CA 139 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
CO 39 0 10,000,000,000 1, 5, 7, 11, 12, 13, 14 
CT 26 0 99,999 1, 3, 5, 7, 8, 10, 12 
DC 4 1,000 9,999 7, 8 
DE 6 0 9,999,999 1, 5, 7, 13, 14 
FL 36 0 9,999,999 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14 
GA 57 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
GU 1 100,000 999,999 1, 5 
HI 7 0 99,999 1, 5, 9 
IA 46 0 999,999,999 1, 3, 4, 5, 7, 8, 10, 11, 12, 13 
ID 25 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14 
IL 108 0 499,999,999 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
IN 62 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
KS 27 0 999,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
KY 44 0 999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13 
LA 48 0 999,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
MA 42 0 9,999,999 1, 3, 5, 6, 7, 11, 12, 13 
MD 21 0 999,999 1, 3, 4, 5, 6, 7, 8, 10, 13, 14 
ME 12 0 99,999 1, 5, 11, 12 
MI 105 0 9,999,999 1, 5, 6, 7, 8, 9, 10, 11, 12, 14 
MN 53 0 999,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 
MO 37 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
MS 28 100 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 
MT 10 100 999,999 1, 3, 5, 7, 11, 12, 13 
NC 41 0 9,999,999 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 
ND 10 100 999,999 1, 5, 7, 8, 13 
NE 25 100 99,999,999 1, 3, 4, 5, 6, 7, 10, 12, 13 
NH 7 0 99,999 1, 5, 7, 10, 11, 12 
NJ 40 100 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14 
NM 14 0 499,999,999 1, 5, 6, 10, 11, 12 
NV 27 0 499,999,999 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14 
NY 73 0 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OH 111 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OK 37 100 99,999,999 1, 3, 4, 5, 6, 7, 10, 11, 12, 14 
OR 40 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
        
       

       
        
     
        
        
          
       
      
       

        
       
       

 
 

    
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

163 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Nitrate Compounds 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

PA 67 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
PR 7 100 999,999 1, 3, 5, 7, 8, 14 
RI 6 100 99,999 1, 2, 3, 5, 6, 12 
SC 43 0 999,999 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14 
SD 8 1,000 9,999,999 1, 5 
TN 45 0 49,999,999 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 
TX 132 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
UT 38 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13 
VA 42 0 9,999,999 1, 3, 5, 7, 8, 9, 10, 11, 12, 13 
VT 6 100 9,999,999 1, 5, 6, 10, 12 
WA 46 0 99,999,999 1, 3, 4, 5, 6, 7, 9, 12, 13, 14 
WI 127 0 499,999,999 1, 4, 5, 7, 9, 10, 11, 12, 13, 14 
WV 18 0 9,999,999 1, 3, 4, 5, 6, 7, 10, 12, 13, 14 
WY 5 10,000 99,999,999 1, 3, 4, 6, 7, 11 

aPost office state abbreviations used.
 
bAmounts on site reported by facilities in each state.
 
cActivities/Uses:
 
1.  Produce 6.  Reactant 11.  Manufacturing Aid 
2.  Import 7.  Formulation Component 12.  Ancillary/Other Uses 
3.  Onsite use/processing 8.  Article Component 13.  Manufacturing Impurity 
4.  Sale/Distribution 9.  Repackaging 14.  Process Impurity 
5.  Byproduct 10.  Chemical Processing Aid 

Source:  TRI13 2014 (Data are from 2013) 



    
 

   
 
 

 
 
 
 
 

 
  

 

 
 

 

 

     
      
       
     
       
      

     
       

     
     
       
       
     
      
      
     
      

       
     
       
     
      
      
      
     
      
      
        
      
     
      

      
       
      
        
       
     
      
     

164 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-2.  Facilities that Produce, Process, or Use Sodium Nitrite 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AL 7 1,000 999,999 1, 5, 6, 7, 10, 11, 12 
AR 8 0 99,999 2, 3, 5, 6, 8, 9, 12 
AZ 3 1,000 9,999 12 
CA 11 1,000 499,999,999 1, 3, 6, 7, 9, 11 
CO 2 1,000 99,999 7, 9, 11 
FL 1 10,000 99,999 12 
GA 11 1,000 99,999 1, 5, 6, 7, 9, 11 
IA 3 100 99,999 6, 10 
ID 1 10,000 99,999 11 
IL 32 0 999,999 1, 3, 4, 5, 6, 7, 9, 10, 11, 12 
IN 20 100 9,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13 
KS 2 1,000 9,999 10, 12 
KY 10 100 999,999 6, 7, 10, 11, 12 
LA 9 1,000 9,999,999 1, 5, 6, 7, 10, 11, 12 
MA 5 1,000 99,999 6, 12 
MD 1 10,000 99,999 2, 3, 11 
MI 43 0 9,999,999 2, 3, 6, 7, 8, 9, 10, 11, 12 
MN 6 10,000 999,999 10, 12 
MO 13 0 99,999,999 2, 3, 6, 7, 10, 11, 12 
MS 6 1,000 99,999 7, 10, 11, 12 
NC 4 1,000 99,999 1, 5, 7, 12 
NE 4 1,000 99,999 7, 8, 9 
NJ 9 1,000 999,999 7, 9, 11, 12 
NM 1 1,000 9,999 12 
NV 1 10,000 99,999 2, 3, 12 
NY 8 0 9,999,999 1, 4, 5, 7, 10, 11, 12 
OH 35 100 999,999 1, 2, 3, 5, 6, 7, 10, 11, 12 
OK 3 100 999,999 1, 5, 7, 11 
OR 2 10,000 99,999 11 
PA 15 0 9,999,999 1, 5, 6, 7, 10, 11, 12 
RI 1 100 999 1, 5, 12 
SC 19 100 9,999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12 
SD 3 1,000 99,999 1, 5, 7 
TN 5 1,000 999,999 2, 3, 4, 7, 8, 9, 10, 11, 12 
TX 38 0 9,999,999 1, 5, 6, 7, 8, 9, 10, 11, 12, 13 
UT 1 0 0 0 
VA 4 1,000 999,999 7, 8, 11, 12 
WA 1 0 0 0 



    
 

   
 
 

 
 
 
 
 

  
 

 
 

 

 

     
      
      

 
  

   
 

 
 

 
 

 

 
 

 
 

 

  
 

 
 

 
 

165 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-2.  Facilities that Produce, Process, or Use Sodium Nitrite 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

WI 13 100 999,999 7, 9, 11, 12 
WV 4 1,000 9,999,999 1, 5, 7, 11, 13 

aPost office state abbreviations used.
 
bAmounts on site reported by facilities in each state.
 
cActivities/Uses:
 
1.  Produce 6.  Reactant 11.  Manufacturing Aid 
2.  Import 7.  Formulation Component 12.  Ancillary/Other Uses 
3.  Onsite use/processing 8.  Article Component 13.  Manufacturing Impurity 
4.  Sale/Distribution 9.  Repackaging 14.  Process Impurity 
5.  Byproduct 10.  Chemical Processing Aid 

Source:  TRI13 2014 (Data are from 2013) 



    
 

   
 
 

 
 
 
 
 

 
 

 

 
 

 

 

     
      
          
       
     
        
        
        
       
     
       
       
        

       
        
       
        
        
          
        
          
       

        
         
          
        
       
        
       
          
      
          
      
       
          
        
          
        
          

166 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-3.  Facilities that Produce, Process, or Use Ammonia 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AK 6 0 999,999 1, 2, 3, 5, 11, 12 
AL 70 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
AR 49 0 49,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13 
AS 1 1,000 9,999 12 
AZ 20 0 49,999,999 1, 5, 6, 7, 9, 10, 11, 12 
CA 120 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
CO 19 0 9,999,999 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14 
CT 15 0 999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12 
DC 2 10,000 99,999 12 
DE 7 1,000 9,999,999 1, 3, 5, 6, 7, 11, 12 
FL 64 0 499,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13 
GA 81 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
HI 9 0 999,999 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 
IA 79 100 999,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ID 19 100 49,999,999 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 
IL 112 100 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14 
IN 65 0 9,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 
KS 37 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
KY 47 0 49,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 
LA 72 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
ME 10 0 999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13 
MI 70 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 
MN 61 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
MO 46 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 
MS 34 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
MT 10 0 9,999,999 1, 2, 3, 5, 6, 9, 10, 12, 13 
NC 86 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ND 13 0 99,999,999 1, 3, 4, 5, 6, 9, 10, 11, 12 
NE 45 100 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 
NH 9 0 9,999,999 1, 3, 5, 6, 10, 11, 12 
NJ 43 0 999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 
NM 6 0 99,999 1, 3, 5, 6, 11, 12, 13, 14 
NV 12 0 9,999,999 1, 2, 3, 5, 6, 7, 9, 12, 13, 14 
NY 50 0 999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14 
OH 115 0 10,000,000,000 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OK 24 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
OR 31 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
PA 95 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
       

       
        
      
          
        
          
        

        
        
       

 
  

   
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

167 NITRATE AND NITRITE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-3.  Facilities that Produce, Process, or Use Ammonia 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

PR 10 0 999,999 1, 2, 3, 4, 5, 6, 7, 10, 12 
RI 10 1,000 9,999,999 1, 2, 3, 4, 5, 6, 9, 10, 11 
SC 54 0 499,999,999 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
SD 10 1,000 999,999 1, 2, 5, 7, 10, 11, 13 
TN 70 0 999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 
TX 211 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
UT 27 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 
WA 29 0 9,999,999 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13 
WI 81 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
WV 34 0 49,999,999 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 
WY 14 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 10, 12, 13 

aPost office state abbreviations used.
 
bAmounts on site reported by facilities in each state.
 
cActivities/Uses:
 
1.  Produce 6.  Reactant 11.  Manufacturing Aid 
2.  Import 7.  Formulation Component 12.  Ancillary/Other Uses 
3.  Onsite use/processing 8.  Article Component 13.  Manufacturing Impurity 
4.  Sale/Distribution 9.  Repackaging 14.  Process Impurity 
5.  Byproduct 10.  Chemical Processing Aid 

Source:  TRI13 2014 (Data are from 2013) 
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Figure 5-1.  Simplified Schematic of the Nitrogen Cycle 

Adapted from EEA 2010; EPA 2012a; Vitousek et al. 1997 
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This oxidation process is an intermediate step in the nitrogen cycle, followed by further oxidation of 

nitrite to nitrate ion via nitrite-oxidizing bacteria. These two reactions are mediated by aerobic 

chemolithotrophs, Nitrosomonas and Nitrobactor, respectively (WHO 1978).  Microbial conversion of 

nitrate to nitrite (reduction) may also occur, especially after prolonged storage of vegetables that make the 

environment anaerobic. 

In nature, nitrate can also be found in igneous and volcanic rocks; however, the high solubility of nitrogen 

salts makes minerals containing nitrate rare.  Major minerals known are saltpeter (KNO3) found in India, 

and Chile saltpeter (NaNO3) found in deserts of northern Chile (Environment Canada 2012; Hammerl and 

Klapotke 2006). 

Plants and mammals naturally contain nitrate and nitrite (WHO 2011b).  Assimilation of nitrite from soils 

occurs via reduction of nitrate to nitrite, which is facilitated by various bacteria and catalyzed by nitrate 

reductase (WHO 1978).  Mammals endogenously produce nitrate and excrete it in their waste products 

(WHO 1978, 2011b). 

Various industrial process produce nitrate in their waste streams.  Specifically, potassium nitrate, calcium 

nitrate, silver nitrate, and sodium nitrate used in several industrial applications have waste waters with 

high-nitrate concentrations (Environment Canada 2012). 

A major source of anthropogenic nitrate and nitrite is artificial fertilizers (WHO 1978). The majority of 

nitrate in the environment derived from fertilizers does not solely originate from nitrate-containing 

fertilizers; it also comes from ammonium and urea fertilizers.  Nitrate from ammonium and urea 

fertilizers is produced through biological processes involving hydrolysis of urea to ammonium and 

ammonium nitrification (Kissel et al. 2008).  Approximately 11.5 million tons of nitrogen are applied 

yearly (as of 1994) in the United States as fertilizer in agricultural areas (Nolan et al. 1997).  The 

Association of American Plant Food Control Officials and The Fertilizer Institute reported that the United 

States used 13.5 thousand tons of nitrogen fertilizer in 2012 (TFI 2014). Ammonium, calcium, 

potassium, and sodium salts are all used in commercial fertilizers compounds (IARC 2010; WHO 2011b).  

The most common nitrite salt, sodium nitrite, is produced commercially via the reaction of nitrogen 

oxides with sodium carbonate or sodium hydroxide solution, typically at a pH higher than 8 (Hammerl 

and Klapotke 2006).  In 2004, global production of sodium nitrate was about 63 kilotons (IARC 2010).  

Ammonium nitrate is manufactured through the reaction of nitric acid and ammonium (HSDB 2007).  

Global production of ammonium nitrate in 2002 was reported at 13,608 kilotons (IARC 2010).  Between 
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1998 and 1999, 90 kilotons of Canadian fertilizers were nitrate compounds:  82% as ammonium nitrate 

and the remaining 18% from calcium nitrate, calcium ammonium nitrate, and potassium nitrate 

(Environment Canada 2012). 

According to the 2011 SRI Directory of Chemical Producers, there are 15 domestic producers of 

ammonium nitrate in the United States, with an annual capacity of 2,290 metric tons (SRI 2011).  There 

were six producers of sodium nitrate, two producers of sodium nitrite, and one producer of potassium 

nitrite; however, no production volumes or capacities were reported for any of these substances (SRI 

2011).  Production of ammonium nitrate in 2004 by the United States chemical industry was reported as 

6,558 thousands of metric tons and preliminary production data reported 6,353 thousands of metric tons 

for the year 2005 (HSDB 2007).  Production of ammonium nitrate by the U.S. chemical industry in 1994 

through 2003 is listed in Table 5-4.  U.S. production of sodium nitrate in 1982 was estimated as 

4.75x107 kg and at least 5.0x107 kg in 1977; U.S. production of sodium nitrite in 1977 was reported as at 

least 5.0x106 kg; U.S. production of potassium nitrate in 1972 and 1975 were reported as 4.23x107 and 

9.89x107 kg, respectively (HSDB 2007). 

Production of ammonia by the U.S. chemical industry in 1995 through 2002 is listed in Table 5-5.  

According to 2012 Chemical Data Reporting (CDR) data, the total reported production volumes for 

ammonia and urea were 1.75 x1010 kg/year and 1.17 x1010, respectively (EPA 2014g) Consumption 

patterns indicate that the major use for these chemicals is in the fertilizer industry (HSDB 2003, 2012). 

5.2  IMPORT/EXPORT 

In 1984, United States imports of ammonium nitrate were 1.14x1011 g (109,247 metric tons) and exports 

in 1975 were reported as 3.18x1010 (31,298 metric tons) (HSDB 2007).  In 1986, U.S. imports of 

potassium nitrate were 3.62x106 g (3.56 metric tons) and exports in 1975 were reported as negligible 

(HSDB 2007).  In 1985, U.S. imports of sodium nitrate were 6.44x107 g (63.4 metric tons) and exports in 

1985 were reported as 4.81x106 (4.73 metric tons) (HSDB 2007).  In 1984, U.S. imports of sodium nitrite 

were 8.14x109 g (8,011 metric tons) and exports in 1984 were reported as 4.03x1011 (396,635 metric tons) 

(exports related to general sodium compounds) (HSDB 2007). 
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Table 5-4.  Production of Ammonium Nitrate by the U.S. Chemical Industry 

Year Thousands of metric tons 
1994 7,771 
1995 7,700 
1996 7,708 
1997 7,804 
1998 8,235 
1999 6,920 
2000 7,237 
2001 5,833 
2002 6,436 
2003 5,733 

Source:  HSDB 2007 
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Table 5-5.  Production of Ammonia by the U.S. Chemical Industry 

Year Millions of metric tons 
1994 64,510 
1995 35,600 
1999 16.6 
2000 15.7 
2001 9.5 
2002 10.8 

Source:  HSDB 2012 
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The U.S. Department of Agriculture (USDA 2013) has compiled annual import/export data on nitrate 

fertilizers (ammonium nitrate, potassium nitrate, and sodium nitrate) for years 2000–2012.  The volumes 

for ammonium nitrate are provided in Table 5-6, followed by a 2012 comparison for all three fertilizers 

(Table 5-7). 

5.3  USE 

The majority of nitrate in commerce is used in common inorganic fertilizers.  Ammonia, urea, ammonium 

nitrate, sodium nitrate, potassium nitrate, and calcium nitrate are used as commercial fertilizers; 

ammonium nitrate and sodium nitrate are also used in munitions and explosives.  These chemicals have 

uses defined in several other industrial and consumer categories. Nitrate and nitrite salts are used as 

preservatives in beverages. Additional uses include oxidizing agents, in instant cold packs and for the 

production of nitrous oxide (ammonium nitrate), and for glass making (potassium nitrate) (EPA 2009a; 

IARC 2010; Taylor 2004; WHO 2011b).  Potassium and ammonium nitrate may also be used in 

pyrotechnics, herbicides, and insecticides (HSDB 2007).  Sodium nitrite is mainly used in the food 

industry as a preservative, in cured meats for preventing botulism (e.g., it inhibits microbial activity of 

certain Clostridium species in cheeses), and in the chemical, pharmaceutical, and agricultural industries 

(Hammerl and Klapotke 2006; HSDB 2007; WHO 2011b).  Sodium nitrite also has therapeutic uses such 

as an antidote for cyanide poisoning and as an antifungal topical agent, for example against MRSA strains 

(HSDB 2007; Ormerod et al. 2011; Pokorny and Maturana 2006).  Due to the bioactivity of NO, an 

endogenous metabolite of nitrite produced under hypoxic conditions, sodium nitrite is being used in 

medicinal applications, such as for the treatment of pulmonary arterial hypertension (Blood and Power 

2015; Lundberg et al. 2008; Rix et al. 2015). Potassium nitrate has been added to some toothpastes for 

cavity prevention and to reduce sensitivity, as well as being used as a curing agent and color fixative in 

meats (HSDB 2007).  In nature, plants utilize nitrate as an essential nutrient (WHO 2011b). 

5.4  DISPOSAL 

Disposal methods for anthropogenic sources of nitrate and nitrite are general; unused portions of the 

material should be recycled for the approved use or returned to the manufacturer or supplier, while leaks 

or spills should be resolved wearing appropriate protective equipment and taking care not to create a 

flammable or explosive environment.  Response to a small liquid spill involves stopping the leak, soaking 

up the liquid with vermiculite or sand, and placing it in a non-combustible container.  Response to a large 

liquid spill on land involves diking, product recovery, treating residue with soda ash and neutralizing it 

with HCl, and flushing residue from the area with water.  Response to a solid spill involves picking up the 
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Table 5-6.  U.S. Imports and Exports (Metric Tons) of Selected Fertilizers 2000– 
2012 

Ammonium Ammonium Calcium Calcium Potassium Potassium Sodium Sodium 
nitrate nitrate nitrate nitrate nitrate nitrate nitrate nitrate 

Year exports imports exports imports exports imports exports imports 
2012 335,080 851,196 Not reported 38,550 15,746 159,135 3,348 148,898 
2011 314,764 633,974 Not reported 33,998 16,449 114,861 3,286 90,470 
2010 317,737 548,976 Not reported 34,490 9,991 76,849 2,429 70,156 
2009 195,455 450,664 Not reported 123,168 8,449 73,871 2,536 79,741 
2008 188,818 706,955 Not reported 204,552 4,322 132,571 5,783 149,467 
2007 194,038 1,107,220 Not reported 187,640 Not reported 135,912 3,139 72,892 
2006 127,244 1,150,523 Not reported 156,997 Not reported 149,633 2,827 68,416 
2005 82,237 907,618 Not reported 119,448 Not reported 86,961 2,289 66,655 
2004 109,972 1,055,949 Not reported 126,498 Not reported 66,381 2,838 62,812 
2003 51,856 1,203,985 Not reported 90,989 Not reported 78,754 2,465 85,565 
2002 98,218 989,507 Not reported 99,200 Not reported 100,712 2,810 72,568 
2001 19,277 925,534 Not reported 127,586 Not reported 50,791 2,199 89,422 
2000 21,611 838,035 Not reported 108,269 Not reported 40,941 2,264 96,067 

Source:  USDA 2013  
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Table 5-7.  U.S. Exports and Imports for Nitrate Fertilizers in 2012 (Short Tons) 

Fertilizer Exports Imports 
Ammonium nitrate 369,362 938,283 
Potassium nitrate 17,357 175,416 
Sodium nitrate 3,691 164,132 
Urea 370,694 7,654,464 
Anhydrous ammonia 41,504 6,938,744 
Aqua ammonia 6,549 96,517 
All fertilizersa 10,783,383 35,552,395 

aIncludes nitrogen, potassium and phosphate fertilizers 

Source:  USDA 2013  
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material with implements (e.g., shovels, broom, and pan), placing in a non-combustible container, and 

loosely capping the container.  Spills to water can be treated with activated charcoal.  Ultimate disposal of 

the chemicals should take into account several factors (the material's impact on air quality; migration 

characteristics; effects on animal, aquatic, and plant life) and must take into account compliance with 

environmental and public health regulations.  Generally, this involves treatment with sodium carbonate, 

neutralization with HCl, and disposal of the resulting sludge in a secure landfill.  If incineration is used, 

processes to remove nitrogen dioxide and nitrogen oxide should be included (HSDB 2007). 
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6.1  OVERVIEW 

Nitrate and nitrite are ubiquitous in the environment.  Specific salts have occasionally been identified in 

hazardous waste sites.  Ammonium nitrate, sodium nitrate, and sodium nitrite were identified in 7, 3, and 

2, of the 1,832 hazardous waste sites, respectively that have been proposed for inclusion on the EPA 

National Priorities List (NPL) (ATSDR 2015).  However, the number of sites evaluated for these 

substances is not known.  The frequency of these sites can be seen in Figures 6-1, 6-2, and 6-3. 

Nitrate may enter the environment via natural and anthropogenic sources.  Nitrate and nitrite occur 

naturally in the environments as a part of the earth’s nitrogen cycle.  A major source of anthropogenic 

nitrate and nitrite is artificial fertilizers, and various industrial processes also produce nitrate in their waste 

streams (Environment Canada 2012; WHO 1978).  Inorganic fertilizer and nitrification of animal waste 

are the principal sources of nitrate in the environment (Environment Canada 2012; Nolan et al. 1997).  

However, contributions from human waste must be taken into account as well.  Point and non-point 

anthropogenic sources that contribute include industrial waste water, mining (explosives) waste water, 

agricultural and urban runoff, feedlot discharges, septic system and landfill leachate, lawn fertilizers, 

storm sewer overflow, and nitric oxide and nitrogen dioxide from vehicle exhaust (Environment Canada 

2012).  Additionally, organic forms of nitrogen in the environment from various sources may undergo 

ammonification to form inorganic ammonia and ammonium, and nitrification to form nitrate, and have the 

potential to be released into surface waters (Environment Canada 2012).  Inorganic nitrate and nitrite in 

soil and water can be taken up by plants used for human consumption (ATSDR 2013a). 

Exposure from drinking water of private wells is a source of concern as elevated concentrations have been 

reported in some wells, yet these water sources are not routinely tested, monitored, or regulated since they 

are not covered by the Safe Drinking Water Act (SDWA). About 15% of Americans use private wells as 

a source of drinking water and an important percentage of them may have a septic system serving their 

homes.  Additionally, nitrate and nitrite exposure can occur from the ingestion of foods containing high 

levels of these chemicals (ATSDR 2013a). 
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Figure 6-1. Frequency of NPL Sites with Ammonium Nitrate Contamination 
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Figure 6-2. Frequency of NPL Sites with Sodium Nitrate Contamination 
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Figure 6-3. Frequency of NPL Sites with Sodium Nitrite Contamination 
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6.2  RELEASES TO THE ENVIRONMENT 

The Toxics Release Inventory (TRI) data should be used with caution because only certain types of 

facilities are required to report (EPA 2005).  This is not an exhaustive list.  Manufacturing and processing 

facilities are required to report information to the TRI only if they employ 10 or more full-time 

employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 1011, 

1081, and 1094), 12 (except 1241), 20–39, 4911 (limited to facilities that combust coal and/or oil for the 

purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that combust 

coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 (limited to 

facilities that combust coal and/or oil for the purpose of generating electricity for distribution in 

commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et seq.), 

5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities 

primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces, 

imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI 

chemical in a calendar year (EPA 2005). 

Nitrate is released into the environment through both natural and anthropogenic sources.  Naturally 

occurring nitrate and nitrite are part of the earth’s nitrogen cycle. Anthropogenic sources, including 

animal and human organic wastes as well as nitrogen-containing fertilizers, increase the concentrations of 

nitrate in the environment.  Nitrate and nitrite are present in the environment, in soils and water, and to a 

lesser extent, in air, plant materials, and meat products. Concentrations of nitrite in plants and water are 

low relative to nitrate concentration due to the fact that nitrite is easily oxidized to nitrate (WHO 1978). 

Nitrate is the ion detected in the majority of groundwater and surface water samples because the nitrite 

ion is easily oxidized to nitrate in the environment; the nitrate ion is stable and is chemically unreactive 

under most environmental conditions (IARC 2010; WHO 2011b). 

6.2.1 Air 

Estimated releases of 301,654 pounds (~137 metric tons) of nitrate compounds to the atmosphere from 

2,110 domestic manufacturing and processing facilities in 2013, accounted for about 0.1% of the 

estimated total environmental releases from facilities required to report to the TRI (TRI13 2014).  These 

releases are summarized in Table 6-1.  Estimated releases of 65,201 (~30 metric tons) pounds of sodium 

nitrite were released to the atmosphere from 363 domestic manufacturing and 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Nitrate Compoundsa
 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
AK 2 0 310,000 0 1,730,003 0 2,040,003 No data 2,040,003 
AL 56 5 10,970,520 5,000 589,240 1,003 11,012,324 553,444 11,565,768 
AR 26 0 3,776,021 0 14,399 4,217 3,790,167 4,470 3,794,637 
AZ 32 3,295 0 0 39,894 78 43,189 78 43,267 
CA 139 7,172 1,967,150 20,684 956,477 65,682 2,831,868 185,297 3,017,165 
CO 39 1 1,850,266 0 54,944 50 1,904,854 407 1,905,261 
CT 26 58,098 202,953 0 698 54,000 261,051 54,698 315,749 
DC 4 0 0 0 0 0 0 No data 0 
DE 6 0 2,850,359 0 0 0 2,850,359 No data 2,850,359 
FL 36 479 850,888 23,373,722 264,705 0 24,261,115 228,680 24,489,794 
GA 57 511 12,284,962 0 352,756 196,086 12,573,225 261,090 12,834,315 
GU 1 0 181,244 0 196 0 181,440 No data 181,440 
HI 7 0 439,915 0 0 0 439,915 No data 439,915 
IA 46 23,005 6,737,465 0 133,387 28 6,886,605 7,280 6,893,885 
ID 25 53 2,462,856 0 1,590,643 0 4,021,989 31,564 4,053,553 
IL 108 28,202 6,428,670 14,007 454,232 2,346 6,875,892 51,565 6,927,456 
IN 62 439 19,965,218 0 3,287,114 12,527 19,965,662 3,299,636 23,265,298 
KS 27 38,262 108,068 340,905 98,569 21 585,186 639 585,825 
KY 44 990 5,031,265 0 313,935 532 5,305,617 41,104 5,346,721 
LA 48 4,502 10,169,890 1,576,528 55,015 0 11,753,676 52,259 11,805,934 
MA 42 10 115 25,928 27,091 217,377 145 270,376 270,520 
MD 21 0 739,290 0 84,199 35 739,687 83,837 823,524 
ME 12 1,209 2,854,965 0 63 0 2,856,209 28 2,856,237 
MI 103 10,021 1,714,827 0 228,050 33,121 1,732,091 253,928 1,986,019 
MN 53 1,076 1,471,856 0 78,276 250 1,536,094 15,364 1,551,458 
MO 37 2,852 1,752,877 0 241,834 5,100 1,977,139 25,524 2,002,663 
MS 28 372 6,495,644 0 329 0 6,496,345 No data 6,496,345 
MT 10 0 234,169 0 43,891 0 272,860 5,200 278,060 
NC 41 1 6,563,023 0 236,361 236,692 6,793,505 242,572 7,036,077 
ND 10 0 113,400 0 15,640 0 129,040 No data 129,040 
NE 25 187 11,785,649 0 243,650 40 12,022,108 7,418 12,029,526 
NH 7 125 0 0 0 39 125 39 164 
NJ 40 0 5,313,118 0 41,966 376 5,354,858 602 5,355,460 
NM 14 55,000 42,240 0 662,620 0 406,331 353,529 759,860 
NV 27 6 2,800 0 3,947,279 2 3,729,262 220,825 3,950,087 
NY 73 5,337 5,797,905 0 437,314 28,473 5,804,333 464,696 6,269,029 
OH 111 1,987 6,081,057 134,614 182,994 64,665 6,219,720 245,598 6,465,318 
OK 37 13,010 4,246,811 534,620 180,969 0 4,970,061 5,349 4,975,410 
OR 40 1,000 542,093 0 6,833 0 545,071 4,855 549,926 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Nitrate Compoundsa
 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
PA 67 9,139 7,212,765 0 66,541 2,428 7,224,885 65,988 7,290,874 
PR 7 0 0 1,465 120 34 1,465 154 1,619 
RI 6 0 121 0 0 20,098 121 20,098 20,219 
SC 43 3,001 2,346,088 0 178,745 458 2,376,696 151,596 2,528,293 
SD 8 0 2,995,074 2,000 338,782 6 3,280,324 55,538 3,335,862 
TN 45 270 2,748,175 470,956 125,258 1,678 2,772,445 573,892 3,346,337 
TX 131 788 14,234,564 7,762,004 876,395 7,165 21,822,716 1,058,200 22,880,916 
UT 37 329 97,000 0 1,282,016 29 714,559 664,815 1,379,374 
VA 42 3,558 10,978,189 0 4,587 1 10,981,823 4,511 10,986,334 
VT 6 0 124,890 0 57,395 0 124,890 57,395 182,285 
WA 46 8,770 1,190,505 0 981,730 0 1,631,774 549,231 2,181,004 
WI 127 591 2,162,376 0 2,339,390 31,174 3,734,315 799,216 4,533,531 
WV 18 18,000 2,140,714 0 2,138 0 2,160,673 179 2,160,852 
WY 5 0 633 6,569,900 249 0 6,570,782 No data 6,570,782 
Total 2,110 301,654 188,570,641 40,832,332 22,848,913 985,811 242,566,590 10,972,761 253,539,351 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an exhaustive list.
 
Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used.
 
dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility.
 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal and metal
 
compounds).
 
gClass I wells, Class II-V wells, and underground injection.
 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface impoundments,
 
other land disposal, other landfills.
 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for disposal, unknown
 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells.
 
kTotal amount of chemical transferred off-site, including to POTWs.
 

RF = reporting facilities; UI = underground injection 

Source:  TRI13 2014 (Data are from 2013) 
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processing facilities in 2013, accounted for about 0.8% of the estimated total environmental releases from 

facilities required to report to the TRI (TRI13 2014).  These releases are summarized in Table 6-2.  

Estimated releases of 125,680,001 pounds (~57,007 metric tons) of ammonia were released to the 

atmosphere from 2,292 domestic manufacturing and processing facilities in 2013, accounted for about 

77% of the estimated total environmental releases from facilities required to report to the TRI (TRI13 

2014). These releases are summarized in Table 6-3. 

6.2.2 Water 

Estimated releases of 188,570,641 pounds (~85,534 metric tons) of nitrate compounds to surface water 

from 2,110 domestic manufacturing and processing facilities in 2013, accounted for about 74% of the 

estimated total environmental releases from facilities required to report to the TRI (TRI13 2014).  These 

releases are summarized in Table 6-1.  Estimated releases of 2,472,668 pounds (~1,122 metric tons) of 

sodium nitrite compounds to surface water from 363 domestic manufacturing and processing facilities in 

2013, accounted for about 30% of the estimated total environmental releases from facilities required to 

report to the TRI (TRI13 2014).  These releases are summarized in Table 6-2.  Estimated releases of 

4,221,440 pounds (~1,914 metric tons) of ammonia to surface water from 2,292 domestic manufacturing 

and processing facilities in 2013, accounted for about 2.6% of the estimated total environmental releases 

from facilities required to report to the TRI (TRI13 2014). These releases are summarized in Table 6-3. 

EPA (2009d) reported that the Mississippi River drains >40% of the area of the contiguous 48 states and 

carries roughly 15 times more nitrate than any other river in the country.  EPA (2009d) noted that the 

nitrate load in the Mississippi rose from 200,000 to 500,000 tons per year in the 1950s and 1960s to an 

average of approximately 1,000,000 tons per year during the 1980s and 1990s; the data indicate that the 

nitrate load decreased slightly in the early 2000s. 

Nitrate is commonly detected in various surface waters and groundwaters such as shallow, rural domestic 

wells.  Contamination of water systems is a consequence of inorganic fertilizer use, animal manures, 

septic systems, and waste water treatment (ATSDR 2013a; Nolan 1999; WHO 2011b).  Ammonium ions 

in sludge from waste water treatment plants, as well as effluents from those plants and septic systems, are 

rapidly converted to nitrate (WHO 1978).  Various industrial process produce nitrate in their waste 

streams.  For example, potassium nitrate, calcium nitrate, 
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Table 6-2.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Sodium Nitritea
 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
AL 7 0 0 0 360 0 0 360 360 
AR 7 0 254 0 0 0 254 No data 254 
AZ 3 0 0 0 9,117 0 9,117 No data 9,117 
CA 11 7 0 0 5 0 7 5 12 
CO 2 255 0 0 0 0 255 No data 255 
FL 1 0 0 0 0 0 0 No data 0 
GA 11 98 648,256 0 101,148 68 749,502 68 749,570 
IA 3 0 2,517 0 0 0 2,517 No data 2,517 
ID 1 0 0 0 0 0 0 No data 0 
IL 32 1,637 18,600 0 90,065 15 20,237 90,080 110,317 
IN 20 1 1,130,853 0 3,312,017 4,896 1,130,854 3,316,913 4,447,767 
KS 2 0 0 0 0 0 0 No data 0 
KY 10 1,016 0 0 41,435 36,320 27,291 51,480 78,771 
LA 9 0 48,000 1,500,000 107 0 1,548,000 107 1,548,107 
MA 5 0 0 0 0 0 0 No data 0 
MD 1 16 0 0 0 103 16 103 119 
MI 42 12,992 4 0 181,207 2,490 18,745 177,948 196,693 
MN 6 0 194,173 0 0 0 194,173 No data 194,173 
MO 13 2,871 0 0 412 3,685 2,871 4,097 6,968 
MS 6 8,489 7,895 0 26,296 3 16,384 26,299 42,683 
NC 4 0 4,455 0 0 0 4,455 No data 4,455 
NE 4 0 21,200 0 1,182 1,637 21,467 2,552 24,019 
NJ 9 200 68,032 0 2,898 0 68,290 2,840 71,130 
NM 1 0 0 0 0 0 0 No data 0 
NV 1 2 0 0 33,641 0 33,642 No data 33,642 
NY 8 11,807 4,925 0 2,800 220 16,732 3,020 19,752 
OH 35 13,067 731 0 77,303 1,134 13,798 78,437 92,235 
OK 3 289 9,010 0 17,405 0 9,299 17,405 26,704 
OR 2 0 0 0 430 0 0 430 430 
PA 15 250 0 0 7 0 250 7 257 
RI 1 0 0 0 0 0 0 No data 0 
SC 19 1,530 69,403 0 787 190 70,933 977 71,910 
SD 3 6 121 25 5,500 0 5,652 0 5,652 
TN 5 239 0 0 153 0 239 153 392 
TX 38 34 199,659 198,969 54,487 0 449,818 3,331 453,149 
UT 1 No data No data No data No data No data No data No data No data 
VA 4 0 0 0 40 0 0 40 40 
WA 1 No data No data No data No data No data No data No data No data 
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Table 6-2.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Sodium Nitritea
 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
WI 13 10,231 28 0 69,018 0 10,259 69,018 79,277 
WV 4 165 44,552 0 3 0 44,717 3 44,720 
Total 363 65,201 2,472,668 1,698,994 4,027,823 50,760 4,469,774 3,845,673 8,315,446 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used.
 
dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility.
 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal
 
and metal compounds).
 
gClass I wells, Class II-V wells, and underground injection.
 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 

impoundments, other land disposal, other landfills.
 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for
 
disposal, unknown
 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells.
 
kTotal amount of chemical transferred off-site, including to POTWs.
 

RF = reporting facilities; UI = underground injection 

Source:  TRI13 2014 (Data are from 2013) 
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Table 6-3.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Ammoniaa
 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
AK 6 23,099 7,012 136 24,075 0 54,323 No data 54,323 
AL 70 4,060,001 209,278 9,343 43,646 294 4,287,915 34,647 4,322,563 
AR 47 1,837,750 114,277 0 5,499 511 1,956,076 1,961 1,958,037 
AS 1 20 0 0 0 0 20 No data 20 
AZ 20 336,273 0 0 722 0 336,989 6 336,995 
CA 118 2,801,456 26,830 2,870 165,409 369 2,978,123 18,811 2,996,934 
CO 19 269,063 17,833 0 101,218 2,430 385,942 4,602 390,544 
CT 15 74,775 155 0 0 0 74,930 No data 74,930 
DC 2 165 0 0 0 0 165 No data 165 
DE 7 58,659 6,071 0 23 0 64,730 23 64,753 
FL 63 5,607,959 244,014 464,183 960,078 0 6,343,579 932,655 7,276,234 
GA 81 12,615,696 268,976 0 166,494 153 12,967,436 83,883 13,051,319 
HI 9 100,496 1,000 1,200 0 0 102,696 No data 102,696 
IA 79 7,333,058 108,999 0 210,562 6,621 7,545,358 113,882 7,659,240 
ID 19 2,844,444 27,824 0 167,548 0 3,023,068 16,749 3,039,817 
IL 112 3,081,028 110,035 0 69,293 4,620 3,246,667 18,309 3,264,976 
IN 64 1,600,854 45,833 707,485 77,195 0 2,423,117 8,250 2,431,367 
KS 37 3,056,601 6,490 38,214 49,185 15,483 3,130,592 35,381 3,165,972 
KY 47 971,022 55,064 0 48,663 1,845 1,036,520 40,073 1,076,593 
LA 72 13,461,749 585,745 4,582,747 326,520 0 18,630,317 326,444 18,956,761 
MA 30 178,727 41 0 1,622 0 178,768 1,622 180,390 
MD 16 523,890 48,675 0 2 0 572,565 2 572,567 
ME 10 753,203 89,718 0 0 0 842,921 No data 842,921 
MI 70 1,681,959 36,582 9,790 7,181 7,875 1,731,377 12,010 1,743,387 
MN 61 1,870,843 49,112 0 35,092 2,270 1,938,690 18,627 1,957,317 
MO 46 422,032 228,193 0 44,490 251 654,800 40,166 694,966 
MS 34 4,700,259 188,194 0 2,181 0 4,889,803 830 4,890,633 
MT 10 449,711 5,420 0 264,118 0 719,205 44 719,249 
NC 86 2,661,108 85,427 0 73,410 110 2,781,752 38,302 2,820,054 
ND 13 16,199,585 4,476 11,500 474,130 0 16,689,625 66 16,689,691 
NE 44 974,508 26,655 0 162,935 4,643 1,021,771 146,970 1,168,741 
NH 9 127,211 447 0 0 2 127,658 2 127,660 
NJ 43 527,774 9,790 0 24,984 74 537,605 25,017 562,622 
NM 6 98,819 0 2,300 11,561 0 112,680 No data 112,680 
NV 12 132,670 560 0 228,759 1 361,989 1 361,990 
NY 50 687,039 50,197 0 974 274 737,570 915 738,485 
OH 115 6,430,630 100,258 1,715,361 76,575 2,560 8,244,156 81,229 8,325,384 
OK 24 5,433,575 18,832 696,880 137,282 0 6,282,692 3,877 6,286,569 
OR 31 1,156,034 35,599 0 9,980 0 1,192,997 8,616 1,201,613 
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Table 6-3.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Ammoniaa
 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
PA 95 1,739,875 77,649 59 710,403 4,905 1,829,424 703,467 2,532,891 
PR 10 366,211 0 0 1,499 0 366,211 1,499 367,710 
RI 10 7,130 0 0 0 2,500 7,130 2,500 9,630 
SC 54 3,581,123 163,436 0 15,085 60,935 3,747,126 73,453 3,820,579 
SD 10 102,302 1,809 1 21,448 0 104,819 20,741 125,560 
TN 70 2,512,358 418,374 0 90,697 0 2,932,376 89,053 3,021,430 
TX 209 4,853,142 297,133 17,187,730 397,858 468 21,789,218 947,114 22,736,332 
UT 27 520,482 1,484 8 1,162,922 120 1,684,865 151 1,685,016 
VA 49 4,358,663 105,431 0 30,198 32,318 4,471,823 54,787 4,526,610 
VT 2 4,543 5,357 0 76 0 9,900 76 9,976 
WA 29 878,866 55,744 0 100,110 3,880 940,195 98,405 1,038,600 
WI 81 593,142 45,129 15,241 14,091 0 640,527 27,076 667,603 
WV 34 332,238 227,614 137,238 47,192 13 602,602 141,693 744,294 
WY 14 686,181 8,666 297,557 2,791 0 995,195 No data 995,195 
Total 2,292 125,680,001 4,221,440 25,879,844 6,565,774 155,524 158,328,597 4,173,986 162,502,583 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used.
 
dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility.
 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal and 

metal compounds).
 
gClass I wells, Class II-V wells, and underground injection.
 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 

impoundments, other land disposal, other landfills.
 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for disposal,
 
unknown
 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells.
 
kTotal amount of chemical transferred off-site, including to POTWs.
 

RF = reporting facilities; UI = underground injection 

Source:  TRI13 2014 (Data are from 2013) 
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silver nitrate, and sodium nitrate used in several industrial applications have waste waters with high-

nitrate concentrations (Environment Canada 2012).  Discharges of these waste streams increase the 

concentrations of nitrate and nitrite in surface waters. Treatment of these waste streams may only remove 

a portion of nitrogen.  Factors such as nitrogen loading, population density, soil drainage characteristics, 

and woodland to cropland ratios, affect the transport of nitrogen from land to water (Nolan et al. 1997; 

Zhang et al. 1998).  Increased levels of nitrite in drinking water may also be a consequence of 

contamination by boiler fluid additives (ATSDR 2013a).  High risk waters for nitrate contamination 

include areas having soils with high permeability, high-nitrogen input, and low woodland to cropland 

ratios (Nolan et al. 1997; Zhang et al. 1998).  

Natural sources of nitrate and nitrite include wet and dry deposition of atmospheric nitric acid and nitrate 

ion. These are formed in the atmosphere as a result of nitrogen cycling.  Atmospheric deposition is a 
-factor for nitrate concentrations in water systems (Momen et al. 1999).  Atmospheric nitrogen (NO3 , 

NO2
-, and NH4

+), mainly from natural sources but a result of anthropogenic sources as well, have been 

estimated to contribute 182 kilotons of inorganic nitrogen per year to Canadian surface waters via wet and 

dry deposition (Environment Canada 2012).  In the United States, deposition contributes an estimated 

3.2 million tons (3,200 kilotons) of nitrogen per year to watersheds (Momen et al. 1999; Nolan 1999; 

Nolan et al. 1997).  Owens et al. (1994) reported that nitrogen input to a grass pasture from precipitation 

was equivalent to 10% of the nitrogen fertilizer applied during a 5-year period.  The concentration of 

nitrate-nitrogen in the precipitation during 1975–1980 was reported as 1.1 mg/L (ppm), which correlated 

to an input of 12.0 kg nitrate-nitrogen/hectare.  A 10-year average was also evaluated for the years 1980– 

1990, which resulted in an input of 8.9 kg nitrate-nitrogen/hectare (Owens et al. 1994). 

Stagnation of nitrate-containing and oxygen-poor drinking water in galvanized steel pipes and 

chlorination disinfectant residues can lead to conditions where nitrite is formed via chemical reactions in 

the distribution pipes by Nitrosomonas bacteria (WHO 2011b). 

A U.S. Geological Survey (USGS) study across the United States showed that 7% of 2,388 domestic 

wells and about 3% of 384 public-supply wells were contaminated with nitrate levels above the EPA 

drinking water standard of 10 mg/L (10 ppm) (ATSDR 2013a).  Between 1994 and 1996, 24 lakes in the 

Adirondack Park, United States, were studied to assess the contribution of in-lake processes, atmospheric 

deposition, and watershed cover on the lakes’ nitrate concentrations (Momen et al. 1999).  Weighted 

means for nitrate concentrations as a result of precipitation near the lakes were reported for all seasons 

during the study period and ranged from 13.86 to 35.52 µeq/L.  Nitrogen concentrations throughout the 
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study period ranged from 2.1 to 22 µmol/L.  Both atmospheric deposition and average lake depth were 

considered strong factors in concentrations of nitrate in lakes.  It was concluded that the average lake 

depth was the most important factor; greater average depths correlated to higher nitrate concentrations. 

This was attributed to decreased contact time with lake sediment, decreasing the potential for removal 

processes (Momen et al. 1999). 

Concentrations of nitrate in freshwater downstream from an open-pit coal mining operation have been 

reported to exceed 44 mg nitrate/L (Nordin and Pommen 1986).  This is attributed to high nitrate levels in 

waste streams due to explosive residues.  Monitoring studies conducted by the USGS indicate that nitrate 

and nitrite levels are several times greater in streams and groundwater in areas classified as agricultural 

use rather than as urban use, mixed use, or undeveloped land (USGS 2010a, 2010b).  

Policies implemented by the European Union (EU) to reduce nitrogen emissions from agricultural point 

sources were reviewed by Velthof et al. (2014). The Nitrates Directive (ND) was implemented to protect 

water quality across Europe by inhibiting nitrates released by agricultural sources from leaching into 

groundwater and surface waters through the use of good farming practices.  Although regional differences 

in emissions were large throughout the entire EU, nitrate leaching into groundwater and surface waters 

was estimated to decrease by 16% in nitrate leaching vulnerable zones over the period of 2000–2008, 

primarily as a result of lower nitrogen emissions from fertilizers and manures (Velthof et al. 2014). 

Seawater nitrate concentrations that occur naturally due to nitrification processes can be as high as 2.4 mg 

nitrate/L (Environment Canada 2012).  Assimilation into biological systems can deplete nitrate 

concentrations in marine environments, causing seasonal variations in nitrate concentrations.  Winter 

concentrations off the Canadian Atlantic coast were reported to be 0.54 mg nitrate/L, a magnitude higher 

than summer concentrations of <0.03 mg nitrate/L (Environment Canada 2012).  

6.2.3 Soil 

Estimated releases of 22,848,913 pounds (~10,364 metric tons) of nitrate compounds to soils from 

2,110 domestic manufacturing and processing facilities in 2013, accounted for about 9% of the estimated 

total environmental releases from facilities required to report to the TRI (TRI13 2014).  An additional 

40,832,332 pounds (~18,521 metric tons), constituting about 16% of the total environmental emissions, 

were released via underground injection (TRI13 2014).  These releases are summarized in Table 6-1.  An 

estimated release of 4,027,823 pounds (~1,826 metric tons) of sodium nitrite were emitted to soils from 
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363 domestic manufacturing and processing facilities in 2013, accounted for about 48% of the estimated 

total environmental releases from facilities required to report to the TRI (TRI13 2014).  An additional 

1,698,994 pounds (~771 metric tons), constituting about 20% of the total environmental emissions, were 

released via underground injection (TRI13 2014). These releases are summarized in Table 6-2.  An 

estimated release of 6,565,774 pounds (~2,978 metric tons) of ammonia were emitted to soils from 

2,292 domestic manufacturing and processing facilities in 2013, accounted for about 4% of the estimated 

total environmental releases from facilities required to report to the TRI (TRI13 2014).  An additional 

25,879,844 pounds (~11,739 metric tons), constituting about 16% of the total environmental emissions, 

were released via underground injection (TRI13 2014).  These releases are summarized in Table 6-3. 

In 2012, 13.5 million tons of nitrogen was added to soils as fertilizer (TFI 2014).  Therefore, it should be 

noted that the totals provided here, for nitrate compounds, ammonia, and ammonium nitrite alone, may be 

insignificant, yet contribute to and are representative of, nitrogen releases to the environment. 

6.3  ENVIRONMENTAL FATE 

Nitrate and nitrite occur naturally in water and soils as part of the nitrogen cycle. Plants and mammals 

naturally contain nitrate and nitrite (WHO 2011b).  Nitrate is the primary source of nitrogen for plants 

(EPA 2009a).  Assimilation of nitrite from soils occurs via reduction of nitrate to nitrite, which is 

facilitated by various bacteria and catalyzed via nitrate reductase (WHO 1978). The most common forms 

of nitrogen that plants assimilate include ammonium (NH4
+), nitrate (NO3

-), and urea ((NH2)2CO) 

(Cornell University 2009).  Transport, partitioning, and transformation are controlled by various 

physicochemical properties, degradation, and other loss processes. Mammals endogenously produce 

nitrate and excrete them in their waste products (WHO 1978).  Anthropogenic and natural sources of 

ammonia in the environment, such as fertilizers or animal waste products, are converted to nitrite via 

Nitrosomonas bacteria and then to nitrate via Nitrobactor bacteria. These products may be assimilated 

into plants and subsequently the atmosphere, or may leach into groundwater when they are present in 

excessive amounts (WHO 2011b). 

Nitrate is the most oxidized form of nitrogen present in the environment (oxidation state of +5) and 

accounts for the majority of the total available nitrogen in surface waters (Environment Canada 2012). 

Nitrate is the conjugate base of nitric acid, HNO3, a strong acid with pKa of -1.37 (WHO 1978).  Nitric 

acid and salts of nitric acid completely dissociate in aqueous solutions (Environment Canada 2012; WHO 

1978).  Nitrite is the conjugate base of nitrous acid, HNO2, a weak acid with a pKa of 3.37; nitrite readily 
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decomposes to yield water and dinitrogen trioxide or nitric acid, nitric oxide, and water (WHO 1978; 

WHO 2011b). 

6.3.1 Transport and Partitioning 

Nitrate and nitrite are inorganic water-soluble salts with the potential for rapid migration through soils to 

surface water and groundwater (Nolan 1999; Taylor 2004; EPA 2009a).  Sorption of anions such as 

nitrate is insignificant in most soils; therefore, leaching of excess soil nitrate into oceans, lakes, streams, 

and groundwater is an important consideration (Taylor 2004).  Drainage characteristics of soils are 

strongly related to nitrate levels in shallow wells near agricultural areas (Nolan et al. 1997; Zhang et al. 

1998).  Other factors affecting leaching potential include the texture of the soil, pH, precipitation rates, 

tillage, and the types of crops or vegetation that may be planted in the soils. 

The mobility of nitrate in a mid-European semi-natural grassland ecosystem as a function of plant 

diversity was investigated (Scherer-Lorenzen et al. 2003).  The greatest leaching was observed in bare 

ground plots as well as plots planted only with legumes.  Experiments with plots containing a wider 

variety of plant species indicated that total nitrate plant uptake increased and leaching losses decreased 

with increasing plant diversity due to greater root biomass within the soils. The leaching of nitrate 

decreased in the following order:  bare plots > pure legumes > legumes + grasses > legumes + grasses + 

herbs (Scherer-Lorenzen et al. 2003).  Annual nitrate leaching in an apple orchard was 4.4–5.6 times 

greater in plots treated with conventional farming practices (calcium nitrate fertilizer) as compared to 

plots treated by organic farming practices, in which nitrogen application was accomplished by loadings of 

chicken manure and alfalfa meal (Kramer et al. 2006).  Reduced leaching was accompanied by increased 

denitrification in the organic treatment areas. Kitchen et al. (2015) investigated groundwater nitrate as a 

result of leaching due to agriculture cropping systems over time (1994–2004) and found the greatest 

decreases in groundwater nitrate concentration occurred as groundwater moved through an in-field tree 

line or through a riparian zone. 

Nitrate leaching from croplands with high fertilizer use is a major source of groundwater nitrate 

concentrations.  In Nebraska, groundwater concentrations of nitrate have been correlated with nitrogen-

containing fertilizer application rates and residual nitrogen in surface soils (Schepers et al. 1991).  The 

reduction of nitrate concentrations in groundwater through agricultural management practices was 

assessed in Nebraska’s central Platte River valley (Exner et al. 2010).  Groundwater nitrate concentration 

reports were studied from 1986 to 2003.  Peak levels, during 1988, in the primary aquifers were 
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26.8 mg nitrate-nitrogen/L.  A gradual decline was observed with the implementation of fertilizer 

management regulations.  In 2003, nitrate-nitrogen levels in the aquifer averaged 22.0 mg/L.  

Nitrate in soils and surface water are susceptible to denitrification resulting in gaseous losses to the 

atmosphere (Taylor 2004).  Nitrate in the atmosphere, emitted by denitrification, industrial processes, and 

vehicle exhaust, is deposited on land and water in precipitation, gases, and dry particles (Nolan 1999; 

Taylor 2004).  Atmospheric deposition is a factor for nitrate concentrations in water systems (Momen et 

al. 1999; Nolan 1999; Nolan et al. 1997). 

6.3.2 Transformation and Degradation 

Nitrate and nitrite has the potential to move into various environmental compartments and are subject to 

abiotic and biotic degradation processes. Transformation and degradation processes include 

denitrification to atmospheric nitrogen and plant uptake (Newton 2005; Nolan 1999).  Conversion is 

achieved via biotic process carried out by auto- and heterotrophic bacteria (Hammerl and Klapotke 2006).  

Under aerobic conditions in aquatic systems, ammonia and nitrite are converted to nitrate via nitrification.  

Conversion is achieved through a biotic process carried out by autotrophic nitrifying bacteria.  Under 

anaerobic conditions in aquatic systems, bacteria convert nitrate to nitrite, which is further reduced to the 

gaseous compounds nitric oxide (NO), nitrous oxide (N2O), and N2 (nitrogen). These compounds are 

subsequently released to the atmosphere.  Results from a study of denitrification in riverbed sediments 

found that potential rates for denitrification are limited by environmental conditions such as available 

organic carbon and temperature, rather than concentration of nitrate itself (Pfenning and McMahon1997). 

Higher rates were demonstrated in experiments with added carbon sources.  Additionally, higher rates of 

denitrification were measured at 22°C compared to those at 4°C (Pfenning and McMahon1997). 

6.3.2.1  Air 

Nitrogen compounds are formed in the air by natural phenomena such as lightning (Hord et al. 2011), or 

may be discharged into air from industrial processes, motor vehicles, agricultural practices, or emitted by 

denitrification processes. Nitrate is present in air primarily as nitric acid and inorganic aerosols, as well 

as nitrate radicals and organic gases or aerosols (WHO 2011b).  Nitrate in the atmosphere is subject to 

wet and dry deposition and are deposited on land via precipitation, gases, and dry particles (Nolan 1999; 

Taylor 2004). 
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6.3.2.2  Water 

In surface waters, assimilation by plants and algae accounts for the majority of nitrate loss.  Reducing 

conditions of water system including dissolved oxygen (DO) and dissolved organic carbon (DOC), as 

well as temperature and pH, influence the extent of bacterially mediated nitrate loss processes in water 

systems (Nolan 1999; WHO 2011b).  Biologically mediated reduction processes of nitrate and nitrite 

were found to be positively related to DO and inversely related to iron, manganese, ammonium, and DOC 

concentrations (Nolan 1999). 

Rates of denitrification were examined by measuring N2O production using riverbed sediment and 

groundwater or surface water collected from the South Platte alluvial aquifer in Colorado, an area with 

high nitrate levels due to anthropogenic activity such as fertilizer use, farming practices, and septic 

drainage and runoff (Pfenning and McMahon 1996). The greatest N2O production was observed in 

microcosms containing high levels of organic carbon.  The type of organic carbon source was also shown 

to be correlated with the denitrification rate.  Higher N2O production rates were observed with acetate-

amended sediments as compared to sediments amended with fulvic acids.  Surface water-derived fulvic 

acids resulted in higher denitrification rates as compared to groundwater-derived fulvic acids.  Reduction 

in microbial activity due to temperature gradients was also investigated.  Denitrification rates decreased 

by nearly 80% in laboratory experiments when the temperature was lowered from 22 to 4°C. 

6.3.2.3  Sediment and Soil 

In soils, nitrite is oxidized to nitrate and the majority of nitrate is assimilated by plants and algae (WHO 

2011b).  Under aerobic conditions, residual or excess nitrate is expected to leach into groundwater and is 

not expected to undergo considerable degradation and/or denitrification.  Under anaerobic conditions 

degradation of nitrate into atmospheric nitrogen is an important removal process (WHO 2011b).  Poorly 

drained soils, which lack oxygen, promote nitrate conversion to gaseous nitrogen (Nolan et al. 1997). 

Denitrification rates were examined using soil samples obtained from different areas of an apple orchard 

and measuring the rates of gaseous nitrogen and N2O production as well as nitrate leaching (Kramer et al. 

2006).  Specifically denitrification rates were measured at different locations of the orchard treated with 

organic farming practices, conventional farming practices for orchards in the state of Washington, and 

integrated treatments from horticultural and pest management practices of conventional and organic 

farming practices.  Nitrogen application in the conventional plots used calcium nitrate based fertilizer, 

while the organic plots used chicken manure and alfalfa meal.  The integrated plots used equal parts of 
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calcium nitrate fertilizer and chicken manure.  Nitrogen emissions were higher in the organically treated 

plots, as compared to the conventional and integrated plots.  Nitrate leaching was much greater (4.4– 

5.6 times higher) in the conventional plots as compared to the organically treated plots.  

6.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT 

Reliable evaluation of the potential for human exposure to nitrate and nitrite depends in part on the 

reliability of supporting analytical data from environmental samples and biological specimens. 

Concentrations of nitrate and nitrite in unpolluted atmospheres and in pristine surface waters are often so 

low as to be near the limits of current analytical methods.  In reviewing data on nitrate and nitrite levels 

monitored or estimated in the environment, it should also be noted that the amount of chemical identified 

analytically is not necessarily equivalent to the amount that is bioavailable. The analytical methods 

available for monitoring nitrate and nitrite in a variety of environmental media are detailed in Chapter 7. 

Nitrate occurs naturally in the environments as a part of the earth’s nitrogen cycle.  Elevated levels may 

be present due to anthropogenic sources such as fertilizers, and human or animal wastes.  High levels of 

nitrate in drinking water pose a health risk to infants, children, and pregnant or nursing women (EPA 

2009a). 

6.4.1 Air 

Anthropogenic emissions of nitrogen oxides (NOx) are now of the same order of magnitude as natural 

emissions (Hammerl and Klapotke 2006).  Air pollution is considered a minor source of exposure to 

nitrate (WHO 2011b).  Nitrate in the atmosphere is generally a result of nitrogen oxides released into the 

atmosphere that are oxidized to nitric acid, in turn forming nitrate particles (Matsumoto and Tanaka 

1996).  Atmospheric levels of particulate nitrate are highly dependent on temperature and the chemical 

composition of aerosol and gases in the atmosphere, especially particulate ammonium nitrate and gaseous 

nitric acid (Matsumoto and Tanaka 1996).  Reported atmospheric nitrate concentrations range from low 

concentrations of 0.1–0.4 μg/m3 up to higher-level concentrations ranging from 1 to 40 μg/m3 (WHO 

1978, 2011b).  Concentrations in Netherland air samples have been reported to range from 1 to 14 μg/m3. 

Indoor nitrate aerosol concentrations of 1.1–5.6 μg/m3 appear to be related to outdoor concentrations 

(WHO 2011b).  Zhuang et al. (1999) evaluated the concentrations of fine and coarse particle nitrate in the 

atmosphere over Hong Kong.  The average daily concentrations for fine and coarse particle nitrate were 

found to be 0.583 and 1.663 µg/m3, respectively. 
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6.4.2 Water 

Nitrate and nitrite concentrations in water are typically expressed as either mg nitrate/L (ppm nitrate) and 

mg nitrite/L (ppm nitrite), or mg nitrate as nitrogen (nitrate-nitrogen/L) and mg nitrite as nitrogen (nitrite-

nitrogen/L) (IARC 2010).  The federal drinking-water standard maximum contaminant level (MCL) for 

nitrate is 10 mg nitrate-nitrogen/L and the MCL for nitrite is 1 mg nitrite-nitrogen/L (EPA 2009c; USGS 

2010a; WHO 2011b).  Inorganic nitrate and nitrite are very soluble in water and occur naturally in 

groundwater and surface water as a result of the earth’s nitrogen cycle.  Naturally occurring background 

levels of nitrate (concentrations expected if there were no effects of human development and 

anthropogenic sources) have been estimated as 1.0 and 0.24 mg nitrate-nitrogen/L for groundwater and 

streams, respectively, in the United States (USGS 2010a).  

A comprehensive report analyzed nutrient levels in 5,101 wells from 51 different study areas (Burow et 

al. 2010; USGS 2010a).  Monitoring data from 1993 to 2003 indicated that nitrate levels in groundwater 

varied widely across the nation, with some of the highest levels observed in the Northeast (particularly 

southern Pennsylvania), the Midwest, the state of California, and select regions of the Northwest 

(Washington state and Idaho).  The report concluded that nitrate levels in deep aquifers were likely to 

continue to increase as shallow groundwater with high levels of nitrate gravitate downward (USGS 

2010a).  The highest levels of nitrate were observed in oxic groundwater (water containing >0.5 ppm DO) 

as opposed to anoxic groundwaters and shallow wells in agricultural areas, which tended to have greater 

levels than in urban areas (USGS 2010a).  Burow et al. (2010) analyzed these data and reported that 

nitrate concentrations exceeded the MCL (10 mg nitrate-nitrogen/L) in 437 wells (8%).  Levels exceeded 

the MCL in 20% of wells classified as agricultural land-use setting, and 3% were above the MCL in wells 

classified as urban use. In monitoring data from bank and in-stream wells in the San Joaquin River in 

California, collected between 2006 and 2008, the concentration of nitrate exceeded the detection limit 

(0.01 mg/L) in 5% of the groundwater samples and the concentrations in surface waters ranged from 1 to 

3 mg/L.  It was reported that 17 of the 26 nested monitoring wells, along the river bed and river bank, had 

no detectable concentrations of nitrate during the monitoring period (USGS 2013a). 

Monitoring data obtained from 1991 to 1995 in shallow groundwater of coastal plains in the Albemarle-

Pamlico Drainage Unit, in North Carolina and Virginia, have indicated the presence of increased nitrate 

concentrations as a result of agriculture and anthropogenic sources.  Shallow groundwater concentrations 

are higher at inner coastal sites with well-drained soils compared with outer coastal sites.  Areas with 

anthropogenic nitrogen sources, such as fertilizer and manure, had aquifer concentrations >3 mg nitrate-
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nitrogen/L.  Levels <2 mg nitrate-nitrogen/L were reported in aquifer waters with greater DOC 

concentrations. Groundwaters from areas having well-drained soils had a median concentration of 

approximately 0.4 mg nitrate-nitrogen/L.  Two of the 20 inner coastal wells had levels >10 mg nitrate-

nitrogen/L.  Groundwater concentration of nitrate was nearly undetectable in waters underneath poorly 

drained soils in the outer coast (median 0.05 mg nitrate-nitrogen/L).  The North Carolina Division of 

Water Quality (NCDWQ) selected groundwater samples susceptible to contamination; 40% of the 

15 wells in the inner coastal plain of the Albemarle-Pamlico Drainage had levels >10 mg nitrate-

nitrogen/L (USGS 2012). 

Nitrate and nitrite were the two most detected inorganic chemicals reported in public water systems 

(PWSs) in an analysis supporting the U.S. EPA’s second Six-Year Review of National Primary Drinking 

Water Regulations.  Occurrence data for nitrate from a Six-Year Review-ICR Dataset include 

1,052,487 analytical results from 119,537 public water systems (groundwater 114,764; surface water 

4,773) across 44 states during the time period from 1998 to 2005 (EPA 2009a).  These water systems are 

reported to serve a combined population of 229,508,036.  Nitrate was detected in approximately 70% of 

the water systems (groundwater 69.4%; surface water 81.3%) at a median concentration of 1.8 mg nitrate-

nitrogen/L (groundwater systems 1.6 mg nitrate-nitrogen/L; surface water systems 2.71 mg nitrate-

nitrogen/L).  Maximum concentrations detected in groundwater and surface water systems were 99 and 

48.5 mg nitrate-nitrogen/L, respectively. Seven states in the review reported at least one detection of 

nitrate greater than the MCL of 10 mg nitrate-nitrogen/L in >5% of their systems. Overall, the 

2,973 systems with detections exceeding the MCL serve a combined population of 16,777,093 (EPA 

2009a).  Occurrence data for nitrite from the Six-Year Review-ICR Dataset includes 397,175 analytical 

results from 86,313 public water systems (groundwater 82,738; surface water 3,575) across 44 states 

during the time period from 1998 to 2005 (EPA 2009a).  These water systems are reported to serve a 

combined population of 207,984,813.  Nitrite was detected in approximately 22% of the water systems 

(groundwater 22%; surface water 23%) at a median concentration of 0.02 mg nitrite-nitrogen/L. 

Maximum concentrations detected in groundwater and surface water systems were 13 and 8.68 mg nitrite-

nitrogen/L, respectively.  Four states in the review reported at least one nitrite detection greater than the 

MCL (1 mg nitrite-nitrogen/L) in more than 1% of their systems.  Overall, the 635 systems with 

detections exceeding the MCL serve a combined population of 10,067,031 (EPA 2009a). 

In 1991, 12% of 631 private wells located on farmlands across 18 states in the United States reported 

concentrations >10.2 mg nitrate-nitrogen/L (Bruning-Fann et al. 1994; IARC 2010).  Additionally, in 

1994, levels of nitrate found in drinking waters across nine mid-western U.S. states ranged from 0.01 to 
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266 mg nitrate-nitrogen/L, with a mean value of 8.4 mg nitrate-nitrogen/L and 10% of the water supplies 

had concentrations >10 mg nitrate-nitrogen/L (CDC 1998).  California groundwater is relied on for 

drinking water in 70% of its cities.  A study in 1987 indicated that ~10% of the sampled California wells 

and >7% of the public water systems in Tulare County, California had levels >45 mg nitrate/L (>10 mg 

nitrate-nitrogen/L) (Zhang et al. 1998). 

Studies regarding nitrate levels in drinking water outside the United States were summarized (IARC 

2010).  Zhang et al. (1996) reported that several cities in China (with populations between 10,000 and 

100,000) had water supplies with concentrations >11.3 mg nitrate-nitrogen/L.  Twenty-eight percent of 

public wells monitored in India and 13% in Saudi Arabia had reported levels >11.2 mg nitrate-nitrogen/L 

as well.  In 1990, average concentrations in Canadian municipal drinking waters were reported to range 

from 0.1 to 3.3 mg nitrate/L (0.02–0.75 mg nitrate-nitrogen/L) (Environment Canada 2012).  It has been 

estimated that 2% of the European population receive their drinking water from private wells and an 

estimated 2.4 million people are exposed to water supplies containing nitrate concentrations above 

guideline levels (Gangolli et al. 1994).  Nitrate concentrations in many European countries have been 

reported to be gradually increasing over the last few decades.  An average annual increase of 0.7 mg 

nitrate/L (0.2 mg nitrate-nitrogen/L) has been observed in some rivers of the United Kingdom (WHO 

2011b).  Nitrate levels in drinking water in Denmark have increased about 400% over the period from 

1940 to 1983 (Moller et al. 1989). 

Nitrate was reported to be the most frequently detected nutrient in U.S. streams that exceeded its MCL.  It 

exceeded the MCL in 2% of all samples obtained (566 out of 27,555) and in at least 1 sample of 50 of the 

499 streams surveyed from 1992 to 2001 (USGS 2010a).  Many of the streams with levels above the 

MCL were located in the upper Midwestern Corn Belt where application rates of fertilizer and manure are 

high.  Nitrite samples from five streams exceeded the nitrite MCL (USGS 2010a).  Flow-adjusted nitrate 

concentrations decreased in 25% of 166 streams and rivers sampled by the USGS over the period 1993– 

2003; however, concentrations increased over this time period in 20 of the 166 sites (12%) surveyed 

(USGS 2009).  Decreases in levels were attributed to changes in nitrogen use patterns and implementation 

of pollution control strategies.  Multiple factors such as land use, nitrogen loading from fertilizer, manure 

use, and atmospheric deposition affected the trends observed.  

Annual trends of nitrate levels at eight sites along the Mississippi River Basin were studied by the USGS 

from 1980 to 2010 (USGS 2013b).  Flow-normalized nitrate concentrations were generally reported to be 

level or increasing at all of the monitoring sites from 1980 to 2000; however, select locations showed 

http:0.02�0.75
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greater increases or actual decreases in levels since 2000.  The greatest increases over the 30-year period 

were observed in the upper Mississippi River (Clinton, Iowa) and Missouri River (Herman, Missouri). 

Decreasing flow-normalized nitrate levels over the 30-year period were observed at the Iowa River near 

Wapello, Iowa and Illinois River at Valley City, Illinois, suggesting that recent land management and 

farming practices may be reducing the nitrate fluxes in these areas (USGS 2013b).  

Many surface water bodies in the United States have a large percentage of total nitrate load contributed by 

base flow (groundwater discharge, release from other watershed storages, and long-term interflow) in 

addition to surface runoff.  Mean annual base-flow nitrate levels for 148 surface water and shallow 

groundwater sites in the United States from 1990 to 2006 were typically reported to be <1 mg nitrate-

nitrogen/L; however, values as high as 8.48, 11.44, 8.29, and 8.25 mg nitrate-nitrogen/L were reported for 

Tulpehocken Creek, Pennsylvania; Indian Creek, Illinois; Salt Creek, Illinois; and Clifty Creek, Indiana, 

respectively (USGS 2010b).  The highest levels typically were reported for agricultural land use sites that 

had frequent fertilizer and manure applications and highly permeable underlying bedrock.  

Due to assimilation of nitrate by algae and other plant-life, concentrations of nitrate in surface water are 

typically lower than that detected in groundwaters (IARC 2010).  Tables 1.4 and 1.5 in the IARC report 

summarize concentrations of nitrate from various regions around the globe.  The global concentrations in 

groundwater were reported to range from 0.02 to 110 mg nitrate-nitrogen/L; mean values ranged from 

2.2 to 42.9 mg nitrate-nitrogen/L.  Global concentrations of nitrate in surface water were reported to range 

from 0 to 22 mg nitrate-nitrogen/L; mean values range from 0.1 to 8.3 mg nitrate-nitrogen/L).  Nitrate 

levels in rainwater as high as 5 mg nitrate/L (1 mg nitrate-nitrogen/L) have been observed in various 

industrial areas (WHO 2011b). 

6.4.3 Sediment and Soil 

Levels of nitrate and nitrite in soil vary considerably as a function of soil properties, temperature, 

precipitation rates, nitrogen loadings, farming practices (tillage, crops planted), and seasonal changes.  In 

well-drained aerobic soils, the conversion of ammonia into nitrate (nitrification) increases the soil-nitrate 

content and in anaerobic soils with high organic matter (such as waterlogged soils or wetlands), 

denitrification decreases the levels of nitrate and nitrite in soils.  Acidic soils tend to have lower levels of 

nitrate since the nitrification process ceases at pH levels below 4.5 (USDA 2014).  Typical nitrate levels 

in humid temperate soils fluctuate from about 20–65 kg-nitrogen/hectare in cropped soils and 25–150 kg-
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nitrogen/hectare in bare soils (USDA 2014).  Certain locations near the South Platte River in northeastern 

Colorado had nitrate levels exceeding 500 kg-nitrogen/hectare (Shaffer et al. 1995).  

6.4.4 Other Environmental Media 

Nitrate and nitrite are common food preservatives.  Levels of nitrite and nitrate were evaluated through 

several processing steps and storage conditions.  Nitrite is oxidized to nitrate during storage.  Nitrate 

remained relatively constant over a 2-week storage period, while nitrite levels declined over the same 

time period.  The study also observed minimal influence of the nitrate levels formed from the amount of 

nitrite added.  Additionally, using nitrate alone resulted in the formation of nitrite after thermal 

processing.  Cooking resulted in losses of both nitrite and nitrate; 50% nitrite and 10–15% nitrate 

remained in the prepared sausage analyzed (Perez-Rodriguez et al. 1996). 

Nitrate and nitrite are present in vegetables, fruits, cured meats, fish, dairy products, beers, cereals, and 

cereal products (Gangolli et al. 1994).  Nitrate content of foodstuffs is typically higher than nitrite content 

(ATSDR 2013a; WHO 2011b).  Cured meats have concentrations of <2.7–945 mg of nitrate/kg and <0.2– 

1.7 mg nitrite/kg (IARC 2010; WHO 2011b).  Concentrations of nitrate in vegetables and fruit is strongly 

affected by processing of the food, fertilizer use, and growing conditions and range from 30 to 6,000 

mg/kg (ppm) (IARC 2010; WHO 2011b).  Celery, lettuce, red beetroot, and spinach have high levels of 

nitrate (200–>2,500 mg/kg [ppm]).  Parsley, leek, endive, Chinese cabbage, and fennel have high levels 

of nitrate ranging from 100 to 250 mg/kg (ppm).  Cabbage, dill, and turnips have medium levels of nitrate 

ranging from 50 to 100 mg/g.  Vegetables with low levels of nitrate (20–50 mg/g) include broccoli, 

carrots, cauliflower, cucumber, and pumpkin. Very low levels of nitrate (<20 mg/g) are found in 

artichokes, asparagus, eggplant, garlic, onions, green beans, mushrooms, peas, peppers, potatoes, summer 

squash, sweet potatoes, tomatoes, and watermelons (ATSDR 2013a).  Nitrite concentrations are typically 

<10 mg/kg (ppm) and rarely reach 100 mg/kg (ppm); however, exceptions include damaged, outdated, 

pickled, and fermented foods in which levels may be as high as 400 mg/kg (ppm) (WHO 2011b).  Data 

for nitrate and nitrite in foodstuffs are not lacking and several papers have been published that summarize 

numerous studies, including IARC (94 2010) and Gangolli et al. (1994).  Gangolli et al. (1994) cited a 

paper reporting the average daily intakes of nitrate and nitrite in the United States to be 106 and 

4.1 mg/day, respectively. 

Marshall and Trenerry (1996) analyzed several food types purchased from local supermarkets in Australia 

for both nitrate and nitrite. Nitrite was not detected in fruit juices in this study.  Nitrate and nitrite was 
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detected in various cheeses at levels <10 mg/kg (ppm).  Canned meat products had small amounts of 

nitrite (<10 mg/kg [ppm]), while nitrate levels were higher (10–25 mg/kg [ppm]).  Several samples of ice 

were also analyzed for the presence of nitrite and nitrate, and all samples were below Australian food 

standards (10 mg/L nitrate; 1 mg/L nitrite). 

Nitrite and nitrate levels were determined in several whey-containing food products (Oliveira et al. 1995).  

In total, 231 samples from powdered modified milk, powdered non-fat milk, a dairy beverage, and 

strawberry- and chocolate-flavored instant mixes were evaluated.  Mean nitrate levels ranged between 

7.3 and 532 mg/kg (ppm).  Mean nitrite levels ranged between 1.1 and 2.5 mg/kg (ppm).  One serving of 

the product with the highest reported nitrate levels (a chocolate-flavored instant mix) was calculated to be 

51.9 mg/serving.  One serving of the product with the highest reported nitrite levels (powdered non-fat 

milk) was calculated to be 0.1 mg/serving. 

From 1993 to 1997, nitrate and nitrite levels were monitored in Danish lettuce, leek, potato, beetroot, 

Chinese cabbage, and white cabbage, and spinach (Peterson and Stoltze 1999).  Seasonal variation was 

observed in nitrate levels. Lettuce exhibited higher concentrations in winter as opposed to summer.  

Overall nitrite concentrations were low.  Average nitrate concentrations were 2,760, 1,783, 198, and 

158 mg/kg fresh weight for lettuce, fresh spinach, leeks, and potatoes, respectively.  Average nitrite 

concentrations were 11, 0.91, 0.80, 0.15, and 0.14 mg/kg fresh weight for fresh spinach, beetroot, 

potatoes, leeks, and lettuce, respectively.  The average daily intakes, estimated from consumption surveys 

of the vegetables in the study, were 40 mg/day nitrate and 0.09 mg/day nitrite. 

Table 6-4 contains data on infant foods examined for nitrate and nitrite (Cortesi et al. 2015).  Food 

samples of animal origin were composed of a variety of sources such as poultry, beef, rabbit, lamb, and 

turkey.  Foods samples of plant origin were composed of a variety of sources such peas, legumes, 

vegetable broths, cream of pumpkin and carrots, and mixed vegetables. Mixed-origin samples were 

composed of both plant and animal sources. The highest average concentration of nitrate was found in 

foods of plant origin (45.5 mg/kg), while the highest average concentration of nitrite was found in foods 

of animal origin (14.82 mg/kg).  

Jones et al. (2014) reported nitrate and nitrite concentrations in fresh breast milk, freeze-thawed breast 

milk, freeze thawed colostrum, and several commercially available infant formulas.  Data are tabulated in 

Table 6-5.  Fresh breast milk was collected from 11 mothers of term infants and 13 mothers of preterm 

infants.  Samples of colostrum (milk expressed days 1–3), transition milk (expressed days 4–7), and 
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Table 6-4. Concentrations of Nitrate and Nitrite in Infant Food Products 

Food type Nitrate (mg/kg) Nitrite (mg/kg) 
Homogenized samples of animal 0.35–83.2 6.6–48.87 
origin 
Freeze dried samples of animal 2.01–80.26 1.3–74.74 
origin 
Homogenized samples of plant 4.82–131.68 2.26–20.71 
origin 
Freeze dried samples of plant 19.41–85.03 1.34–6.62 
origin 
Homogenized samples of mixed 3.77–67.31 1.98–80.22 
origin 

Source:  Cortesi et al. 2015 
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Table 6-5. Average Concentrations of Nitrate and Nitrite in Human Milk and Infant
 
Formula
 

Milk type Nitrate (µmol/L) Nitrite (µmol/L) 
Fresh breast milk 16 0.1 
Freeze-thawed breast milk 20 0.04 
Preterm fresh 12 0.07 
Preterm freeze-thawed 22 0.03 
Term fresh 11.5 0.13 
Term freeze-thawed 12.5 0.04 
Freeze-thawed colostrum 41 0.16 
Infant formula 43 0.29 
Freeze-thawed colostrum 44 0.15 
Transition milk Not reported 0.05 
Mature milk Not reported 0.025 

Source:  Jones et al. 2014 
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mature milk (expressed days >7) were analyzed. Concentrations of nitrate and nitrite in the 10 formulas 

evaluated were 9–61 and not detected–1.4 µmol/L, respectively. 

6.5  GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

The general public is typically exposed to nitrate and nitrite via ingestion of water and foods that contain 

these chemicals.  Inhalation and dermal exposure may be possible; however, these routes are not as 

prominent.  Oral exposure to nitrate and nitrite from contaminated drinking water and food is the 

prominent route. Nitrate and nitrite overexposure may occur through ingestion of foods containing high 

levels of nitrate and nitrite (ATSDR 2013a).  Inorganic nitrate and nitrite can be taken up by plants, 

especially leafy vegetables such as lettuce and spinach as well as beet root; vegetables account for about 

80% of the nitrate in a typical human diet (ATSDR 2013a; Hord 2011; Lundberg et al. 2009; Peterson and 

Stoltze 1999).  Contaminated foodstuffs from improper storage of commercial and prepared baby foods 

have caused overexposure in children (Dusdieker et al. 1994; Greer and Shannon 2005; Sanchez-Echaniz 

et al. 2001). 

Iammarino et al. (2014) analysed 75 samples of spinach and 75 samples of lettuce, collected from June 

2010 to December 2011, for nitrate and nitrite.  Spinach had a greater number of detections compared 

with the lettuce samples.  Mean nitrate concentrations ranged from 155.5 to 2,149.6 mg/kg; mean nitrite 

concentrations ranged from 16.3 to 101.6 mg/kg.  Four spinach samples and five lettuce samples had 

concentrations of nitrate >2,000 mg/kg.  Quantifiable concentrations of nitrite were detected in 

15 samples of spinach (28.5–197.5 mg/kg) and one sample of lettuce (66.5 mg/kg). 

The remainder of the nitrate in a typical diet comes from drinking water (about 21%) and from meat and 

meat products (about 6%) in which sodium nitrate is used as a preservative and color-enhancing agent 

(ATSDR 2013a; Lundberg et al. 2008; Saito et al. 2000).  For bottle-fed infants, the major source of 

nitrate exposure is from contaminated drinking water used to dilute formula, especially when the water is 

boiled prior to use (ATSDR 2013a; Fewtrell 2004). A review by Jones et al. (2015) reported daily nitrate 

ingestion concentrations for adults.  An intake of approximately 3 mg/kg/day for adults was based on a 

typical adult diet. 

The Fourth National Report on Human Exposures to Environmental Chemicals, published and updated by 

the Centers for Disease Control and Prevention (CDC 2013), reported the following data from the 

National Health and Nutrition Examination Survey (NHANES) 1999–2008. Nitrate levels in the urine 
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(see Table 6-6), and urine (creatinine corrected) (see Table 6-7) were evaluated for various ages and 

ethnicities.  Mean values of nitrate in the urine were 42.7 and 46.3 mg/L for 7,697 members of the general 

U.S. population sampled during 2005–2006 and 7,629 members of the general U.S. population sampled 

during 2007–2008, respectively.  The highest geometric mean (creatinine corrected) during 2001–2002 of 

72.0 mg/L was determined from 374 samples from 6–11 year olds; the highest geometric mean (creatinine 

corrected) during 2005–2006 of 60.8 mg/L was determined from 1,054 samples from 6–11 year olds; and 

the highest geometric mean during 2007–2008 of 70.2 mg/L was determined from 1,143 samples from 6– 

11 year olds. Throughout all survey years, females had a higher geometric mean than males.  In the 

survey years 2007–2008, 3,789 female samples yielded a mean of 51.0 mg/g, while 5,351 male samples 

yielded a mean of 44.6 mg/g (CDC 2013).  

No information was located regarding absorption of inhaled inorganic nitrate or nitrite in humans or 

laboratory animals.  Inhalation of inorganic nitrate or nitrite is not a likely exposure route of concern for 

the general population, although inhalation of dust from fertilizer products containing nitrate salts is 

possible. 

Occupational exposure is primarily via inhalation and dermal routes.  Industrial workers and farmers may 

be exposed via inhalation of dusts.  Dusts may also dissolve in sweat on skin, increasing the potential for 

dermal exposure.  

Vegetable consumption is a considerable source of nitrate, and drinking water with high levels of nitrate 

is also a major contributing factor.  Several studies have been conducted assessing exposure to drinking 

waters with high levels of nitrate.  In 1986 until 1987, Moller et al. (1989) studied 294 Danish adults 

between the ages of 20 and 64 years who were exposed to various levels of nitrate in their drinking water 

and diet.  Twenty-one drinking water supplies contained low (0–5 mg nitrate/L [ppm nitrate]) 

intermediate (35–59 mg nitrate/L [ppm nitrate]) and high (≥60 mg nitrate/L [ppm nitrate]) nitrate levels, 

with mean concentrations of 0.3, 46.5, and 84.4 mg nitrate/L (ppm nitrate), respectively.  The median 

exposures of total dietary nitrate for the low, intermediate, and high water categories were 37, 89, and 

123 mg nitrate/day, respectively.  Mean nitrate levels detected in the participant’s 24-hour urine samples 

for the low, intermediate, and high water concentration categories were reported as 36, 55, and 73 mg 

nitrate, respectively.  Overall, the dietary contribution was calculated to be 17% from water and 83% 

from food for the low group, and increased to approximately 60% from water and 40% from food for the 

intermediate and high groups.  Fifty-nine Canadian adults between the ages of 20–74 years used tap water 

with low (<3 mg nitrate-nitrogen/L) and high (>3 mg nitrate-nitrogen/L) concentrations of nitrate. The 



   
 

  
 
 

 
 
 
 
 

 

   
  

  
 
 

 

 

 

  

        
  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

        
 

 
 

 
 

 
 

 
 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 
 

 
 

 
 

 

 

 

 

  
 
  

  

 

 

 

 

 

 

  

 

 

 
 
 
 
 

   
 

 
 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

        
   

 
 

 
 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

   
 

 
 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

206 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-6.  Geometric Mean and Selected Percentiles of Urine Concentrations of
 
Urinary Nitrate (in mg/L) for the U.S. Population from the National Health and 


Nutrition Examination Survey (NHANES)
 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean 
(95% CI) 50th 75th 90th 95th 

Sample 
size 

Total 2001–2002 

2005–2006 

2007–2008 

48.2 (46.2– 
50.3) 
42.7 (39.6– 
46.1) 
46.3 (44.6– 
48.1) 

49.0 (46.0– 
52.0) 
47.8 (44.4– 
51.2) 
50.3 (48.4– 
52.0) 

78.0 (73.0– 
83.0) 
74.6 (69.8– 
79.4) 
76.0 (72.7– 
79.1) 

100 (100– 
130) 
108 (101– 
114) 
110 (104– 
116) 

140 (130– 
150) 
133 (125– 
144) 
138 (132– 
146) 

1,617 

7,697 

7,629 

Age group 
6–11 years 2001–2002 

2005–2006 

2007–2008 

62.2 (53.8– 
71.8) 
51.2 (47.4– 
55.4) 
55.2 (51.7– 
58.9) 

68.0 (58.0– 
79.0) 
54.7 (51.9– 
58.2) 
60.2 (56.1– 
64.3) 

94.0 (84.0– 
100) 
79.2 (72.8– 
87.2) 
84.5 (80.1– 
92.5) 

130 (100– 
160) 
113 (101– 
128) 
117 (107– 
135) 

150 (120– 
380) 
141 (120– 
158) 
149 (132– 
189) 

374 

1,054 

1,143 

12–19 years 2001–2002 

2005–2006 

2007–2008 

57.4 (53.5– 
61.6) 
52.5 (48.5– 
56.8) 
55.5 (51.5– 
59.7) 

66.0 (60.0– 
69.0) 
57.5 (52.3– 
62.6) 
56.8 (51.9– 
61.5) 

91.0 (86.0– 
95.0) 
84.2 (79.9– 
88.4) 
84.1 (76.2– 
94.5) 

120 (100– 
130) 
119 (111– 
124) 
119 (107– 
133) 

150 (130– 
160) 
144 (129– 
153) 
144 (133– 
162) 

827 

2,106 

1,135 

≥20 years 2001–2002 

2005–2006 

2007–2008 

45.4 (43.3– 
47.5) 
40.5 (37.4– 
43.9) 
44.2 (42.5– 
45.9) 

49.0 (46.0– 
52.0) 
45.0 (41.3– 
48.3) 
48.1 (46.0– 
49.7) 

78.0 (73.0– 
83.0) 
71.7 (67.1– 
77.4) 
73.2 (70.1– 
76.5) 

100 (100– 
130) 
105 (98.0– 
113) 
107 (101– 
113) 

140 (130– 
150) 
129 (122– 
142) 
135 (128– 
146) 

1,617 

4,537 

5,351 

Gender 
Males 2001–2002 

2005–2006 

2007–2008 

57.5 (54.6– 
60.6) 
48.4 (44.6– 
52.6) 
51.9 (49.9– 
54.1) 

63.0 (59.0– 
67.0) 
52.7 (48.3– 
57.8) 
56.1 (53.8– 
58.0) 

89.0 (83.0– 
94.0) 
79.4 (72.8– 
86.5) 
79.5 (75.7– 
83.5) 

130 (100– 
140) 
110 (103– 
121) 
112 (105– 
119) 

150 (140– 
170) 
136 (123– 
152) 
137 (131– 
149) 

1,335 

3,765 

3,839 

Females 2001–2002 

2005–2006 

2007–2008 

40.7 (38.4– 
43.2) 
37.9 (35.1– 
40.8) 
41.4 (39.3– 
43.7) 

43.0 (41.0– 
48.0) 
42.0 (38.2– 
46.0) 
43.9 (41.5– 
46.3) 

72.0 (68.0– 
76.0) 
69.2 (65.5– 
73.4) 
71.3 (67.5– 
74.8) 

100 (98.0– 
120) 
104 (96.6– 
110) 
108 (99.8– 
115) 

130 (120– 
150) 
130 (124– 
140) 
138 (132– 
149) 

1,483 

3,932 

3,790 



   
 

  
 
 

 
 
 
 
 

   
  

  
 
 

 

 

 

  

        
        

 
 

 
 

 
 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

  
 

 
 

 
 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 

 
 

 
 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 
 

 

207 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-6.  Geometric Mean and Selected Percentiles of Urine Concentrations of
 
Urinary Nitrate (in mg/L) for the U.S. Population from the National Health and 


Nutrition Examination Survey (NHANES)
 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean 
(95% CI) 50th 75th 90th 95th 

Sample 
size 

Race/ethnicity 
Mexican 
Americans 

2001–2002 

2005–2006 

2007–2008 

53.2 (48.7– 
58.2) 
47.8 (44.7– 
51.2) 
48.7 (45.0– 
52.6) 

59.0 (52.0– 
66.0) 
52.4 (49.9– 
56.2) 
51.9 (47.4– 
56.7) 

84.0 (79.0– 
91.0) 
77.9 (75.1– 
83.1) 
75.6 (69.7– 
81.3) 

120 (100– 
150) 
113 (104– 
120) 
111 (100– 
122) 

160 (130– 
180) 
148 (133– 
156) 
148 (127– 
164) 

707 

1,972 

1,505 

Non-Hispanic 
blacks 

2001–2002 

2005–2006 

2007–2008 

53.8 (47.8– 
60.5) 
45.9 (42.1– 
50.0) 
47.5 (45.0– 
50.3) 

58.0 (51.0– 
64.0) 
50.4 (46.6– 
54.9) 
50.3 (48.6– 
52.5) 

84.0 (77.0– 
93.0) 
75.0 (68.8– 
80.8) 
74.7 (71.9– 
77.3) 

120 (100– 
130) 
101 (95.3– 
110) 
105 (97.1– 
116) 

140 (130– 
170) 
127 (114– 
148) 
134 (125– 
150) 

680 

2,078 

1,707 

Non-
Hispanic 
whites 

2001–2002 

2005–2006 

2007–2008 

46.3 (44.1– 
48.6) 
41.2 (37.6– 
45.2) 
45.0 (42.7– 
47.5) 

51.0 (47.0– 
53.0) 
46.2 (41.3– 
50.6) 
49.2 (46.1– 
52.6) 

81.0 (78.0– 
85.0) 
73.3 (67.3– 
80.1) 
75.5 (70.5– 
80.0) 

120 (100– 
130) 
107 (98.2– 
115) 
108 (101– 
116) 

140 (130– 
150) 
129 (122– 
142) 
134 (128– 
140) 

1,228 

3,056 

3,190 

CI = confidence interval 

Source:  CDC 2013 



   
 

  
 
 

 
 
 
 
 

 

  
  

   
   

 
 

 

 

 

  

        
  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

        
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

   
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

        
   

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

   
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

208 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-7.  Geometric Mean and Selected Percentiles of Urine Concentrations of
 
Urinary Nitrate (Creatinine Corrected) (in mg/g of creatinine) for the
 

U.S. Population from the National Health and Nutrition 

Examination Survey (NHANES)
 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean 
(95% CI) 50th 75th 90th 95th 

Sample 
size 

Total 2001–2002 

2005–2006 

2007–2008 

49.8 (47.7– 
51.9) 
42.6 (40.2– 
45.1) 
47.7 (45.9– 
49.7) 

46.9 (44.2– 
49.6) 
42.4 (40.1– 
44.7) 
46.0 (44.0– 
48.3) 

63.8 (61.2– 
67.7) 
59.7 (55.8– 
64.1) 
66.5 (62.4– 
70.5) 

90.9 (84.3– 
98.8) 
85.5 (81.3– 
91.3) 
98.0 (92.3– 
102) 

120 (111– 
128) 
113 (106– 
118) 
127 (119– 
135) 

1,616 

7,697 

7,628 

Age group 
6–11 years 2001–2002 

2005–2006 

2007–2008 

72.0 (66.1– 
78.4) 
60.8 (57.4– 
64.5) 
70.2 (65.7– 
74.9) 

66.0 (62.6– 
70.4) 
57.3 (53.6– 
60.6) 
65.9 (62.4– 
69.5) 

87.0 (80.2– 
97.7) 
76.5 (70.9– 
82.1) 
89.0 (83.2– 
96.5) 

129 (96.5– 
144) 
109 (95.0– 
123) 
128 (112– 
152) 

144 (130– 
235) 
134 (121– 
164) 
173 (140– 
216) 

374 

1,054 

1,143 

12–19 years 2001–2002 

2005–2006 

2007–2008 

44.8 (43.4– 
46.2) 
39.8 (37.8– 
41.9) 
43.4 (41.3– 
45.5) 

43.8 (42.6– 
45.0) 
38.1 (36.3– 
40.3) 
40.5 (38.6– 
43.5) 

56.2 (52.2– 
59.7) 
51.8 (47.7– 
56.0) 
56.0 (52.7– 
59.2) 

73.2 (65.2– 
85.1) 
70.6 (63.1– 
78.8) 
76.6 (69.0– 
86.2) 

93.4 (79.0– 
104) 
88.9 (79.4– 
103) 
98.0 (85.4– 
121) 

826 

2,106 

1,134 

≥20 years 2001–2002 

2005–2006 

2007–2008 

48.3 (45.9– 
50.9) 
41.4 (38.9– 
43.9) 
46.5 (44.6– 
48.4) 

46.9 (44.2– 
49.6) 
41.0 (38.8– 
43.7) 
44.7 (42.5– 
47.0) 

63.8 (61.2– 
67.7) 
58.6 (54.8– 
63.1) 
65.0 (60.7– 
69.2) 

90.9 (84.3– 
98.8) 
85.3 (80.2– 
91.0) 
96.1 (90.0– 
102) 

120 (111– 
128) 
111 (105– 
116) 
125 (117– 
132) 

1,616 

4,537 

5,351 

Gender 
Males 2001–2002 

2005–2006 

2007–2008 

47.6 (44.7– 
50.7) 
40.1 (37.5– 
42.9) 
44.6 (42.8– 
46.6) 

46.1 (43.4– 
48.7) 
39.5 (36.7– 
42.8) 
42.8 (40.7– 
45.1) 

61.3 (58.0– 
64.5) 
55.3 (51.6– 
59.5) 
60.6 (58.1– 
64.4) 

86.7 (77.1– 
97.3) 
77.2 (70.7– 
83.0) 
85.6 (81.1– 
91.3) 

114 (97.3– 
125) 
95.9 (89.6– 
102) 
111 (101– 
121) 

1,335 

3,765 

3,839 

Females 2001–2002 

2005–2006 

2007–2008 

51.9 (49.9– 
54.1) 
45.1 (42.8– 
47.6) 
51.0 (48.9– 
53.2) 

51.2 (48.4– 
53.0) 
45.0 (42.4– 
47.4) 
50.0 (47.5– 
52.7) 

69.1 (66.7– 
71.2) 
64.4 (60.0– 
69.6) 
72.3 (67.8– 
76.8) 

100 (91.7– 
111) 
96.8 (87.8– 
105) 
107 (101– 
116) 

129 (118– 
140) 
128 (117– 
134) 
146 (129– 
163) 

1,481 

3,932 

3,789 



   
 

  
 
 

 
 
 
 
 

  
  

   
   

 
 

 

 

 

  

        
        

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

  
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 
 

 

209 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-7.  Geometric Mean and Selected Percentiles of Urine Concentrations of
 
Urinary Nitrate (Creatinine Corrected) (in mg/g of creatinine) for the
 

U.S. Population from the National Health and Nutrition 

Examination Survey (NHANES)
 

Geometric Selected percentiles (95% CI) 
Survey 
years 

mean 
(95% CI) 50th 75th 90th 95th 

Sample 
size 

Race/ethnicity 
Mexican 
Americans 

2001–2002 

2005–2006 

2007–2008 

50.9 (45.7– 
56.8) 
44.6 (42.6– 
46.7) 
48.7 (45.1– 
52.7) 

48.1 (44.9– 
51.4) 
44.0 (42.2– 
45.3) 
47.0 (43.5– 
50.5) 

67.4 (60.3– 
77.6) 
60.4 (58.1– 
62.9) 
64.8 (59.7– 
69.9) 

97.3 (85.7– 
117) 
89.9 (82.0– 
95.4) 
93.5 (88.9– 
101) 

135 (100– 
161) 
120 (111– 
128) 
128 (108– 
156) 

707 

1,972 

1,505 

Non-Hispanic 
blacks 

2001–2002 

2005–2006 

2007–2008 

38.7 (36.3– 
41.3) 
32.9 (30.9– 
35.0) 
35.9 (34.2– 
37.7) 

38.0 (34.6– 
41.3) 
31.9 (29.8– 
34.1) 
34.8 (33.3– 
36.6) 

53.5 (50.3– 
57.4) 
45.4 (41.5– 
49.6) 
49.0 (44.8– 
53.6) 

70.3 (64.9– 
79.3) 
64.0 (60.1– 
68.0) 
69.1 (63.5– 
77.4) 

91.7 (78.9– 
100) 
81.2 (75.3– 
89.6) 
87.8 (78.1– 
97.4) 

679 

2,078 

1,706 

Non-
Hispanic 
whites 

2001–2002 

2005–2006 

2007–2008 

51.4 (49.4– 
53.4) 
43.7 (40.8– 
46.8) 
49.0 (46.7– 
51.4) 

49.1 (46.9– 
51.5) 
43.9 (40.8– 
46.8) 
47.4 (44.9– 
50.5) 

66.9 (64.2– 
69.4) 
61.4 (56.5– 
66.2) 
68.2 (63.3– 
73.1) 

95.2 (87.7– 
100) 
85.5 (80.6– 
91.9) 
98.3 (91.2– 
105) 

124 (115– 
132) 
110 (102– 
116) 
126 (118– 
135) 

1,227 

3,056 

3,190 

CI = confidence interval 

Source:  CDC 2013 



   
 

  
 
 

 
 
 
 
 

 

 

 

   

 

 

    

   

   

  

   

 

     

  

   

  

     

      

 

   

   

    

    

 

 

 

    

  

   

 

 

210 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

mean urinary nitrate excretion of the participants who consumed drinking water with low-nitrate levels 

was 15.0 mg nitrate-nitrogen/day, while the mean value for the participants who consumed drinking water 

with higher nitrate levels was 22 mg nitrate-nitrogen/day (Levellois et al. 2000).  Higher correlations for 

total nitrate intake and urinary excretion were found with dietary nitrate intake as opposed to water nitrate 

intake. 

Various scenarios for nitrate and nitrite intake have been considered and it has been found that dietary 

intake contributes the majority of exposure occurrences.  Approximately 89–99% of an adult’s daily 

intake of both nitrate and nitrite is from their food when an average to high vegetable diet is consumed 

with average water intake. The daily intake contribution from food decreases to 33–56% for nitrate and 

7.7–14% for nitrite when average to high consumption of water with nitrate levels (50 mg nitrate/L [ppm 

nitrate]) is considered (IARC94_2010).  Gangolli et al. (1994) also reported that 88–96% of the average 

dietary intake of nitrate comes from food sources (85% of which is attributed to vegetables), while 4–12% 

comes from drinking waters.  Exposure to dietary nitrate may increase exposure to nitrite due to 

endogenous production.  Ingested nitrate is readily absorbed from the upper gastrointestinal tract into the 

blood and is mainly excreted in the urine (Gangolli et al. 1994).  Portions of blood nitrate are transported 

to human saliva where it is mostly metabolized to nitrite; approximately 5% of dietary nitrate is 

metabolized to nitrite (Gangolli et al. 1994). Gangolli et al. (1994) estimated that the human adult intakes 

of nitrate are 2.4 mg nitrate/kg (ppm nitrate) body weight/day from food and 0.33–4.1 mg nitrate/kg body 

weight/day from water; the human adult intakes of nitrite are 0.04–0.07 mg nitrite/kg body weight/day 

from food and <0.002–0.07 mg nitrite/kg body weight/day from water.  These estimates do not account 

for the endogenous production of nitrite.  Worldwide dietary exposures were estimated from data 

collected in the 1997 Total Diet Study in the United Kingdom and additional dietary studies.  

Representative exposure estimates for nitrate and nitrite were reported as 58–218 and 0.7–1.6 mg 

nitrite/day, respectively (IARC 2010). 

Estimated daily intake values of nitrate and nitrite have been calculated based on data from the United 

Kingdom and the United States.  An individual with an average water intake (1.4 L/day) and average food 

consumption or a high vegetable diet is estimated to consume levels 52–80 or 140–220 mg nitrate/day, 

respectively.  An individual with an average water intake (1.4 L/day) and average food consumption or a 

high vegetable diet is estimated to consume levels 0.74 or 2.2 mg nitrite/day, respectively (IARC 2010). 

http:0.002�0.07
http:0.04�0.07


   
 

  
 
 

 
 
 
 
 

   

     

 

 

  
 

   

  

 

    

   

     

  

  

      

    

   

  

 

   

 

  

    

    

     

 

   

  

   

  

 

  

  

   

211 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Dermal exposure to inorganic nitrate or nitrite is not a likely route of concern for the general population, 

although absorption following dermal exposure to dust from fertilizer products containing nitrate salts is 

possible. 

6.6  EXPOSURES OF CHILDREN 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume than adults.  A child’s diet often differs from that of 

adults.  The developing human’s source of nutrition changes with age: from placental nourishment to 

breast milk or formula to the diet of older children who eat more of certain types of foods than adults.  A 

child’s behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their 

mouths, sometimes eat inappropriate things (such as dirt or paint chips), and may spend more time 

outdoors.  Children also are generally closer to the ground and have not yet developed the adult capacity 

to judge and take actions to avoid hazards (NRC 1993). 

Children will be exposed to nitrate and nitrite through ingestion of food and drinking water.  Nitrate is 

commonly detected in various surface waters and groundwaters.  High nitrate concentrations in drinking 

water are commonly found in privately owned wells, with shallow depths and permeable soils.  It has 

been estimated that about 15 million families in the United States use private well drinking water.  Based 

on monitoring data and birthrates from 2000, it was estimated that 40,000 infants <6 months old would be 

living in households using drinking water with nitrate levels that exceed the federal standard (10 mg 

nitrate-nitrogen/L) (Fewtrell 2004).  Additionally, boiling water from private wells may concentrate 

nitrate in the water, which may lead to higher exposure of children whose infant foods are prepared using 

water that is boiled first (Fewtrell 2004).  Gangolli et al. (1994) estimated that the infant intake of nitrate 

and nitrite from food is negligible, while the infant intakes of nitrate and nitrite from water are 1.7–8.3 mg 

nitrate/kg body weight/day and <0.02 mg nitrite/kg body weight/day, respectively.  A review by Jones et 

al. (2015) reported dietary nitrate and nitrite concentrations for newborn infants.  An intake of 

approximately 0.15 mg/kg/day for infants was based on a mean of reported concentrations in breast milk 

and formula.  Ingestion based on breast milk intake of approximately 150 mL/kg/day, was reported as 

0.12 mL/kg/day for nitrate and 0.0007 mL/kg/day for nitrite. 



   
 

  
 
 

 
 
 
 
 

 

    

 

   

 

  
 

  

   

   

 

    

 

  
 

  

  

   

  

    

 

 

 

 

    

   

 

    
 

       

     

   

 

212 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Infants may have higher exposures as compared to adults if the water source used for formula has high 

levels of nitrates and nitrites.  Human breast milk has been shown to contain, although not concentrate, 

nitrate and is not considered a significant source of infant exposure (IARC 2010). 

6.7  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES 

Populations using well water in agricultural areas may be exposed to greater levels of nitrate and nitrite as 

compared to populations living in urban areas since groundwater in agricultural communities typically 

has greater levels of nitrate and nitrite than urban water (Burow et al. 2010).  Furthermore, workers who 

are employed in occupations where fertilizer use is common (e.g., farming, greenhouse operations) may 

be exposed to nitrate and nitrite through dermal routes and inhalation of dust particles. 

6.8  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of nitrate and nitrite is available.  Where adequate information 

is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of 

research designed to determine the health effects (and techniques for developing methods to determine 

such health effects) of nitrate and nitrite. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

6.8.1 Identification of Data Needs 

Physical and Chemical Properties. The physical and chemical properties of nitrate salts are 

discussed in Chapter 4. These salts are highly soluble in water and dissociate under environmental 

conditions and exist as ions (WHO 1978, 2011b).  No data needs are identified. 
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Production, Import/Export, Use, Release, and Disposal. According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA.  The TRI, which contains this 

information for 2012, became available in November of 2013. This database is updated yearly and should 

provide a list of industrial production facilities and emissions. Import/export data are available for 

ammonium nitrate (USDA 2013).  Data for the other compounds assessed in this profile would be useful. 

Environmental Fate. The transport and fate of nitrate and nitrite compounds have been studied 

(Kramer et al. 2006; Pfenning and McMahon 1996; WHO 2011b).  These substances are highly mobile in 

soils.  Transformation and degradation processes include denitrification to atmospheric nitrogen and plant 

uptake (Newton 2005; Nolan 1999).  Conversion is achieved via biotic process carried out by auto- and 

heterotrophic bacteria (Hammerl and Klapotke 2006).  Under aerobic conditions in aquatic systems, 

ammonia and nitrite are converted to nitrate via nitrification.  Conversion is achieved through a biotic 

process carried out by autotrophic nitrifying bacteria.  Under anaerobic conditions in aquatic systems, 

bacteria convert nitrate to nitrite, which is further reduced to the gaseous compounds nitric oxide (NO), 

nitrous oxide (N2O), and N2 (nitrogen).  No data needs are identified. 

Bioavailability from Environmental Media. Nitrate and nitrite are readily absorbed following 

ingestion from water or food sources. 

Data assessing absorption from intake of food sources and water containing nitrate and nitrite has been 

studied (Gangolli et al. 1994; Kortboyer et al. 1997b). Several reports have indicated the correlation of 

methemoglobinemia in adults and children and elevated nitrite levels in the blood (CDC 1997, 2002; 

Gautami et al. 1995; Gowans 1990; Greenberg et al. 1945; Sevier and Berbatis 1976; Ten Brink et al. 

1982).  Adequate data for intake of nitrate and nitrite from drinking water and food are available (ATSDR 

2013a; Gangolli et al. 1994; Hord 2011; JECFA 2003c; Lundberg et al. 2009; Peterson and Stoltze 1999).  

Data are lacking for absorption from the lungs and skin.  Further data may be useful to establish whether 

uptake via inhalation or dermal contact of dust is a notable source of exposure, since this may occur 

during application of fertilizers containing these chemicals. 

Food Chain Bioaccumulation. Nitrate ion and nitrite ion are both a natural part of the earth’s 

nitrogen cycle.  Plants and mammals naturally contain nitrate and nitrite (WHO 2011b).  Assimilation of 

nitrite from soils occurs via reduction of nitrate to nitrite, which is facilitated by various bacteria and 

catalyzed by nitrate reductase (WHO 1978).  Data are available to indicate that nitrate and nitrite may be 



   
 

  
 
 

 
 
 
 
 

  

    

 

       

  

 

   

 

 

     

  

     

 

 

   

 

       

   

  

    

 

   

 

 

       

  

    

  

  

 

 

214 NITRATE AND NITRITE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

concentrated in several plants and waters intended for human consumption (JECFA 2003c; Peterson and 

Stoltze 1999; Zhang et al. 1996, 2003).  No data needs are identified. 

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of nitrate and 

nitrite in contaminated media at hazardous waste sites are needed so that the information obtained on 

levels of nitrate and nitrite in the environment can be used in combination with the known body burden of 

nitrate and nitrite to assess the potential risk of adverse health effects in populations living in the vicinity 

of hazardous waste sites. 

Exposure Levels in Humans. Humans are exposed to nitrate and nitrite primarily through the 

ingestion of drinking water and consumption of food.  Estimated intakes are available (Gangolli et al. 

1994; IARC 2010).  Biomonitoring data for nitrate levels in urinary samples have been reported (CDC 

2013).  Continued monitoring of nitrate and nitrite levels in humans is needed. 

This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children. Children are exposed to nitrate and nitrite by the same exposure routes as 

adults (e.g., ingestion of food and water).  Data from the NHANES survey discussed in Section 6.5 

indicated that higher urinary nitrate levels were typically observed in children as compared to adults.  

Continued monitoring of nitrate and nitrite levels in children is needed. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 

Exposure Registries. No exposure registries for nitrate or nitrite were located.  This substance is not 

currently one of the compounds for which a sub-registry has been established in the National Exposure 

Registry. The substance will be considered in the future when chemical selection is made for sub-

registries to be established.  The information that is amassed in the National Exposure Registry facilitates 

the epidemiological research needed to assess adverse health outcomes that may be related to exposure to 

this substance. 
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6.8.2 Ongoing Studies 

No ongoing environmental fate studies for nitrate or nitrite were identified using NIH RePORTER or the 

Defense Technical Information Center (DTIC) online database.  Nitrate and nitrite levels and trends are 

monitored in major watersheds and drinking water by organizations such as the USGS and USDA.  These 

reports are typically available from their websites. 
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The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring nitrate and nitrite, and other biomarkers of exposure and effect to nitrate 

and nitrite.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is 

to identify well-established methods that are used as the standard methods of analysis.  Many of the 

analytical methods used for environmental samples are the methods approved by federal agencies and 

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other 

methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). 

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

7.1  BIOLOGICAL MATERIALS 

Several methods are available for the analysis of nitrate and nitrite in biological media; details of selected 

methods are provided in Table 7-1. 

Following the ingestion of nitrate and nitrite, they are readily absorbed from the upper gastrointestinal 

tract into the blood and readily excreted in human urine as nitrate. This process is essentially complete at 

18 hours following ingestion; minor urinary products of nitrate and nitrite metabolism include ammonia 

and urea (Gangolli et al. 1994).  Portions of blood nitrate are transported to human saliva where it is 

mostly metabolized to nitrite.  In human blood and tissues, nitrite is typically oxidized to nitrate.  

Concentrations of nitrate in urine and saliva fluctuate; therefore, in order to evaluate exposure more 

precisely, a 24-hour collection of urine is recommended.  Analysis is achieved via hydrazine reduction 

(IARC 2010; Levallois et al. 2000). 

Levels of nitrate and nitrite in plasma, urine, and saliva can be measured by gas chromatography/mass 

spectrometry (GC/MS) (Bondonno et al. 2012; Tsikas 2005).  Frozen samples are treated with 

tetraoctylammonium bromide and derivatizing reagent pentafluorobenzyl bromide in acetone solutions at 

elevated temperature.  Acetone is removed by evaporation under a nitrogen atmosphere and the remaining 

aqueous phase is extracted with an isooctane/toluene solution and analyzed by GC/MS (m/z = 62 for 

nitrate and 46 for nitrite). Sample procedures must involve precautionary steps to minimize the 
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Table 7-1. Analytical Methods for Determining Nitrate and Nitrite in Biological
 
Materials
 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Urine Hydrazine reduction GC-MS 5 ng/L Not reported Levallois et al. 

2000 
Plasma, Sample derivitization GC-MS Not reported Not reported Bondonna et al. 
urine, or with tetraoctyl- 2012 
saliva ammonium bromide 

and pentafluorobenzyl 
bromide 

Plasma Deproteinization; HPLC-UV 0.3–20 µM Not reported Hibbs et al. 
(serum) Griess reaction spectrometry; (nitrite) 1992; Sun et al. 

GC-MS 4–81 µM (nitrate) 2003; Tsikas 
2005 

Urine Griess GC-MS 690 µmol/ Not reported Hibbs et al. 1992 
24 hours 

Urine International standard IC-MS/MS 500 µg/L (nitrate) 95 Valentín-Blasini 
dilution et al. 2007 

Urine 24-Hour specimen Colorimetric Not reported Not reported Tietz 1970 
(metabolite- collected, preserve (Berthelot 
ammonia) with HCl and reaction) 

refrigerate 
Urine 24-Hour specimen Indophenol Not reported Not reported Huizenga et 
(metabolite- analyzed immediately, reaction al. 1994) 
ammonia) or stored up to 8 

weeks at -20 °C 
Whole blood Deprotonized using 

acetonitrile followed by 
purification 

HPLC/direct 
conductivity 
detection 

0.4 µmol/L 
(nitrite) 

Yan et al. 2016 

GC-MS = gas chromatography-mass spectrometry; HPLC = high-performance liquid chromatography; 
IC-MS/MS = ion chromatography-mass spectrometry/mass spectrometry; UV = ultraviolet 
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endogenous contribution of analytes in the laboratory chemicals and materials (glassware, filtration 

equipment, etc.) used for sample collection and work up (Tietz 1970; Tsikas 2005).  Chemical 

interferences in samples resulting in reduction of nitrate to nitrite, or conversely, the oxidation of nitrite to 

nitrate during analysis should be evaluated and accounted for.  Microbial conversion via hydrolysis may 

cause an increase in values (Tietz 1970).  Preparation of blood samples must involve procedures that limit 

the oxidation of nitrite by oxyhaemoglobin and loss due to methods requiring acidification or 

derivatization.  Possible interferences in ammonia quanitification and to the Griess assay, such as 

anticoagulants, must also be factored (Huizenga 1994; Tsikas 2005). 

The Griess assay is one of the first methods used to measure levels of nitrate and nitrite in biological and 

environmental samples.  The method involves reduction of nitrate to nitrite followed by a diazotization 

reaction and then measuring the absorbance of the diazo chromophore in the visible spectrum.  To 

determine the levels of nitrate and nitrite separately, the procedure is first carried out without the 

preliminary reduction step in order to quantify the level of nitrite solely.  This assay was originally 

performed using sulfanilic acid, which forms a diazonium cation with nitrite under acidic conditions 

followed by coupling with α-naphthylamine to form a diazo compound, which contains a strong 

absorption band at about 540 nm (Tsikas 2005).  Other methods include diazotizing with sulfanilamide 

and coupling with N-(1-naphthyl)-ethylenediamine dihydrochloride to form the diazo compound (EPA 

1993).  GC/MS methods were shown to provide superior quantification of nitrate and nitrite in human 

plasma and urine samples when compared to the Griess assays (Tsikas 2005) 

Reverse-phase high performance liquid chromatography (HPLC) by means of ion pairing in the mobile 

phase without derivitization followed by ultraviolet (UV) detection around 210 nm has also been used to 

detect nitrate in urine samples (Tsikas 2005). Urinary nitrate levels can be measure using ion 

chromatography-tandem mass spectrometry (IC-MS/MS) by means of internal standard dilution 

(Valentín-Blasini et al. 2007). 

The level of methemoglobin in the blood is often the biomarker for assessing nitrate exposure 

(Manassaram et al. 2010). Methemoglobin can be measured in blood collected via finger stick samples. 

Samples are analyzed with portable AVOXimeter 4000 whole-blood oximeter devices. The device 

measures total hemoglobin, and further characterizes percentages of oxyhemoglobin, carboxyhemoglobin, 

and methemoglobin.  The accuracy and precision of the method were reported as ±0.5 and ±0.7%, 

respectively. Refer to ATSDR (Agency for Toxic Substance and Disease Registry 2013b) for discussion 

of other nitrate and nitrite laboratory tests. 
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Yan et al. (2016) developed a simple method for the quantitative determination of nitrite in whole blood 

samples employing ion chromatography and electrochemical detection.  The blood sample is prepared by 

adding acetonitrile followed by purification using mini-cartridges to remove interfering compounds.  The 

detection limit for the method is reported as 0.4 µmol/L. 

7.2  ENVIRONMENTAL SAMPLES 

Methods are available for determining the level of nitrate and nitrite in a variety of environmental 

matrices.  A summary of representative methods is shown in Table 7-2.  

Ion chromatography and spectrometry methods are the most common analytical techniques employed for 

the detection and quantification of nitrate and nitrite in environmental samples; detection limits range 

from 0.01 to 1 mg/L (ppm) (IARC 2010; WHO 2011b).  Samples must be analyzed as soon as is 

reasonably possible in order to minimize any changes in the sample due to microbial transformations. 

Sample preservation using chemicals and or deep freezing methods have been reported; however, 

interference with the analysis can occur in certain methods (Mulvaney 1996). 

Methods based on the Griess assay are available for the determination of nitrate and nitrite in potable 

water, raw water and wastewater (EPA 1993; WHO 2011b).  The limit of detection for the International 

Organization for Standardization ISO method 6777/1 lies within the range of 0.005–0.01 mg/L (ppm) 

(WHO 2011b).  A continuous-flow spectrometric method (ISO method 7890-1) for the determination of 

nitrite, nitrate or the sum of both in various types of water is suitable at concentrations ranging from 

0.05 to 5 mg/L (ppm) for nitrite and from 1 to 100 mg/L (ppm) for nitrite and nitrate, both in the 

undiluted sample (WHO 2011b).  

NIOSH method 7903 employs ion chromatography for the determination of nitric acid in air (NIOSH 

1994a).  Method 7903 is an analytical technique for determining inorganic acids by measuring the total 

concentration of airborne anions.  Particulate nitrate has been successfully detected and quantified in 

atmospheric samples via ion chromatographic techniques and NOx chemiluminescent analyzers (Small et 

al. 1975; Yoshizumi et al. 1985) 

http:0.005�0.01
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Table 7-2. Analytical Methods for Determining Nitrate and Nitrite in 

Environmental Samples
 

Sample Analytical Sample Percent 
matrixa Preparation method method detection limit recovery Reference 
Air/water	 Nitrite prepared using 
(nitrate, 	 Griess-Ilosvay reaction; 
nitrite)	 nitrate prepared using 

hydrazine reduction; 
aqueous extracts from 
aerosol filters are 
analyzed without 
pretreatment 

Air (nitrate)	 Personal air sampled at 
0.2–0.5 L/minute for 
total sample size of 3– 
100 L using silica gel 
sample tube; boil 
sorbent from sample 
tube in bicarbonate/ 
carbonate buffer for 
10 minutes 

Air (nitrite)	 Ambient air is sampled 
at 0.025 L/minute for 3-L 
air sample using glass 
sorbent tubes with glass 
wool retainers; add 
adsorbing solution; add 
solution of hydrogen 
peroxide, sulfanilamide 
and NEDA to extracted 
sample, set for 
10 minutes 

Air (nitrite)	 Ambient air is sampled 
at 0.025 L/minute for 3-L 
air sample using 
diffusive sampler tubes 
with three 
triethanolamine screens; 
add adsorbing solution; 
add solution of hydrogen 
peroxide, sulfanilamide 
and NEDA to extracted 
sample, set for 
10 minutes 

Water	 Drinking water or river 
(nitrate)	 water samples are 

prepared with 
lanthanum (III) chloride 
and placed into the cell 

UV spectrometry	 0.07 ppm Not 
(nitrite); reported 
0.2 ppm 
(nitrate) 

Ion 0.7 μg/sample Not 
chromatography/ reported 
conductivity 
detector; 
NIOSH 7903 

Visible 1 μg/sample Not 
absorption reported 
spectro-
photometry; 
NIOSH 6014 

Visible 0.01 μg/sample Not 
absorption reported 
spectro-
photometry; 
NIOSH 6700 

Voltammetry/ 20 µg/L Not 
static mercury reported 
drop electrode 

Oms et al. 1995 

NIOSH 1994a 

NIOSH 1994b 

NIOSH 1998 

Markusova et al. 
1996 
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Table 7-2. Analytical Methods for Determining Nitrate and Nitrite in 

Environmental Samples
 

Sample Analytical Sample Percent 
matrixa Preparation method method detection limit recovery Reference 
Drinking Clean samples can be IC/CD Not reported	 93–114 IARC 2010 
water used directly	 (nitrite-N) 

83–113 
(nitrate-N) 

Soil (nitrate)	 Soil samples are added Voltammetry/ 20 µg/L Not Markusova et al. 
to Gohler solutions static mercury reported 1996 
followed by drop electrode 
neutralization before 
analysis 

Soil (nitrite, Extraction of field UV-Vis Not reported	 Not Mulvaney 1996 
nitrate)	 samples with 2 M KCL; (λ=540 nm) reported 

nitrate reduction; 
diazoitization and 
coupling with resulting 
dye formation 

Foods and Blended/pureed food Capillary ion Not reported >73 Marshall and 
juices samples are mixed with electrophoresis (nitrate); Trenerry 1996 
(nitrate, water and filtered >88 
nitrite) (nitrite) 
Food (nitrate, Direct injection HePI-MS Not reported	 Not Pavlov and 
nitrite) reported Attygalle 2013 
Fish and Fish muscle FIA spectrometry 0.01 µg/mL 97.8– Monser et al. 2002 
water homogenized, digested (nitrite); 102.1 
(nitrate, with perchloric acid and 0.025 µg/mL (nitrite); 
nitrite) centrifuged; nitrate (nitrate) 98.5– 

reduction to nitrite using 101.6 
copperised cadmium (nitrate) 
redactor; reaction with 
phosphomolybdenum 
blue complex and 
ammonium chloride 

Water and Food: homogenization Potentiometry 0.0037 µ/mL 98.9– Wardak and 
vegetables with deionized water with solid contact (nitrate) 105.9 Grabarczky 2016 
(nitrate) and heated at 80°C; ISE (nitrate) 

cooled and diluted with 

deionized water
 
Water: direct analysis
 

Cured meat Reaction with Colorimetry; Not reported Not IARC 2010 
(nitrite) sulfanilamide followed absorbance reported 

by reaction with NEDA 540 nm 
Milk and milk Suspension in buffer FIA 0.5 mg/kg Not IARC 2010 
products solution; centrifuge and spectrometry; (nitrate) reported 
(nitrate, reduce with cadmium; absorbance 1.0 mg/kg 
nitrite) react with sulfanilamide 540 nm (nitrite) 

followed by reaction with 

NEDA
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Table 7-2. Analytical Methods for Determining Nitrate and Nitrite in 

Environmental Samples
 

Sample Analytical Sample Percent 
matrixa Preparation method method detection limit recovery Reference 
Dairy Extract cheese slurry Spectro- ≥1 µg/g nitrate Not IARC 2010 
products and using ZnSO4 and NaOH; photometry; reported 
cheese reduce in Jones absorbance at 
(nitrate, reductor using zinc and 522 nm 
nitrite) CdSO4 

Fried bacon Grind frozen sample; GC Not reported Not IARC 2010 
(N-nitros- vacuum distill with reported 
amines) NaOH and mineral oil; 

extract and dry with 
DCM and anhydrous 
NaSO4; concentrate 

DCM = dichloromethane; FIA = flow injection analysis; GC = gas chromatography; HePI-MS = helium-plasma 
ionization-mass spectrometry; IC/CD = ion chromatography/conductivity detector; ISE = ion-selective electrodes; 
NEDA = N-1-naphthylethylenediamine dihydrochloride; NIOSH = National Institute for Occupational Safety and 
Health; UV = ultraviolet absorbance detection 
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A sequential injection method coupled with spectrophotometry has been developed for the detection of 

nitrate and nitrite in environmental samples such as atmospheric aerosol filter extracts and waste water 

samples (Oms et al. 1995).  The method is advantageous due to the small volumes of sample and reagents 

required for analysis.  The detection limits were reported as 0.07 ppm for nitrite and 0.2 ppm for nitrate.  

Nitrite is analyzed using the Griess-Ilosvay reaction; nitrate is reduced to nitrite using hydrazine sulphate. 

Markusova et al. (1996) developed a sensitive voltammetric method that can determine nitrate levels in 

drinking water, river water, or soil extracts three orders of magnitude lower than the allowed levels of 

nitrate in drinking water.  The method employs a multi-purpose electrochemical analyzer and a 

voltammetric cell.  Water samples are prepared with lanthanum (III) chloride and placed into the cell; soil 

samples are added to Gohler solutions followed by neutralization before analysis.  The reported limit of 

detection is 20 µg nitrate/L (20 ppb) (5 µg NO3
—N/L). 

The most commonly used method for soil and soil extract analysis of nitrite is a modified Griess-Ilosvay 

colorimetric method using a continuous flow analyzer.  Nitrites react with primary aromatic amines to 

form a diazonium salt which is then coupled with an aromatic compound; the resulting complex has a 

characteristic absorbance band in the UV-Vis spectrum.  The concentration of nitrite is proportional to the 

color intensity of the resulting azo compound measured using a spectrophotometer or colorimeter.  This 

technique is also used for sensitive analysis of nitrate following reduction to nitrite.  Cadmium reduction 

to nitrite is achieved in a column of copperized cadmium with an ammonium chloride (NH4Cl) matrix at 

pH between 5 and 10.  Other various reducing agents have been reported.  Analysis for nitrate must 

account for initial concentrations of nitrite in the sample prior to reduction.  Maximum accuracy is seen 

when absorbance is measured at wavelengths of 540 nm; however, wavelengths between 510 and 550 nm 

are acceptable (Mulvaney 1996). 

Pavlov and Attygalle (2013) developed an analytical method with minimal sample preparation employing 

helium-plasma ionization-mass spectrometry.  Nitrate was successfully identified and quantified using 

this solvent-less ambient pressure mass spectrometry technique in various foodstuffs.  Samples of fruit 

juice and meat pieces (i.e., tomato and celery juice, hot dog and beef) can be placed onto glass slides and 

analyzed directly without any modification.  Quantification of nitrate in such complex matrices is 

suggested to be determined with accuracy by spiking with known quantities of radiolabeled nitrate. The 

method detection limit for determining the nitrate concentration is in the range of 20 ng/sample and 

depends on the specific sample matrix.  
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Capillary ion electrophoresis has been successfully employed for the determination of nitrite and nitrate in 

foods and juices (Marshall and Trenerry 1996).  The authors tested the procedure using cheese, cabbage, 

fruit juices, and meats.  Percent recovery for three processed meat samples ranged from 88 to 118% for 

nitrite and from 73 to 106% for nitrate. 

7.3  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of nitrate and nitrite is available.  Where adequate information 

is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of 

research designed to determine the health effects (and techniques for developing methods to determine 

such health effects) of nitrate and nitrite. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. 

Exposure.  Nitrate and nitrite may be converted to many other compounds in the body, such as N-nitroso 

compounds, including nitrosamines.  Approximately 25% of absorbed nitrate is secreted to saliva and 

about 20% of this is reduced to nitrite.  Nitrite is converted to nitric oxide by the acidic environment on 

the stomach.  Methods exist for the measurement of nitroso compounds and nitrite in plasma and salivary 

nitrite (Bondonno et al. 2012).  Nitrate in the diet may contribute to nitric oxide levels in the body, and 

increases in these levels can be a biomarker of exposure.  Ammonia is a minor urinary product of nitrite 

and nitrate in which analytical methods are available (Huizenga et al. 1994; Tietz 1970).  N-Methyl-

nicotinamide has also been shown to be a potential biomarker of exposure to nitrate and nitrite and there 

are methods to measure this (Jansen et al. 1995).  No data needs were identified. 



    
 

   
 
 
 

 
 
 
 
 

     

     

 

  

 

  
      

    

  

 

    
 

   

 

 

226 NITRATE AND NITRITE 

7. ANALYTICAL METHODS 

Effect. Methemoglobinemia caused by the presence of higher-than-normal levels of methemoglobin is a 

biomarker of effect for exposure to high levels of nitrate; however, this effect is not unique for nitrate and 

nitrite since other substances may also cause this condition (Bruning-Fann and Kaneene 1993).  Methods 

are available to measure methemoglobin in the blood (Manassaram et al. 2010). 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media. Methods are available for determining nitrate and nitrite levels in environmental samples such 

as air (NIOSH 1994a; Small et al. 1975; Yoshizumi et al. 1985) and water (EPA 1993; Markusova et al. 

1996; WHO 2011b). 

7.3.2 Ongoing Studies 

No ongoing analytical methodologies for nitrate or nitrite were identified using the NIH RePORTER 

version 6.1.0 or the DTIC online database.  
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MRLs are substance-specific estimates that are intended to serve as screening levels. They are used by 

ATSDR health assessors and other responders to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites. 

MRLs of 4 mg nitrate/kg/day have been derived for acute-, intermediate, and chronic-duration oral 

exposure (≤14 days) to nitrate. The MRLs are based on a no-adverse-effect concentration (NOAEC) of 

10 mg nitrate-nitrogen/L (44 mg nitrate/L) in drinking water used to prepare formula for infants 

<6 months of age (Walton 1951).  A NOAEL of 4.33 mg nitrate/kg/day at the NOAEC of 44 mg nitrate/L 

was calculated based on estimates of 0.525 L/day for water intake (Kahn and Stralka 2009) and 5.33 kg 

for body weight (EPA 2008) of an infant from birth to <3 months of age.  A total uncertainty factor of 1 

was applied because the point of departure is a NOAEL for nitrate-induced effects on methemoglobin in a 

sensitive human subpopulation (i.e., <3-month-old infants, which in many cases may have been at 

increased risk of methemoglobinemia due to microbial contamination and associated gastrointestinal 

infection).  Following ingestion of relatively large amounts of nitrate by healthy normal individuals, 

blood methemoglobin levels increase rapidly, followed by a return to normal within several hours 

following intake.  Repeated ingestion for intermediate- or chronic-duration time periods would be 

expected to result in changes in methemoglobin levels similar to those elicited from a single exposure. 

Therefore, the acute-, intermediate- and chronic-duration oral MRL values are equivalent. Refer to 

Appendix A for additional information regarding derivation of oral MRLs for nitrate. 

MRLs of 0.1 mg nitrite/kg/day have been derived for acute-, intermediate, and chronic-duration oral 

exposure (≤14 days) to nitrite.  The ingestion of nitrate results in the formation of nitrite, which is the 

moiety responsible for methemoglobinemia.  In adults, approximately 5% of an oral dose of nitrate is 

reduced to nitrite in the saliva, most of which is absorbed into the blood in the small intestine.  Based on 

the assumption of 100% absorption of ingested nitrite, an oral dose of 0.2 mg nitrite/kg/day by an adult 

would be expected to result in a nitrite blood level similar to that achieved following ingestion of nitrate 

at the oral MRL dose of 4 mg nitrate/kg/day (i.e., 0.2 mg nitrite/kg/day is 5% of an oral dose of nitrate at 

the MRL of 4 mg nitrate/kg/day). A modifying factor of 2 was applied to the point of departure (0.2 mg 

nitrite/kg/day ÷ 2 = 0.1 mg nitrite/kg/day) because young infants exhibit increased susceptibility to 

methemoglobinemia following nitrate ingestion; the modifying factor assumes that the effective 

methemoglobin level from a given intake of nitrate by an infant is up to twice that of an adult.  Following 

ingestion of relatively large amounts of nitrate by healthy normal individuals, blood methemoglobin 
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levels increase rapidly, followed by a return to normal within several hours following intake.  Repeated 

ingestion for intermediate- or chronic-duration time periods would be expected to result in changes in 

methemoglobin levels similar to those elicited from a single exposure. Therefore, the acute-, 

intermediate-, and chronic-duration oral MRL values are equivalent. Refer to Appendix A for additional 

information regarding derivation of oral MRLs for nitrite. 

EPA (IRIS 2002) derived an oral reference dose (RfD) of 1.6 mg nitrate-nitrogen/kg/day (i.e., 1.6 mg 

nitrogen from nitrate; ~7 mg nitrate/kg/day) based on a NOAEL of 1.6 mg nitrate-nitrogen/kg/day and a 

LOAEL of 1.8–3.2 mg nitrate-nitrogen/kg/day (7.92–14.08 mg nitrate/kg/day) for early clinical signs of 

methemoglobinemia in excess of 10% among formula-fed infants 0–3 months of age (Bosch et al. 1950; 

Walton 1951).  An uncertainty factor of 1 was employed because available data defined the NOAEL for 

the critical effect in the most sensitive human subpopulation. 

EPA (IRIS 2002) derived an RfD of 0.1 mg nitrite-nitrogen/kg/day (~0.33 mg nitrite/kg/day) based on a 

NOAEL of 10 mg nitrate-nitrogen/L and a LOAEL of 11–20 mg nitrate-nitrogen/L for early clinical signs 

of methemoglobinemia in excess of 10% (Walton 1951).  The NOAEL of 10 mg nitrate-nitrogen/L was 

converted to an estimated dose of 1 mg nitrate-nitrogen/kg/day based assumptions that a 10-kg child 

would ingest 1 L of water/day.  EPA applied a modifying factor of 10 to the NOAEL of 1 mg nitrate-

nitrogen/kg/day from the Walton (1951) study to account for the direct toxicity of nitrite, resulting in an 

RfD of 0.1 mg nitrite-nitrogen/kg/day.  As described in a Drinking Water Criteria Document for 

Nitrate/Nitrite (EPA 1990a), the modifying factor of 10 was used to account for an estimated rate of 10% 

conversion of ingested nitrate to nitrite in infants compared to an estimated rate of 5% conversion in 

adults. 

Based on available human data, IARC (2010) determined that there is inadequate evidence for the 

carcinogenicity of nitrate in food or drinking water and limited evidence for the carcinogenicity of nitrite 

in food (based on association with increased incidence of stomach cancer).  Evaluation of available 

animal data by IARC (2010) resulted in the determination that there is inadequate evidence for the 

carcinogenicity of nitrate, limited evidence for the carcinogenicity of nitrite per se, and sufficient evidence 

for the carcinogenicity of nitrite in combination with amines or amides.  The overall conclusions of IARC 

(2010) were that “ingested nitrate and nitrite under conditions that result in endogenous nitrosation is 

probably carcinogenic to humans (Group 2A).”  IARC (2010) noted that: (1) the endogenous nitrogen 

cycle in humans includes interconversion of nitrate and nitrite; (2) nitrite-derived nitrosating agents 

produced in the acid stomach environment can react with nitrosating compounds such as secondary 

http:7.92�14.08
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amines and amides to generate N-nitroso compounds; (3) nitrosating conditions are enhanced upon 

ingestion of additional nitrate, nitrite, or nitrosatable compounds; and (4) some N-nitroso compounds are 

known carcinogens. 

Neither nitrate nor nitrite have been classified as to their carcinogenicity by the U.S. EPA Integrated Risk 

Information System (IRIS 2002), the National Toxicology Program (NTP, 2011), or the American 

Conference of Governmental Industrial Hygienists (ACGIH 2013). 

The EPA lists maximum contaminant levels (MCL) and maximum contaminant level goals (MCLG) of 

10 mg/L for nitrate (as nitrate-nitrogen; ~44 mg nitrate/L) and 1 mg/L for nitrite (as nitrite nitrogen; 

~3.3 mg nitrite/L) in the 2012 Edition of the Drinking Water Standards and Health Advisories (EPA 

2012b). 

The international and national regulations, advisories, and guidelines regarding nitrate and nitrite in air, 

water, and other media are summarized in Table 8-1.  
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
INTERNATIONAL 
Guidelines: 

IARC Carcinogenicity classification IARC 2014 
Nitrate or nitrite (ingested) 
under conditions that result in 
endogenous nitrosation 

Group 2Aa 

WHO Air quality guidelines No data WHO 2010 
Drinking water quality guidelines 

Nitrate (as NO3 -) 50 mg/Lb 

WHO 2011a 

Nitrite (as NO2 -) 3 mg/Lc 

Combined nitrate plus nitrite The sum of the ratios of the 
concentrations as reported 
or detected in the sample of 
each to its guideline value 
should not exceed 1 

NATIONAL 
Regulations and 
guidelines: 
a. Air 

ACGIH TLV-TWA No data ACGIH 2013 
AIHA ERPGs No data AIHA 2013 
DOE Nitrate(s) 

PAC-1d 30 mg/m3 

DOE 2012 

PAC-2 
PAC-3 

330 mg/m3 

2,000 mg/m3 

Ammonium nitrate 
PAC-1d 

PAC-2 
PAC-3 

6.7 mg/m3 

73 mg/m3 

440 mg/m3 

Potassium nitrate 
PAC-1d 

PAC-2 
PAC-3 

0.074 mg/m3 

0.82 mg/m3 

600 mg/m3 

Sodium nitrate 
PAC-1d 

PAC-2 
PAC-3 

12 mg/m3 

130 mg/m3 

250 mg/m3 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA Sodium nitrite 
PAC-1d 2.3 mg/m3 

PAC-2 26 mg/m3 

PAC-3 280 mg/m3 

EPA AEGLs No data EPA 2013a 
Hazardous air pollutant No data EPA 2014a 

42 USC 7412 
NAAQS No data EPA 2014d 

NIOSH REL No data NIOSH 2014 
STEL No data 
IDLH No data 

OSHA PEL (8-hour TWA) for general 
industry 

No data OSHA 2013b 
29 CFR 1910.1000, 
Table Z-2 

Highly hazardous chemicals No data OSHA 2013a 
29 CFR 1910.119, 
Appendix A 

b. Water 
EPA Designated as hazardous 

substances in accordance with 
Section 311(b)(2)(A) of the Clean 
Water Act 

No data EPA 2013b 
40 CFR 116.4 

Drinking water contaminant 
candidate list 

No data EPA 2009b 
74 FR 51850 

Drinking water standards and 
health advisories 

EPA 2012b 

Nitrate 
MCL 10 mg nitrogen/L 

(~44 mg nitrate/L)e 

MCLG 10 mg nitrogen/L 
(~44 mg nitrate/L)f 

Health advisory for 1 day for 
10-kg child 

100 mg nitrogen/L 
(~440 mg nitrate/L)e 

Health advisory for 10 days 
for 10-kg child 

100 mg nitrogen/L 
(~440 mg nitrate/L)e 

DWEL No data 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA Nitrite
 

MCL
 

MCLG 

Health advisory for 1 day for 
10-kg child 
Health advisory for 10 days 
for 10-kg child 
DWEL
 

Nitrate + nitrite (both as
 
nitrogen)
 

MCL
 

MCLG
 

National primary drinking water 
standards 

Nitrate 
MCL 

Potential health effects from 
long-term exposure above 
the MCL 
Common sources of 
contaminant in drinking water 

Public Health Goal 

Nitrite
 

MCL
 

Potential health effects from 
long-term exposure above 
the MCL 
Common sources of 
contaminant in drinking water 

Public Health Goal 

1 mg nitrogen/L 
(~3.3 mg nitrite/L)f 

1 mg nitrogen/L 
(~3.3 mg nitrite/L)f 

10 mg nitrogen/L 
(~33 mg nitrite/L)f 

10 mg nitrogen/L 
(~33 mg nitrite/L)f 

No data 

10 mg/L 
10 mg/L 

10 mg nitrogen/L 
(~44 mg nitrate/L)e 

Serious illness; symptoms 
include shortness of breath 
and blue-baby syndromeg 

Runoff from fertilizer use; 
leaching from septic tanks, 
sewage; erosion of natural 
deposits 
10 mg nitrogen/L 
(~44 mg nitrate/L)e 

1 mg nitrogen/L 
(~3.3 mg nitrite/L)f 

Serious illness; symptoms 
include shortness of breath 
and blue-baby syndromeg 

Runoff from fertilizer use; 
leaching from septic tanks, 
sewage; erosion of natural 
deposits 
1 mg nitrogen/L 
(~3.3 mg nitrite/L)f 

EPA 2009c 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA National recommended water 
quality criteria: human health for 
the consumption of (at 10-4 risk) 

EPA 2014e 

Nitrates 
Water + organism 10,000 μg nitrogen/L 
Organism only No data 

Reportable quantities of 
hazardous substances designated 
pursuant to Section 311 of the 
Clean Water Act 

EPA 2013d 
40 CFR 117.3 

Sodium nitrite 100 pounds 
c. Food 

FDA Bottled water (allowable limits) 
Nitrate 10 mg nitrogen/L 

(~44 mg nitrate/L)e 

FDA 2013 
21 CFR 165.110 

Nitrite 1 mg nitrogen/L 
(~3.3 mg nitrite/L)f 

Total nitrate and nitrite (as 
nitrogen) 

10 mg/L 

EAFUSh FDA 2014 
Potassium nitrate, sodium 
nitrate, potassium nitrite, and 
sodium nitrite 

Yes 

d. Other 
ACGIH Carcinogenicity classification No data ACGIH 2013 
EPA Nitrate 

Carcinogenicity classification No data 
EPA 1990a; IRIS 
2002 

RfC No data 
RfD 1.6 mg nitrogen/kg/day 

(~7 mg nitrate/kg/day)e 

Nitrite 
Carcinogenicity classification No data 
RfC No data 
RfD 0.1 mg nitrogen/kg/day 

(~0.33 mg nitrite/kg/day)f 

Identification and listing of 
hazardous waste 

No data EPA 2013c 
40 CFR 261, 
Appendix VIII 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
NATIONAL (cont.) 

EPA Inert pesticide ingredients in 
pesticide products approved for 
nonfood use only 

Ammonium nitrate, potassium 
nitrate, sodium nitrate, 
potassium nitrite, and sodium 
nitrite 

Master Testing List 
RCRA waste minimization PBT 
priority chemical list 
Standards for owners and 
operators of hazardous waste TSD 
facilities; groundwater monitoring 
list 
Superfund, emergency planning, 
and community right-to-know 

Designated CERCLA 
hazardous substance and 
reportable quantity pursuant to 
Section 311(b)(2) of the 
Clean Water Act 

Sodium nitrite 
Nitrate compounds (water 
dissociable; reportable only 
when in aqueous solution); 
sodium nitrite 

Superfund, emergency planning, 
and community right-to-know 

Extremely hazardous 
substances and its threshold 
planning quantity 

TSCA chemical lists and reporting 
periods 
TSCA health and safety data 
reporting 

Yes 

No data 
No data 

No data 

100 pounds 
Effective date of toxic 
chemical release reporting; 
01/01/1995 

No data 

No data 

No data 

EPA 2014b 

EPA 2014c 
EPA 1998 
63 FR 60332 
EPA 2013e 
40 CFR 264, 
Appendix IX 

EPA 2013f 
40 CFR 302.4 

EPA 2013h 
40 CFR 372.65 

EPA 2013g 
40 CFR 355, 
Appendix A 
EPA 2013i 
40 CFR 712.30 
EPA 2013j 
40 CFR 716.120 
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Table 8-1. Regulations, Advisories, and Guidelines Applicable to Nitrate and 

Nitrite
 

Agency Description Information Reference 
NATIONAL (cont.) 

NTP Carcinogenicity classification No data NTP 2011 

aGroup 2A:  probably carcinogenic to humans.
 
bAs nitrate ion (or 11 mg/L as nitrate-nitrogen) to protect against methemoglobinemia in bottle-fed infants (short-term
 
exposure).
 
cAs nitrite ion (or 0.9 mg/L as nitrite-nitrogen) to protect against methemoglobinemia in bottle-fed infants (short-term
 
exposure).
 
dPAC-1:  mild, transient health effects; PAC-2:  irreversible or other serious health effects that could impair the ability
 
to take protective action; PAC-3:  life-threatening health effects (DOE 2012).
 
e1 mg nitrate-nitrogen/L (i.e., nitrogen from nitrate) ~4.4 mg nitrate/L
 
f1 mg nitrite-nitrogen/L (i.e., nitrogen from nitrite) ~3.3 mg nitrite/L
 
gInfants below the age of 6 months who drink water containing nitrate and/or nitrite in excess of the MCL could 

become seriously ill and, if untreated, may die (EPA 2009b).
 
hThe EAFUS list of substances that contains ingredients added directly to food that FDA has either approved as food 

additives or listed or affirmed as GRAS.
 

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline level;
 
AIHA = American Industrial Hygiene Association; CERCLA = Comprehensive Environmental Response,
 
Compensation, and Liability Act; CFR = Code of Federal Regulations; DOE = Department of Energy;
 
DWEL = drinking water equivalent level; EAFUS = Everything Added to Food in the United States;
 
EPA = Environmental Protection Agency; ERPG = emergency response planning guidelines; FDA = Food and Drug 

Administration; FR = Federal Register; GRAS = generally recognized as safe; IARC = International Agency for
 
Research on Cancer; IDLH = immediately dangerous to life or health; IRIS = Integrated Risk Information System;
 
MCL = maximum contaminant level; MCLG = maximum contaminant level goal; NAAQS = National Ambient Air
 
Quality Standards; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology
 
Program; OSHA = Occupational Safety and Health Administration; PAC = protective action criteria; PBT = persistent,
 
bioaccumulative, and toxic; PEL = permissible exposure limit; RCRA = Resource Conservation and Recovery Act;
 
REL = recommended exposure limit; RfC = inhalation reference concentration; RfD = oral reference dose;
 
STEL = short-term exposure limit; TLV = threshold limit value; TSCA = Toxic Substances Control Act;
 
TSD = treatment, storage, and disposal; TWA = time-weighted average; USC = United States Code; WHO = World
 
Health Organization
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Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study— A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-control study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without the outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure.  These may suggest potential topics for scientific research, but are not actual research studies. 
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Ceiling Value—A concentration that must not be exceeded. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that, if met, would reduce the uncertainties of 
human health risk assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.  

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—A condition that poses a threat of life or health, or 
conditions that pose an immediate threat of severe exposure to contaminants that are likely to have 
adverse cumulative or delayed effects on health.  

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
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Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of new cases of individuals in a population who develop a specified condition to 
the total number of individuals in that population who could have developed that condition in a specified 
time period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(LO) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors.  The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 
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Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
hazardous substance. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor).  An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
regulatory limit on the amount or concentration of a substance not to be exceeded in workplace air 
averaged over any 8-hour work shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests (insects or other organisms harmful to cultivated plants or animals). 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 
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Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows. These models require a 
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as blood:air partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually μg/L for water, mg/kg/day for food, and 
μg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical. The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a hazardous substance.  The toxicity may be directed to the reproductive organs and/or 
the related endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual 
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the 
integrity of this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 
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Risk—The possibility or chance that some adverse effect will result from a given exposure to a hazardous 
substance. 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, existing health 
condition, or an inborn or inherited characteristic that is associated with an increased occurrence of 
disease or other health-related event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—A STEL is a 15-minute TWA exposure that should not be 
exceeded at any time during a workday.  

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance  to which it is believed that nearly all workers may be repeatedly 
exposed, day after day, for a working lifetime without adverse effect. The TLV may be expressed as a 
Time Weighted Average (TLV-TWA), as a Short-Term Exposure Limit (TLV-STEL), or as a ceiling 
limit (TLV-C). 

Time-Weighted Average (TWA)—An average exposure within a given time period.  

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any substance that is foreign to the biological system. 



    
 
 
 
 

 
 
 
 
 

  
 

  

 

   

  

 

      

   

 

  

   

    

   

    

    

    

  

 

 

 

 

   

     

   

   

 

    

 

   

   

 

     

 

A-1 NITRATE AND NITRITE 

APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified route and 

duration of exposure.  MRLs are based on noncancer health effects only and are not based on a 

consideration of cancer effects. These substance-specific estimates, which are intended to serve as 

screening levels, are used by ATSDR health assessors to identify contaminants and potential health 

effects that may be of concern at hazardous waste sites.  It is important to note that MRLs are not 

intended to define clean-up or action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive substance-induced 

endpoint considered to be of relevance to humans.  Serious health effects (such as irreparable damage to 

the liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 

MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 



    
 

 
 
 

 
 
 
 
 

    

  

   

   

    

   

  

   

  

 

   

   

    

   

        

  

 

 

A-2 NITRATE AND NITRITE 

APPENDIX A 

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive.  Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL 

Workgroup reviews, with participation from other federal agencies and comments from the public.  They 

are subject to change as new information becomes available concomitant with updating the toxicological 

profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published levels. 

For additional information regarding MRLs, please contact the Division of Toxicology and Human 

Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop 

F-57, Atlanta, Georgia 30329-4027. 



    
 

 
 
 

 
 
 
 
 

 
 

  
  

   
  

  
  

   
  

 
  

 
   

  
 

   
   

 
 

  
   

   
 

  
  

 
 

 
 

  
   

   
   

 
   

 
  

 
 

 
   
   
   
  

  

   
  

 

A-3 NITRATE AND NITRITE 

APPENDIX A 

MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Nitrate 
CAS Numbers: 14797-55-8 
Date: July 2017 
Profile Status: Final 
Route: [ ] Inhalation   [x] Oral 
Duration: [x] Acute   [x] Intermediate   [x] Chronic 
Graph Key: 3 (Acute), 15 (Intermediate), 53 (Chronic) 
Species: Human 

Minimal Risk Level: 4 [x] mg/kg/day   [ ] ppm 

Reference: Walton G. 1951.  Survey of literature relating to infant methemoglobinemia due to nitrate-
contaminated water.  Am J Public Health 41:986-996. 

Experimental design: Walton (1951) reviewed available literature and found 278 reported cases of infant 
methemoglobinemia in a total of 14 U.S. states from which information was available.  Cases were 
grouped by state according to ranges of nitrate levels in drinking water sources. 

Effect noted in study and corresponding doses: Among methemoglobinemia cases for which nitrate 
levels in water sources used to prepare infant formula were available, 173 cases were associated with 
>50 mg nitrate-nitrogen/L (220 mg nitrate/L), 36 cases with 21–50 mg nitrate-nitrogen/L (92–220 mg 
nitrate/L), and 5 cases with 11–20 mg nitrate-nitrogen (48–88 mg nitrate/L).  None of the 
methemoglobinemia cases were associated with drinking water sources measuring <10 mg nitrate-
nitrogen/L (<44 mg nitrate/L).  Limitations of the contributing studies include lack of information 
regarding the actual ages of the infants, total nitrate doses, and other water source contaminants (e.g., 
bacterial levels). 

Following ingestion of relatively large amounts of nitrate by healthy normal individuals, blood 
methemoglobin levels increase rapidly, followed by a return to normal within several hours following 
intake.  Repeated ingestion for intermediate- or chronic-duration time periods would be expected to result 
in changes in methemoglobin levels similar to those elicited from a single exposure.  Therefore, the 
acute-, intermediate-, and chronic-duration oral MRL values are equivalent. 

Dose and end point used for MRL derivation: 4.33 mg nitrate/kg/day 

[x] NOAEL   [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ] 10 for use of a LOAEL 
[ ] 10 for extrapolation from animals to humans 
[x]  1 for human variability 

A total uncertainty factor of 1 is justified because the point of departure is a NOAEL for nitrate-induced 
effects on methemoglobin in a particularly sensitive human subpopulation (i.e., <3-month-old infants, 
which in many cases may have been at increased risk of methemoglobinemia due to microbial 
contamination and associated gastrointestinal infection). 



    
 

 
 
 

 
 
 
 
 

  
  

      
  

     
   

   
 

   
  

 
 

 
 

 
      

    
    

    
 

  
 

  
 

 
  

   
   

    
 

 
 

 
 

 
    

 
   

   
   

 
 

  
    

 
    

 
 

  
    

A-4 NITRATE AND NITRITE 

APPENDIX A 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Nitrate may be 
expressed in terms of ionic concentration (i.e., mg nitrate/L), or elemental concentration (i.e., mg nitrate-
nitrogen/L or mg nitrogen as nitrate/L).  A concentration of nitrate expressed in elemental concentration 
(mg nitrogen per liter from nitrate source) can be converted to its ionic concentration (mg NO3

-) 
according to the following relationship:  1 mg nitrate-nitrogen = 4.4 mg nitrate (i.e., the proportion of N 

-in NO3 is 14 [atomic mass of N] ÷ 62 [molecular mass of NO3
-] = 0.226). 

Table A-1 presents estimated nitrate doses to infants (birth–<3 months of age) calculated using estimated 
mean values for drinking water ingestion rates (Kahn and Stralka 2009) and body weight (EPA 2008) and 
assuming a drinking water level of 44 mg nitrate/L as a concentration not expected to cause 
methemoglobinemia; the calculated doses of 4.31–4.34 mg nitrate/kg/day represent NOAELs for the age 
ranges.  The TWA-based calculated dose of 4.33 mg nitrate/kg/day for the age range of birth–<3 months 
is selected as the point of departure for deriving acute-, intermediate-, and chronic-duration oral MRLs for 
nitrate. 

Table A-1.  Estimated Nitrate Dose to Infants of Selected Age Ranges Assuming a 
Drinking Water Level of 44 mg Nitrate/La 

Age range Water intake (L/day)b Body weight (kg)c Nitrate dose (mg/kg/day)d 

Birth–<1 month 0.470 4.8 4.31 
1–<3 months 0.552 5.6 4.34 
Birth–<3 months 0.525e 5.33e 4.33 

aConsidered a no-adverse-effect concentration for nitrate intake by infants up to 6 months of age, based on weight-
of-evidence analysis of available human data.

bEstimated mean water intake (combined direct intake [ingested largely as a beverage] and indirect intake [added in 

preparation of food or beverages]) from community water; data from Table 3-14 of EPA (2008) and Table 2 of Kahn 

and Stralka (2009).
 
cEstimated mean body weight; data from Table 8-1 of EPA (2008).

dNitrate dose = 44 mg nitrate/L (NOAEL) x water intake (L/day) / body weight (kg).
 
eCalculated TWA for birth–<1 month and 1–<3 months (e.g., TWA water intake for birth–<3 months = (0.470 L/day x
 
1 month) + (0.552 L/day x 2 months)/3 months = 0.525 L/day.
 

EPA = Environmental Protection Agency; NOAEL = no-observed-adverse-effect level; TWA = time-weighted average 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Was a conversion used from intermittent to continuous exposure? Not applicable. 

Other additional studies or pertinent information that lend support to this MRL: Methemoglobinemia is a 
condition in which increased methemoglobin as a percentage of total hemoglobin results in the expression 
of clinical signs that increase in severity with increasing percent methemoglobin (ATSDR 2013a; Bloom 
et al. 2013; Denshaw-Burke et al. 2013; Haymond et al. 2005).  In normal healthy individuals, 
methemoglobin levels are <1% of total hemoglobin.  Discoloration (e.g., pale, gray blue) of the skin is 
often observed at methemoglobin levels in the range of 3–15%; most patients tolerate methemoglobin 
levels <10%. Tachycardia, weakness, and other signs of tissue hypoxia may be observed at 10–20% 
methemoglobin levels.  Effects on the central nervous system (e.g., headache, dizziness, fatigue) and 
dyspnea and nausea appear at >20% methemoglobin; the severity of symptoms increases with increasing 
methemoglobin level.  High risk of mortality occurs at levels >70% methemoglobin. 

Proposed explanations for increased susceptibility of infants to methemoglobinemia following ingestion 
of nitrate include: (1) increased reduction of nitrate to nitrite in the newborn, (2) increased tendency for 

http:4.31�4.34


    
 

 
 
 

 
 
 
 
 

    
    

 
    

   
   
   
     

    
    

   
 

   
  

  
   

   
   

    
 

  
  

   
  

 
  

     
   

 
   

   
 

  
 

   
    

 
   

 
    

  
   

  
      

 
  

 

A-5 NITRATE AND NITRITE 

APPENDIX A 

nitrite-induced methemoglobin formation by fetal hemoglobin compared to adult hemoglobin, (3) lower 
levels of NADH-dependent methemoglobin reductase (the major enzyme responsible for reduction of 
methemoglobin to normal hemoglobin; also termed NADH-diaphorase, a soluble form of cytochrome-b5 
reductase) in the newborn compared to older infants and adults, and (4) incompletely developed hepatic 
microsomal enzyme system in the infant and consequent lower rate of hepatic reduction of circulating 
nitrite compared to that of older children and adults.  A portion of ingested nitrate is reduced to nitrite by 
commensal bacteria in the mouth; however, the acid environment of the normal stomach does not support 
the growth of such bacteria and most of the nitrate that reaches the stomach passes to the small intestine 
from which it is nearly completely absorbed into the blood.  Although Kanady et al. (2012) reported little 
or no bacterial conversion of nitrate to nitrite in the saliva of a group of 10 infants during the first 
2 postnatal months (considered mainly due to lower numbers of major nitrate-reducing oral bacteria than 
adults), a higher pH in the stomach of the newborn may favor growth of nitrate-reducing bacteria, 
resulting in increased reduction of nitrate to nitrite and increased plasma methemoglobin.  Most 
hemoglobin in the newborn is in the form of fetal hemoglobin, which appears to be more readily oxidized 
to methemoglobin than adult hemoglobin; fetal hemoglobin is replaced by adult hemoglobin during early 
postnatal life.  Levels of NADH-dependent methemoglobin reductase in the newborn increase 
approximately 2-fold during the first 4 months of postnatal life to reach adult levels.  During the period of 
relatively lower methemoglobin reductase levels, methemoglobin would not be expected to be as readily 
reduced, resulting in increased susceptibility to methemoglobinemia.  In apparent contrast, Ibrahim et al. 
(2012) reported that blood nitrite levels in newborns approximately 1–2 days of age were 35–55% lower 
than that of adults.  However, one study that evaluated reduction rates of methemoglobin in human adult 
blood and cord blood from term newborns estimated methemoglobin half-lives of 162 and 210 minutes, 
respectively, indicating that methemoglobin reduction occurs more slowly in newborns than adults 
(Power et al. 2007). Although specific mechanisms have not been elucidated, the increased susceptibility 
to nitrite-induced methemoglobinemia in infants is well-documented. 

Bosch et al. (1950) evaluated 139 reported cases of cyanosis among infants in Minnesota (90% were 
<2 months of age; range 8 days to 5 months).  Samples from 129 wells that served as water sources to the 
cases revealed nitrate-nitrogen concentrations >100 mg/L (>440 mg nitrate/L) in 49 wells, 50–100 mg/L 
(220–440 mg nitrate/L) in 53 wells, 21–50 mg/L (92–220 mg nitrate/L) in 25 wells, and 10–20 mg/L (44– 
88 mg nitrate/L) in the other 2 wells.  A major limitation of this study was the detection of coliform 
organisms in 45 of 51 well water samples tested for bacterial contamination. 

A nested case-control study included 26 cases of infants diagnosed with methemoglobinemia at 
≤2 months of age and 45 age-matched controls (Zeman et al. 2002).  Nitrate exposure levels were 
categorized as low (<0.5 ppm), medium (1–10 ppm), or high (>10 ppm) according to estimated nitrate 
levels reconstructed from parental responses to dietary questionnaires and environmental sampling. 
Numbers of methemoglobinemia cases in the low, medium, and high exposure categories were 0/26, 4/26, 
and 22/26, respectively, and estimated dietary nitrate intake ranged from 2.83 to 451.20 mg/kg/day (mean 
103.6 mg nitrate/kg/day).  Diarrheal disease was reported for 14/26 methemoglobinemia cases.  Numbers 
of controls in the low, medium, and high exposure categories were 21/45, 11/45, and 13/45, respectively, 
and estimated dietary nitrate intake ranged from 0 to 182 mg/kg/day (mean 11.2 mg nitrate/kg/day) for 
the controls; diarrheal disease was reported for 13/45 controls.  Univariate and multifactorial analysis of 
risk factors for methemoglobinemia indicated that methemoglobinemia was most strongly associated with 
dietary exposure to nitrate/nitrite (p=0.0318), but also significantly associated with diarrheal disease 
(p=0.0376).  Controls in the high exposure category were less likely than high exposure 
methemoglobinemia cases to have experienced severe diarrhea and were more likely to have been 
breastfed for >2 weeks.  Major limitations to the study include the collection of information contributing 
to the exposure estimates several years following the occurrences of methemoglobinemia and reliance on 
parental recollection of infant nutritional intake. 



    
 

 
 
 

 
 
 
 
 

   
 

  
   

     
    

 
 

   
   

 
     

     
    

     
    

  
  

 
    

    

  
      

 
  

 

A-6 NITRATE AND NITRITE 

APPENDIX A 

Results from other studies suggest an association between nitrate in drinking water sources and elevated 
methemoglobin among infants.  Average methemoglobin levels of 1.0, 1.3, and 2.9% during the first 
postnatal trimester (0–3 months of age) were reported among groups healthy infants with water sources 
that were nitrate-free or contained 50–100 mg nitrate/L or >100 mg nitrate/L, respectively (Simon et al. 
1964).  At the end of the second trimester (6 months), methemoglobin averaged 0.7–0.8% for each group.  
Super et al. (1981) reported mean methemoglobin levels of 1.54% among infants ingesting ≤2.93 mg 
nitrate/kg/day and 3.03% among infants ingesting >2.93 mg nitrate/kg/day. 

Limited data are available regarding administration of controlled amounts of nitrate and methemoglobin 
levels.  Cornblath and Hartmann (1948) administered sodium nitrate in the formula fed to four infants 
(ages 11 days to 11 months) for 2–18 days at a concentration resulting in a dose of 50 mg nitrate/kg/day.  
The highest observed level of methemoglobin was 5.3% of total hemoglobin; there was no evidence of 
cyanosis.  Among four other infants (ages 2 days to 6 months) similarly treated at 100 mg nitrate/kg/day 
for 6–9 days, the only reported effect was that of 7.5% methemoglobin in a 10-day-old infant following 
8 days of treatment in the absence of clinical cyanosis.  Gruener and Toeplitz (1975) fed 104 infants 
(1 week to 10 months of age) for 1 day with formula prepared using water containing 15 mg nitrate/L 
(~0.8–1.5 mg nitrate/kg, based on age-specific values for water consumption [Kahn and Stralka 2009] and 
body weight [EPA 2008]), increased to 108 mg nitrate/L for the next 3 days (~5.5–10.6 mg nitrate/kg/day, 
based on age-specific values for water consumption [Kahn and Stralka 2009] and body weight [EPA 
2008], and returned to 15 mg nitrate/L for 1 additional day.  Mean methemoglobin levels were 0.89% 
after the first day of feeding, 1.3, 0.91, and 0.93% after days 2, 3, and 4, and dropped to 0.8% on the fifth 
day.  Among three of these infants (ages not specified), methemoglobin levels reached 6.9, 13.9, and 
15.9% during the high-dose days.  Limitations of this study include the use of a wide range of ages and 
the fact that only 57 of the 104 infants supplied blood samples on all 5 treatment days. 

Agency Contacts (Chemical Managers): Carolyn Harper, Ph.D. 



    
 

 
 
 

 
 
 
 
 

 
 

  
  

   
  

  
    

    
  

 
  

 

  
 

   
   

 
 

  
   

   
 

 
  

 
 

 
  

  
  

     
  

 
  

    
  

 
    

       
  

    
  

 
  

 
 

 
   
   

A-7 NITRATE AND NITRITE 

APPENDIX A 

MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Nitrite 
CAS Numbers: 14797-65-0 
Date: July 2017 
Profile Status: Final 
Route: [ ] Inhalation   [x] Oral 
Duration: [x] Acute  [x] Intermediate   [x] Chronic 
Graph Key: 4 (Acute), 16 (Intermediate), 54 (Chronic) 
Species: Human 

Minimal Risk Level: 0.1   [x] mg/kg/day   [ ] ppm 

Reference: Walton G.  1951.  Survey of literature relating to infant methemoglobinemia due to nitrate-
contaminated water.  Am J Public Health 41:986-996. 

Experimental design:  Walton (1951) reviewed available literature and found 278 reported cases of infant 
methemoglobinemia in a total of 14 U.S. states from which information was available.  Cases were 
grouped by state according to ranges of nitrate levels in drinking water sources. 

Effect noted in study and corresponding doses:  Among methemoglobinemia cases for which nitrate 
levels in water sources used to prepare infant formula were available, 173 cases were associated with 
>50 mg nitrate-nitrogen/L (220 mg nitrate/L), 36 cases with 21–50 mg nitrate-nitrogen/L (92–220 mg 
nitrate/L), and 5 cases with 11–20 mg nitrate-nitrogen (48–88 mg nitrate/L).  None of the 
methemoglobinemia cases were associated with drinking water sources measuring <10 mg nitrate-
nitrogen/L (<44 mg nitrate/L).  Limitations of the contributing studies include lack of information 
regarding the actual ages of the infants, total nitrate doses, and other water source contaminants (e.g., 
bacterial levels). 

Following ingestion of relatively large amounts of nitrate by healthy normal individuals, blood 
methemoglobin levels increase rapidly, followed by a return to normal within several hours following 
intake.  Repeated ingestion of nitrate or nitrite for intermediate- or chronic-duration time periods would 
be expected to result in changes in methemoglobin levels similar to those elicited from a single exposure. 
Therefore, the acute-, intermediate-, and chronic-duration oral MRL values are equivalent. 

Dose and end point used for MRL derivation:  0.2 mg nitrite/kg/day.  The ingestion of nitrate results in 
the formation of nitrite, which is the moiety responsible for methemoglobinemia.  On average, 
approximately 25% of an ingested dose of nitrate enters the saliva of an adult where a portion (ca. 20% 
g/g) is reduced by commensal bacteria to nitrite (i.e., approximately 5% g/g of ingested nitrate is reduced 
to nitrite in the saliva of an adult (Spiegelhalder et al. 1976); most salivary nitrite is absorbed into the 
blood in the small intestine. Therefore, the ingestion of 0.2 mg nitrite/kg/day by an adult would be 
expected to result in a nitrite blood level similar to that achieved following ingestion of 4 mg 
nitrate/kg/day, based on essentially 100% absorption of the ingested dose of nitrite (i.e., 0.2 mg 
nitrite/kg/day is 5% of an oral dose of nitrate at the oral MRL of 4 mg nitrate/kg/day). 

[x] NOAEL   [ ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[ ] 10 for use of a LOAEL 
[ ] 10 for extrapolation from animals to humans 
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APPENDIX A 

[x]  1 for human variability 

A total uncertainty factor of 1 is justified because the point of departure is a NOAEL for nitrate-induced 
effects on methemoglobin in a particularly sensitive human subpopulation (i.e., <3-month-old infants, 
which in many cases may have been at increased risk of methemoglobinemia due to microbial 
contamination and associated gastrointestinal infection). 

Modifying factor used in MRL derivation: 

[x]  2 because young infants exhibit increased susceptibility to methemoglobinemia following 
nitrate ingestion; the modifying factor assumes that the effective methemoglobin level from a 
given intake of nitrate by an infant is up to twice that of an adult; however, quantitative data 
regarding conversion of nitrate to nitrite in the infant are lacking. 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Nitrate may be 
expressed in terms of ionic concentration (i.e., mg nitrate/L), or elemental concentration (i.e., mg nitrate-
nitrogen/L or mg nitrogen as nitrate/L).  A concentration of nitrate expressed in elemental concentration 
(mg nitrogen per liter from nitrate source) can be converted to its ionic concentration (mg NO3

-) 
according to the following relationship:  1 mg nitrate-nitrogen = 4.4 mg nitrate (i.e., the proportion of N 

-in NO3 is 14 [atomic mass of N] ÷ 62 [molecular mass of NO3
-] = 0.226). 

A concentration of 44 mg nitrate/L (10 mg nitrate-nitrogen/L) in drinking water used to prepare infant 
formula represents a NOAEC for infants <3 months of age. Table A-1 presents estimated nitrate doses to 
infants (birth–<3 months of age) calculated using estimated mean values for drinking water ingestion 
rates (Kahn and Stralka 2009) and body weight (EPA 2008) and assuming a drinking water level of 
44 mg nitrate/L as a concentration not expected to cause methemoglobinemia; the calculated doses of 
4.31–4.34 mg nitrate/kg/day represent NOAELs for the age ranges. The TWA-based calculated dose of 
4.33 mg nitrate/kg/day for the age range of birth–<3 months is selected as the point of departure for 
deriving acute-, intermediate-, and chronic-duration oral MRLs for nitrite. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Was a conversion used from intermittent to continuous exposure? Not applicable. 

Other additional studies or pertinent information that lend support to this MRL: Methemoglobinemia is a 
condition in which increased methemoglobin as a percentage of total hemoglobin results in the expression 
of clinical signs that increase in severity with increasing percent methemoglobin (ATSDR 2013a; Bloom 
et al. 2013; Denshaw-Burke et al. 2013; Haymond et al. 2005).  In normal healthy individuals, 
methemoglobin levels are <1% of total hemoglobin. Discoloration (e.g., pale, gray blue) of the skin is 
often observed at methemoglobin levels in the range of 3–15%; most patients tolerate methemoglobin 
levels <10%. Tachycardia, weakness, and other signs of tissue hypoxia may be observed at 10–20% 
methemoglobin levels.  Effects on the central nervous system (e.g., headache, dizziness, fatigue) and 
dyspnea and nausea appear at >20% methemoglobin; the severity of symptoms increases with increasing 
methemoglobin level.  High risk of mortality occurs at levels >70% methemoglobin. 

Proposed explanations for increased susceptibility of infants to methemoglobinemia following ingestion 
of nitrate include: (1) increased reduction of nitrate to nitrite in the newborn, (2) increased tendency for 
nitrite-induced methemoglobin formation by fetal hemoglobin compared to adult hemoglobin, (3) lower 
levels of NADH-dependent methemoglobin reductase (the major enzyme responsible for reduction of 
methemoglobin to normal hemoglobin; also termed NADH-diaphorase, a soluble form of cytochrome-b5 

http:4.31�4.34
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reductase) in the newborn compared to older infants and adults, and (4) incompletely developed hepatic 
microsomal enzyme system in the infant and consequent lower rate of hepatic reduction of circulating 
nitrite compared to that of older children and adults.  A portion of ingested nitrate is reduced to nitrite by 
commensal bacteria in the mouth; however, the acid environment of the normal stomach does not support 
the growth of such bacteria and most of the nitrate that reaches the stomach passes to the small intestine 
from which it is nearly completely absorbed into the blood.  Although Kanady et al. (2012) reported little 
or no bacterial conversion of nitrate to nitrite in the saliva of a group of 10 infants during the first 
2 postnatal months (considered mainly due to lower numbers of major nitrate-reducing oral bacteria than 
adults), a higher pH in the stomach of the newborn may favor growth of nitrate-reducing bacteria, 
resulting in increased reduction of nitrate to nitrite and increased plasma methemoglobin.  Most 
hemoglobin in the newborn is in the form of fetal hemoglobin, which appears to be more readily oxidized 
to methemoglobin than adult hemoglobin; fetal hemoglobin is replaced by adult hemoglobin during early 
postnatal life.  Levels of NADH-dependent methemoglobin reductase in the newborn increase 
approximately 2-fold during the first 4 months of postnatal life to reach adult levels.  During the period of 
relatively lower methemoglobin reductase levels, methemoglobin would not be expected to be as readily 
reduced, resulting in increased susceptibility to methemoglobinemia.  In apparent contrast, Ibrahim et al. 
(2012) reported that blood nitrite levels in newborns approximately 1–2 days of age were 35–55% lower 
than that of adults.  However, one study that evaluated reduction rates of methemoglobin in human adult 
blood and cord blood from term newborns estimated methemoglobin half-lives of 162 and 210 minutes, 
respectively, indicating that methemoglobin reduction occurs more slowly in newborns than adults 
(Power et al. 2007). Although specific mechanisms have not been elucidated, the increased susceptibility 
to nitrite-induced methemoglobinemia in infants is well-documented. 

Bosch et al. (1950) evaluated 139 reported cases of cyanosis among infants in Minnesota (90% were 
<2 months of age; range 8 days to 5 months).  Samples from 129 wells that served as water sources to the 
cases revealed nitrate-nitrogen concentrations >100 mg/L (>440 mg nitrate/L) in 49 wells, 50–100 mg/L 
(220–440 mg nitrate/L) in 53 wells, 21–50 mg/L (92–220 mg nitrate/L) in 25 wells, and 10–20 mg/L (44– 
88 mg nitrate/L) in the other 2 wells.  A major limitation of this study was the detection of coliform 
organisms in 45 of 51 well water samples tested for bacterial contamination. 

A nested case-control study included 26 cases of infants diagnosed with methemoglobinemia at 
≤2 months of age and 45 age-matched controls (Zeman et al. 2002).  Nitrate exposure levels were 
categorized as low (<0.5 ppm), medium (1–10 ppm), or high (>10 ppm) according to estimated nitrate 
levels reconstructed from parental responses to dietary questionnaires and environmental sampling. 
Numbers of methemoglobinemia cases in the low, medium, and high exposure categories were 0/26, 4/26, 
and 22/26, respectively, and estimated dietary nitrate intake ranged from 2.83 to 451.20 mg/kg/day (mean 
103.6 mg nitrate/kg/day).  Diarrheal disease was reported for 14/26 methemoglobinemia cases.  Numbers 
of controls in the low, medium, and high exposure categories were 21/45, 11/45, and 13/45, respectively, 
and estimated dietary nitrate intake ranged from 0 to 182 mg/kg/day (mean 11.2 mg nitrate/kg/day) for 
the controls; diarrheal disease was reported for 13/45 controls.  Univariate and multifactorial analysis of 
risk factors for methemoglobinemia indicated that methemoglobinemia was most strongly associated with 
dietary exposure to nitrate/nitrite (p=0.0318), but also significantly associated with diarrheal disease 
(p=0.0376).  Controls in the high exposure category were less likely than high exposure 
methemoglobinemia cases to have experienced severe diarrhea and were more likely to have been 
breastfed for >2 weeks.  Major limitations to the study include the collection of information contributing 
to the exposure estimates several years following the occurrences of methemoglobinemia and reliance on 
parental recollection of infant nutritional intake. 

Results from other studies suggest an association between nitrate in drinking water sources and elevated 
methemoglobin among infants.  Average methemoglobin levels of 1.0, 1.3, and 2.9% during the first 
postnatal trimester (0–3 months of age) were reported among groups healthy infants with water sources 
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that were nitrate-free or contained 50–100 mg nitrate/L or >100 mg nitrate/L, respectively (Simon et al. 
1964).  At the end of the second trimester (6 months), methemoglobin averaged 0.7–0.8% for each group.  
Super et al. (1981) reported mean methemoglobin levels of 1.54% among infants ingesting ≤2.93mg 
nitrate/kg/day and 3.03% among infants ingesting >2.93 mg nitrate/kg/day. 

Limited data are available regarding administration of controlled amounts of nitrate and methemoglobin 
levels.  Cornblath and Hartmann (1948) administered sodium nitrate in the formula fed to four infants 
(ages 11 days to 11 months) for 2–18 days at a concentration resulting in a dose of 50 mg nitrate/kg/day.  
The highest observed level of methemoglobin was 5.3% of total hemoglobin; there was no evidence of 
cyanosis.  Among four other infants (ages 2 days to 6 months) similarly treated at 100 mg nitrate/kg/day 
for 6–9 days, the only reported effect was that of 7.5% methemoglobin in a 10-day-old infant following 
8 days of treatment in the absence of clinical cyanosis.  Gruener and Toeplitz (1975) fed 104 infants 
(1 week to 10 months of age) for 1 day with formula prepared using water containing 15 mg nitrate/L 
(~0.8–1.5 mg nitrate/kg, based on age-specific values for water consumption [Kahn and Stralka 2009] and 
body weight [EPA 2008]), increased to 108 mg nitrate/L for the next 3 days (~5.5–10.6 mg nitrate/kg/day, 
based on age-specific values for water consumption [Kahn and Stralka 2009] and body weight [EPA 
2008], and returned to 15 mg nitrate/L for 1 additional day.  Mean methemoglobin levels were 0.89% 
after the first day of feeding, 1.3, 0.91, and 0.93% after days 2, 3, and 4, and dropped to 0.8% on the fifth 
day.  Among three of these infants (ages not specified), methemoglobin levels reached 6.9, 13.9, and 
15.9% during the high-dose days.  Limitations of this study include the use of a wide range of ages and 
the fact that only 57 of the 104 infants supplied blood samples on all 5 treatment days. 

In a study designed to evaluate the oral bioavailability of sodium nitrite in healthy volunteers (seven 
females and two males; mean age 22.9 years), ingestion of ~2.2–2.7 mg sodium nitrite/kg (1.5–1.8 mg 
nitrite/kg) resulted in maximum methemoglobin concentrations ranging from 3.4 to 4.5% of total 
hemoglobin at approximately 0.70 hours following ingestion (Kortboyer et al. 1997b).  At a higher intake 
(~4.4–5.4 mg sodium nitrite/kg, or 2.9–3.6 mg nitrite/kg), the maximum methemoglobin concentrations 
ranged from 7.7 to 10.9% of total hemoglobin at approximately 1.14 hours following ingestion. 

Agency Contacts (Chemical Managers): Carolyn Harper, Ph.D. 
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APPENDIX B.  USER'S GUIDE 

Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language. Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release. If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern.  The 
topics are written in a question and answer format. The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2.	 What effects observed in animals are likely to be of concern to humans? 

3.	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a hazardous substance emission, given the concentration of a contaminant in air or the estimated daily 
dose in water. MRLs are based largely on toxicological studies in animals and on reports of human 
occupational exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.  

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects. These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario. The LSE tables and figures should always be used in 
conjunction with the text.  All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1)	 Route of Exposure. One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure. Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2)	 Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure. 
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3)	 Health Effect. The major categories of health effects included in LSE tables and figures include 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. 
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4)	 Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5)	 Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6)	 Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies.  In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7)	 System.  This column further defines the systemic effects. These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8)	 NOAEL.  A NOAEL is the highest exposure level at which no adverse effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9)	 LOAEL.  A LOAEL is the lowest dose used in the study that caused an adverse health effect. 
LOAELs have been classified into "Less Serious" and "Serious" effects. These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10)	 Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11)	 CEL.  A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects. The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12)	 Footnotes.  Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13)	 Exposure Period. The same exposure periods appear as in the LSE table. In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14)	 Health Effect. These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15)	 Levels of Exposure.  Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16)	 NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17)	 CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18)	 Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19)	 Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 
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1 →	 Table 3-1.  Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Less serious Serious (ppm) Key to 	 frequency/ NOAEL 
(ppm) figurea Species duration System (ppm)	 Reference 

2 

3 

4 

→ INTERMEDIATE EXPOSURE 

5 

→ Systemic ↓ 

18 Rat 
→ 

CHRONIC EXPOSURE 

Cancer 

38 Rat 

39 Rat 

40 Mouse 

6 

↓ 

13 wk 
5 d/wk 
6 hr/d 

18 mo 
5 d/wk 
7 hr/d 

89–104 wk 
5 d/wk 
6 hr/d 

79–103 wk 
5 d/wk 
6 hr/d 

7 8 9 

↓ ↓ ↓ 

Resp 3b 10 (hyperplasia) 

11 

↓ 

20	 (CEL, multiple 
organs) 

10	 (CEL, lung tumors, 
nasal tumors) 

10	 (CEL, lung tumors, 
hemangiosarcomas) 

10 

↓ 

Nitschke et al. 1981 

Wong et al. 1982 

NTP 1982 

NTP 1982 

12 →	 a The number corresponds to entries in Figure 3-1. 
b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-3 ppm; dose adjusted for intermittent exposure and divided 
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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Chronic (≥ 365 days) Intermediate (15-364 days) 
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD/C benchmark dose or benchmark concentration 
BMDX dose that produces a X% change in response rate of an adverse effect 
BMDLX 95% lower confidence limit on the BMDX 

BMDS Benchmark Dose Software 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
DOT Department of Transportation 



    
 

  
 
 

 
 
 
 
 

   
           

   
  

  
  

  
   

  
  

   
  

  
  

  
  

  
   

  
  

  
  
  

  
  
   

  
  

  
    

  
  

   
  
  

  
  

   
  
   
   
  

  
  

  
  

  
  

   
  
   

C-2 NITRATE AND NITRITE 

APPENDIX C 

DOT/UN/ Department of Transportation/United Nations/ 
NA/IMDG North America/Intergovernmental Maritime Dangerous Goods Code 

DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank 
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg kilokilogram; 1 kilokilogram is equivalent to 1,000 kilograms and 1 metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
MCL maximum contaminant level 



    
 

  
 
 

 
 
 
 
 

   
  

  
  
  
  

  
  
   

  
  

  
  

  
   

   
  

   
  

  
  

  
  

  
   

  
   

  
  

  
  
  

  
  

  
  

  
  

  
  

   
   
  

  
  

  
    

  
  

   
   

C-3 NITRATE AND NITRITE 

APPENDIX C 

MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
mt metric ton 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 
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OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic 
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
PEL-C permissible exposure limit-ceiling value 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
REL-C recommended exposure level-ceiling value 
RfC reference concentration (inhalation) 
RfD reference dose (oral) 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase (same as aspartate aminotransferase or AST) 
SGPT serum glutamic pyruvic transaminase (same as alanine aminotransferase or ALT) 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TLV-C threshold limit value-ceiling value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 



    
 

  
 
 

 
 
 
 
 

  
 
 

  
   
  
  
   
  

  
  
  
  

  
  
  

  
  

  
  

 

C-5 NITRATE AND NITRITE 

APPENDIX C 

WHO World Health Organization 

> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
μm micrometer 
μg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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